• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
xhci_quiesce(struct xhci_hcd * xhci)87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
xhci_halt(struct xhci_hcd * xhci)111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 	xhci->xhc_state |= XHCI_STATE_HALTED;
124 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 	return ret;
126 }
127 
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
xhci_start(struct xhci_hcd * xhci)131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 	u32 temp;
134 	int ret;
135 
136 	temp = readl(&xhci->op_regs->command);
137 	temp |= (CMD_RUN);
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 			temp);
140 	writel(temp, &xhci->op_regs->command);
141 
142 	/*
143 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 	 * running.
145 	 */
146 	ret = xhci_handshake(&xhci->op_regs->status,
147 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 	if (ret == -ETIMEDOUT)
149 		xhci_err(xhci, "Host took too long to start, "
150 				"waited %u microseconds.\n",
151 				XHCI_MAX_HALT_USEC);
152 	if (!ret) {
153 		/* clear state flags. Including dying, halted or removing */
154 		xhci->xhc_state = 0;
155 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
156 	}
157 
158 	return ret;
159 }
160 
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
169 {
170 	u32 command;
171 	u32 state;
172 	int ret;
173 
174 	state = readl(&xhci->op_regs->status);
175 
176 	if (state == ~(u32)0) {
177 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 		return -ENODEV;
179 	}
180 
181 	if ((state & STS_HALT) == 0) {
182 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 		return 0;
184 	}
185 
186 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 	command = readl(&xhci->op_regs->command);
188 	command |= CMD_RESET;
189 	writel(command, &xhci->op_regs->command);
190 
191 	/* Existing Intel xHCI controllers require a delay of 1 mS,
192 	 * after setting the CMD_RESET bit, and before accessing any
193 	 * HC registers. This allows the HC to complete the
194 	 * reset operation and be ready for HC register access.
195 	 * Without this delay, the subsequent HC register access,
196 	 * may result in a system hang very rarely.
197 	 */
198 	if (xhci->quirks & XHCI_INTEL_HOST)
199 		udelay(1000);
200 
201 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
202 	if (ret)
203 		return ret;
204 
205 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207 
208 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209 			 "Wait for controller to be ready for doorbell rings");
210 	/*
211 	 * xHCI cannot write to any doorbells or operational registers other
212 	 * than status until the "Controller Not Ready" flag is cleared.
213 	 */
214 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
xhci_zero_64b_regs(struct xhci_hcd * xhci)226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 	u32 intrs;
232 
233 	/*
234 	 * Some Renesas controllers get into a weird state if they are
235 	 * reset while programmed with 64bit addresses (they will preserve
236 	 * the top half of the address in internal, non visible
237 	 * registers). You end up with half the address coming from the
238 	 * kernel, and the other half coming from the firmware. Also,
239 	 * changing the programming leads to extra accesses even if the
240 	 * controller is supposed to be halted. The controller ends up with
241 	 * a fatal fault, and is then ripe for being properly reset.
242 	 *
243 	 * Special care is taken to only apply this if the device is behind
244 	 * an iommu. Doing anything when there is no iommu is definitely
245 	 * unsafe...
246 	 */
247 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
248 		return;
249 
250 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251 
252 	/* Clear HSEIE so that faults do not get signaled */
253 	val = readl(&xhci->op_regs->command);
254 	val &= ~CMD_HSEIE;
255 	writel(val, &xhci->op_regs->command);
256 
257 	/* Clear HSE (aka FATAL) */
258 	val = readl(&xhci->op_regs->status);
259 	val |= STS_FATAL;
260 	writel(val, &xhci->op_regs->status);
261 
262 	/* Now zero the registers, and brace for impact */
263 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264 	if (upper_32_bits(val))
265 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267 	if (upper_32_bits(val))
268 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269 
270 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
271 		      ARRAY_SIZE(xhci->run_regs->ir_set));
272 
273 	for (i = 0; i < intrs; i++) {
274 		struct xhci_intr_reg __iomem *ir;
275 
276 		ir = &xhci->run_regs->ir_set[i];
277 		val = xhci_read_64(xhci, &ir->erst_base);
278 		if (upper_32_bits(val))
279 			xhci_write_64(xhci, 0, &ir->erst_base);
280 		val= xhci_read_64(xhci, &ir->erst_dequeue);
281 		if (upper_32_bits(val))
282 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
283 	}
284 
285 	/* Wait for the fault to appear. It will be cleared on reset */
286 	err = xhci_handshake(&xhci->op_regs->status,
287 			     STS_FATAL, STS_FATAL,
288 			     XHCI_MAX_HALT_USEC);
289 	if (!err)
290 		xhci_info(xhci, "Fault detected\n");
291 }
292 
293 #ifdef CONFIG_USB_PCI
294 /*
295  * Set up MSI
296  */
xhci_setup_msi(struct xhci_hcd * xhci)297 static int xhci_setup_msi(struct xhci_hcd *xhci)
298 {
299 	int ret;
300 	/*
301 	 * TODO:Check with MSI Soc for sysdev
302 	 */
303 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304 
305 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306 	if (ret < 0) {
307 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308 				"failed to allocate MSI entry");
309 		return ret;
310 	}
311 
312 	ret = request_irq(pdev->irq, xhci_msi_irq,
313 				0, "xhci_hcd", xhci_to_hcd(xhci));
314 	if (ret) {
315 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
316 				"disable MSI interrupt");
317 		pci_free_irq_vectors(pdev);
318 	}
319 
320 	return ret;
321 }
322 
323 /*
324  * Set up MSI-X
325  */
xhci_setup_msix(struct xhci_hcd * xhci)326 static int xhci_setup_msix(struct xhci_hcd *xhci)
327 {
328 	int i, ret = 0;
329 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
330 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331 
332 	/*
333 	 * calculate number of msi-x vectors supported.
334 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
335 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
336 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
337 	 *   Add additional 1 vector to ensure always available interrupt.
338 	 */
339 	xhci->msix_count = min(num_online_cpus() + 1,
340 				HCS_MAX_INTRS(xhci->hcs_params1));
341 
342 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
343 			PCI_IRQ_MSIX);
344 	if (ret < 0) {
345 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
346 				"Failed to enable MSI-X");
347 		return ret;
348 	}
349 
350 	for (i = 0; i < xhci->msix_count; i++) {
351 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
352 				"xhci_hcd", xhci_to_hcd(xhci));
353 		if (ret)
354 			goto disable_msix;
355 	}
356 
357 	hcd->msix_enabled = 1;
358 	return ret;
359 
360 disable_msix:
361 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362 	while (--i >= 0)
363 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
364 	pci_free_irq_vectors(pdev);
365 	return ret;
366 }
367 
368 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)369 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 {
371 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
372 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373 
374 	if (xhci->quirks & XHCI_PLAT)
375 		return;
376 
377 	/* return if using legacy interrupt */
378 	if (hcd->irq > 0)
379 		return;
380 
381 	if (hcd->msix_enabled) {
382 		int i;
383 
384 		for (i = 0; i < xhci->msix_count; i++)
385 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386 	} else {
387 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388 	}
389 
390 	pci_free_irq_vectors(pdev);
391 	hcd->msix_enabled = 0;
392 }
393 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
397 
398 	if (hcd->msix_enabled) {
399 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
400 		int i;
401 
402 		for (i = 0; i < xhci->msix_count; i++)
403 			synchronize_irq(pci_irq_vector(pdev, i));
404 	}
405 }
406 
xhci_try_enable_msi(struct usb_hcd * hcd)407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410 	struct pci_dev  *pdev;
411 	int ret;
412 
413 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
414 	if (xhci->quirks & XHCI_PLAT)
415 		return 0;
416 
417 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 	/*
419 	 * Some Fresco Logic host controllers advertise MSI, but fail to
420 	 * generate interrupts.  Don't even try to enable MSI.
421 	 */
422 	if (xhci->quirks & XHCI_BROKEN_MSI)
423 		goto legacy_irq;
424 
425 	/* unregister the legacy interrupt */
426 	if (hcd->irq)
427 		free_irq(hcd->irq, hcd);
428 	hcd->irq = 0;
429 
430 	ret = xhci_setup_msix(xhci);
431 	if (ret)
432 		/* fall back to msi*/
433 		ret = xhci_setup_msi(xhci);
434 
435 	if (!ret) {
436 		hcd->msi_enabled = 1;
437 		return 0;
438 	}
439 
440 	if (!pdev->irq) {
441 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
442 		return -EINVAL;
443 	}
444 
445  legacy_irq:
446 	if (!strlen(hcd->irq_descr))
447 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
448 			 hcd->driver->description, hcd->self.busnum);
449 
450 	/* fall back to legacy interrupt*/
451 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
452 			hcd->irq_descr, hcd);
453 	if (ret) {
454 		xhci_err(xhci, "request interrupt %d failed\n",
455 				pdev->irq);
456 		return ret;
457 	}
458 	hcd->irq = pdev->irq;
459 	return 0;
460 }
461 
462 #else
463 
xhci_try_enable_msi(struct usb_hcd * hcd)464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
465 {
466 	return 0;
467 }
468 
xhci_cleanup_msix(struct xhci_hcd * xhci)469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 {
471 }
472 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 {
475 }
476 
477 #endif
478 
compliance_mode_recovery(struct timer_list * t)479 static void compliance_mode_recovery(struct timer_list *t)
480 {
481 	struct xhci_hcd *xhci;
482 	struct usb_hcd *hcd;
483 	struct xhci_hub *rhub;
484 	u32 temp;
485 	int i;
486 
487 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
488 	rhub = &xhci->usb3_rhub;
489 
490 	for (i = 0; i < rhub->num_ports; i++) {
491 		temp = readl(rhub->ports[i]->addr);
492 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
493 			/*
494 			 * Compliance Mode Detected. Letting USB Core
495 			 * handle the Warm Reset
496 			 */
497 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498 					"Compliance mode detected->port %d",
499 					i + 1);
500 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
501 					"Attempting compliance mode recovery");
502 			hcd = xhci->shared_hcd;
503 
504 			if (hcd->state == HC_STATE_SUSPENDED)
505 				usb_hcd_resume_root_hub(hcd);
506 
507 			usb_hcd_poll_rh_status(hcd);
508 		}
509 	}
510 
511 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
512 		mod_timer(&xhci->comp_mode_recovery_timer,
513 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
514 }
515 
516 /*
517  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
518  * that causes ports behind that hardware to enter compliance mode sometimes.
519  * The quirk creates a timer that polls every 2 seconds the link state of
520  * each host controller's port and recovers it by issuing a Warm reset
521  * if Compliance mode is detected, otherwise the port will become "dead" (no
522  * device connections or disconnections will be detected anymore). Becasue no
523  * status event is generated when entering compliance mode (per xhci spec),
524  * this quirk is needed on systems that have the failing hardware installed.
525  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)526 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
527 {
528 	xhci->port_status_u0 = 0;
529 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
530 		    0);
531 	xhci->comp_mode_recovery_timer.expires = jiffies +
532 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
533 
534 	add_timer(&xhci->comp_mode_recovery_timer);
535 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
536 			"Compliance mode recovery timer initialized");
537 }
538 
539 /*
540  * This function identifies the systems that have installed the SN65LVPE502CP
541  * USB3.0 re-driver and that need the Compliance Mode Quirk.
542  * Systems:
543  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
544  */
xhci_compliance_mode_recovery_timer_quirk_check(void)545 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
546 {
547 	const char *dmi_product_name, *dmi_sys_vendor;
548 
549 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
550 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
551 	if (!dmi_product_name || !dmi_sys_vendor)
552 		return false;
553 
554 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
555 		return false;
556 
557 	if (strstr(dmi_product_name, "Z420") ||
558 			strstr(dmi_product_name, "Z620") ||
559 			strstr(dmi_product_name, "Z820") ||
560 			strstr(dmi_product_name, "Z1 Workstation"))
561 		return true;
562 
563 	return false;
564 }
565 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)566 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
567 {
568 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
569 }
570 
571 
572 /*
573  * Initialize memory for HCD and xHC (one-time init).
574  *
575  * Program the PAGESIZE register, initialize the device context array, create
576  * device contexts (?), set up a command ring segment (or two?), create event
577  * ring (one for now).
578  */
xhci_init(struct usb_hcd * hcd)579 static int xhci_init(struct usb_hcd *hcd)
580 {
581 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582 	int retval = 0;
583 
584 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
585 	spin_lock_init(&xhci->lock);
586 	if (xhci->hci_version == 0x95 && link_quirk) {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
588 				"QUIRK: Not clearing Link TRB chain bits.");
589 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
590 	} else {
591 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
592 				"xHCI doesn't need link TRB QUIRK");
593 	}
594 	retval = xhci_mem_init(xhci, GFP_KERNEL);
595 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
596 
597 	/* Initializing Compliance Mode Recovery Data If Needed */
598 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
599 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
600 		compliance_mode_recovery_timer_init(xhci);
601 	}
602 
603 	return retval;
604 }
605 
606 /*-------------------------------------------------------------------------*/
607 
608 
xhci_run_finished(struct xhci_hcd * xhci)609 static int xhci_run_finished(struct xhci_hcd *xhci)
610 {
611 	if (xhci_start(xhci)) {
612 		xhci_halt(xhci);
613 		return -ENODEV;
614 	}
615 	xhci->shared_hcd->state = HC_STATE_RUNNING;
616 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
617 
618 	if (xhci->quirks & XHCI_NEC_HOST)
619 		xhci_ring_cmd_db(xhci);
620 
621 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
622 			"Finished xhci_run for USB3 roothub");
623 	return 0;
624 }
625 
626 /*
627  * Start the HC after it was halted.
628  *
629  * This function is called by the USB core when the HC driver is added.
630  * Its opposite is xhci_stop().
631  *
632  * xhci_init() must be called once before this function can be called.
633  * Reset the HC, enable device slot contexts, program DCBAAP, and
634  * set command ring pointer and event ring pointer.
635  *
636  * Setup MSI-X vectors and enable interrupts.
637  */
xhci_run(struct usb_hcd * hcd)638 int xhci_run(struct usb_hcd *hcd)
639 {
640 	u32 temp;
641 	u64 temp_64;
642 	int ret;
643 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644 
645 	/* Start the xHCI host controller running only after the USB 2.0 roothub
646 	 * is setup.
647 	 */
648 
649 	hcd->uses_new_polling = 1;
650 	if (!usb_hcd_is_primary_hcd(hcd))
651 		return xhci_run_finished(xhci);
652 
653 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
654 
655 	ret = xhci_try_enable_msi(hcd);
656 	if (ret)
657 		return ret;
658 
659 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
660 	temp_64 &= ~ERST_PTR_MASK;
661 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
663 
664 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665 			"// Set the interrupt modulation register");
666 	temp = readl(&xhci->ir_set->irq_control);
667 	temp &= ~ER_IRQ_INTERVAL_MASK;
668 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
669 	writel(temp, &xhci->ir_set->irq_control);
670 
671 	/* Set the HCD state before we enable the irqs */
672 	temp = readl(&xhci->op_regs->command);
673 	temp |= (CMD_EIE);
674 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675 			"// Enable interrupts, cmd = 0x%x.", temp);
676 	writel(temp, &xhci->op_regs->command);
677 
678 	temp = readl(&xhci->ir_set->irq_pending);
679 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
681 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
682 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
683 
684 	if (xhci->quirks & XHCI_NEC_HOST) {
685 		struct xhci_command *command;
686 
687 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
688 		if (!command)
689 			return -ENOMEM;
690 
691 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
692 				TRB_TYPE(TRB_NEC_GET_FW));
693 		if (ret)
694 			xhci_free_command(xhci, command);
695 	}
696 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697 			"Finished xhci_run for USB2 roothub");
698 
699 	xhci_dbc_init(xhci);
700 
701 	xhci_debugfs_init(xhci);
702 
703 	return 0;
704 }
705 EXPORT_SYMBOL_GPL(xhci_run);
706 
707 /*
708  * Stop xHCI driver.
709  *
710  * This function is called by the USB core when the HC driver is removed.
711  * Its opposite is xhci_run().
712  *
713  * Disable device contexts, disable IRQs, and quiesce the HC.
714  * Reset the HC, finish any completed transactions, and cleanup memory.
715  */
xhci_stop(struct usb_hcd * hcd)716 static void xhci_stop(struct usb_hcd *hcd)
717 {
718 	u32 temp;
719 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720 
721 	mutex_lock(&xhci->mutex);
722 
723 	/* Only halt host and free memory after both hcds are removed */
724 	if (!usb_hcd_is_primary_hcd(hcd)) {
725 		mutex_unlock(&xhci->mutex);
726 		return;
727 	}
728 
729 	xhci_dbc_exit(xhci);
730 
731 	spin_lock_irq(&xhci->lock);
732 	xhci->xhc_state |= XHCI_STATE_HALTED;
733 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
734 	xhci_halt(xhci);
735 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
736 	spin_unlock_irq(&xhci->lock);
737 
738 	xhci_cleanup_msix(xhci);
739 
740 	/* Deleting Compliance Mode Recovery Timer */
741 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
742 			(!(xhci_all_ports_seen_u0(xhci)))) {
743 		del_timer_sync(&xhci->comp_mode_recovery_timer);
744 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
745 				"%s: compliance mode recovery timer deleted",
746 				__func__);
747 	}
748 
749 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
750 		usb_amd_dev_put();
751 
752 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753 			"// Disabling event ring interrupts");
754 	temp = readl(&xhci->op_regs->status);
755 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
756 	temp = readl(&xhci->ir_set->irq_pending);
757 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758 
759 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
760 	xhci_mem_cleanup(xhci);
761 	xhci_debugfs_exit(xhci);
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"xhci_stop completed - status = %x",
764 			readl(&xhci->op_regs->status));
765 	mutex_unlock(&xhci->mutex);
766 }
767 
768 /*
769  * Shutdown HC (not bus-specific)
770  *
771  * This is called when the machine is rebooting or halting.  We assume that the
772  * machine will be powered off, and the HC's internal state will be reset.
773  * Don't bother to free memory.
774  *
775  * This will only ever be called with the main usb_hcd (the USB3 roothub).
776  */
xhci_shutdown(struct usb_hcd * hcd)777 void xhci_shutdown(struct usb_hcd *hcd)
778 {
779 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780 
781 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
782 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783 
784 	/* Don't poll the roothubs after shutdown. */
785 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
786 			__func__, hcd->self.busnum);
787 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
788 	del_timer_sync(&hcd->rh_timer);
789 
790 	if (xhci->shared_hcd) {
791 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
792 		del_timer_sync(&xhci->shared_hcd->rh_timer);
793 	}
794 
795 	spin_lock_irq(&xhci->lock);
796 	xhci_halt(xhci);
797 
798 	/*
799 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
800 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
801 	 */
802 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
803 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
804 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
805 
806 	spin_unlock_irq(&xhci->lock);
807 
808 	xhci_cleanup_msix(xhci);
809 
810 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
811 			"xhci_shutdown completed - status = %x",
812 			readl(&xhci->op_regs->status));
813 }
814 EXPORT_SYMBOL_GPL(xhci_shutdown);
815 
816 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)817 static void xhci_save_registers(struct xhci_hcd *xhci)
818 {
819 	xhci->s3.command = readl(&xhci->op_regs->command);
820 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
821 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
822 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
823 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
824 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
825 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
826 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
827 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
828 }
829 
xhci_restore_registers(struct xhci_hcd * xhci)830 static void xhci_restore_registers(struct xhci_hcd *xhci)
831 {
832 	writel(xhci->s3.command, &xhci->op_regs->command);
833 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
834 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
835 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
836 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
837 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
838 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
839 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
840 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
841 }
842 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)843 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
844 {
845 	u64	val_64;
846 
847 	/* step 2: initialize command ring buffer */
848 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
849 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
850 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
851 				      xhci->cmd_ring->dequeue) &
852 		 (u64) ~CMD_RING_RSVD_BITS) |
853 		xhci->cmd_ring->cycle_state;
854 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
855 			"// Setting command ring address to 0x%llx",
856 			(long unsigned long) val_64);
857 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
858 }
859 
860 /*
861  * The whole command ring must be cleared to zero when we suspend the host.
862  *
863  * The host doesn't save the command ring pointer in the suspend well, so we
864  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
865  * aligned, because of the reserved bits in the command ring dequeue pointer
866  * register.  Therefore, we can't just set the dequeue pointer back in the
867  * middle of the ring (TRBs are 16-byte aligned).
868  */
xhci_clear_command_ring(struct xhci_hcd * xhci)869 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
870 {
871 	struct xhci_ring *ring;
872 	struct xhci_segment *seg;
873 
874 	ring = xhci->cmd_ring;
875 	seg = ring->deq_seg;
876 	do {
877 		memset(seg->trbs, 0,
878 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
879 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
880 			cpu_to_le32(~TRB_CYCLE);
881 		seg = seg->next;
882 	} while (seg != ring->deq_seg);
883 
884 	/* Reset the software enqueue and dequeue pointers */
885 	ring->deq_seg = ring->first_seg;
886 	ring->dequeue = ring->first_seg->trbs;
887 	ring->enq_seg = ring->deq_seg;
888 	ring->enqueue = ring->dequeue;
889 
890 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
891 	/*
892 	 * Ring is now zeroed, so the HW should look for change of ownership
893 	 * when the cycle bit is set to 1.
894 	 */
895 	ring->cycle_state = 1;
896 
897 	/*
898 	 * Reset the hardware dequeue pointer.
899 	 * Yes, this will need to be re-written after resume, but we're paranoid
900 	 * and want to make sure the hardware doesn't access bogus memory
901 	 * because, say, the BIOS or an SMI started the host without changing
902 	 * the command ring pointers.
903 	 */
904 	xhci_set_cmd_ring_deq(xhci);
905 }
906 
907 /*
908  * Disable port wake bits if do_wakeup is not set.
909  *
910  * Also clear a possible internal port wake state left hanging for ports that
911  * detected termination but never successfully enumerated (trained to 0U).
912  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
913  * at enumeration clears this wake, force one here as well for unconnected ports
914  */
915 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)916 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
917 				       struct xhci_hub *rhub,
918 				       bool do_wakeup)
919 {
920 	unsigned long flags;
921 	u32 t1, t2, portsc;
922 	int i;
923 
924 	spin_lock_irqsave(&xhci->lock, flags);
925 
926 	for (i = 0; i < rhub->num_ports; i++) {
927 		portsc = readl(rhub->ports[i]->addr);
928 		t1 = xhci_port_state_to_neutral(portsc);
929 		t2 = t1;
930 
931 		/* clear wake bits if do_wake is not set */
932 		if (!do_wakeup)
933 			t2 &= ~PORT_WAKE_BITS;
934 
935 		/* Don't touch csc bit if connected or connect change is set */
936 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
937 			t2 |= PORT_CSC;
938 
939 		if (t1 != t2) {
940 			writel(t2, rhub->ports[i]->addr);
941 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
942 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
943 		}
944 	}
945 	spin_unlock_irqrestore(&xhci->lock, flags);
946 }
947 
xhci_pending_portevent(struct xhci_hcd * xhci)948 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
949 {
950 	struct xhci_port	**ports;
951 	int			port_index;
952 	u32			status;
953 	u32			portsc;
954 
955 	status = readl(&xhci->op_regs->status);
956 	if (status & STS_EINT)
957 		return true;
958 	/*
959 	 * Checking STS_EINT is not enough as there is a lag between a change
960 	 * bit being set and the Port Status Change Event that it generated
961 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
962 	 */
963 
964 	port_index = xhci->usb2_rhub.num_ports;
965 	ports = xhci->usb2_rhub.ports;
966 	while (port_index--) {
967 		portsc = readl(ports[port_index]->addr);
968 		if (portsc & PORT_CHANGE_MASK ||
969 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
970 			return true;
971 	}
972 	port_index = xhci->usb3_rhub.num_ports;
973 	ports = xhci->usb3_rhub.ports;
974 	while (port_index--) {
975 		portsc = readl(ports[port_index]->addr);
976 		if (portsc & PORT_CHANGE_MASK ||
977 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
978 			return true;
979 	}
980 	return false;
981 }
982 
983 /*
984  * Stop HC (not bus-specific)
985  *
986  * This is called when the machine transition into S3/S4 mode.
987  *
988  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)989 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
990 {
991 	int			rc = 0;
992 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
993 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
994 	u32			command;
995 	u32			res;
996 
997 	if (!hcd->state)
998 		return 0;
999 
1000 	if (hcd->state != HC_STATE_SUSPENDED ||
1001 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
1002 		return -EINVAL;
1003 
1004 	/* Clear root port wake on bits if wakeup not allowed. */
1005 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1006 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1007 
1008 	if (!HCD_HW_ACCESSIBLE(hcd))
1009 		return 0;
1010 
1011 	xhci_dbc_suspend(xhci);
1012 
1013 	/* Don't poll the roothubs on bus suspend. */
1014 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
1015 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1016 	del_timer_sync(&hcd->rh_timer);
1017 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1018 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1019 
1020 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1021 		usleep_range(1000, 1500);
1022 
1023 	spin_lock_irq(&xhci->lock);
1024 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1025 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1026 	/* step 1: stop endpoint */
1027 	/* skipped assuming that port suspend has done */
1028 
1029 	/* step 2: clear Run/Stop bit */
1030 	command = readl(&xhci->op_regs->command);
1031 	command &= ~CMD_RUN;
1032 	writel(command, &xhci->op_regs->command);
1033 
1034 	/* Some chips from Fresco Logic need an extraordinary delay */
1035 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1036 
1037 	if (xhci_handshake(&xhci->op_regs->status,
1038 		      STS_HALT, STS_HALT, delay)) {
1039 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1040 		spin_unlock_irq(&xhci->lock);
1041 		return -ETIMEDOUT;
1042 	}
1043 	xhci_clear_command_ring(xhci);
1044 
1045 	/* step 3: save registers */
1046 	xhci_save_registers(xhci);
1047 
1048 	/* step 4: set CSS flag */
1049 	command = readl(&xhci->op_regs->command);
1050 	command |= CMD_CSS;
1051 	writel(command, &xhci->op_regs->command);
1052 	xhci->broken_suspend = 0;
1053 	if (xhci_handshake(&xhci->op_regs->status,
1054 				STS_SAVE, 0, 20 * 1000)) {
1055 	/*
1056 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1057 	 * SSS bit of USBSTS and when driver tries to poll
1058 	 * to see if the xHC clears BIT(8) which never happens
1059 	 * and driver assumes that controller is not responding
1060 	 * and times out. To workaround this, its good to check
1061 	 * if SRE and HCE bits are not set (as per xhci
1062 	 * Section 5.4.2) and bypass the timeout.
1063 	 */
1064 		res = readl(&xhci->op_regs->status);
1065 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1066 		    (((res & STS_SRE) == 0) &&
1067 				((res & STS_HCE) == 0))) {
1068 			xhci->broken_suspend = 1;
1069 		} else {
1070 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1071 			spin_unlock_irq(&xhci->lock);
1072 			return -ETIMEDOUT;
1073 		}
1074 	}
1075 	spin_unlock_irq(&xhci->lock);
1076 
1077 	/*
1078 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1079 	 * is about to be suspended.
1080 	 */
1081 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1082 			(!(xhci_all_ports_seen_u0(xhci)))) {
1083 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1084 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1085 				"%s: compliance mode recovery timer deleted",
1086 				__func__);
1087 	}
1088 
1089 	/* step 5: remove core well power */
1090 	/* synchronize irq when using MSI-X */
1091 	xhci_msix_sync_irqs(xhci);
1092 
1093 	return rc;
1094 }
1095 EXPORT_SYMBOL_GPL(xhci_suspend);
1096 
1097 /*
1098  * start xHC (not bus-specific)
1099  *
1100  * This is called when the machine transition from S3/S4 mode.
1101  *
1102  */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1103 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1104 {
1105 	u32			command, temp = 0;
1106 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1107 	struct usb_hcd		*secondary_hcd;
1108 	int			retval = 0;
1109 	bool			comp_timer_running = false;
1110 	bool			pending_portevent = false;
1111 	bool			reinit_xhc = false;
1112 
1113 	if (!hcd->state)
1114 		return 0;
1115 
1116 	/* Wait a bit if either of the roothubs need to settle from the
1117 	 * transition into bus suspend.
1118 	 */
1119 
1120 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1121 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1122 		msleep(100);
1123 
1124 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1125 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1126 
1127 	spin_lock_irq(&xhci->lock);
1128 
1129 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1130 		reinit_xhc = true;
1131 
1132 	if (!reinit_xhc) {
1133 		/*
1134 		 * Some controllers might lose power during suspend, so wait
1135 		 * for controller not ready bit to clear, just as in xHC init.
1136 		 */
1137 		retval = xhci_handshake(&xhci->op_regs->status,
1138 					STS_CNR, 0, 10 * 1000 * 1000);
1139 		if (retval) {
1140 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1141 				  retval);
1142 			spin_unlock_irq(&xhci->lock);
1143 			return retval;
1144 		}
1145 		/* step 1: restore register */
1146 		xhci_restore_registers(xhci);
1147 		/* step 2: initialize command ring buffer */
1148 		xhci_set_cmd_ring_deq(xhci);
1149 		/* step 3: restore state and start state*/
1150 		/* step 3: set CRS flag */
1151 		command = readl(&xhci->op_regs->command);
1152 		command |= CMD_CRS;
1153 		writel(command, &xhci->op_regs->command);
1154 		/*
1155 		 * Some controllers take up to 55+ ms to complete the controller
1156 		 * restore so setting the timeout to 100ms. Xhci specification
1157 		 * doesn't mention any timeout value.
1158 		 */
1159 		if (xhci_handshake(&xhci->op_regs->status,
1160 			      STS_RESTORE, 0, 100 * 1000)) {
1161 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1162 			spin_unlock_irq(&xhci->lock);
1163 			return -ETIMEDOUT;
1164 		}
1165 	}
1166 
1167 	temp = readl(&xhci->op_regs->status);
1168 
1169 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1170 	if (temp & (STS_SRE | STS_HCE)) {
1171 		reinit_xhc = true;
1172 		if (!xhci->broken_suspend)
1173 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1174 	}
1175 
1176 	if (reinit_xhc) {
1177 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1178 				!(xhci_all_ports_seen_u0(xhci))) {
1179 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1180 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1181 				"Compliance Mode Recovery Timer deleted!");
1182 		}
1183 
1184 		/* Let the USB core know _both_ roothubs lost power. */
1185 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1186 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1187 
1188 		xhci_dbg(xhci, "Stop HCD\n");
1189 		xhci_halt(xhci);
1190 		xhci_zero_64b_regs(xhci);
1191 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1192 		spin_unlock_irq(&xhci->lock);
1193 		if (retval)
1194 			return retval;
1195 		xhci_cleanup_msix(xhci);
1196 
1197 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1198 		temp = readl(&xhci->op_regs->status);
1199 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1200 		temp = readl(&xhci->ir_set->irq_pending);
1201 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1202 
1203 		xhci_dbg(xhci, "cleaning up memory\n");
1204 		xhci_mem_cleanup(xhci);
1205 		xhci_debugfs_exit(xhci);
1206 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1207 			    readl(&xhci->op_regs->status));
1208 
1209 		/* USB core calls the PCI reinit and start functions twice:
1210 		 * first with the primary HCD, and then with the secondary HCD.
1211 		 * If we don't do the same, the host will never be started.
1212 		 */
1213 		if (!usb_hcd_is_primary_hcd(hcd))
1214 			secondary_hcd = hcd;
1215 		else
1216 			secondary_hcd = xhci->shared_hcd;
1217 
1218 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1219 		retval = xhci_init(hcd->primary_hcd);
1220 		if (retval)
1221 			return retval;
1222 		comp_timer_running = true;
1223 
1224 		xhci_dbg(xhci, "Start the primary HCD\n");
1225 		retval = xhci_run(hcd->primary_hcd);
1226 		if (!retval) {
1227 			xhci_dbg(xhci, "Start the secondary HCD\n");
1228 			retval = xhci_run(secondary_hcd);
1229 		}
1230 		hcd->state = HC_STATE_SUSPENDED;
1231 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1232 		goto done;
1233 	}
1234 
1235 	/* step 4: set Run/Stop bit */
1236 	command = readl(&xhci->op_regs->command);
1237 	command |= CMD_RUN;
1238 	writel(command, &xhci->op_regs->command);
1239 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1240 		  0, 250 * 1000);
1241 
1242 	/* step 5: walk topology and initialize portsc,
1243 	 * portpmsc and portli
1244 	 */
1245 	/* this is done in bus_resume */
1246 
1247 	/* step 6: restart each of the previously
1248 	 * Running endpoints by ringing their doorbells
1249 	 */
1250 
1251 	spin_unlock_irq(&xhci->lock);
1252 
1253 	xhci_dbc_resume(xhci);
1254 
1255  done:
1256 	if (retval == 0) {
1257 		/*
1258 		 * Resume roothubs only if there are pending events.
1259 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1260 		 * the first wake signalling failed, give it that chance.
1261 		 */
1262 		pending_portevent = xhci_pending_portevent(xhci);
1263 		if (!pending_portevent) {
1264 			msleep(120);
1265 			pending_portevent = xhci_pending_portevent(xhci);
1266 		}
1267 
1268 		if (pending_portevent) {
1269 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1270 			usb_hcd_resume_root_hub(hcd);
1271 		}
1272 	}
1273 	/*
1274 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1275 	 * be re-initialized Always after a system resume. Ports are subject
1276 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1277 	 * ports have entered previously to U0 before system's suspension.
1278 	 */
1279 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1280 		compliance_mode_recovery_timer_init(xhci);
1281 
1282 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1283 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1284 
1285 	/* Re-enable port polling. */
1286 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1287 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1288 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1289 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1290 	usb_hcd_poll_rh_status(hcd);
1291 
1292 	return retval;
1293 }
1294 EXPORT_SYMBOL_GPL(xhci_resume);
1295 #endif	/* CONFIG_PM */
1296 
1297 /*-------------------------------------------------------------------------*/
1298 
1299 /*
1300  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1301  * we'll copy the actual data into the TRB address register. This is limited to
1302  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1303  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1304  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1305 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1306 				gfp_t mem_flags)
1307 {
1308 	if (xhci_urb_suitable_for_idt(urb))
1309 		return 0;
1310 
1311 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1312 }
1313 
1314 /*
1315  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1316  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1317  * value to right shift 1 for the bitmask.
1318  *
1319  * Index  = (epnum * 2) + direction - 1,
1320  * where direction = 0 for OUT, 1 for IN.
1321  * For control endpoints, the IN index is used (OUT index is unused), so
1322  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1323  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1324 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1325 {
1326 	unsigned int index;
1327 	if (usb_endpoint_xfer_control(desc))
1328 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1329 	else
1330 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1331 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1332 	return index;
1333 }
1334 
1335 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1336  * address from the XHCI endpoint index.
1337  */
xhci_get_endpoint_address(unsigned int ep_index)1338 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1339 {
1340 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1341 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1342 	return direction | number;
1343 }
1344 
1345 /* Find the flag for this endpoint (for use in the control context).  Use the
1346  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1347  * bit 1, etc.
1348  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1349 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1350 {
1351 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1352 }
1353 
1354 /* Find the flag for this endpoint (for use in the control context).  Use the
1355  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1356  * bit 1, etc.
1357  */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1358 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1359 {
1360 	return 1 << (ep_index + 1);
1361 }
1362 
1363 /* Compute the last valid endpoint context index.  Basically, this is the
1364  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1365  * we find the most significant bit set in the added contexts flags.
1366  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1367  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1368  */
xhci_last_valid_endpoint(u32 added_ctxs)1369 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1370 {
1371 	return fls(added_ctxs) - 1;
1372 }
1373 
1374 /* Returns 1 if the arguments are OK;
1375  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1376  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1377 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1378 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1379 		const char *func) {
1380 	struct xhci_hcd	*xhci;
1381 	struct xhci_virt_device	*virt_dev;
1382 
1383 	if (!hcd || (check_ep && !ep) || !udev) {
1384 		pr_debug("xHCI %s called with invalid args\n", func);
1385 		return -EINVAL;
1386 	}
1387 	if (!udev->parent) {
1388 		pr_debug("xHCI %s called for root hub\n", func);
1389 		return 0;
1390 	}
1391 
1392 	xhci = hcd_to_xhci(hcd);
1393 	if (check_virt_dev) {
1394 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1395 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1396 					func);
1397 			return -EINVAL;
1398 		}
1399 
1400 		virt_dev = xhci->devs[udev->slot_id];
1401 		if (virt_dev->udev != udev) {
1402 			xhci_dbg(xhci, "xHCI %s called with udev and "
1403 					  "virt_dev does not match\n", func);
1404 			return -EINVAL;
1405 		}
1406 	}
1407 
1408 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1409 		return -ENODEV;
1410 
1411 	return 1;
1412 }
1413 
1414 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1415 		struct usb_device *udev, struct xhci_command *command,
1416 		bool ctx_change, bool must_succeed);
1417 
1418 /*
1419  * Full speed devices may have a max packet size greater than 8 bytes, but the
1420  * USB core doesn't know that until it reads the first 8 bytes of the
1421  * descriptor.  If the usb_device's max packet size changes after that point,
1422  * we need to issue an evaluate context command and wait on it.
1423  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1424 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1425 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1426 {
1427 	struct xhci_container_ctx *out_ctx;
1428 	struct xhci_input_control_ctx *ctrl_ctx;
1429 	struct xhci_ep_ctx *ep_ctx;
1430 	struct xhci_command *command;
1431 	int max_packet_size;
1432 	int hw_max_packet_size;
1433 	int ret = 0;
1434 
1435 	out_ctx = xhci->devs[slot_id]->out_ctx;
1436 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1437 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1438 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1439 	if (hw_max_packet_size != max_packet_size) {
1440 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1441 				"Max Packet Size for ep 0 changed.");
1442 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1443 				"Max packet size in usb_device = %d",
1444 				max_packet_size);
1445 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1446 				"Max packet size in xHCI HW = %d",
1447 				hw_max_packet_size);
1448 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1449 				"Issuing evaluate context command.");
1450 
1451 		/* Set up the input context flags for the command */
1452 		/* FIXME: This won't work if a non-default control endpoint
1453 		 * changes max packet sizes.
1454 		 */
1455 
1456 		command = xhci_alloc_command(xhci, true, mem_flags);
1457 		if (!command)
1458 			return -ENOMEM;
1459 
1460 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1461 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1462 		if (!ctrl_ctx) {
1463 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1464 					__func__);
1465 			ret = -ENOMEM;
1466 			goto command_cleanup;
1467 		}
1468 		/* Set up the modified control endpoint 0 */
1469 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1470 				xhci->devs[slot_id]->out_ctx, ep_index);
1471 
1472 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1473 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1474 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1475 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1476 
1477 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1478 		ctrl_ctx->drop_flags = 0;
1479 
1480 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1481 				true, false);
1482 
1483 		/* Clean up the input context for later use by bandwidth
1484 		 * functions.
1485 		 */
1486 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1487 command_cleanup:
1488 		kfree(command->completion);
1489 		kfree(command);
1490 	}
1491 	return ret;
1492 }
1493 
1494 /*
1495  * non-error returns are a promise to giveback() the urb later
1496  * we drop ownership so next owner (or urb unlink) can get it
1497  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1498 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1499 {
1500 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1501 	unsigned long flags;
1502 	int ret = 0;
1503 	unsigned int slot_id, ep_index;
1504 	unsigned int *ep_state;
1505 	struct urb_priv	*urb_priv;
1506 	int num_tds;
1507 
1508 	if (!urb)
1509 		return -EINVAL;
1510 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1511 					true, true, __func__);
1512 	if (ret <= 0)
1513 		return ret ? ret : -EINVAL;
1514 
1515 	slot_id = urb->dev->slot_id;
1516 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1517 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1518 
1519 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1520 		if (!in_interrupt())
1521 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1522 		return -ESHUTDOWN;
1523 	}
1524 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1525 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1526 		return -ENODEV;
1527 	}
1528 
1529 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1530 		num_tds = urb->number_of_packets;
1531 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1532 	    urb->transfer_buffer_length > 0 &&
1533 	    urb->transfer_flags & URB_ZERO_PACKET &&
1534 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1535 		num_tds = 2;
1536 	else
1537 		num_tds = 1;
1538 
1539 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1540 	if (!urb_priv)
1541 		return -ENOMEM;
1542 
1543 	urb_priv->num_tds = num_tds;
1544 	urb_priv->num_tds_done = 0;
1545 	urb->hcpriv = urb_priv;
1546 
1547 	trace_xhci_urb_enqueue(urb);
1548 
1549 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1550 		/* Check to see if the max packet size for the default control
1551 		 * endpoint changed during FS device enumeration
1552 		 */
1553 		if (urb->dev->speed == USB_SPEED_FULL) {
1554 			ret = xhci_check_maxpacket(xhci, slot_id,
1555 					ep_index, urb, mem_flags);
1556 			if (ret < 0) {
1557 				xhci_urb_free_priv(urb_priv);
1558 				urb->hcpriv = NULL;
1559 				return ret;
1560 			}
1561 		}
1562 	}
1563 
1564 	spin_lock_irqsave(&xhci->lock, flags);
1565 
1566 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1567 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1568 			 urb->ep->desc.bEndpointAddress, urb);
1569 		ret = -ESHUTDOWN;
1570 		goto free_priv;
1571 	}
1572 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1573 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1574 			  *ep_state);
1575 		ret = -EINVAL;
1576 		goto free_priv;
1577 	}
1578 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1579 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1580 		ret = -EINVAL;
1581 		goto free_priv;
1582 	}
1583 
1584 	switch (usb_endpoint_type(&urb->ep->desc)) {
1585 
1586 	case USB_ENDPOINT_XFER_CONTROL:
1587 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1588 					 slot_id, ep_index);
1589 		break;
1590 	case USB_ENDPOINT_XFER_BULK:
1591 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1592 					 slot_id, ep_index);
1593 		break;
1594 	case USB_ENDPOINT_XFER_INT:
1595 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1596 				slot_id, ep_index);
1597 		break;
1598 	case USB_ENDPOINT_XFER_ISOC:
1599 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1600 				slot_id, ep_index);
1601 	}
1602 
1603 	if (ret) {
1604 free_priv:
1605 		xhci_urb_free_priv(urb_priv);
1606 		urb->hcpriv = NULL;
1607 	}
1608 	spin_unlock_irqrestore(&xhci->lock, flags);
1609 	return ret;
1610 }
1611 
1612 /*
1613  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1614  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1615  * should pick up where it left off in the TD, unless a Set Transfer Ring
1616  * Dequeue Pointer is issued.
1617  *
1618  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1619  * the ring.  Since the ring is a contiguous structure, they can't be physically
1620  * removed.  Instead, there are two options:
1621  *
1622  *  1) If the HC is in the middle of processing the URB to be canceled, we
1623  *     simply move the ring's dequeue pointer past those TRBs using the Set
1624  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1625  *     when drivers timeout on the last submitted URB and attempt to cancel.
1626  *
1627  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1628  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1629  *     HC will need to invalidate the any TRBs it has cached after the stop
1630  *     endpoint command, as noted in the xHCI 0.95 errata.
1631  *
1632  *  3) The TD may have completed by the time the Stop Endpoint Command
1633  *     completes, so software needs to handle that case too.
1634  *
1635  * This function should protect against the TD enqueueing code ringing the
1636  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1637  * It also needs to account for multiple cancellations on happening at the same
1638  * time for the same endpoint.
1639  *
1640  * Note that this function can be called in any context, or so says
1641  * usb_hcd_unlink_urb()
1642  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1643 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1644 {
1645 	unsigned long flags;
1646 	int ret, i;
1647 	u32 temp;
1648 	struct xhci_hcd *xhci;
1649 	struct urb_priv	*urb_priv;
1650 	struct xhci_td *td;
1651 	unsigned int ep_index;
1652 	struct xhci_ring *ep_ring;
1653 	struct xhci_virt_ep *ep;
1654 	struct xhci_command *command;
1655 	struct xhci_virt_device *vdev;
1656 
1657 	xhci = hcd_to_xhci(hcd);
1658 	spin_lock_irqsave(&xhci->lock, flags);
1659 
1660 	trace_xhci_urb_dequeue(urb);
1661 
1662 	/* Make sure the URB hasn't completed or been unlinked already */
1663 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1664 	if (ret)
1665 		goto done;
1666 
1667 	/* give back URB now if we can't queue it for cancel */
1668 	vdev = xhci->devs[urb->dev->slot_id];
1669 	urb_priv = urb->hcpriv;
1670 	if (!vdev || !urb_priv)
1671 		goto err_giveback;
1672 
1673 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1674 	ep = &vdev->eps[ep_index];
1675 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1676 	if (!ep || !ep_ring)
1677 		goto err_giveback;
1678 
1679 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1680 	temp = readl(&xhci->op_regs->status);
1681 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1682 		xhci_hc_died(xhci);
1683 		goto done;
1684 	}
1685 
1686 	/*
1687 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1688 	 * make sure none of the ring related pointers in this URB private data
1689 	 * are touched, such as td_list, otherwise we overwrite freed data
1690 	 */
1691 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1692 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1693 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1694 			td = &urb_priv->td[i];
1695 			if (!list_empty(&td->cancelled_td_list))
1696 				list_del_init(&td->cancelled_td_list);
1697 		}
1698 		goto err_giveback;
1699 	}
1700 
1701 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1702 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1703 				"HC halted, freeing TD manually.");
1704 		for (i = urb_priv->num_tds_done;
1705 		     i < urb_priv->num_tds;
1706 		     i++) {
1707 			td = &urb_priv->td[i];
1708 			if (!list_empty(&td->td_list))
1709 				list_del_init(&td->td_list);
1710 			if (!list_empty(&td->cancelled_td_list))
1711 				list_del_init(&td->cancelled_td_list);
1712 		}
1713 		goto err_giveback;
1714 	}
1715 
1716 	i = urb_priv->num_tds_done;
1717 	if (i < urb_priv->num_tds)
1718 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1719 				"Cancel URB %p, dev %s, ep 0x%x, "
1720 				"starting at offset 0x%llx",
1721 				urb, urb->dev->devpath,
1722 				urb->ep->desc.bEndpointAddress,
1723 				(unsigned long long) xhci_trb_virt_to_dma(
1724 					urb_priv->td[i].start_seg,
1725 					urb_priv->td[i].first_trb));
1726 
1727 	for (; i < urb_priv->num_tds; i++) {
1728 		td = &urb_priv->td[i];
1729 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1730 	}
1731 
1732 	/* Queue a stop endpoint command, but only if this is
1733 	 * the first cancellation to be handled.
1734 	 */
1735 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1736 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1737 		if (!command) {
1738 			ret = -ENOMEM;
1739 			goto done;
1740 		}
1741 		ep->ep_state |= EP_STOP_CMD_PENDING;
1742 		ep->stop_cmd_timer.expires = jiffies +
1743 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1744 		add_timer(&ep->stop_cmd_timer);
1745 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1746 					 ep_index, 0);
1747 		xhci_ring_cmd_db(xhci);
1748 	}
1749 done:
1750 	spin_unlock_irqrestore(&xhci->lock, flags);
1751 	return ret;
1752 
1753 err_giveback:
1754 	if (urb_priv)
1755 		xhci_urb_free_priv(urb_priv);
1756 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1757 	spin_unlock_irqrestore(&xhci->lock, flags);
1758 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1759 	return ret;
1760 }
1761 
1762 /* Drop an endpoint from a new bandwidth configuration for this device.
1763  * Only one call to this function is allowed per endpoint before
1764  * check_bandwidth() or reset_bandwidth() must be called.
1765  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1766  * add the endpoint to the schedule with possibly new parameters denoted by a
1767  * different endpoint descriptor in usb_host_endpoint.
1768  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1769  * not allowed.
1770  *
1771  * The USB core will not allow URBs to be queued to an endpoint that is being
1772  * disabled, so there's no need for mutual exclusion to protect
1773  * the xhci->devs[slot_id] structure.
1774  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1775 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1776 		struct usb_host_endpoint *ep)
1777 {
1778 	struct xhci_hcd *xhci;
1779 	struct xhci_container_ctx *in_ctx, *out_ctx;
1780 	struct xhci_input_control_ctx *ctrl_ctx;
1781 	unsigned int ep_index;
1782 	struct xhci_ep_ctx *ep_ctx;
1783 	u32 drop_flag;
1784 	u32 new_add_flags, new_drop_flags;
1785 	int ret;
1786 
1787 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1788 	if (ret <= 0)
1789 		return ret;
1790 	xhci = hcd_to_xhci(hcd);
1791 	if (xhci->xhc_state & XHCI_STATE_DYING)
1792 		return -ENODEV;
1793 
1794 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1795 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1796 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1797 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1798 				__func__, drop_flag);
1799 		return 0;
1800 	}
1801 
1802 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1803 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1804 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1805 	if (!ctrl_ctx) {
1806 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1807 				__func__);
1808 		return 0;
1809 	}
1810 
1811 	ep_index = xhci_get_endpoint_index(&ep->desc);
1812 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1813 	/* If the HC already knows the endpoint is disabled,
1814 	 * or the HCD has noted it is disabled, ignore this request
1815 	 */
1816 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1817 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1818 	    xhci_get_endpoint_flag(&ep->desc)) {
1819 		/* Do not warn when called after a usb_device_reset */
1820 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1821 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1822 				  __func__, ep);
1823 		return 0;
1824 	}
1825 
1826 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1827 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1828 
1829 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1830 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1831 
1832 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1833 
1834 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1835 
1836 	if (xhci->quirks & XHCI_MTK_HOST)
1837 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1838 
1839 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1840 			(unsigned int) ep->desc.bEndpointAddress,
1841 			udev->slot_id,
1842 			(unsigned int) new_drop_flags,
1843 			(unsigned int) new_add_flags);
1844 	return 0;
1845 }
1846 
1847 /* Add an endpoint to a new possible bandwidth configuration for this device.
1848  * Only one call to this function is allowed per endpoint before
1849  * check_bandwidth() or reset_bandwidth() must be called.
1850  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1851  * add the endpoint to the schedule with possibly new parameters denoted by a
1852  * different endpoint descriptor in usb_host_endpoint.
1853  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1854  * not allowed.
1855  *
1856  * The USB core will not allow URBs to be queued to an endpoint until the
1857  * configuration or alt setting is installed in the device, so there's no need
1858  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1859  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1860 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1861 		struct usb_host_endpoint *ep)
1862 {
1863 	struct xhci_hcd *xhci;
1864 	struct xhci_container_ctx *in_ctx;
1865 	unsigned int ep_index;
1866 	struct xhci_input_control_ctx *ctrl_ctx;
1867 	struct xhci_ep_ctx *ep_ctx;
1868 	u32 added_ctxs;
1869 	u32 new_add_flags, new_drop_flags;
1870 	struct xhci_virt_device *virt_dev;
1871 	int ret = 0;
1872 
1873 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1874 	if (ret <= 0) {
1875 		/* So we won't queue a reset ep command for a root hub */
1876 		ep->hcpriv = NULL;
1877 		return ret;
1878 	}
1879 	xhci = hcd_to_xhci(hcd);
1880 	if (xhci->xhc_state & XHCI_STATE_DYING)
1881 		return -ENODEV;
1882 
1883 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1884 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1885 		/* FIXME when we have to issue an evaluate endpoint command to
1886 		 * deal with ep0 max packet size changing once we get the
1887 		 * descriptors
1888 		 */
1889 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1890 				__func__, added_ctxs);
1891 		return 0;
1892 	}
1893 
1894 	virt_dev = xhci->devs[udev->slot_id];
1895 	in_ctx = virt_dev->in_ctx;
1896 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1897 	if (!ctrl_ctx) {
1898 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1899 				__func__);
1900 		return 0;
1901 	}
1902 
1903 	ep_index = xhci_get_endpoint_index(&ep->desc);
1904 	/* If this endpoint is already in use, and the upper layers are trying
1905 	 * to add it again without dropping it, reject the addition.
1906 	 */
1907 	if (virt_dev->eps[ep_index].ring &&
1908 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1909 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1910 				"without dropping it.\n",
1911 				(unsigned int) ep->desc.bEndpointAddress);
1912 		return -EINVAL;
1913 	}
1914 
1915 	/* If the HCD has already noted the endpoint is enabled,
1916 	 * ignore this request.
1917 	 */
1918 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1919 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1920 				__func__, ep);
1921 		return 0;
1922 	}
1923 
1924 	/*
1925 	 * Configuration and alternate setting changes must be done in
1926 	 * process context, not interrupt context (or so documenation
1927 	 * for usb_set_interface() and usb_set_configuration() claim).
1928 	 */
1929 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1930 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1931 				__func__, ep->desc.bEndpointAddress);
1932 		return -ENOMEM;
1933 	}
1934 
1935 	if (xhci->quirks & XHCI_MTK_HOST) {
1936 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1937 		if (ret < 0) {
1938 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1939 			virt_dev->eps[ep_index].new_ring = NULL;
1940 			return ret;
1941 		}
1942 	}
1943 
1944 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1945 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1946 
1947 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1948 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1949 	 * this re-adds a new state for the endpoint from the new endpoint
1950 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1951 	 * drop flags alone.
1952 	 */
1953 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1954 
1955 	/* Store the usb_device pointer for later use */
1956 	ep->hcpriv = udev;
1957 
1958 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1959 	trace_xhci_add_endpoint(ep_ctx);
1960 
1961 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1962 			(unsigned int) ep->desc.bEndpointAddress,
1963 			udev->slot_id,
1964 			(unsigned int) new_drop_flags,
1965 			(unsigned int) new_add_flags);
1966 	return 0;
1967 }
1968 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1969 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1970 {
1971 	struct xhci_input_control_ctx *ctrl_ctx;
1972 	struct xhci_ep_ctx *ep_ctx;
1973 	struct xhci_slot_ctx *slot_ctx;
1974 	int i;
1975 
1976 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1977 	if (!ctrl_ctx) {
1978 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1979 				__func__);
1980 		return;
1981 	}
1982 
1983 	/* When a device's add flag and drop flag are zero, any subsequent
1984 	 * configure endpoint command will leave that endpoint's state
1985 	 * untouched.  Make sure we don't leave any old state in the input
1986 	 * endpoint contexts.
1987 	 */
1988 	ctrl_ctx->drop_flags = 0;
1989 	ctrl_ctx->add_flags = 0;
1990 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1991 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1992 	/* Endpoint 0 is always valid */
1993 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1994 	for (i = 1; i < 31; i++) {
1995 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1996 		ep_ctx->ep_info = 0;
1997 		ep_ctx->ep_info2 = 0;
1998 		ep_ctx->deq = 0;
1999 		ep_ctx->tx_info = 0;
2000 	}
2001 }
2002 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2003 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2004 		struct usb_device *udev, u32 *cmd_status)
2005 {
2006 	int ret;
2007 
2008 	switch (*cmd_status) {
2009 	case COMP_COMMAND_ABORTED:
2010 	case COMP_COMMAND_RING_STOPPED:
2011 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2012 		ret = -ETIME;
2013 		break;
2014 	case COMP_RESOURCE_ERROR:
2015 		dev_warn(&udev->dev,
2016 			 "Not enough host controller resources for new device state.\n");
2017 		ret = -ENOMEM;
2018 		/* FIXME: can we allocate more resources for the HC? */
2019 		break;
2020 	case COMP_BANDWIDTH_ERROR:
2021 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2022 		dev_warn(&udev->dev,
2023 			 "Not enough bandwidth for new device state.\n");
2024 		ret = -ENOSPC;
2025 		/* FIXME: can we go back to the old state? */
2026 		break;
2027 	case COMP_TRB_ERROR:
2028 		/* the HCD set up something wrong */
2029 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2030 				"add flag = 1, "
2031 				"and endpoint is not disabled.\n");
2032 		ret = -EINVAL;
2033 		break;
2034 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2035 		dev_warn(&udev->dev,
2036 			 "ERROR: Incompatible device for endpoint configure command.\n");
2037 		ret = -ENODEV;
2038 		break;
2039 	case COMP_SUCCESS:
2040 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2041 				"Successful Endpoint Configure command");
2042 		ret = 0;
2043 		break;
2044 	default:
2045 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2046 				*cmd_status);
2047 		ret = -EINVAL;
2048 		break;
2049 	}
2050 	return ret;
2051 }
2052 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2053 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2054 		struct usb_device *udev, u32 *cmd_status)
2055 {
2056 	int ret;
2057 
2058 	switch (*cmd_status) {
2059 	case COMP_COMMAND_ABORTED:
2060 	case COMP_COMMAND_RING_STOPPED:
2061 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2062 		ret = -ETIME;
2063 		break;
2064 	case COMP_PARAMETER_ERROR:
2065 		dev_warn(&udev->dev,
2066 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2067 		ret = -EINVAL;
2068 		break;
2069 	case COMP_SLOT_NOT_ENABLED_ERROR:
2070 		dev_warn(&udev->dev,
2071 			"WARN: slot not enabled for evaluate context command.\n");
2072 		ret = -EINVAL;
2073 		break;
2074 	case COMP_CONTEXT_STATE_ERROR:
2075 		dev_warn(&udev->dev,
2076 			"WARN: invalid context state for evaluate context command.\n");
2077 		ret = -EINVAL;
2078 		break;
2079 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2080 		dev_warn(&udev->dev,
2081 			"ERROR: Incompatible device for evaluate context command.\n");
2082 		ret = -ENODEV;
2083 		break;
2084 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2085 		/* Max Exit Latency too large error */
2086 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2087 		ret = -EINVAL;
2088 		break;
2089 	case COMP_SUCCESS:
2090 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2091 				"Successful evaluate context command");
2092 		ret = 0;
2093 		break;
2094 	default:
2095 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2096 			*cmd_status);
2097 		ret = -EINVAL;
2098 		break;
2099 	}
2100 	return ret;
2101 }
2102 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2103 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2104 		struct xhci_input_control_ctx *ctrl_ctx)
2105 {
2106 	u32 valid_add_flags;
2107 	u32 valid_drop_flags;
2108 
2109 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2110 	 * (bit 1).  The default control endpoint is added during the Address
2111 	 * Device command and is never removed until the slot is disabled.
2112 	 */
2113 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2114 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2115 
2116 	/* Use hweight32 to count the number of ones in the add flags, or
2117 	 * number of endpoints added.  Don't count endpoints that are changed
2118 	 * (both added and dropped).
2119 	 */
2120 	return hweight32(valid_add_flags) -
2121 		hweight32(valid_add_flags & valid_drop_flags);
2122 }
2123 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2124 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2125 		struct xhci_input_control_ctx *ctrl_ctx)
2126 {
2127 	u32 valid_add_flags;
2128 	u32 valid_drop_flags;
2129 
2130 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2131 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2132 
2133 	return hweight32(valid_drop_flags) -
2134 		hweight32(valid_add_flags & valid_drop_flags);
2135 }
2136 
2137 /*
2138  * We need to reserve the new number of endpoints before the configure endpoint
2139  * command completes.  We can't subtract the dropped endpoints from the number
2140  * of active endpoints until the command completes because we can oversubscribe
2141  * the host in this case:
2142  *
2143  *  - the first configure endpoint command drops more endpoints than it adds
2144  *  - a second configure endpoint command that adds more endpoints is queued
2145  *  - the first configure endpoint command fails, so the config is unchanged
2146  *  - the second command may succeed, even though there isn't enough resources
2147  *
2148  * Must be called with xhci->lock held.
2149  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2150 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2151 		struct xhci_input_control_ctx *ctrl_ctx)
2152 {
2153 	u32 added_eps;
2154 
2155 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2156 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2157 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2158 				"Not enough ep ctxs: "
2159 				"%u active, need to add %u, limit is %u.",
2160 				xhci->num_active_eps, added_eps,
2161 				xhci->limit_active_eps);
2162 		return -ENOMEM;
2163 	}
2164 	xhci->num_active_eps += added_eps;
2165 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2166 			"Adding %u ep ctxs, %u now active.", added_eps,
2167 			xhci->num_active_eps);
2168 	return 0;
2169 }
2170 
2171 /*
2172  * The configure endpoint was failed by the xHC for some other reason, so we
2173  * need to revert the resources that failed configuration would have used.
2174  *
2175  * Must be called with xhci->lock held.
2176  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2177 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2178 		struct xhci_input_control_ctx *ctrl_ctx)
2179 {
2180 	u32 num_failed_eps;
2181 
2182 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2183 	xhci->num_active_eps -= num_failed_eps;
2184 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2185 			"Removing %u failed ep ctxs, %u now active.",
2186 			num_failed_eps,
2187 			xhci->num_active_eps);
2188 }
2189 
2190 /*
2191  * Now that the command has completed, clean up the active endpoint count by
2192  * subtracting out the endpoints that were dropped (but not changed).
2193  *
2194  * Must be called with xhci->lock held.
2195  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2196 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2197 		struct xhci_input_control_ctx *ctrl_ctx)
2198 {
2199 	u32 num_dropped_eps;
2200 
2201 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2202 	xhci->num_active_eps -= num_dropped_eps;
2203 	if (num_dropped_eps)
2204 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2205 				"Removing %u dropped ep ctxs, %u now active.",
2206 				num_dropped_eps,
2207 				xhci->num_active_eps);
2208 }
2209 
xhci_get_block_size(struct usb_device * udev)2210 static unsigned int xhci_get_block_size(struct usb_device *udev)
2211 {
2212 	switch (udev->speed) {
2213 	case USB_SPEED_LOW:
2214 	case USB_SPEED_FULL:
2215 		return FS_BLOCK;
2216 	case USB_SPEED_HIGH:
2217 		return HS_BLOCK;
2218 	case USB_SPEED_SUPER:
2219 	case USB_SPEED_SUPER_PLUS:
2220 		return SS_BLOCK;
2221 	case USB_SPEED_UNKNOWN:
2222 	case USB_SPEED_WIRELESS:
2223 	default:
2224 		/* Should never happen */
2225 		return 1;
2226 	}
2227 }
2228 
2229 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2230 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2231 {
2232 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2233 		return LS_OVERHEAD;
2234 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2235 		return FS_OVERHEAD;
2236 	return HS_OVERHEAD;
2237 }
2238 
2239 /* If we are changing a LS/FS device under a HS hub,
2240  * make sure (if we are activating a new TT) that the HS bus has enough
2241  * bandwidth for this new TT.
2242  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2243 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2244 		struct xhci_virt_device *virt_dev,
2245 		int old_active_eps)
2246 {
2247 	struct xhci_interval_bw_table *bw_table;
2248 	struct xhci_tt_bw_info *tt_info;
2249 
2250 	/* Find the bandwidth table for the root port this TT is attached to. */
2251 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2252 	tt_info = virt_dev->tt_info;
2253 	/* If this TT already had active endpoints, the bandwidth for this TT
2254 	 * has already been added.  Removing all periodic endpoints (and thus
2255 	 * making the TT enactive) will only decrease the bandwidth used.
2256 	 */
2257 	if (old_active_eps)
2258 		return 0;
2259 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2260 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2261 			return -ENOMEM;
2262 		return 0;
2263 	}
2264 	/* Not sure why we would have no new active endpoints...
2265 	 *
2266 	 * Maybe because of an Evaluate Context change for a hub update or a
2267 	 * control endpoint 0 max packet size change?
2268 	 * FIXME: skip the bandwidth calculation in that case.
2269 	 */
2270 	return 0;
2271 }
2272 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2273 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2274 		struct xhci_virt_device *virt_dev)
2275 {
2276 	unsigned int bw_reserved;
2277 
2278 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2279 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2280 		return -ENOMEM;
2281 
2282 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2283 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2284 		return -ENOMEM;
2285 
2286 	return 0;
2287 }
2288 
2289 /*
2290  * This algorithm is a very conservative estimate of the worst-case scheduling
2291  * scenario for any one interval.  The hardware dynamically schedules the
2292  * packets, so we can't tell which microframe could be the limiting factor in
2293  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2294  *
2295  * Obviously, we can't solve an NP complete problem to find the minimum worst
2296  * case scenario.  Instead, we come up with an estimate that is no less than
2297  * the worst case bandwidth used for any one microframe, but may be an
2298  * over-estimate.
2299  *
2300  * We walk the requirements for each endpoint by interval, starting with the
2301  * smallest interval, and place packets in the schedule where there is only one
2302  * possible way to schedule packets for that interval.  In order to simplify
2303  * this algorithm, we record the largest max packet size for each interval, and
2304  * assume all packets will be that size.
2305  *
2306  * For interval 0, we obviously must schedule all packets for each interval.
2307  * The bandwidth for interval 0 is just the amount of data to be transmitted
2308  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2309  * the number of packets).
2310  *
2311  * For interval 1, we have two possible microframes to schedule those packets
2312  * in.  For this algorithm, if we can schedule the same number of packets for
2313  * each possible scheduling opportunity (each microframe), we will do so.  The
2314  * remaining number of packets will be saved to be transmitted in the gaps in
2315  * the next interval's scheduling sequence.
2316  *
2317  * As we move those remaining packets to be scheduled with interval 2 packets,
2318  * we have to double the number of remaining packets to transmit.  This is
2319  * because the intervals are actually powers of 2, and we would be transmitting
2320  * the previous interval's packets twice in this interval.  We also have to be
2321  * sure that when we look at the largest max packet size for this interval, we
2322  * also look at the largest max packet size for the remaining packets and take
2323  * the greater of the two.
2324  *
2325  * The algorithm continues to evenly distribute packets in each scheduling
2326  * opportunity, and push the remaining packets out, until we get to the last
2327  * interval.  Then those packets and their associated overhead are just added
2328  * to the bandwidth used.
2329  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2330 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2331 		struct xhci_virt_device *virt_dev,
2332 		int old_active_eps)
2333 {
2334 	unsigned int bw_reserved;
2335 	unsigned int max_bandwidth;
2336 	unsigned int bw_used;
2337 	unsigned int block_size;
2338 	struct xhci_interval_bw_table *bw_table;
2339 	unsigned int packet_size = 0;
2340 	unsigned int overhead = 0;
2341 	unsigned int packets_transmitted = 0;
2342 	unsigned int packets_remaining = 0;
2343 	unsigned int i;
2344 
2345 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2346 		return xhci_check_ss_bw(xhci, virt_dev);
2347 
2348 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2349 		max_bandwidth = HS_BW_LIMIT;
2350 		/* Convert percent of bus BW reserved to blocks reserved */
2351 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2352 	} else {
2353 		max_bandwidth = FS_BW_LIMIT;
2354 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2355 	}
2356 
2357 	bw_table = virt_dev->bw_table;
2358 	/* We need to translate the max packet size and max ESIT payloads into
2359 	 * the units the hardware uses.
2360 	 */
2361 	block_size = xhci_get_block_size(virt_dev->udev);
2362 
2363 	/* If we are manipulating a LS/FS device under a HS hub, double check
2364 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2365 	 */
2366 	if (virt_dev->tt_info) {
2367 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2368 				"Recalculating BW for rootport %u",
2369 				virt_dev->real_port);
2370 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2371 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2372 					"newly activated TT.\n");
2373 			return -ENOMEM;
2374 		}
2375 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2376 				"Recalculating BW for TT slot %u port %u",
2377 				virt_dev->tt_info->slot_id,
2378 				virt_dev->tt_info->ttport);
2379 	} else {
2380 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2381 				"Recalculating BW for rootport %u",
2382 				virt_dev->real_port);
2383 	}
2384 
2385 	/* Add in how much bandwidth will be used for interval zero, or the
2386 	 * rounded max ESIT payload + number of packets * largest overhead.
2387 	 */
2388 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2389 		bw_table->interval_bw[0].num_packets *
2390 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2391 
2392 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2393 		unsigned int bw_added;
2394 		unsigned int largest_mps;
2395 		unsigned int interval_overhead;
2396 
2397 		/*
2398 		 * How many packets could we transmit in this interval?
2399 		 * If packets didn't fit in the previous interval, we will need
2400 		 * to transmit that many packets twice within this interval.
2401 		 */
2402 		packets_remaining = 2 * packets_remaining +
2403 			bw_table->interval_bw[i].num_packets;
2404 
2405 		/* Find the largest max packet size of this or the previous
2406 		 * interval.
2407 		 */
2408 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2409 			largest_mps = 0;
2410 		else {
2411 			struct xhci_virt_ep *virt_ep;
2412 			struct list_head *ep_entry;
2413 
2414 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2415 			virt_ep = list_entry(ep_entry,
2416 					struct xhci_virt_ep, bw_endpoint_list);
2417 			/* Convert to blocks, rounding up */
2418 			largest_mps = DIV_ROUND_UP(
2419 					virt_ep->bw_info.max_packet_size,
2420 					block_size);
2421 		}
2422 		if (largest_mps > packet_size)
2423 			packet_size = largest_mps;
2424 
2425 		/* Use the larger overhead of this or the previous interval. */
2426 		interval_overhead = xhci_get_largest_overhead(
2427 				&bw_table->interval_bw[i]);
2428 		if (interval_overhead > overhead)
2429 			overhead = interval_overhead;
2430 
2431 		/* How many packets can we evenly distribute across
2432 		 * (1 << (i + 1)) possible scheduling opportunities?
2433 		 */
2434 		packets_transmitted = packets_remaining >> (i + 1);
2435 
2436 		/* Add in the bandwidth used for those scheduled packets */
2437 		bw_added = packets_transmitted * (overhead + packet_size);
2438 
2439 		/* How many packets do we have remaining to transmit? */
2440 		packets_remaining = packets_remaining % (1 << (i + 1));
2441 
2442 		/* What largest max packet size should those packets have? */
2443 		/* If we've transmitted all packets, don't carry over the
2444 		 * largest packet size.
2445 		 */
2446 		if (packets_remaining == 0) {
2447 			packet_size = 0;
2448 			overhead = 0;
2449 		} else if (packets_transmitted > 0) {
2450 			/* Otherwise if we do have remaining packets, and we've
2451 			 * scheduled some packets in this interval, take the
2452 			 * largest max packet size from endpoints with this
2453 			 * interval.
2454 			 */
2455 			packet_size = largest_mps;
2456 			overhead = interval_overhead;
2457 		}
2458 		/* Otherwise carry over packet_size and overhead from the last
2459 		 * time we had a remainder.
2460 		 */
2461 		bw_used += bw_added;
2462 		if (bw_used > max_bandwidth) {
2463 			xhci_warn(xhci, "Not enough bandwidth. "
2464 					"Proposed: %u, Max: %u\n",
2465 				bw_used, max_bandwidth);
2466 			return -ENOMEM;
2467 		}
2468 	}
2469 	/*
2470 	 * Ok, we know we have some packets left over after even-handedly
2471 	 * scheduling interval 15.  We don't know which microframes they will
2472 	 * fit into, so we over-schedule and say they will be scheduled every
2473 	 * microframe.
2474 	 */
2475 	if (packets_remaining > 0)
2476 		bw_used += overhead + packet_size;
2477 
2478 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2479 		unsigned int port_index = virt_dev->real_port - 1;
2480 
2481 		/* OK, we're manipulating a HS device attached to a
2482 		 * root port bandwidth domain.  Include the number of active TTs
2483 		 * in the bandwidth used.
2484 		 */
2485 		bw_used += TT_HS_OVERHEAD *
2486 			xhci->rh_bw[port_index].num_active_tts;
2487 	}
2488 
2489 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2490 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2491 		"Available: %u " "percent",
2492 		bw_used, max_bandwidth, bw_reserved,
2493 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2494 		max_bandwidth);
2495 
2496 	bw_used += bw_reserved;
2497 	if (bw_used > max_bandwidth) {
2498 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2499 				bw_used, max_bandwidth);
2500 		return -ENOMEM;
2501 	}
2502 
2503 	bw_table->bw_used = bw_used;
2504 	return 0;
2505 }
2506 
xhci_is_async_ep(unsigned int ep_type)2507 static bool xhci_is_async_ep(unsigned int ep_type)
2508 {
2509 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2510 					ep_type != ISOC_IN_EP &&
2511 					ep_type != INT_IN_EP);
2512 }
2513 
xhci_is_sync_in_ep(unsigned int ep_type)2514 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2515 {
2516 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2517 }
2518 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2519 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2520 {
2521 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2522 
2523 	if (ep_bw->ep_interval == 0)
2524 		return SS_OVERHEAD_BURST +
2525 			(ep_bw->mult * ep_bw->num_packets *
2526 					(SS_OVERHEAD + mps));
2527 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2528 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2529 				1 << ep_bw->ep_interval);
2530 
2531 }
2532 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2533 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2534 		struct xhci_bw_info *ep_bw,
2535 		struct xhci_interval_bw_table *bw_table,
2536 		struct usb_device *udev,
2537 		struct xhci_virt_ep *virt_ep,
2538 		struct xhci_tt_bw_info *tt_info)
2539 {
2540 	struct xhci_interval_bw	*interval_bw;
2541 	int normalized_interval;
2542 
2543 	if (xhci_is_async_ep(ep_bw->type))
2544 		return;
2545 
2546 	if (udev->speed >= USB_SPEED_SUPER) {
2547 		if (xhci_is_sync_in_ep(ep_bw->type))
2548 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2549 				xhci_get_ss_bw_consumed(ep_bw);
2550 		else
2551 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2552 				xhci_get_ss_bw_consumed(ep_bw);
2553 		return;
2554 	}
2555 
2556 	/* SuperSpeed endpoints never get added to intervals in the table, so
2557 	 * this check is only valid for HS/FS/LS devices.
2558 	 */
2559 	if (list_empty(&virt_ep->bw_endpoint_list))
2560 		return;
2561 	/* For LS/FS devices, we need to translate the interval expressed in
2562 	 * microframes to frames.
2563 	 */
2564 	if (udev->speed == USB_SPEED_HIGH)
2565 		normalized_interval = ep_bw->ep_interval;
2566 	else
2567 		normalized_interval = ep_bw->ep_interval - 3;
2568 
2569 	if (normalized_interval == 0)
2570 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2571 	interval_bw = &bw_table->interval_bw[normalized_interval];
2572 	interval_bw->num_packets -= ep_bw->num_packets;
2573 	switch (udev->speed) {
2574 	case USB_SPEED_LOW:
2575 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2576 		break;
2577 	case USB_SPEED_FULL:
2578 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2579 		break;
2580 	case USB_SPEED_HIGH:
2581 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2582 		break;
2583 	case USB_SPEED_SUPER:
2584 	case USB_SPEED_SUPER_PLUS:
2585 	case USB_SPEED_UNKNOWN:
2586 	case USB_SPEED_WIRELESS:
2587 		/* Should never happen because only LS/FS/HS endpoints will get
2588 		 * added to the endpoint list.
2589 		 */
2590 		return;
2591 	}
2592 	if (tt_info)
2593 		tt_info->active_eps -= 1;
2594 	list_del_init(&virt_ep->bw_endpoint_list);
2595 }
2596 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2597 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2598 		struct xhci_bw_info *ep_bw,
2599 		struct xhci_interval_bw_table *bw_table,
2600 		struct usb_device *udev,
2601 		struct xhci_virt_ep *virt_ep,
2602 		struct xhci_tt_bw_info *tt_info)
2603 {
2604 	struct xhci_interval_bw	*interval_bw;
2605 	struct xhci_virt_ep *smaller_ep;
2606 	int normalized_interval;
2607 
2608 	if (xhci_is_async_ep(ep_bw->type))
2609 		return;
2610 
2611 	if (udev->speed == USB_SPEED_SUPER) {
2612 		if (xhci_is_sync_in_ep(ep_bw->type))
2613 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2614 				xhci_get_ss_bw_consumed(ep_bw);
2615 		else
2616 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2617 				xhci_get_ss_bw_consumed(ep_bw);
2618 		return;
2619 	}
2620 
2621 	/* For LS/FS devices, we need to translate the interval expressed in
2622 	 * microframes to frames.
2623 	 */
2624 	if (udev->speed == USB_SPEED_HIGH)
2625 		normalized_interval = ep_bw->ep_interval;
2626 	else
2627 		normalized_interval = ep_bw->ep_interval - 3;
2628 
2629 	if (normalized_interval == 0)
2630 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2631 	interval_bw = &bw_table->interval_bw[normalized_interval];
2632 	interval_bw->num_packets += ep_bw->num_packets;
2633 	switch (udev->speed) {
2634 	case USB_SPEED_LOW:
2635 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2636 		break;
2637 	case USB_SPEED_FULL:
2638 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2639 		break;
2640 	case USB_SPEED_HIGH:
2641 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2642 		break;
2643 	case USB_SPEED_SUPER:
2644 	case USB_SPEED_SUPER_PLUS:
2645 	case USB_SPEED_UNKNOWN:
2646 	case USB_SPEED_WIRELESS:
2647 		/* Should never happen because only LS/FS/HS endpoints will get
2648 		 * added to the endpoint list.
2649 		 */
2650 		return;
2651 	}
2652 
2653 	if (tt_info)
2654 		tt_info->active_eps += 1;
2655 	/* Insert the endpoint into the list, largest max packet size first. */
2656 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2657 			bw_endpoint_list) {
2658 		if (ep_bw->max_packet_size >=
2659 				smaller_ep->bw_info.max_packet_size) {
2660 			/* Add the new ep before the smaller endpoint */
2661 			list_add_tail(&virt_ep->bw_endpoint_list,
2662 					&smaller_ep->bw_endpoint_list);
2663 			return;
2664 		}
2665 	}
2666 	/* Add the new endpoint at the end of the list. */
2667 	list_add_tail(&virt_ep->bw_endpoint_list,
2668 			&interval_bw->endpoints);
2669 }
2670 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2671 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2672 		struct xhci_virt_device *virt_dev,
2673 		int old_active_eps)
2674 {
2675 	struct xhci_root_port_bw_info *rh_bw_info;
2676 	if (!virt_dev->tt_info)
2677 		return;
2678 
2679 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2680 	if (old_active_eps == 0 &&
2681 				virt_dev->tt_info->active_eps != 0) {
2682 		rh_bw_info->num_active_tts += 1;
2683 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2684 	} else if (old_active_eps != 0 &&
2685 				virt_dev->tt_info->active_eps == 0) {
2686 		rh_bw_info->num_active_tts -= 1;
2687 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2688 	}
2689 }
2690 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2691 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2692 		struct xhci_virt_device *virt_dev,
2693 		struct xhci_container_ctx *in_ctx)
2694 {
2695 	struct xhci_bw_info ep_bw_info[31];
2696 	int i;
2697 	struct xhci_input_control_ctx *ctrl_ctx;
2698 	int old_active_eps = 0;
2699 
2700 	if (virt_dev->tt_info)
2701 		old_active_eps = virt_dev->tt_info->active_eps;
2702 
2703 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2704 	if (!ctrl_ctx) {
2705 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2706 				__func__);
2707 		return -ENOMEM;
2708 	}
2709 
2710 	for (i = 0; i < 31; i++) {
2711 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2712 			continue;
2713 
2714 		/* Make a copy of the BW info in case we need to revert this */
2715 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2716 				sizeof(ep_bw_info[i]));
2717 		/* Drop the endpoint from the interval table if the endpoint is
2718 		 * being dropped or changed.
2719 		 */
2720 		if (EP_IS_DROPPED(ctrl_ctx, i))
2721 			xhci_drop_ep_from_interval_table(xhci,
2722 					&virt_dev->eps[i].bw_info,
2723 					virt_dev->bw_table,
2724 					virt_dev->udev,
2725 					&virt_dev->eps[i],
2726 					virt_dev->tt_info);
2727 	}
2728 	/* Overwrite the information stored in the endpoints' bw_info */
2729 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2730 	for (i = 0; i < 31; i++) {
2731 		/* Add any changed or added endpoints to the interval table */
2732 		if (EP_IS_ADDED(ctrl_ctx, i))
2733 			xhci_add_ep_to_interval_table(xhci,
2734 					&virt_dev->eps[i].bw_info,
2735 					virt_dev->bw_table,
2736 					virt_dev->udev,
2737 					&virt_dev->eps[i],
2738 					virt_dev->tt_info);
2739 	}
2740 
2741 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2742 		/* Ok, this fits in the bandwidth we have.
2743 		 * Update the number of active TTs.
2744 		 */
2745 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2746 		return 0;
2747 	}
2748 
2749 	/* We don't have enough bandwidth for this, revert the stored info. */
2750 	for (i = 0; i < 31; i++) {
2751 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2752 			continue;
2753 
2754 		/* Drop the new copies of any added or changed endpoints from
2755 		 * the interval table.
2756 		 */
2757 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2758 			xhci_drop_ep_from_interval_table(xhci,
2759 					&virt_dev->eps[i].bw_info,
2760 					virt_dev->bw_table,
2761 					virt_dev->udev,
2762 					&virt_dev->eps[i],
2763 					virt_dev->tt_info);
2764 		}
2765 		/* Revert the endpoint back to its old information */
2766 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2767 				sizeof(ep_bw_info[i]));
2768 		/* Add any changed or dropped endpoints back into the table */
2769 		if (EP_IS_DROPPED(ctrl_ctx, i))
2770 			xhci_add_ep_to_interval_table(xhci,
2771 					&virt_dev->eps[i].bw_info,
2772 					virt_dev->bw_table,
2773 					virt_dev->udev,
2774 					&virt_dev->eps[i],
2775 					virt_dev->tt_info);
2776 	}
2777 	return -ENOMEM;
2778 }
2779 
2780 
2781 /* Issue a configure endpoint command or evaluate context command
2782  * and wait for it to finish.
2783  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2784 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2785 		struct usb_device *udev,
2786 		struct xhci_command *command,
2787 		bool ctx_change, bool must_succeed)
2788 {
2789 	int ret;
2790 	unsigned long flags;
2791 	struct xhci_input_control_ctx *ctrl_ctx;
2792 	struct xhci_virt_device *virt_dev;
2793 	struct xhci_slot_ctx *slot_ctx;
2794 
2795 	if (!command)
2796 		return -EINVAL;
2797 
2798 	spin_lock_irqsave(&xhci->lock, flags);
2799 
2800 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2801 		spin_unlock_irqrestore(&xhci->lock, flags);
2802 		return -ESHUTDOWN;
2803 	}
2804 
2805 	virt_dev = xhci->devs[udev->slot_id];
2806 
2807 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2808 	if (!ctrl_ctx) {
2809 		spin_unlock_irqrestore(&xhci->lock, flags);
2810 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2811 				__func__);
2812 		return -ENOMEM;
2813 	}
2814 
2815 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2816 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2817 		spin_unlock_irqrestore(&xhci->lock, flags);
2818 		xhci_warn(xhci, "Not enough host resources, "
2819 				"active endpoint contexts = %u\n",
2820 				xhci->num_active_eps);
2821 		return -ENOMEM;
2822 	}
2823 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2824 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2825 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2826 			xhci_free_host_resources(xhci, ctrl_ctx);
2827 		spin_unlock_irqrestore(&xhci->lock, flags);
2828 		xhci_warn(xhci, "Not enough bandwidth\n");
2829 		return -ENOMEM;
2830 	}
2831 
2832 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2833 
2834 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2835 	trace_xhci_configure_endpoint(slot_ctx);
2836 
2837 	if (!ctx_change)
2838 		ret = xhci_queue_configure_endpoint(xhci, command,
2839 				command->in_ctx->dma,
2840 				udev->slot_id, must_succeed);
2841 	else
2842 		ret = xhci_queue_evaluate_context(xhci, command,
2843 				command->in_ctx->dma,
2844 				udev->slot_id, must_succeed);
2845 	if (ret < 0) {
2846 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2847 			xhci_free_host_resources(xhci, ctrl_ctx);
2848 		spin_unlock_irqrestore(&xhci->lock, flags);
2849 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2850 				"FIXME allocate a new ring segment");
2851 		return -ENOMEM;
2852 	}
2853 	xhci_ring_cmd_db(xhci);
2854 	spin_unlock_irqrestore(&xhci->lock, flags);
2855 
2856 	/* Wait for the configure endpoint command to complete */
2857 	wait_for_completion(command->completion);
2858 
2859 	if (!ctx_change)
2860 		ret = xhci_configure_endpoint_result(xhci, udev,
2861 						     &command->status);
2862 	else
2863 		ret = xhci_evaluate_context_result(xhci, udev,
2864 						   &command->status);
2865 
2866 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2867 		spin_lock_irqsave(&xhci->lock, flags);
2868 		/* If the command failed, remove the reserved resources.
2869 		 * Otherwise, clean up the estimate to include dropped eps.
2870 		 */
2871 		if (ret)
2872 			xhci_free_host_resources(xhci, ctrl_ctx);
2873 		else
2874 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2875 		spin_unlock_irqrestore(&xhci->lock, flags);
2876 	}
2877 	return ret;
2878 }
2879 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2880 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2881 	struct xhci_virt_device *vdev, int i)
2882 {
2883 	struct xhci_virt_ep *ep = &vdev->eps[i];
2884 
2885 	if (ep->ep_state & EP_HAS_STREAMS) {
2886 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2887 				xhci_get_endpoint_address(i));
2888 		xhci_free_stream_info(xhci, ep->stream_info);
2889 		ep->stream_info = NULL;
2890 		ep->ep_state &= ~EP_HAS_STREAMS;
2891 	}
2892 }
2893 
2894 /* Called after one or more calls to xhci_add_endpoint() or
2895  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2896  * to call xhci_reset_bandwidth().
2897  *
2898  * Since we are in the middle of changing either configuration or
2899  * installing a new alt setting, the USB core won't allow URBs to be
2900  * enqueued for any endpoint on the old config or interface.  Nothing
2901  * else should be touching the xhci->devs[slot_id] structure, so we
2902  * don't need to take the xhci->lock for manipulating that.
2903  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2904 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2905 {
2906 	int i;
2907 	int ret = 0;
2908 	struct xhci_hcd *xhci;
2909 	struct xhci_virt_device	*virt_dev;
2910 	struct xhci_input_control_ctx *ctrl_ctx;
2911 	struct xhci_slot_ctx *slot_ctx;
2912 	struct xhci_command *command;
2913 
2914 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2915 	if (ret <= 0)
2916 		return ret;
2917 	xhci = hcd_to_xhci(hcd);
2918 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2919 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2920 		return -ENODEV;
2921 
2922 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2923 	virt_dev = xhci->devs[udev->slot_id];
2924 
2925 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2926 	if (!command)
2927 		return -ENOMEM;
2928 
2929 	command->in_ctx = virt_dev->in_ctx;
2930 
2931 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2932 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2933 	if (!ctrl_ctx) {
2934 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2935 				__func__);
2936 		ret = -ENOMEM;
2937 		goto command_cleanup;
2938 	}
2939 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2940 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2941 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2942 
2943 	/* Don't issue the command if there's no endpoints to update. */
2944 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2945 	    ctrl_ctx->drop_flags == 0) {
2946 		ret = 0;
2947 		goto command_cleanup;
2948 	}
2949 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2950 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2951 	for (i = 31; i >= 1; i--) {
2952 		__le32 le32 = cpu_to_le32(BIT(i));
2953 
2954 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2955 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2956 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2957 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2958 			break;
2959 		}
2960 	}
2961 
2962 	ret = xhci_configure_endpoint(xhci, udev, command,
2963 			false, false);
2964 	if (ret)
2965 		/* Callee should call reset_bandwidth() */
2966 		goto command_cleanup;
2967 
2968 	/* Free any rings that were dropped, but not changed. */
2969 	for (i = 1; i < 31; i++) {
2970 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2971 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2972 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2973 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2974 		}
2975 	}
2976 	xhci_zero_in_ctx(xhci, virt_dev);
2977 	/*
2978 	 * Install any rings for completely new endpoints or changed endpoints,
2979 	 * and free any old rings from changed endpoints.
2980 	 */
2981 	for (i = 1; i < 31; i++) {
2982 		if (!virt_dev->eps[i].new_ring)
2983 			continue;
2984 		/* Only free the old ring if it exists.
2985 		 * It may not if this is the first add of an endpoint.
2986 		 */
2987 		if (virt_dev->eps[i].ring) {
2988 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2989 		}
2990 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2991 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2992 		virt_dev->eps[i].new_ring = NULL;
2993 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2994 	}
2995 command_cleanup:
2996 	kfree(command->completion);
2997 	kfree(command);
2998 
2999 	return ret;
3000 }
3001 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3002 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3003 {
3004 	struct xhci_hcd *xhci;
3005 	struct xhci_virt_device	*virt_dev;
3006 	int i, ret;
3007 
3008 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3009 	if (ret <= 0)
3010 		return;
3011 	xhci = hcd_to_xhci(hcd);
3012 
3013 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3014 	virt_dev = xhci->devs[udev->slot_id];
3015 	/* Free any rings allocated for added endpoints */
3016 	for (i = 0; i < 31; i++) {
3017 		if (virt_dev->eps[i].new_ring) {
3018 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3019 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3020 			virt_dev->eps[i].new_ring = NULL;
3021 		}
3022 	}
3023 	xhci_zero_in_ctx(xhci, virt_dev);
3024 }
3025 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3026 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3027 		struct xhci_container_ctx *in_ctx,
3028 		struct xhci_container_ctx *out_ctx,
3029 		struct xhci_input_control_ctx *ctrl_ctx,
3030 		u32 add_flags, u32 drop_flags)
3031 {
3032 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3033 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3034 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3035 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3036 }
3037 
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)3038 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
3039 		unsigned int slot_id, unsigned int ep_index,
3040 		struct xhci_dequeue_state *deq_state)
3041 {
3042 	struct xhci_input_control_ctx *ctrl_ctx;
3043 	struct xhci_container_ctx *in_ctx;
3044 	struct xhci_ep_ctx *ep_ctx;
3045 	u32 added_ctxs;
3046 	dma_addr_t addr;
3047 
3048 	in_ctx = xhci->devs[slot_id]->in_ctx;
3049 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3050 	if (!ctrl_ctx) {
3051 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3052 				__func__);
3053 		return;
3054 	}
3055 
3056 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3057 			xhci->devs[slot_id]->out_ctx, ep_index);
3058 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3059 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3060 			deq_state->new_deq_ptr);
3061 	if (addr == 0) {
3062 		xhci_warn(xhci, "WARN Cannot submit config ep after "
3063 				"reset ep command\n");
3064 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3065 				deq_state->new_deq_seg,
3066 				deq_state->new_deq_ptr);
3067 		return;
3068 	}
3069 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3070 
3071 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3072 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3073 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3074 			added_ctxs, added_ctxs);
3075 }
3076 
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id,struct xhci_td * td)3077 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3078 			       unsigned int ep_index, unsigned int stream_id,
3079 			       struct xhci_td *td)
3080 {
3081 	struct xhci_dequeue_state deq_state;
3082 
3083 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3084 			"Cleaning up stalled endpoint ring");
3085 	/* We need to move the HW's dequeue pointer past this TD,
3086 	 * or it will attempt to resend it on the next doorbell ring.
3087 	 */
3088 	xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3089 				    &deq_state);
3090 
3091 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3092 		return;
3093 
3094 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3095 	 * issue a configure endpoint command later.
3096 	 */
3097 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3098 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3099 				"Queueing new dequeue state");
3100 		xhci_queue_new_dequeue_state(xhci, slot_id,
3101 				ep_index, &deq_state);
3102 	} else {
3103 		/* Better hope no one uses the input context between now and the
3104 		 * reset endpoint completion!
3105 		 * XXX: No idea how this hardware will react when stream rings
3106 		 * are enabled.
3107 		 */
3108 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3109 				"Setting up input context for "
3110 				"configure endpoint command");
3111 		xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3112 				ep_index, &deq_state);
3113 	}
3114 }
3115 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3116 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3117 				  struct usb_host_endpoint *host_ep)
3118 {
3119 	struct xhci_hcd		*xhci;
3120 	struct xhci_virt_device	*vdev;
3121 	struct xhci_virt_ep	*ep;
3122 	struct usb_device	*udev;
3123 	unsigned long		flags;
3124 	unsigned int		ep_index;
3125 
3126 	xhci = hcd_to_xhci(hcd);
3127 rescan:
3128 	spin_lock_irqsave(&xhci->lock, flags);
3129 
3130 	udev = (struct usb_device *)host_ep->hcpriv;
3131 	if (!udev || !udev->slot_id)
3132 		goto done;
3133 
3134 	vdev = xhci->devs[udev->slot_id];
3135 	if (!vdev)
3136 		goto done;
3137 
3138 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3139 	ep = &vdev->eps[ep_index];
3140 	if (!ep)
3141 		goto done;
3142 
3143 	/* wait for hub_tt_work to finish clearing hub TT */
3144 	if (ep->ep_state & EP_CLEARING_TT) {
3145 		spin_unlock_irqrestore(&xhci->lock, flags);
3146 		schedule_timeout_uninterruptible(1);
3147 		goto rescan;
3148 	}
3149 
3150 	if (ep->ep_state)
3151 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3152 			 ep->ep_state);
3153 done:
3154 	host_ep->hcpriv = NULL;
3155 	spin_unlock_irqrestore(&xhci->lock, flags);
3156 }
3157 
3158 /*
3159  * Called after usb core issues a clear halt control message.
3160  * The host side of the halt should already be cleared by a reset endpoint
3161  * command issued when the STALL event was received.
3162  *
3163  * The reset endpoint command may only be issued to endpoints in the halted
3164  * state. For software that wishes to reset the data toggle or sequence number
3165  * of an endpoint that isn't in the halted state this function will issue a
3166  * configure endpoint command with the Drop and Add bits set for the target
3167  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3168  */
3169 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3170 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3171 		struct usb_host_endpoint *host_ep)
3172 {
3173 	struct xhci_hcd *xhci;
3174 	struct usb_device *udev;
3175 	struct xhci_virt_device *vdev;
3176 	struct xhci_virt_ep *ep;
3177 	struct xhci_input_control_ctx *ctrl_ctx;
3178 	struct xhci_command *stop_cmd, *cfg_cmd;
3179 	unsigned int ep_index;
3180 	unsigned long flags;
3181 	u32 ep_flag;
3182 	int err;
3183 
3184 	xhci = hcd_to_xhci(hcd);
3185 	if (!host_ep->hcpriv)
3186 		return;
3187 	udev = (struct usb_device *) host_ep->hcpriv;
3188 	vdev = xhci->devs[udev->slot_id];
3189 
3190 	/*
3191 	 * vdev may be lost due to xHC restore error and re-initialization
3192 	 * during S3/S4 resume. A new vdev will be allocated later by
3193 	 * xhci_discover_or_reset_device()
3194 	 */
3195 	if (!udev->slot_id || !vdev)
3196 		return;
3197 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3198 	ep = &vdev->eps[ep_index];
3199 	if (!ep)
3200 		return;
3201 
3202 	/* Bail out if toggle is already being cleared by a endpoint reset */
3203 	spin_lock_irqsave(&xhci->lock, flags);
3204 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3205 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3206 		spin_unlock_irqrestore(&xhci->lock, flags);
3207 		return;
3208 	}
3209 	spin_unlock_irqrestore(&xhci->lock, flags);
3210 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3211 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3212 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3213 		return;
3214 
3215 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3216 
3217 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3218 		return;
3219 
3220 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3221 	if (!stop_cmd)
3222 		return;
3223 
3224 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3225 	if (!cfg_cmd)
3226 		goto cleanup;
3227 
3228 	spin_lock_irqsave(&xhci->lock, flags);
3229 
3230 	/* block queuing new trbs and ringing ep doorbell */
3231 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3232 
3233 	/*
3234 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3235 	 * Driver is required to synchronously cancel all transfer request.
3236 	 * Stop the endpoint to force xHC to update the output context
3237 	 */
3238 
3239 	if (!list_empty(&ep->ring->td_list)) {
3240 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3241 		spin_unlock_irqrestore(&xhci->lock, flags);
3242 		xhci_free_command(xhci, cfg_cmd);
3243 		goto cleanup;
3244 	}
3245 
3246 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3247 					ep_index, 0);
3248 	if (err < 0) {
3249 		spin_unlock_irqrestore(&xhci->lock, flags);
3250 		xhci_free_command(xhci, cfg_cmd);
3251 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3252 				__func__, err);
3253 		goto cleanup;
3254 	}
3255 
3256 	xhci_ring_cmd_db(xhci);
3257 	spin_unlock_irqrestore(&xhci->lock, flags);
3258 
3259 	wait_for_completion(stop_cmd->completion);
3260 
3261 	spin_lock_irqsave(&xhci->lock, flags);
3262 
3263 	/* config ep command clears toggle if add and drop ep flags are set */
3264 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3265 	if (!ctrl_ctx) {
3266 		spin_unlock_irqrestore(&xhci->lock, flags);
3267 		xhci_free_command(xhci, cfg_cmd);
3268 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3269 				__func__);
3270 		goto cleanup;
3271 	}
3272 
3273 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3274 					   ctrl_ctx, ep_flag, ep_flag);
3275 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3276 
3277 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3278 				      udev->slot_id, false);
3279 	if (err < 0) {
3280 		spin_unlock_irqrestore(&xhci->lock, flags);
3281 		xhci_free_command(xhci, cfg_cmd);
3282 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3283 				__func__, err);
3284 		goto cleanup;
3285 	}
3286 
3287 	xhci_ring_cmd_db(xhci);
3288 	spin_unlock_irqrestore(&xhci->lock, flags);
3289 
3290 	wait_for_completion(cfg_cmd->completion);
3291 
3292 	xhci_free_command(xhci, cfg_cmd);
3293 cleanup:
3294 	xhci_free_command(xhci, stop_cmd);
3295 	spin_lock_irqsave(&xhci->lock, flags);
3296 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3297 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3298 	spin_unlock_irqrestore(&xhci->lock, flags);
3299 }
3300 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3301 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3302 		struct usb_device *udev, struct usb_host_endpoint *ep,
3303 		unsigned int slot_id)
3304 {
3305 	int ret;
3306 	unsigned int ep_index;
3307 	unsigned int ep_state;
3308 
3309 	if (!ep)
3310 		return -EINVAL;
3311 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3312 	if (ret <= 0)
3313 		return ret ? ret : -EINVAL;
3314 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3315 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3316 				" descriptor for ep 0x%x does not support streams\n",
3317 				ep->desc.bEndpointAddress);
3318 		return -EINVAL;
3319 	}
3320 
3321 	ep_index = xhci_get_endpoint_index(&ep->desc);
3322 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3323 	if (ep_state & EP_HAS_STREAMS ||
3324 			ep_state & EP_GETTING_STREAMS) {
3325 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3326 				"already has streams set up.\n",
3327 				ep->desc.bEndpointAddress);
3328 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3329 				"dynamic stream context array reallocation.\n");
3330 		return -EINVAL;
3331 	}
3332 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3333 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3334 				"endpoint 0x%x; URBs are pending.\n",
3335 				ep->desc.bEndpointAddress);
3336 		return -EINVAL;
3337 	}
3338 	return 0;
3339 }
3340 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3341 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3342 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3343 {
3344 	unsigned int max_streams;
3345 
3346 	/* The stream context array size must be a power of two */
3347 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3348 	/*
3349 	 * Find out how many primary stream array entries the host controller
3350 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3351 	 * level page entries), but that's an optional feature for xHCI host
3352 	 * controllers. xHCs must support at least 4 stream IDs.
3353 	 */
3354 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3355 	if (*num_stream_ctxs > max_streams) {
3356 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3357 				max_streams);
3358 		*num_stream_ctxs = max_streams;
3359 		*num_streams = max_streams;
3360 	}
3361 }
3362 
3363 /* Returns an error code if one of the endpoint already has streams.
3364  * This does not change any data structures, it only checks and gathers
3365  * information.
3366  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3367 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3368 		struct usb_device *udev,
3369 		struct usb_host_endpoint **eps, unsigned int num_eps,
3370 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3371 {
3372 	unsigned int max_streams;
3373 	unsigned int endpoint_flag;
3374 	int i;
3375 	int ret;
3376 
3377 	for (i = 0; i < num_eps; i++) {
3378 		ret = xhci_check_streams_endpoint(xhci, udev,
3379 				eps[i], udev->slot_id);
3380 		if (ret < 0)
3381 			return ret;
3382 
3383 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3384 		if (max_streams < (*num_streams - 1)) {
3385 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3386 					eps[i]->desc.bEndpointAddress,
3387 					max_streams);
3388 			*num_streams = max_streams+1;
3389 		}
3390 
3391 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3392 		if (*changed_ep_bitmask & endpoint_flag)
3393 			return -EINVAL;
3394 		*changed_ep_bitmask |= endpoint_flag;
3395 	}
3396 	return 0;
3397 }
3398 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3399 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3400 		struct usb_device *udev,
3401 		struct usb_host_endpoint **eps, unsigned int num_eps)
3402 {
3403 	u32 changed_ep_bitmask = 0;
3404 	unsigned int slot_id;
3405 	unsigned int ep_index;
3406 	unsigned int ep_state;
3407 	int i;
3408 
3409 	slot_id = udev->slot_id;
3410 	if (!xhci->devs[slot_id])
3411 		return 0;
3412 
3413 	for (i = 0; i < num_eps; i++) {
3414 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3415 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3416 		/* Are streams already being freed for the endpoint? */
3417 		if (ep_state & EP_GETTING_NO_STREAMS) {
3418 			xhci_warn(xhci, "WARN Can't disable streams for "
3419 					"endpoint 0x%x, "
3420 					"streams are being disabled already\n",
3421 					eps[i]->desc.bEndpointAddress);
3422 			return 0;
3423 		}
3424 		/* Are there actually any streams to free? */
3425 		if (!(ep_state & EP_HAS_STREAMS) &&
3426 				!(ep_state & EP_GETTING_STREAMS)) {
3427 			xhci_warn(xhci, "WARN Can't disable streams for "
3428 					"endpoint 0x%x, "
3429 					"streams are already disabled!\n",
3430 					eps[i]->desc.bEndpointAddress);
3431 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3432 					"with non-streams endpoint\n");
3433 			return 0;
3434 		}
3435 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3436 	}
3437 	return changed_ep_bitmask;
3438 }
3439 
3440 /*
3441  * The USB device drivers use this function (through the HCD interface in USB
3442  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3443  * coordinate mass storage command queueing across multiple endpoints (basically
3444  * a stream ID == a task ID).
3445  *
3446  * Setting up streams involves allocating the same size stream context array
3447  * for each endpoint and issuing a configure endpoint command for all endpoints.
3448  *
3449  * Don't allow the call to succeed if one endpoint only supports one stream
3450  * (which means it doesn't support streams at all).
3451  *
3452  * Drivers may get less stream IDs than they asked for, if the host controller
3453  * hardware or endpoints claim they can't support the number of requested
3454  * stream IDs.
3455  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3456 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3457 		struct usb_host_endpoint **eps, unsigned int num_eps,
3458 		unsigned int num_streams, gfp_t mem_flags)
3459 {
3460 	int i, ret;
3461 	struct xhci_hcd *xhci;
3462 	struct xhci_virt_device *vdev;
3463 	struct xhci_command *config_cmd;
3464 	struct xhci_input_control_ctx *ctrl_ctx;
3465 	unsigned int ep_index;
3466 	unsigned int num_stream_ctxs;
3467 	unsigned int max_packet;
3468 	unsigned long flags;
3469 	u32 changed_ep_bitmask = 0;
3470 
3471 	if (!eps)
3472 		return -EINVAL;
3473 
3474 	/* Add one to the number of streams requested to account for
3475 	 * stream 0 that is reserved for xHCI usage.
3476 	 */
3477 	num_streams += 1;
3478 	xhci = hcd_to_xhci(hcd);
3479 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3480 			num_streams);
3481 
3482 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3483 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3484 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3485 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3486 		return -ENOSYS;
3487 	}
3488 
3489 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3490 	if (!config_cmd)
3491 		return -ENOMEM;
3492 
3493 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3494 	if (!ctrl_ctx) {
3495 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3496 				__func__);
3497 		xhci_free_command(xhci, config_cmd);
3498 		return -ENOMEM;
3499 	}
3500 
3501 	/* Check to make sure all endpoints are not already configured for
3502 	 * streams.  While we're at it, find the maximum number of streams that
3503 	 * all the endpoints will support and check for duplicate endpoints.
3504 	 */
3505 	spin_lock_irqsave(&xhci->lock, flags);
3506 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3507 			num_eps, &num_streams, &changed_ep_bitmask);
3508 	if (ret < 0) {
3509 		xhci_free_command(xhci, config_cmd);
3510 		spin_unlock_irqrestore(&xhci->lock, flags);
3511 		return ret;
3512 	}
3513 	if (num_streams <= 1) {
3514 		xhci_warn(xhci, "WARN: endpoints can't handle "
3515 				"more than one stream.\n");
3516 		xhci_free_command(xhci, config_cmd);
3517 		spin_unlock_irqrestore(&xhci->lock, flags);
3518 		return -EINVAL;
3519 	}
3520 	vdev = xhci->devs[udev->slot_id];
3521 	/* Mark each endpoint as being in transition, so
3522 	 * xhci_urb_enqueue() will reject all URBs.
3523 	 */
3524 	for (i = 0; i < num_eps; i++) {
3525 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3526 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3527 	}
3528 	spin_unlock_irqrestore(&xhci->lock, flags);
3529 
3530 	/* Setup internal data structures and allocate HW data structures for
3531 	 * streams (but don't install the HW structures in the input context
3532 	 * until we're sure all memory allocation succeeded).
3533 	 */
3534 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3535 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3536 			num_stream_ctxs, num_streams);
3537 
3538 	for (i = 0; i < num_eps; i++) {
3539 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3540 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3541 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3542 				num_stream_ctxs,
3543 				num_streams,
3544 				max_packet, mem_flags);
3545 		if (!vdev->eps[ep_index].stream_info)
3546 			goto cleanup;
3547 		/* Set maxPstreams in endpoint context and update deq ptr to
3548 		 * point to stream context array. FIXME
3549 		 */
3550 	}
3551 
3552 	/* Set up the input context for a configure endpoint command. */
3553 	for (i = 0; i < num_eps; i++) {
3554 		struct xhci_ep_ctx *ep_ctx;
3555 
3556 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3557 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3558 
3559 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3560 				vdev->out_ctx, ep_index);
3561 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3562 				vdev->eps[ep_index].stream_info);
3563 	}
3564 	/* Tell the HW to drop its old copy of the endpoint context info
3565 	 * and add the updated copy from the input context.
3566 	 */
3567 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3568 			vdev->out_ctx, ctrl_ctx,
3569 			changed_ep_bitmask, changed_ep_bitmask);
3570 
3571 	/* Issue and wait for the configure endpoint command */
3572 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3573 			false, false);
3574 
3575 	/* xHC rejected the configure endpoint command for some reason, so we
3576 	 * leave the old ring intact and free our internal streams data
3577 	 * structure.
3578 	 */
3579 	if (ret < 0)
3580 		goto cleanup;
3581 
3582 	spin_lock_irqsave(&xhci->lock, flags);
3583 	for (i = 0; i < num_eps; i++) {
3584 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3585 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3586 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3587 			 udev->slot_id, ep_index);
3588 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3589 	}
3590 	xhci_free_command(xhci, config_cmd);
3591 	spin_unlock_irqrestore(&xhci->lock, flags);
3592 
3593 	for (i = 0; i < num_eps; i++) {
3594 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3595 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3596 	}
3597 	/* Subtract 1 for stream 0, which drivers can't use */
3598 	return num_streams - 1;
3599 
3600 cleanup:
3601 	/* If it didn't work, free the streams! */
3602 	for (i = 0; i < num_eps; i++) {
3603 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3604 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3605 		vdev->eps[ep_index].stream_info = NULL;
3606 		/* FIXME Unset maxPstreams in endpoint context and
3607 		 * update deq ptr to point to normal string ring.
3608 		 */
3609 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3610 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3611 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3612 	}
3613 	xhci_free_command(xhci, config_cmd);
3614 	return -ENOMEM;
3615 }
3616 
3617 /* Transition the endpoint from using streams to being a "normal" endpoint
3618  * without streams.
3619  *
3620  * Modify the endpoint context state, submit a configure endpoint command,
3621  * and free all endpoint rings for streams if that completes successfully.
3622  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3623 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3624 		struct usb_host_endpoint **eps, unsigned int num_eps,
3625 		gfp_t mem_flags)
3626 {
3627 	int i, ret;
3628 	struct xhci_hcd *xhci;
3629 	struct xhci_virt_device *vdev;
3630 	struct xhci_command *command;
3631 	struct xhci_input_control_ctx *ctrl_ctx;
3632 	unsigned int ep_index;
3633 	unsigned long flags;
3634 	u32 changed_ep_bitmask;
3635 
3636 	xhci = hcd_to_xhci(hcd);
3637 	vdev = xhci->devs[udev->slot_id];
3638 
3639 	/* Set up a configure endpoint command to remove the streams rings */
3640 	spin_lock_irqsave(&xhci->lock, flags);
3641 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3642 			udev, eps, num_eps);
3643 	if (changed_ep_bitmask == 0) {
3644 		spin_unlock_irqrestore(&xhci->lock, flags);
3645 		return -EINVAL;
3646 	}
3647 
3648 	/* Use the xhci_command structure from the first endpoint.  We may have
3649 	 * allocated too many, but the driver may call xhci_free_streams() for
3650 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3651 	 */
3652 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3653 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3654 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3655 	if (!ctrl_ctx) {
3656 		spin_unlock_irqrestore(&xhci->lock, flags);
3657 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3658 				__func__);
3659 		return -EINVAL;
3660 	}
3661 
3662 	for (i = 0; i < num_eps; i++) {
3663 		struct xhci_ep_ctx *ep_ctx;
3664 
3665 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3666 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3667 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3668 			EP_GETTING_NO_STREAMS;
3669 
3670 		xhci_endpoint_copy(xhci, command->in_ctx,
3671 				vdev->out_ctx, ep_index);
3672 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3673 				&vdev->eps[ep_index]);
3674 	}
3675 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3676 			vdev->out_ctx, ctrl_ctx,
3677 			changed_ep_bitmask, changed_ep_bitmask);
3678 	spin_unlock_irqrestore(&xhci->lock, flags);
3679 
3680 	/* Issue and wait for the configure endpoint command,
3681 	 * which must succeed.
3682 	 */
3683 	ret = xhci_configure_endpoint(xhci, udev, command,
3684 			false, true);
3685 
3686 	/* xHC rejected the configure endpoint command for some reason, so we
3687 	 * leave the streams rings intact.
3688 	 */
3689 	if (ret < 0)
3690 		return ret;
3691 
3692 	spin_lock_irqsave(&xhci->lock, flags);
3693 	for (i = 0; i < num_eps; i++) {
3694 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3695 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3696 		vdev->eps[ep_index].stream_info = NULL;
3697 		/* FIXME Unset maxPstreams in endpoint context and
3698 		 * update deq ptr to point to normal string ring.
3699 		 */
3700 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3701 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3702 	}
3703 	spin_unlock_irqrestore(&xhci->lock, flags);
3704 
3705 	return 0;
3706 }
3707 
3708 /*
3709  * Deletes endpoint resources for endpoints that were active before a Reset
3710  * Device command, or a Disable Slot command.  The Reset Device command leaves
3711  * the control endpoint intact, whereas the Disable Slot command deletes it.
3712  *
3713  * Must be called with xhci->lock held.
3714  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3715 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3716 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3717 {
3718 	int i;
3719 	unsigned int num_dropped_eps = 0;
3720 	unsigned int drop_flags = 0;
3721 
3722 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3723 		if (virt_dev->eps[i].ring) {
3724 			drop_flags |= 1 << i;
3725 			num_dropped_eps++;
3726 		}
3727 	}
3728 	xhci->num_active_eps -= num_dropped_eps;
3729 	if (num_dropped_eps)
3730 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3731 				"Dropped %u ep ctxs, flags = 0x%x, "
3732 				"%u now active.",
3733 				num_dropped_eps, drop_flags,
3734 				xhci->num_active_eps);
3735 }
3736 
3737 /*
3738  * This submits a Reset Device Command, which will set the device state to 0,
3739  * set the device address to 0, and disable all the endpoints except the default
3740  * control endpoint.  The USB core should come back and call
3741  * xhci_address_device(), and then re-set up the configuration.  If this is
3742  * called because of a usb_reset_and_verify_device(), then the old alternate
3743  * settings will be re-installed through the normal bandwidth allocation
3744  * functions.
3745  *
3746  * Wait for the Reset Device command to finish.  Remove all structures
3747  * associated with the endpoints that were disabled.  Clear the input device
3748  * structure? Reset the control endpoint 0 max packet size?
3749  *
3750  * If the virt_dev to be reset does not exist or does not match the udev,
3751  * it means the device is lost, possibly due to the xHC restore error and
3752  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3753  * re-allocate the device.
3754  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3755 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3756 		struct usb_device *udev)
3757 {
3758 	int ret, i;
3759 	unsigned long flags;
3760 	struct xhci_hcd *xhci;
3761 	unsigned int slot_id;
3762 	struct xhci_virt_device *virt_dev;
3763 	struct xhci_command *reset_device_cmd;
3764 	struct xhci_slot_ctx *slot_ctx;
3765 	int old_active_eps = 0;
3766 
3767 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3768 	if (ret <= 0)
3769 		return ret;
3770 	xhci = hcd_to_xhci(hcd);
3771 	slot_id = udev->slot_id;
3772 	virt_dev = xhci->devs[slot_id];
3773 	if (!virt_dev) {
3774 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3775 				"not exist. Re-allocate the device\n", slot_id);
3776 		ret = xhci_alloc_dev(hcd, udev);
3777 		if (ret == 1)
3778 			return 0;
3779 		else
3780 			return -EINVAL;
3781 	}
3782 
3783 	if (virt_dev->tt_info)
3784 		old_active_eps = virt_dev->tt_info->active_eps;
3785 
3786 	if (virt_dev->udev != udev) {
3787 		/* If the virt_dev and the udev does not match, this virt_dev
3788 		 * may belong to another udev.
3789 		 * Re-allocate the device.
3790 		 */
3791 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3792 				"not match the udev. Re-allocate the device\n",
3793 				slot_id);
3794 		ret = xhci_alloc_dev(hcd, udev);
3795 		if (ret == 1)
3796 			return 0;
3797 		else
3798 			return -EINVAL;
3799 	}
3800 
3801 	/* If device is not setup, there is no point in resetting it */
3802 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3803 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3804 						SLOT_STATE_DISABLED)
3805 		return 0;
3806 
3807 	trace_xhci_discover_or_reset_device(slot_ctx);
3808 
3809 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3810 	/* Allocate the command structure that holds the struct completion.
3811 	 * Assume we're in process context, since the normal device reset
3812 	 * process has to wait for the device anyway.  Storage devices are
3813 	 * reset as part of error handling, so use GFP_NOIO instead of
3814 	 * GFP_KERNEL.
3815 	 */
3816 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3817 	if (!reset_device_cmd) {
3818 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3819 		return -ENOMEM;
3820 	}
3821 
3822 	/* Attempt to submit the Reset Device command to the command ring */
3823 	spin_lock_irqsave(&xhci->lock, flags);
3824 
3825 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3826 	if (ret) {
3827 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3828 		spin_unlock_irqrestore(&xhci->lock, flags);
3829 		goto command_cleanup;
3830 	}
3831 	xhci_ring_cmd_db(xhci);
3832 	spin_unlock_irqrestore(&xhci->lock, flags);
3833 
3834 	/* Wait for the Reset Device command to finish */
3835 	wait_for_completion(reset_device_cmd->completion);
3836 
3837 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3838 	 * unless we tried to reset a slot ID that wasn't enabled,
3839 	 * or the device wasn't in the addressed or configured state.
3840 	 */
3841 	ret = reset_device_cmd->status;
3842 	switch (ret) {
3843 	case COMP_COMMAND_ABORTED:
3844 	case COMP_COMMAND_RING_STOPPED:
3845 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3846 		ret = -ETIME;
3847 		goto command_cleanup;
3848 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3849 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3850 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3851 				slot_id,
3852 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3853 		xhci_dbg(xhci, "Not freeing device rings.\n");
3854 		/* Don't treat this as an error.  May change my mind later. */
3855 		ret = 0;
3856 		goto command_cleanup;
3857 	case COMP_SUCCESS:
3858 		xhci_dbg(xhci, "Successful reset device command.\n");
3859 		break;
3860 	default:
3861 		if (xhci_is_vendor_info_code(xhci, ret))
3862 			break;
3863 		xhci_warn(xhci, "Unknown completion code %u for "
3864 				"reset device command.\n", ret);
3865 		ret = -EINVAL;
3866 		goto command_cleanup;
3867 	}
3868 
3869 	/* Free up host controller endpoint resources */
3870 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3871 		spin_lock_irqsave(&xhci->lock, flags);
3872 		/* Don't delete the default control endpoint resources */
3873 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3874 		spin_unlock_irqrestore(&xhci->lock, flags);
3875 	}
3876 
3877 	/* Everything but endpoint 0 is disabled, so free the rings. */
3878 	for (i = 1; i < 31; i++) {
3879 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3880 
3881 		if (ep->ep_state & EP_HAS_STREAMS) {
3882 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3883 					xhci_get_endpoint_address(i));
3884 			xhci_free_stream_info(xhci, ep->stream_info);
3885 			ep->stream_info = NULL;
3886 			ep->ep_state &= ~EP_HAS_STREAMS;
3887 		}
3888 
3889 		if (ep->ring) {
3890 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3891 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3892 		}
3893 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3894 			xhci_drop_ep_from_interval_table(xhci,
3895 					&virt_dev->eps[i].bw_info,
3896 					virt_dev->bw_table,
3897 					udev,
3898 					&virt_dev->eps[i],
3899 					virt_dev->tt_info);
3900 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3901 	}
3902 	/* If necessary, update the number of active TTs on this root port */
3903 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3904 	virt_dev->flags = 0;
3905 	ret = 0;
3906 
3907 command_cleanup:
3908 	xhci_free_command(xhci, reset_device_cmd);
3909 	return ret;
3910 }
3911 
3912 /*
3913  * At this point, the struct usb_device is about to go away, the device has
3914  * disconnected, and all traffic has been stopped and the endpoints have been
3915  * disabled.  Free any HC data structures associated with that device.
3916  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3917 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3918 {
3919 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3920 	struct xhci_virt_device *virt_dev;
3921 	struct xhci_slot_ctx *slot_ctx;
3922 	unsigned long flags;
3923 	int i, ret;
3924 
3925 	/*
3926 	 * We called pm_runtime_get_noresume when the device was attached.
3927 	 * Decrement the counter here to allow controller to runtime suspend
3928 	 * if no devices remain.
3929 	 */
3930 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3931 		pm_runtime_put_noidle(hcd->self.controller);
3932 
3933 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3934 	/* If the host is halted due to driver unload, we still need to free the
3935 	 * device.
3936 	 */
3937 	if (ret <= 0 && ret != -ENODEV)
3938 		return;
3939 
3940 	virt_dev = xhci->devs[udev->slot_id];
3941 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3942 	trace_xhci_free_dev(slot_ctx);
3943 
3944 	/* Stop any wayward timer functions (which may grab the lock) */
3945 	for (i = 0; i < 31; i++) {
3946 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3947 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3948 	}
3949 	virt_dev->udev = NULL;
3950 	xhci_disable_slot(xhci, udev->slot_id);
3951 
3952 	spin_lock_irqsave(&xhci->lock, flags);
3953 	xhci_free_virt_device(xhci, udev->slot_id);
3954 	spin_unlock_irqrestore(&xhci->lock, flags);
3955 
3956 }
3957 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3958 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3959 {
3960 	struct xhci_command *command;
3961 	unsigned long flags;
3962 	u32 state;
3963 	int ret = 0;
3964 
3965 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3966 	if (!command)
3967 		return -ENOMEM;
3968 
3969 	xhci_debugfs_remove_slot(xhci, slot_id);
3970 
3971 	spin_lock_irqsave(&xhci->lock, flags);
3972 	/* Don't disable the slot if the host controller is dead. */
3973 	state = readl(&xhci->op_regs->status);
3974 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3975 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3976 		spin_unlock_irqrestore(&xhci->lock, flags);
3977 		kfree(command);
3978 		return -ENODEV;
3979 	}
3980 
3981 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3982 				slot_id);
3983 	if (ret) {
3984 		spin_unlock_irqrestore(&xhci->lock, flags);
3985 		kfree(command);
3986 		return ret;
3987 	}
3988 	xhci_ring_cmd_db(xhci);
3989 	spin_unlock_irqrestore(&xhci->lock, flags);
3990 
3991 	wait_for_completion(command->completion);
3992 
3993 	if (command->status != COMP_SUCCESS)
3994 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3995 			  slot_id, command->status);
3996 
3997 	xhci_free_command(xhci, command);
3998 
3999 	return ret;
4000 }
4001 
4002 /*
4003  * Checks if we have enough host controller resources for the default control
4004  * endpoint.
4005  *
4006  * Must be called with xhci->lock held.
4007  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4008 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4009 {
4010 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4011 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4012 				"Not enough ep ctxs: "
4013 				"%u active, need to add 1, limit is %u.",
4014 				xhci->num_active_eps, xhci->limit_active_eps);
4015 		return -ENOMEM;
4016 	}
4017 	xhci->num_active_eps += 1;
4018 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4019 			"Adding 1 ep ctx, %u now active.",
4020 			xhci->num_active_eps);
4021 	return 0;
4022 }
4023 
4024 
4025 /*
4026  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4027  * timed out, or allocating memory failed.  Returns 1 on success.
4028  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4029 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4030 {
4031 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4032 	struct xhci_virt_device *vdev;
4033 	struct xhci_slot_ctx *slot_ctx;
4034 	unsigned long flags;
4035 	int ret, slot_id;
4036 	struct xhci_command *command;
4037 
4038 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4039 	if (!command)
4040 		return 0;
4041 
4042 	spin_lock_irqsave(&xhci->lock, flags);
4043 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4044 	if (ret) {
4045 		spin_unlock_irqrestore(&xhci->lock, flags);
4046 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4047 		xhci_free_command(xhci, command);
4048 		return 0;
4049 	}
4050 	xhci_ring_cmd_db(xhci);
4051 	spin_unlock_irqrestore(&xhci->lock, flags);
4052 
4053 	wait_for_completion(command->completion);
4054 	slot_id = command->slot_id;
4055 
4056 	if (!slot_id || command->status != COMP_SUCCESS) {
4057 		xhci_err(xhci, "Error while assigning device slot ID\n");
4058 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4059 				HCS_MAX_SLOTS(
4060 					readl(&xhci->cap_regs->hcs_params1)));
4061 		xhci_free_command(xhci, command);
4062 		return 0;
4063 	}
4064 
4065 	xhci_free_command(xhci, command);
4066 
4067 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4068 		spin_lock_irqsave(&xhci->lock, flags);
4069 		ret = xhci_reserve_host_control_ep_resources(xhci);
4070 		if (ret) {
4071 			spin_unlock_irqrestore(&xhci->lock, flags);
4072 			xhci_warn(xhci, "Not enough host resources, "
4073 					"active endpoint contexts = %u\n",
4074 					xhci->num_active_eps);
4075 			goto disable_slot;
4076 		}
4077 		spin_unlock_irqrestore(&xhci->lock, flags);
4078 	}
4079 	/* Use GFP_NOIO, since this function can be called from
4080 	 * xhci_discover_or_reset_device(), which may be called as part of
4081 	 * mass storage driver error handling.
4082 	 */
4083 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4084 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4085 		goto disable_slot;
4086 	}
4087 	vdev = xhci->devs[slot_id];
4088 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4089 	trace_xhci_alloc_dev(slot_ctx);
4090 
4091 	udev->slot_id = slot_id;
4092 
4093 	xhci_debugfs_create_slot(xhci, slot_id);
4094 
4095 	/*
4096 	 * If resetting upon resume, we can't put the controller into runtime
4097 	 * suspend if there is a device attached.
4098 	 */
4099 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4100 		pm_runtime_get_noresume(hcd->self.controller);
4101 
4102 	/* Is this a LS or FS device under a HS hub? */
4103 	/* Hub or peripherial? */
4104 	return 1;
4105 
4106 disable_slot:
4107 	xhci_disable_slot(xhci, udev->slot_id);
4108 	xhci_free_virt_device(xhci, udev->slot_id);
4109 
4110 	return 0;
4111 }
4112 
4113 /*
4114  * Issue an Address Device command and optionally send a corresponding
4115  * SetAddress request to the device.
4116  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4117 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4118 			     enum xhci_setup_dev setup)
4119 {
4120 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4121 	unsigned long flags;
4122 	struct xhci_virt_device *virt_dev;
4123 	int ret = 0;
4124 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4125 	struct xhci_slot_ctx *slot_ctx;
4126 	struct xhci_input_control_ctx *ctrl_ctx;
4127 	u64 temp_64;
4128 	struct xhci_command *command = NULL;
4129 
4130 	mutex_lock(&xhci->mutex);
4131 
4132 	if (xhci->xhc_state) {	/* dying, removing or halted */
4133 		ret = -ESHUTDOWN;
4134 		goto out;
4135 	}
4136 
4137 	if (!udev->slot_id) {
4138 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4139 				"Bad Slot ID %d", udev->slot_id);
4140 		ret = -EINVAL;
4141 		goto out;
4142 	}
4143 
4144 	virt_dev = xhci->devs[udev->slot_id];
4145 
4146 	if (WARN_ON(!virt_dev)) {
4147 		/*
4148 		 * In plug/unplug torture test with an NEC controller,
4149 		 * a zero-dereference was observed once due to virt_dev = 0.
4150 		 * Print useful debug rather than crash if it is observed again!
4151 		 */
4152 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4153 			udev->slot_id);
4154 		ret = -EINVAL;
4155 		goto out;
4156 	}
4157 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4158 	trace_xhci_setup_device_slot(slot_ctx);
4159 
4160 	if (setup == SETUP_CONTEXT_ONLY) {
4161 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4162 		    SLOT_STATE_DEFAULT) {
4163 			xhci_dbg(xhci, "Slot already in default state\n");
4164 			goto out;
4165 		}
4166 	}
4167 
4168 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4169 	if (!command) {
4170 		ret = -ENOMEM;
4171 		goto out;
4172 	}
4173 
4174 	command->in_ctx = virt_dev->in_ctx;
4175 
4176 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4177 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4178 	if (!ctrl_ctx) {
4179 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4180 				__func__);
4181 		ret = -EINVAL;
4182 		goto out;
4183 	}
4184 	/*
4185 	 * If this is the first Set Address since device plug-in or
4186 	 * virt_device realloaction after a resume with an xHCI power loss,
4187 	 * then set up the slot context.
4188 	 */
4189 	if (!slot_ctx->dev_info)
4190 		xhci_setup_addressable_virt_dev(xhci, udev);
4191 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4192 	else
4193 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4194 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4195 	ctrl_ctx->drop_flags = 0;
4196 
4197 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4198 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4199 
4200 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4201 	spin_lock_irqsave(&xhci->lock, flags);
4202 	trace_xhci_setup_device(virt_dev);
4203 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4204 					udev->slot_id, setup);
4205 	if (ret) {
4206 		spin_unlock_irqrestore(&xhci->lock, flags);
4207 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4208 				"FIXME: allocate a command ring segment");
4209 		goto out;
4210 	}
4211 	xhci_ring_cmd_db(xhci);
4212 	spin_unlock_irqrestore(&xhci->lock, flags);
4213 
4214 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4215 	wait_for_completion(command->completion);
4216 
4217 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4218 	 * the SetAddress() "recovery interval" required by USB and aborting the
4219 	 * command on a timeout.
4220 	 */
4221 	switch (command->status) {
4222 	case COMP_COMMAND_ABORTED:
4223 	case COMP_COMMAND_RING_STOPPED:
4224 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4225 		ret = -ETIME;
4226 		break;
4227 	case COMP_CONTEXT_STATE_ERROR:
4228 	case COMP_SLOT_NOT_ENABLED_ERROR:
4229 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4230 			 act, udev->slot_id);
4231 		ret = -EINVAL;
4232 		break;
4233 	case COMP_USB_TRANSACTION_ERROR:
4234 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4235 
4236 		mutex_unlock(&xhci->mutex);
4237 		ret = xhci_disable_slot(xhci, udev->slot_id);
4238 		xhci_free_virt_device(xhci, udev->slot_id);
4239 		if (!ret)
4240 			xhci_alloc_dev(hcd, udev);
4241 		kfree(command->completion);
4242 		kfree(command);
4243 		return -EPROTO;
4244 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4245 		dev_warn(&udev->dev,
4246 			 "ERROR: Incompatible device for setup %s command\n", act);
4247 		ret = -ENODEV;
4248 		break;
4249 	case COMP_SUCCESS:
4250 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4251 			       "Successful setup %s command", act);
4252 		break;
4253 	default:
4254 		xhci_err(xhci,
4255 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4256 			 act, command->status);
4257 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4258 		ret = -EINVAL;
4259 		break;
4260 	}
4261 	if (ret)
4262 		goto out;
4263 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4264 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4265 			"Op regs DCBAA ptr = %#016llx", temp_64);
4266 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4267 		"Slot ID %d dcbaa entry @%p = %#016llx",
4268 		udev->slot_id,
4269 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4270 		(unsigned long long)
4271 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4272 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4273 			"Output Context DMA address = %#08llx",
4274 			(unsigned long long)virt_dev->out_ctx->dma);
4275 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4276 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4277 	/*
4278 	 * USB core uses address 1 for the roothubs, so we add one to the
4279 	 * address given back to us by the HC.
4280 	 */
4281 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4282 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4283 	/* Zero the input context control for later use */
4284 	ctrl_ctx->add_flags = 0;
4285 	ctrl_ctx->drop_flags = 0;
4286 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4287 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4288 
4289 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4290 		       "Internal device address = %d",
4291 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4292 out:
4293 	mutex_unlock(&xhci->mutex);
4294 	if (command) {
4295 		kfree(command->completion);
4296 		kfree(command);
4297 	}
4298 	return ret;
4299 }
4300 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4301 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4302 {
4303 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4304 }
4305 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4306 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4307 {
4308 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4309 }
4310 
4311 /*
4312  * Transfer the port index into real index in the HW port status
4313  * registers. Caculate offset between the port's PORTSC register
4314  * and port status base. Divide the number of per port register
4315  * to get the real index. The raw port number bases 1.
4316  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4317 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4318 {
4319 	struct xhci_hub *rhub;
4320 
4321 	rhub = xhci_get_rhub(hcd);
4322 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4323 }
4324 
4325 /*
4326  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4327  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4328  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4329 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4330 			struct usb_device *udev, u16 max_exit_latency)
4331 {
4332 	struct xhci_virt_device *virt_dev;
4333 	struct xhci_command *command;
4334 	struct xhci_input_control_ctx *ctrl_ctx;
4335 	struct xhci_slot_ctx *slot_ctx;
4336 	unsigned long flags;
4337 	int ret;
4338 
4339 	spin_lock_irqsave(&xhci->lock, flags);
4340 
4341 	virt_dev = xhci->devs[udev->slot_id];
4342 
4343 	/*
4344 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4345 	 * xHC was re-initialized. Exit latency will be set later after
4346 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4347 	 */
4348 
4349 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4350 		spin_unlock_irqrestore(&xhci->lock, flags);
4351 		return 0;
4352 	}
4353 
4354 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4355 	command = xhci->lpm_command;
4356 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4357 	if (!ctrl_ctx) {
4358 		spin_unlock_irqrestore(&xhci->lock, flags);
4359 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4360 				__func__);
4361 		return -ENOMEM;
4362 	}
4363 
4364 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4365 	spin_unlock_irqrestore(&xhci->lock, flags);
4366 
4367 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4368 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4369 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4370 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4371 	slot_ctx->dev_state = 0;
4372 
4373 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4374 			"Set up evaluate context for LPM MEL change.");
4375 
4376 	/* Issue and wait for the evaluate context command. */
4377 	ret = xhci_configure_endpoint(xhci, udev, command,
4378 			true, true);
4379 
4380 	if (!ret) {
4381 		spin_lock_irqsave(&xhci->lock, flags);
4382 		virt_dev->current_mel = max_exit_latency;
4383 		spin_unlock_irqrestore(&xhci->lock, flags);
4384 	}
4385 	return ret;
4386 }
4387 
4388 #ifdef CONFIG_PM
4389 
4390 /* BESL to HIRD Encoding array for USB2 LPM */
4391 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4392 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4393 
4394 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4395 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4396 					struct usb_device *udev)
4397 {
4398 	int u2del, besl, besl_host;
4399 	int besl_device = 0;
4400 	u32 field;
4401 
4402 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4403 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4404 
4405 	if (field & USB_BESL_SUPPORT) {
4406 		for (besl_host = 0; besl_host < 16; besl_host++) {
4407 			if (xhci_besl_encoding[besl_host] >= u2del)
4408 				break;
4409 		}
4410 		/* Use baseline BESL value as default */
4411 		if (field & USB_BESL_BASELINE_VALID)
4412 			besl_device = USB_GET_BESL_BASELINE(field);
4413 		else if (field & USB_BESL_DEEP_VALID)
4414 			besl_device = USB_GET_BESL_DEEP(field);
4415 	} else {
4416 		if (u2del <= 50)
4417 			besl_host = 0;
4418 		else
4419 			besl_host = (u2del - 51) / 75 + 1;
4420 	}
4421 
4422 	besl = besl_host + besl_device;
4423 	if (besl > 15)
4424 		besl = 15;
4425 
4426 	return besl;
4427 }
4428 
4429 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4430 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4431 {
4432 	u32 field;
4433 	int l1;
4434 	int besld = 0;
4435 	int hirdm = 0;
4436 
4437 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4438 
4439 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4440 	l1 = udev->l1_params.timeout / 256;
4441 
4442 	/* device has preferred BESLD */
4443 	if (field & USB_BESL_DEEP_VALID) {
4444 		besld = USB_GET_BESL_DEEP(field);
4445 		hirdm = 1;
4446 	}
4447 
4448 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4449 }
4450 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4451 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4452 			struct usb_device *udev, int enable)
4453 {
4454 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4455 	struct xhci_port **ports;
4456 	__le32 __iomem	*pm_addr, *hlpm_addr;
4457 	u32		pm_val, hlpm_val, field;
4458 	unsigned int	port_num;
4459 	unsigned long	flags;
4460 	int		hird, exit_latency;
4461 	int		ret;
4462 
4463 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4464 		return -EPERM;
4465 
4466 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4467 			!udev->lpm_capable)
4468 		return -EPERM;
4469 
4470 	if (!udev->parent || udev->parent->parent ||
4471 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4472 		return -EPERM;
4473 
4474 	if (udev->usb2_hw_lpm_capable != 1)
4475 		return -EPERM;
4476 
4477 	spin_lock_irqsave(&xhci->lock, flags);
4478 
4479 	ports = xhci->usb2_rhub.ports;
4480 	port_num = udev->portnum - 1;
4481 	pm_addr = ports[port_num]->addr + PORTPMSC;
4482 	pm_val = readl(pm_addr);
4483 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4484 
4485 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4486 			enable ? "enable" : "disable", port_num + 1);
4487 
4488 	if (enable) {
4489 		/* Host supports BESL timeout instead of HIRD */
4490 		if (udev->usb2_hw_lpm_besl_capable) {
4491 			/* if device doesn't have a preferred BESL value use a
4492 			 * default one which works with mixed HIRD and BESL
4493 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4494 			 */
4495 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4496 			if ((field & USB_BESL_SUPPORT) &&
4497 			    (field & USB_BESL_BASELINE_VALID))
4498 				hird = USB_GET_BESL_BASELINE(field);
4499 			else
4500 				hird = udev->l1_params.besl;
4501 
4502 			exit_latency = xhci_besl_encoding[hird];
4503 			spin_unlock_irqrestore(&xhci->lock, flags);
4504 
4505 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4506 			 * input context for link powermanagement evaluate
4507 			 * context commands. It is protected by hcd->bandwidth
4508 			 * mutex and is shared by all devices. We need to set
4509 			 * the max ext latency in USB 2 BESL LPM as well, so
4510 			 * use the same mutex and xhci_change_max_exit_latency()
4511 			 */
4512 			mutex_lock(hcd->bandwidth_mutex);
4513 			ret = xhci_change_max_exit_latency(xhci, udev,
4514 							   exit_latency);
4515 			mutex_unlock(hcd->bandwidth_mutex);
4516 
4517 			if (ret < 0)
4518 				return ret;
4519 			spin_lock_irqsave(&xhci->lock, flags);
4520 
4521 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4522 			writel(hlpm_val, hlpm_addr);
4523 			/* flush write */
4524 			readl(hlpm_addr);
4525 		} else {
4526 			hird = xhci_calculate_hird_besl(xhci, udev);
4527 		}
4528 
4529 		pm_val &= ~PORT_HIRD_MASK;
4530 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4531 		writel(pm_val, pm_addr);
4532 		pm_val = readl(pm_addr);
4533 		pm_val |= PORT_HLE;
4534 		writel(pm_val, pm_addr);
4535 		/* flush write */
4536 		readl(pm_addr);
4537 	} else {
4538 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4539 		writel(pm_val, pm_addr);
4540 		/* flush write */
4541 		readl(pm_addr);
4542 		if (udev->usb2_hw_lpm_besl_capable) {
4543 			spin_unlock_irqrestore(&xhci->lock, flags);
4544 			mutex_lock(hcd->bandwidth_mutex);
4545 			xhci_change_max_exit_latency(xhci, udev, 0);
4546 			mutex_unlock(hcd->bandwidth_mutex);
4547 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4548 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4549 					   100, 10000);
4550 			return 0;
4551 		}
4552 	}
4553 
4554 	spin_unlock_irqrestore(&xhci->lock, flags);
4555 	return 0;
4556 }
4557 
4558 /* check if a usb2 port supports a given extened capability protocol
4559  * only USB2 ports extended protocol capability values are cached.
4560  * Return 1 if capability is supported
4561  */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4562 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4563 					   unsigned capability)
4564 {
4565 	u32 port_offset, port_count;
4566 	int i;
4567 
4568 	for (i = 0; i < xhci->num_ext_caps; i++) {
4569 		if (xhci->ext_caps[i] & capability) {
4570 			/* port offsets starts at 1 */
4571 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4572 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4573 			if (port >= port_offset &&
4574 			    port < port_offset + port_count)
4575 				return 1;
4576 		}
4577 	}
4578 	return 0;
4579 }
4580 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4581 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4582 {
4583 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4584 	int		portnum = udev->portnum - 1;
4585 
4586 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4587 		return 0;
4588 
4589 	/* we only support lpm for non-hub device connected to root hub yet */
4590 	if (!udev->parent || udev->parent->parent ||
4591 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4592 		return 0;
4593 
4594 	if (xhci->hw_lpm_support == 1 &&
4595 			xhci_check_usb2_port_capability(
4596 				xhci, portnum, XHCI_HLC)) {
4597 		udev->usb2_hw_lpm_capable = 1;
4598 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4599 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4600 		if (xhci_check_usb2_port_capability(xhci, portnum,
4601 					XHCI_BLC))
4602 			udev->usb2_hw_lpm_besl_capable = 1;
4603 	}
4604 
4605 	return 0;
4606 }
4607 
4608 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4609 
4610 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4611 static unsigned long long xhci_service_interval_to_ns(
4612 		struct usb_endpoint_descriptor *desc)
4613 {
4614 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4615 }
4616 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4617 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4618 		enum usb3_link_state state)
4619 {
4620 	unsigned long long sel;
4621 	unsigned long long pel;
4622 	unsigned int max_sel_pel;
4623 	char *state_name;
4624 
4625 	switch (state) {
4626 	case USB3_LPM_U1:
4627 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4628 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4629 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4630 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4631 		state_name = "U1";
4632 		break;
4633 	case USB3_LPM_U2:
4634 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4635 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4636 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4637 		state_name = "U2";
4638 		break;
4639 	default:
4640 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4641 				__func__);
4642 		return USB3_LPM_DISABLED;
4643 	}
4644 
4645 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4646 		return USB3_LPM_DEVICE_INITIATED;
4647 
4648 	if (sel > max_sel_pel)
4649 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4650 				"due to long SEL %llu ms\n",
4651 				state_name, sel);
4652 	else
4653 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4654 				"due to long PEL %llu ms\n",
4655 				state_name, pel);
4656 	return USB3_LPM_DISABLED;
4657 }
4658 
4659 /* The U1 timeout should be the maximum of the following values:
4660  *  - For control endpoints, U1 system exit latency (SEL) * 3
4661  *  - For bulk endpoints, U1 SEL * 5
4662  *  - For interrupt endpoints:
4663  *    - Notification EPs, U1 SEL * 3
4664  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4665  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4666  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4667 static unsigned long long xhci_calculate_intel_u1_timeout(
4668 		struct usb_device *udev,
4669 		struct usb_endpoint_descriptor *desc)
4670 {
4671 	unsigned long long timeout_ns;
4672 	int ep_type;
4673 	int intr_type;
4674 
4675 	ep_type = usb_endpoint_type(desc);
4676 	switch (ep_type) {
4677 	case USB_ENDPOINT_XFER_CONTROL:
4678 		timeout_ns = udev->u1_params.sel * 3;
4679 		break;
4680 	case USB_ENDPOINT_XFER_BULK:
4681 		timeout_ns = udev->u1_params.sel * 5;
4682 		break;
4683 	case USB_ENDPOINT_XFER_INT:
4684 		intr_type = usb_endpoint_interrupt_type(desc);
4685 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4686 			timeout_ns = udev->u1_params.sel * 3;
4687 			break;
4688 		}
4689 		/* Otherwise the calculation is the same as isoc eps */
4690 		fallthrough;
4691 	case USB_ENDPOINT_XFER_ISOC:
4692 		timeout_ns = xhci_service_interval_to_ns(desc);
4693 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4694 		if (timeout_ns < udev->u1_params.sel * 2)
4695 			timeout_ns = udev->u1_params.sel * 2;
4696 		break;
4697 	default:
4698 		return 0;
4699 	}
4700 
4701 	return timeout_ns;
4702 }
4703 
4704 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4705 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4706 		struct usb_device *udev,
4707 		struct usb_endpoint_descriptor *desc)
4708 {
4709 	unsigned long long timeout_ns;
4710 
4711 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4712 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4713 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4714 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4715 			return USB3_LPM_DISABLED;
4716 		}
4717 	}
4718 
4719 	if (xhci->quirks & XHCI_INTEL_HOST)
4720 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4721 	else
4722 		timeout_ns = udev->u1_params.sel;
4723 
4724 	/* The U1 timeout is encoded in 1us intervals.
4725 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4726 	 */
4727 	if (timeout_ns == USB3_LPM_DISABLED)
4728 		timeout_ns = 1;
4729 	else
4730 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4731 
4732 	/* If the necessary timeout value is bigger than what we can set in the
4733 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4734 	 */
4735 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4736 		return timeout_ns;
4737 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4738 			"due to long timeout %llu ms\n", timeout_ns);
4739 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4740 }
4741 
4742 /* The U2 timeout should be the maximum of:
4743  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4744  *  - largest bInterval of any active periodic endpoint (to avoid going
4745  *    into lower power link states between intervals).
4746  *  - the U2 Exit Latency of the device
4747  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4748 static unsigned long long xhci_calculate_intel_u2_timeout(
4749 		struct usb_device *udev,
4750 		struct usb_endpoint_descriptor *desc)
4751 {
4752 	unsigned long long timeout_ns;
4753 	unsigned long long u2_del_ns;
4754 
4755 	timeout_ns = 10 * 1000 * 1000;
4756 
4757 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4758 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4759 		timeout_ns = xhci_service_interval_to_ns(desc);
4760 
4761 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4762 	if (u2_del_ns > timeout_ns)
4763 		timeout_ns = u2_del_ns;
4764 
4765 	return timeout_ns;
4766 }
4767 
4768 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4769 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4770 		struct usb_device *udev,
4771 		struct usb_endpoint_descriptor *desc)
4772 {
4773 	unsigned long long timeout_ns;
4774 
4775 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4776 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4777 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4778 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4779 			return USB3_LPM_DISABLED;
4780 		}
4781 	}
4782 
4783 	if (xhci->quirks & XHCI_INTEL_HOST)
4784 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4785 	else
4786 		timeout_ns = udev->u2_params.sel;
4787 
4788 	/* The U2 timeout is encoded in 256us intervals */
4789 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4790 	/* If the necessary timeout value is bigger than what we can set in the
4791 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4792 	 */
4793 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4794 		return timeout_ns;
4795 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4796 			"due to long timeout %llu ms\n", timeout_ns);
4797 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4798 }
4799 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4800 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4801 		struct usb_device *udev,
4802 		struct usb_endpoint_descriptor *desc,
4803 		enum usb3_link_state state,
4804 		u16 *timeout)
4805 {
4806 	if (state == USB3_LPM_U1)
4807 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4808 	else if (state == USB3_LPM_U2)
4809 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4810 
4811 	return USB3_LPM_DISABLED;
4812 }
4813 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4814 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4815 		struct usb_device *udev,
4816 		struct usb_endpoint_descriptor *desc,
4817 		enum usb3_link_state state,
4818 		u16 *timeout)
4819 {
4820 	u16 alt_timeout;
4821 
4822 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4823 		desc, state, timeout);
4824 
4825 	/* If we found we can't enable hub-initiated LPM, and
4826 	 * the U1 or U2 exit latency was too high to allow
4827 	 * device-initiated LPM as well, then we will disable LPM
4828 	 * for this device, so stop searching any further.
4829 	 */
4830 	if (alt_timeout == USB3_LPM_DISABLED) {
4831 		*timeout = alt_timeout;
4832 		return -E2BIG;
4833 	}
4834 	if (alt_timeout > *timeout)
4835 		*timeout = alt_timeout;
4836 	return 0;
4837 }
4838 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4839 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4840 		struct usb_device *udev,
4841 		struct usb_host_interface *alt,
4842 		enum usb3_link_state state,
4843 		u16 *timeout)
4844 {
4845 	int j;
4846 
4847 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4848 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4849 					&alt->endpoint[j].desc, state, timeout))
4850 			return -E2BIG;
4851 		continue;
4852 	}
4853 	return 0;
4854 }
4855 
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4856 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4857 		enum usb3_link_state state)
4858 {
4859 	struct usb_device *parent;
4860 	unsigned int num_hubs;
4861 
4862 	if (state == USB3_LPM_U2)
4863 		return 0;
4864 
4865 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4866 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4867 			parent = parent->parent)
4868 		num_hubs++;
4869 
4870 	if (num_hubs < 2)
4871 		return 0;
4872 
4873 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4874 			" below second-tier hub.\n");
4875 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4876 			"to decrease power consumption.\n");
4877 	return -E2BIG;
4878 }
4879 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4880 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4881 		struct usb_device *udev,
4882 		enum usb3_link_state state)
4883 {
4884 	if (xhci->quirks & XHCI_INTEL_HOST)
4885 		return xhci_check_intel_tier_policy(udev, state);
4886 	else
4887 		return 0;
4888 }
4889 
4890 /* Returns the U1 or U2 timeout that should be enabled.
4891  * If the tier check or timeout setting functions return with a non-zero exit
4892  * code, that means the timeout value has been finalized and we shouldn't look
4893  * at any more endpoints.
4894  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4895 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4896 			struct usb_device *udev, enum usb3_link_state state)
4897 {
4898 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4899 	struct usb_host_config *config;
4900 	char *state_name;
4901 	int i;
4902 	u16 timeout = USB3_LPM_DISABLED;
4903 
4904 	if (state == USB3_LPM_U1)
4905 		state_name = "U1";
4906 	else if (state == USB3_LPM_U2)
4907 		state_name = "U2";
4908 	else {
4909 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4910 				state);
4911 		return timeout;
4912 	}
4913 
4914 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4915 		return timeout;
4916 
4917 	/* Gather some information about the currently installed configuration
4918 	 * and alternate interface settings.
4919 	 */
4920 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4921 			state, &timeout))
4922 		return timeout;
4923 
4924 	config = udev->actconfig;
4925 	if (!config)
4926 		return timeout;
4927 
4928 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4929 		struct usb_driver *driver;
4930 		struct usb_interface *intf = config->interface[i];
4931 
4932 		if (!intf)
4933 			continue;
4934 
4935 		/* Check if any currently bound drivers want hub-initiated LPM
4936 		 * disabled.
4937 		 */
4938 		if (intf->dev.driver) {
4939 			driver = to_usb_driver(intf->dev.driver);
4940 			if (driver && driver->disable_hub_initiated_lpm) {
4941 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4942 					state_name, driver->name);
4943 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4944 								      state);
4945 				if (timeout == USB3_LPM_DISABLED)
4946 					return timeout;
4947 			}
4948 		}
4949 
4950 		/* Not sure how this could happen... */
4951 		if (!intf->cur_altsetting)
4952 			continue;
4953 
4954 		if (xhci_update_timeout_for_interface(xhci, udev,
4955 					intf->cur_altsetting,
4956 					state, &timeout))
4957 			return timeout;
4958 	}
4959 	return timeout;
4960 }
4961 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4962 static int calculate_max_exit_latency(struct usb_device *udev,
4963 		enum usb3_link_state state_changed,
4964 		u16 hub_encoded_timeout)
4965 {
4966 	unsigned long long u1_mel_us = 0;
4967 	unsigned long long u2_mel_us = 0;
4968 	unsigned long long mel_us = 0;
4969 	bool disabling_u1;
4970 	bool disabling_u2;
4971 	bool enabling_u1;
4972 	bool enabling_u2;
4973 
4974 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4975 			hub_encoded_timeout == USB3_LPM_DISABLED);
4976 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4977 			hub_encoded_timeout == USB3_LPM_DISABLED);
4978 
4979 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4980 			hub_encoded_timeout != USB3_LPM_DISABLED);
4981 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4982 			hub_encoded_timeout != USB3_LPM_DISABLED);
4983 
4984 	/* If U1 was already enabled and we're not disabling it,
4985 	 * or we're going to enable U1, account for the U1 max exit latency.
4986 	 */
4987 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4988 			enabling_u1)
4989 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4990 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4991 			enabling_u2)
4992 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4993 
4994 	if (u1_mel_us > u2_mel_us)
4995 		mel_us = u1_mel_us;
4996 	else
4997 		mel_us = u2_mel_us;
4998 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4999 	if (mel_us > MAX_EXIT) {
5000 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5001 				"is too big.\n", mel_us);
5002 		return -E2BIG;
5003 	}
5004 	return mel_us;
5005 }
5006 
5007 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5008 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5009 			struct usb_device *udev, enum usb3_link_state state)
5010 {
5011 	struct xhci_hcd	*xhci;
5012 	struct xhci_port *port;
5013 	u16 hub_encoded_timeout;
5014 	int mel;
5015 	int ret;
5016 
5017 	xhci = hcd_to_xhci(hcd);
5018 	/* The LPM timeout values are pretty host-controller specific, so don't
5019 	 * enable hub-initiated timeouts unless the vendor has provided
5020 	 * information about their timeout algorithm.
5021 	 */
5022 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5023 			!xhci->devs[udev->slot_id])
5024 		return USB3_LPM_DISABLED;
5025 
5026 	/* If connected to root port then check port can handle lpm */
5027 	if (udev->parent && !udev->parent->parent) {
5028 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5029 		if (port->lpm_incapable)
5030 			return USB3_LPM_DISABLED;
5031 	}
5032 
5033 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5034 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5035 	if (mel < 0) {
5036 		/* Max Exit Latency is too big, disable LPM. */
5037 		hub_encoded_timeout = USB3_LPM_DISABLED;
5038 		mel = 0;
5039 	}
5040 
5041 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5042 	if (ret)
5043 		return ret;
5044 	return hub_encoded_timeout;
5045 }
5046 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5047 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5048 			struct usb_device *udev, enum usb3_link_state state)
5049 {
5050 	struct xhci_hcd	*xhci;
5051 	u16 mel;
5052 
5053 	xhci = hcd_to_xhci(hcd);
5054 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5055 			!xhci->devs[udev->slot_id])
5056 		return 0;
5057 
5058 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5059 	return xhci_change_max_exit_latency(xhci, udev, mel);
5060 }
5061 #else /* CONFIG_PM */
5062 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5063 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5064 				struct usb_device *udev, int enable)
5065 {
5066 	return 0;
5067 }
5068 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5069 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5070 {
5071 	return 0;
5072 }
5073 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5074 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5075 			struct usb_device *udev, enum usb3_link_state state)
5076 {
5077 	return USB3_LPM_DISABLED;
5078 }
5079 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5080 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5081 			struct usb_device *udev, enum usb3_link_state state)
5082 {
5083 	return 0;
5084 }
5085 #endif	/* CONFIG_PM */
5086 
5087 /*-------------------------------------------------------------------------*/
5088 
5089 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5090  * internal data structures for the device.
5091  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5092 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5093 			struct usb_tt *tt, gfp_t mem_flags)
5094 {
5095 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5096 	struct xhci_virt_device *vdev;
5097 	struct xhci_command *config_cmd;
5098 	struct xhci_input_control_ctx *ctrl_ctx;
5099 	struct xhci_slot_ctx *slot_ctx;
5100 	unsigned long flags;
5101 	unsigned think_time;
5102 	int ret;
5103 
5104 	/* Ignore root hubs */
5105 	if (!hdev->parent)
5106 		return 0;
5107 
5108 	vdev = xhci->devs[hdev->slot_id];
5109 	if (!vdev) {
5110 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5111 		return -EINVAL;
5112 	}
5113 
5114 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5115 	if (!config_cmd)
5116 		return -ENOMEM;
5117 
5118 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5119 	if (!ctrl_ctx) {
5120 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5121 				__func__);
5122 		xhci_free_command(xhci, config_cmd);
5123 		return -ENOMEM;
5124 	}
5125 
5126 	spin_lock_irqsave(&xhci->lock, flags);
5127 	if (hdev->speed == USB_SPEED_HIGH &&
5128 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5129 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5130 		xhci_free_command(xhci, config_cmd);
5131 		spin_unlock_irqrestore(&xhci->lock, flags);
5132 		return -ENOMEM;
5133 	}
5134 
5135 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5136 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5137 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5138 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5139 	/*
5140 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5141 	 * but it may be already set to 1 when setup an xHCI virtual
5142 	 * device, so clear it anyway.
5143 	 */
5144 	if (tt->multi)
5145 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5146 	else if (hdev->speed == USB_SPEED_FULL)
5147 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5148 
5149 	if (xhci->hci_version > 0x95) {
5150 		xhci_dbg(xhci, "xHCI version %x needs hub "
5151 				"TT think time and number of ports\n",
5152 				(unsigned int) xhci->hci_version);
5153 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5154 		/* Set TT think time - convert from ns to FS bit times.
5155 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5156 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5157 		 *
5158 		 * xHCI 1.0: this field shall be 0 if the device is not a
5159 		 * High-spped hub.
5160 		 */
5161 		think_time = tt->think_time;
5162 		if (think_time != 0)
5163 			think_time = (think_time / 666) - 1;
5164 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5165 			slot_ctx->tt_info |=
5166 				cpu_to_le32(TT_THINK_TIME(think_time));
5167 	} else {
5168 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5169 				"TT think time or number of ports\n",
5170 				(unsigned int) xhci->hci_version);
5171 	}
5172 	slot_ctx->dev_state = 0;
5173 	spin_unlock_irqrestore(&xhci->lock, flags);
5174 
5175 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5176 			(xhci->hci_version > 0x95) ?
5177 			"configure endpoint" : "evaluate context");
5178 
5179 	/* Issue and wait for the configure endpoint or
5180 	 * evaluate context command.
5181 	 */
5182 	if (xhci->hci_version > 0x95)
5183 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5184 				false, false);
5185 	else
5186 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5187 				true, false);
5188 
5189 	xhci_free_command(xhci, config_cmd);
5190 	return ret;
5191 }
5192 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5193 
xhci_get_frame(struct usb_hcd * hcd)5194 static int xhci_get_frame(struct usb_hcd *hcd)
5195 {
5196 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5197 	/* EHCI mods by the periodic size.  Why? */
5198 	return readl(&xhci->run_regs->microframe_index) >> 3;
5199 }
5200 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5201 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5202 {
5203 	struct xhci_hcd		*xhci;
5204 	/*
5205 	 * TODO: Check with DWC3 clients for sysdev according to
5206 	 * quirks
5207 	 */
5208 	struct device		*dev = hcd->self.sysdev;
5209 	unsigned int		minor_rev;
5210 	int			retval;
5211 
5212 	/* Accept arbitrarily long scatter-gather lists */
5213 	hcd->self.sg_tablesize = ~0;
5214 
5215 	/* support to build packet from discontinuous buffers */
5216 	hcd->self.no_sg_constraint = 1;
5217 
5218 	/* XHCI controllers don't stop the ep queue on short packets :| */
5219 	hcd->self.no_stop_on_short = 1;
5220 
5221 	xhci = hcd_to_xhci(hcd);
5222 
5223 	if (usb_hcd_is_primary_hcd(hcd)) {
5224 		xhci->main_hcd = hcd;
5225 		xhci->usb2_rhub.hcd = hcd;
5226 		/* Mark the first roothub as being USB 2.0.
5227 		 * The xHCI driver will register the USB 3.0 roothub.
5228 		 */
5229 		hcd->speed = HCD_USB2;
5230 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5231 		/*
5232 		 * USB 2.0 roothub under xHCI has an integrated TT,
5233 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5234 		 * companion controller.
5235 		 */
5236 		hcd->has_tt = 1;
5237 	} else {
5238 		/*
5239 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5240 		 * should return 0x31 for sbrn, or that the minor revision
5241 		 * is a two digit BCD containig minor and sub-minor numbers.
5242 		 * This was later clarified in xHCI 1.2.
5243 		 *
5244 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5245 		 * minor revision set to 0x1 instead of 0x10.
5246 		 */
5247 		if (xhci->usb3_rhub.min_rev == 0x1)
5248 			minor_rev = 1;
5249 		else
5250 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5251 
5252 		switch (minor_rev) {
5253 		case 2:
5254 			hcd->speed = HCD_USB32;
5255 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5256 			hcd->self.root_hub->rx_lanes = 2;
5257 			hcd->self.root_hub->tx_lanes = 2;
5258 			break;
5259 		case 1:
5260 			hcd->speed = HCD_USB31;
5261 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5262 			break;
5263 		}
5264 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5265 			  minor_rev,
5266 			  minor_rev ? "Enhanced " : "");
5267 
5268 		xhci->usb3_rhub.hcd = hcd;
5269 		/* xHCI private pointer was set in xhci_pci_probe for the second
5270 		 * registered roothub.
5271 		 */
5272 		return 0;
5273 	}
5274 
5275 	mutex_init(&xhci->mutex);
5276 	xhci->cap_regs = hcd->regs;
5277 	xhci->op_regs = hcd->regs +
5278 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5279 	xhci->run_regs = hcd->regs +
5280 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5281 	/* Cache read-only capability registers */
5282 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5283 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5284 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5285 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5286 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5287 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5288 	if (xhci->hci_version > 0x100)
5289 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5290 
5291 	xhci->quirks |= quirks;
5292 
5293 	get_quirks(dev, xhci);
5294 
5295 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5296 	 * success event after a short transfer. This quirk will ignore such
5297 	 * spurious event.
5298 	 */
5299 	if (xhci->hci_version > 0x96)
5300 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5301 
5302 	/* Make sure the HC is halted. */
5303 	retval = xhci_halt(xhci);
5304 	if (retval)
5305 		return retval;
5306 
5307 	xhci_zero_64b_regs(xhci);
5308 
5309 	xhci_dbg(xhci, "Resetting HCD\n");
5310 	/* Reset the internal HC memory state and registers. */
5311 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5312 	if (retval)
5313 		return retval;
5314 	xhci_dbg(xhci, "Reset complete\n");
5315 
5316 	/*
5317 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5318 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5319 	 * address memory pointers actually. So, this driver clears the AC64
5320 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5321 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5322 	 */
5323 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5324 		xhci->hcc_params &= ~BIT(0);
5325 
5326 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5327 	 * if xHC supports 64-bit addressing */
5328 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5329 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5330 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5331 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5332 	} else {
5333 		/*
5334 		 * This is to avoid error in cases where a 32-bit USB
5335 		 * controller is used on a 64-bit capable system.
5336 		 */
5337 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5338 		if (retval)
5339 			return retval;
5340 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5341 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5342 	}
5343 
5344 	xhci_dbg(xhci, "Calling HCD init\n");
5345 	/* Initialize HCD and host controller data structures. */
5346 	retval = xhci_init(hcd);
5347 	if (retval)
5348 		return retval;
5349 	xhci_dbg(xhci, "Called HCD init\n");
5350 
5351 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5352 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5353 
5354 	return 0;
5355 }
5356 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5357 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5358 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5359 		struct usb_host_endpoint *ep)
5360 {
5361 	struct xhci_hcd *xhci;
5362 	struct usb_device *udev;
5363 	unsigned int slot_id;
5364 	unsigned int ep_index;
5365 	unsigned long flags;
5366 
5367 	xhci = hcd_to_xhci(hcd);
5368 
5369 	spin_lock_irqsave(&xhci->lock, flags);
5370 	udev = (struct usb_device *)ep->hcpriv;
5371 	slot_id = udev->slot_id;
5372 	ep_index = xhci_get_endpoint_index(&ep->desc);
5373 
5374 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5375 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5376 	spin_unlock_irqrestore(&xhci->lock, flags);
5377 }
5378 
5379 static const struct hc_driver xhci_hc_driver = {
5380 	.description =		"xhci-hcd",
5381 	.product_desc =		"xHCI Host Controller",
5382 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5383 
5384 	/*
5385 	 * generic hardware linkage
5386 	 */
5387 	.irq =			xhci_irq,
5388 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5389 				HCD_BH,
5390 
5391 	/*
5392 	 * basic lifecycle operations
5393 	 */
5394 	.reset =		NULL, /* set in xhci_init_driver() */
5395 	.start =		xhci_run,
5396 	.stop =			xhci_stop,
5397 	.shutdown =		xhci_shutdown,
5398 
5399 	/*
5400 	 * managing i/o requests and associated device resources
5401 	 */
5402 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5403 	.urb_enqueue =		xhci_urb_enqueue,
5404 	.urb_dequeue =		xhci_urb_dequeue,
5405 	.alloc_dev =		xhci_alloc_dev,
5406 	.free_dev =		xhci_free_dev,
5407 	.alloc_streams =	xhci_alloc_streams,
5408 	.free_streams =		xhci_free_streams,
5409 	.add_endpoint =		xhci_add_endpoint,
5410 	.drop_endpoint =	xhci_drop_endpoint,
5411 	.endpoint_disable =	xhci_endpoint_disable,
5412 	.endpoint_reset =	xhci_endpoint_reset,
5413 	.check_bandwidth =	xhci_check_bandwidth,
5414 	.reset_bandwidth =	xhci_reset_bandwidth,
5415 	.address_device =	xhci_address_device,
5416 	.enable_device =	xhci_enable_device,
5417 	.update_hub_device =	xhci_update_hub_device,
5418 	.reset_device =		xhci_discover_or_reset_device,
5419 
5420 	/*
5421 	 * scheduling support
5422 	 */
5423 	.get_frame_number =	xhci_get_frame,
5424 
5425 	/*
5426 	 * root hub support
5427 	 */
5428 	.hub_control =		xhci_hub_control,
5429 	.hub_status_data =	xhci_hub_status_data,
5430 	.bus_suspend =		xhci_bus_suspend,
5431 	.bus_resume =		xhci_bus_resume,
5432 	.get_resuming_ports =	xhci_get_resuming_ports,
5433 
5434 	/*
5435 	 * call back when device connected and addressed
5436 	 */
5437 	.update_device =        xhci_update_device,
5438 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5439 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5440 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5441 	.find_raw_port_number =	xhci_find_raw_port_number,
5442 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5443 };
5444 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5445 void xhci_init_driver(struct hc_driver *drv,
5446 		      const struct xhci_driver_overrides *over)
5447 {
5448 	BUG_ON(!over);
5449 
5450 	/* Copy the generic table to drv then apply the overrides */
5451 	*drv = xhci_hc_driver;
5452 
5453 	if (over) {
5454 		drv->hcd_priv_size += over->extra_priv_size;
5455 		if (over->reset)
5456 			drv->reset = over->reset;
5457 		if (over->start)
5458 			drv->start = over->start;
5459 		if (over->check_bandwidth)
5460 			drv->check_bandwidth = over->check_bandwidth;
5461 		if (over->reset_bandwidth)
5462 			drv->reset_bandwidth = over->reset_bandwidth;
5463 		if (over->update_hub_device)
5464 			drv->update_hub_device = over->update_hub_device;
5465 	}
5466 }
5467 EXPORT_SYMBOL_GPL(xhci_init_driver);
5468 
5469 MODULE_DESCRIPTION(DRIVER_DESC);
5470 MODULE_AUTHOR(DRIVER_AUTHOR);
5471 MODULE_LICENSE("GPL");
5472 
xhci_hcd_init(void)5473 static int __init xhci_hcd_init(void)
5474 {
5475 	/*
5476 	 * Check the compiler generated sizes of structures that must be laid
5477 	 * out in specific ways for hardware access.
5478 	 */
5479 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5480 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5481 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5482 	/* xhci_device_control has eight fields, and also
5483 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5484 	 */
5485 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5486 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5487 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5488 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5489 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5490 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5491 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5492 
5493 	if (usb_disabled())
5494 		return -ENODEV;
5495 
5496 	xhci_debugfs_create_root();
5497 
5498 	return 0;
5499 }
5500 
5501 /*
5502  * If an init function is provided, an exit function must also be provided
5503  * to allow module unload.
5504  */
xhci_hcd_fini(void)5505 static void __exit xhci_hcd_fini(void)
5506 {
5507 	xhci_debugfs_remove_root();
5508 }
5509 
5510 module_init(xhci_hcd_init);
5511 module_exit(xhci_hcd_fini);
5512