1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54 }
55
56 /*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, timeout_us);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82 }
83
84 /*
85 * Disable interrupts and begin the xHCI halting process.
86 */
xhci_quiesce(struct xhci_hcd * xhci)87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 u32 halted;
90 u32 cmd;
91 u32 mask;
92
93 mask = ~(XHCI_IRQS);
94 halted = readl(&xhci->op_regs->status) & STS_HALT;
95 if (!halted)
96 mask &= ~CMD_RUN;
97
98 cmd = readl(&xhci->op_regs->command);
99 cmd &= mask;
100 writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104 * Force HC into halt state.
105 *
106 * Disable any IRQs and clear the run/stop bit.
107 * HC will complete any current and actively pipelined transactions, and
108 * should halt within 16 ms of the run/stop bit being cleared.
109 * Read HC Halted bit in the status register to see when the HC is finished.
110 */
xhci_halt(struct xhci_hcd * xhci)111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 int ret;
114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 xhci_quiesce(xhci);
116
117 ret = xhci_handshake(&xhci->op_regs->status,
118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 if (ret) {
120 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 return ret;
122 }
123 xhci->xhc_state |= XHCI_STATE_HALTED;
124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 return ret;
126 }
127
128 /*
129 * Set the run bit and wait for the host to be running.
130 */
xhci_start(struct xhci_hcd * xhci)131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 u32 temp;
134 int ret;
135
136 temp = readl(&xhci->op_regs->command);
137 temp |= (CMD_RUN);
138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 temp);
140 writel(temp, &xhci->op_regs->command);
141
142 /*
143 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 * running.
145 */
146 ret = xhci_handshake(&xhci->op_regs->status,
147 STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 if (ret == -ETIMEDOUT)
149 xhci_err(xhci, "Host took too long to start, "
150 "waited %u microseconds.\n",
151 XHCI_MAX_HALT_USEC);
152 if (!ret) {
153 /* clear state flags. Including dying, halted or removing */
154 xhci->xhc_state = 0;
155 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
156 }
157
158 return ret;
159 }
160
161 /*
162 * Reset a halted HC.
163 *
164 * This resets pipelines, timers, counters, state machines, etc.
165 * Transactions will be terminated immediately, and operational registers
166 * will be set to their defaults.
167 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
169 {
170 u32 command;
171 u32 state;
172 int ret;
173
174 state = readl(&xhci->op_regs->status);
175
176 if (state == ~(u32)0) {
177 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 return -ENODEV;
179 }
180
181 if ((state & STS_HALT) == 0) {
182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 return 0;
184 }
185
186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 command = readl(&xhci->op_regs->command);
188 command |= CMD_RESET;
189 writel(command, &xhci->op_regs->command);
190
191 /* Existing Intel xHCI controllers require a delay of 1 mS,
192 * after setting the CMD_RESET bit, and before accessing any
193 * HC registers. This allows the HC to complete the
194 * reset operation and be ready for HC register access.
195 * Without this delay, the subsequent HC register access,
196 * may result in a system hang very rarely.
197 */
198 if (xhci->quirks & XHCI_INTEL_HOST)
199 udelay(1000);
200
201 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
202 if (ret)
203 return ret;
204
205 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207
208 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209 "Wait for controller to be ready for doorbell rings");
210 /*
211 * xHCI cannot write to any doorbells or operational registers other
212 * than status until the "Controller Not Ready" flag is cleared.
213 */
214 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
215
216 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223 return ret;
224 }
225
xhci_zero_64b_regs(struct xhci_hcd * xhci)226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 int err, i;
230 u64 val;
231 u32 intrs;
232
233 /*
234 * Some Renesas controllers get into a weird state if they are
235 * reset while programmed with 64bit addresses (they will preserve
236 * the top half of the address in internal, non visible
237 * registers). You end up with half the address coming from the
238 * kernel, and the other half coming from the firmware. Also,
239 * changing the programming leads to extra accesses even if the
240 * controller is supposed to be halted. The controller ends up with
241 * a fatal fault, and is then ripe for being properly reset.
242 *
243 * Special care is taken to only apply this if the device is behind
244 * an iommu. Doing anything when there is no iommu is definitely
245 * unsafe...
246 */
247 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
248 return;
249
250 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251
252 /* Clear HSEIE so that faults do not get signaled */
253 val = readl(&xhci->op_regs->command);
254 val &= ~CMD_HSEIE;
255 writel(val, &xhci->op_regs->command);
256
257 /* Clear HSE (aka FATAL) */
258 val = readl(&xhci->op_regs->status);
259 val |= STS_FATAL;
260 writel(val, &xhci->op_regs->status);
261
262 /* Now zero the registers, and brace for impact */
263 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264 if (upper_32_bits(val))
265 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267 if (upper_32_bits(val))
268 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269
270 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
271 ARRAY_SIZE(xhci->run_regs->ir_set));
272
273 for (i = 0; i < intrs; i++) {
274 struct xhci_intr_reg __iomem *ir;
275
276 ir = &xhci->run_regs->ir_set[i];
277 val = xhci_read_64(xhci, &ir->erst_base);
278 if (upper_32_bits(val))
279 xhci_write_64(xhci, 0, &ir->erst_base);
280 val= xhci_read_64(xhci, &ir->erst_dequeue);
281 if (upper_32_bits(val))
282 xhci_write_64(xhci, 0, &ir->erst_dequeue);
283 }
284
285 /* Wait for the fault to appear. It will be cleared on reset */
286 err = xhci_handshake(&xhci->op_regs->status,
287 STS_FATAL, STS_FATAL,
288 XHCI_MAX_HALT_USEC);
289 if (!err)
290 xhci_info(xhci, "Fault detected\n");
291 }
292
293 #ifdef CONFIG_USB_PCI
294 /*
295 * Set up MSI
296 */
xhci_setup_msi(struct xhci_hcd * xhci)297 static int xhci_setup_msi(struct xhci_hcd *xhci)
298 {
299 int ret;
300 /*
301 * TODO:Check with MSI Soc for sysdev
302 */
303 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304
305 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306 if (ret < 0) {
307 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308 "failed to allocate MSI entry");
309 return ret;
310 }
311
312 ret = request_irq(pdev->irq, xhci_msi_irq,
313 0, "xhci_hcd", xhci_to_hcd(xhci));
314 if (ret) {
315 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
316 "disable MSI interrupt");
317 pci_free_irq_vectors(pdev);
318 }
319
320 return ret;
321 }
322
323 /*
324 * Set up MSI-X
325 */
xhci_setup_msix(struct xhci_hcd * xhci)326 static int xhci_setup_msix(struct xhci_hcd *xhci)
327 {
328 int i, ret = 0;
329 struct usb_hcd *hcd = xhci_to_hcd(xhci);
330 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331
332 /*
333 * calculate number of msi-x vectors supported.
334 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
335 * with max number of interrupters based on the xhci HCSPARAMS1.
336 * - num_online_cpus: maximum msi-x vectors per CPUs core.
337 * Add additional 1 vector to ensure always available interrupt.
338 */
339 xhci->msix_count = min(num_online_cpus() + 1,
340 HCS_MAX_INTRS(xhci->hcs_params1));
341
342 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
343 PCI_IRQ_MSIX);
344 if (ret < 0) {
345 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
346 "Failed to enable MSI-X");
347 return ret;
348 }
349
350 for (i = 0; i < xhci->msix_count; i++) {
351 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
352 "xhci_hcd", xhci_to_hcd(xhci));
353 if (ret)
354 goto disable_msix;
355 }
356
357 hcd->msix_enabled = 1;
358 return ret;
359
360 disable_msix:
361 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362 while (--i >= 0)
363 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
364 pci_free_irq_vectors(pdev);
365 return ret;
366 }
367
368 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)369 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 {
371 struct usb_hcd *hcd = xhci_to_hcd(xhci);
372 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373
374 if (xhci->quirks & XHCI_PLAT)
375 return;
376
377 /* return if using legacy interrupt */
378 if (hcd->irq > 0)
379 return;
380
381 if (hcd->msix_enabled) {
382 int i;
383
384 for (i = 0; i < xhci->msix_count; i++)
385 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386 } else {
387 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388 }
389
390 pci_free_irq_vectors(pdev);
391 hcd->msix_enabled = 0;
392 }
393
xhci_msix_sync_irqs(struct xhci_hcd * xhci)394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396 struct usb_hcd *hcd = xhci_to_hcd(xhci);
397
398 if (hcd->msix_enabled) {
399 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
400 int i;
401
402 for (i = 0; i < xhci->msix_count; i++)
403 synchronize_irq(pci_irq_vector(pdev, i));
404 }
405 }
406
xhci_try_enable_msi(struct usb_hcd * hcd)407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410 struct pci_dev *pdev;
411 int ret;
412
413 /* The xhci platform device has set up IRQs through usb_add_hcd. */
414 if (xhci->quirks & XHCI_PLAT)
415 return 0;
416
417 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 /*
419 * Some Fresco Logic host controllers advertise MSI, but fail to
420 * generate interrupts. Don't even try to enable MSI.
421 */
422 if (xhci->quirks & XHCI_BROKEN_MSI)
423 goto legacy_irq;
424
425 /* unregister the legacy interrupt */
426 if (hcd->irq)
427 free_irq(hcd->irq, hcd);
428 hcd->irq = 0;
429
430 ret = xhci_setup_msix(xhci);
431 if (ret)
432 /* fall back to msi*/
433 ret = xhci_setup_msi(xhci);
434
435 if (!ret) {
436 hcd->msi_enabled = 1;
437 return 0;
438 }
439
440 if (!pdev->irq) {
441 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
442 return -EINVAL;
443 }
444
445 legacy_irq:
446 if (!strlen(hcd->irq_descr))
447 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
448 hcd->driver->description, hcd->self.busnum);
449
450 /* fall back to legacy interrupt*/
451 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
452 hcd->irq_descr, hcd);
453 if (ret) {
454 xhci_err(xhci, "request interrupt %d failed\n",
455 pdev->irq);
456 return ret;
457 }
458 hcd->irq = pdev->irq;
459 return 0;
460 }
461
462 #else
463
xhci_try_enable_msi(struct usb_hcd * hcd)464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
465 {
466 return 0;
467 }
468
xhci_cleanup_msix(struct xhci_hcd * xhci)469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 {
471 }
472
xhci_msix_sync_irqs(struct xhci_hcd * xhci)473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 {
475 }
476
477 #endif
478
compliance_mode_recovery(struct timer_list * t)479 static void compliance_mode_recovery(struct timer_list *t)
480 {
481 struct xhci_hcd *xhci;
482 struct usb_hcd *hcd;
483 struct xhci_hub *rhub;
484 u32 temp;
485 int i;
486
487 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
488 rhub = &xhci->usb3_rhub;
489
490 for (i = 0; i < rhub->num_ports; i++) {
491 temp = readl(rhub->ports[i]->addr);
492 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
493 /*
494 * Compliance Mode Detected. Letting USB Core
495 * handle the Warm Reset
496 */
497 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498 "Compliance mode detected->port %d",
499 i + 1);
500 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
501 "Attempting compliance mode recovery");
502 hcd = xhci->shared_hcd;
503
504 if (hcd->state == HC_STATE_SUSPENDED)
505 usb_hcd_resume_root_hub(hcd);
506
507 usb_hcd_poll_rh_status(hcd);
508 }
509 }
510
511 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
512 mod_timer(&xhci->comp_mode_recovery_timer,
513 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
514 }
515
516 /*
517 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
518 * that causes ports behind that hardware to enter compliance mode sometimes.
519 * The quirk creates a timer that polls every 2 seconds the link state of
520 * each host controller's port and recovers it by issuing a Warm reset
521 * if Compliance mode is detected, otherwise the port will become "dead" (no
522 * device connections or disconnections will be detected anymore). Becasue no
523 * status event is generated when entering compliance mode (per xhci spec),
524 * this quirk is needed on systems that have the failing hardware installed.
525 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)526 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
527 {
528 xhci->port_status_u0 = 0;
529 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
530 0);
531 xhci->comp_mode_recovery_timer.expires = jiffies +
532 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
533
534 add_timer(&xhci->comp_mode_recovery_timer);
535 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
536 "Compliance mode recovery timer initialized");
537 }
538
539 /*
540 * This function identifies the systems that have installed the SN65LVPE502CP
541 * USB3.0 re-driver and that need the Compliance Mode Quirk.
542 * Systems:
543 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
544 */
xhci_compliance_mode_recovery_timer_quirk_check(void)545 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
546 {
547 const char *dmi_product_name, *dmi_sys_vendor;
548
549 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
550 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
551 if (!dmi_product_name || !dmi_sys_vendor)
552 return false;
553
554 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
555 return false;
556
557 if (strstr(dmi_product_name, "Z420") ||
558 strstr(dmi_product_name, "Z620") ||
559 strstr(dmi_product_name, "Z820") ||
560 strstr(dmi_product_name, "Z1 Workstation"))
561 return true;
562
563 return false;
564 }
565
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)566 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
567 {
568 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
569 }
570
571
572 /*
573 * Initialize memory for HCD and xHC (one-time init).
574 *
575 * Program the PAGESIZE register, initialize the device context array, create
576 * device contexts (?), set up a command ring segment (or two?), create event
577 * ring (one for now).
578 */
xhci_init(struct usb_hcd * hcd)579 static int xhci_init(struct usb_hcd *hcd)
580 {
581 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582 int retval = 0;
583
584 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
585 spin_lock_init(&xhci->lock);
586 if (xhci->hci_version == 0x95 && link_quirk) {
587 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
588 "QUIRK: Not clearing Link TRB chain bits.");
589 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
590 } else {
591 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
592 "xHCI doesn't need link TRB QUIRK");
593 }
594 retval = xhci_mem_init(xhci, GFP_KERNEL);
595 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
596
597 /* Initializing Compliance Mode Recovery Data If Needed */
598 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
599 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
600 compliance_mode_recovery_timer_init(xhci);
601 }
602
603 return retval;
604 }
605
606 /*-------------------------------------------------------------------------*/
607
608
xhci_run_finished(struct xhci_hcd * xhci)609 static int xhci_run_finished(struct xhci_hcd *xhci)
610 {
611 if (xhci_start(xhci)) {
612 xhci_halt(xhci);
613 return -ENODEV;
614 }
615 xhci->shared_hcd->state = HC_STATE_RUNNING;
616 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
617
618 if (xhci->quirks & XHCI_NEC_HOST)
619 xhci_ring_cmd_db(xhci);
620
621 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
622 "Finished xhci_run for USB3 roothub");
623 return 0;
624 }
625
626 /*
627 * Start the HC after it was halted.
628 *
629 * This function is called by the USB core when the HC driver is added.
630 * Its opposite is xhci_stop().
631 *
632 * xhci_init() must be called once before this function can be called.
633 * Reset the HC, enable device slot contexts, program DCBAAP, and
634 * set command ring pointer and event ring pointer.
635 *
636 * Setup MSI-X vectors and enable interrupts.
637 */
xhci_run(struct usb_hcd * hcd)638 int xhci_run(struct usb_hcd *hcd)
639 {
640 u32 temp;
641 u64 temp_64;
642 int ret;
643 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644
645 /* Start the xHCI host controller running only after the USB 2.0 roothub
646 * is setup.
647 */
648
649 hcd->uses_new_polling = 1;
650 if (!usb_hcd_is_primary_hcd(hcd))
651 return xhci_run_finished(xhci);
652
653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
654
655 ret = xhci_try_enable_msi(hcd);
656 if (ret)
657 return ret;
658
659 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
660 temp_64 &= ~ERST_PTR_MASK;
661 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
663
664 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665 "// Set the interrupt modulation register");
666 temp = readl(&xhci->ir_set->irq_control);
667 temp &= ~ER_IRQ_INTERVAL_MASK;
668 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
669 writel(temp, &xhci->ir_set->irq_control);
670
671 /* Set the HCD state before we enable the irqs */
672 temp = readl(&xhci->op_regs->command);
673 temp |= (CMD_EIE);
674 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675 "// Enable interrupts, cmd = 0x%x.", temp);
676 writel(temp, &xhci->op_regs->command);
677
678 temp = readl(&xhci->ir_set->irq_pending);
679 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
681 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
682 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
683
684 if (xhci->quirks & XHCI_NEC_HOST) {
685 struct xhci_command *command;
686
687 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
688 if (!command)
689 return -ENOMEM;
690
691 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
692 TRB_TYPE(TRB_NEC_GET_FW));
693 if (ret)
694 xhci_free_command(xhci, command);
695 }
696 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697 "Finished xhci_run for USB2 roothub");
698
699 xhci_dbc_init(xhci);
700
701 xhci_debugfs_init(xhci);
702
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(xhci_run);
706
707 /*
708 * Stop xHCI driver.
709 *
710 * This function is called by the USB core when the HC driver is removed.
711 * Its opposite is xhci_run().
712 *
713 * Disable device contexts, disable IRQs, and quiesce the HC.
714 * Reset the HC, finish any completed transactions, and cleanup memory.
715 */
xhci_stop(struct usb_hcd * hcd)716 static void xhci_stop(struct usb_hcd *hcd)
717 {
718 u32 temp;
719 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720
721 mutex_lock(&xhci->mutex);
722
723 /* Only halt host and free memory after both hcds are removed */
724 if (!usb_hcd_is_primary_hcd(hcd)) {
725 mutex_unlock(&xhci->mutex);
726 return;
727 }
728
729 xhci_dbc_exit(xhci);
730
731 spin_lock_irq(&xhci->lock);
732 xhci->xhc_state |= XHCI_STATE_HALTED;
733 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
734 xhci_halt(xhci);
735 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
736 spin_unlock_irq(&xhci->lock);
737
738 xhci_cleanup_msix(xhci);
739
740 /* Deleting Compliance Mode Recovery Timer */
741 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
742 (!(xhci_all_ports_seen_u0(xhci)))) {
743 del_timer_sync(&xhci->comp_mode_recovery_timer);
744 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
745 "%s: compliance mode recovery timer deleted",
746 __func__);
747 }
748
749 if (xhci->quirks & XHCI_AMD_PLL_FIX)
750 usb_amd_dev_put();
751
752 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753 "// Disabling event ring interrupts");
754 temp = readl(&xhci->op_regs->status);
755 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
756 temp = readl(&xhci->ir_set->irq_pending);
757 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758
759 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
760 xhci_mem_cleanup(xhci);
761 xhci_debugfs_exit(xhci);
762 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 "xhci_stop completed - status = %x",
764 readl(&xhci->op_regs->status));
765 mutex_unlock(&xhci->mutex);
766 }
767
768 /*
769 * Shutdown HC (not bus-specific)
770 *
771 * This is called when the machine is rebooting or halting. We assume that the
772 * machine will be powered off, and the HC's internal state will be reset.
773 * Don't bother to free memory.
774 *
775 * This will only ever be called with the main usb_hcd (the USB3 roothub).
776 */
xhci_shutdown(struct usb_hcd * hcd)777 void xhci_shutdown(struct usb_hcd *hcd)
778 {
779 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780
781 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
782 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783
784 /* Don't poll the roothubs after shutdown. */
785 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
786 __func__, hcd->self.busnum);
787 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
788 del_timer_sync(&hcd->rh_timer);
789
790 if (xhci->shared_hcd) {
791 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
792 del_timer_sync(&xhci->shared_hcd->rh_timer);
793 }
794
795 spin_lock_irq(&xhci->lock);
796 xhci_halt(xhci);
797
798 /*
799 * Workaround for spurious wakeps at shutdown with HSW, and for boot
800 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
801 */
802 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
803 xhci->quirks & XHCI_RESET_TO_DEFAULT)
804 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
805
806 spin_unlock_irq(&xhci->lock);
807
808 xhci_cleanup_msix(xhci);
809
810 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
811 "xhci_shutdown completed - status = %x",
812 readl(&xhci->op_regs->status));
813 }
814 EXPORT_SYMBOL_GPL(xhci_shutdown);
815
816 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)817 static void xhci_save_registers(struct xhci_hcd *xhci)
818 {
819 xhci->s3.command = readl(&xhci->op_regs->command);
820 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
821 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
822 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
823 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
824 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
825 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
826 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
827 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
828 }
829
xhci_restore_registers(struct xhci_hcd * xhci)830 static void xhci_restore_registers(struct xhci_hcd *xhci)
831 {
832 writel(xhci->s3.command, &xhci->op_regs->command);
833 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
834 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
835 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
836 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
837 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
838 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
839 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
840 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
841 }
842
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)843 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
844 {
845 u64 val_64;
846
847 /* step 2: initialize command ring buffer */
848 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
849 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
850 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
851 xhci->cmd_ring->dequeue) &
852 (u64) ~CMD_RING_RSVD_BITS) |
853 xhci->cmd_ring->cycle_state;
854 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
855 "// Setting command ring address to 0x%llx",
856 (long unsigned long) val_64);
857 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
858 }
859
860 /*
861 * The whole command ring must be cleared to zero when we suspend the host.
862 *
863 * The host doesn't save the command ring pointer in the suspend well, so we
864 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
865 * aligned, because of the reserved bits in the command ring dequeue pointer
866 * register. Therefore, we can't just set the dequeue pointer back in the
867 * middle of the ring (TRBs are 16-byte aligned).
868 */
xhci_clear_command_ring(struct xhci_hcd * xhci)869 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
870 {
871 struct xhci_ring *ring;
872 struct xhci_segment *seg;
873
874 ring = xhci->cmd_ring;
875 seg = ring->deq_seg;
876 do {
877 memset(seg->trbs, 0,
878 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
879 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
880 cpu_to_le32(~TRB_CYCLE);
881 seg = seg->next;
882 } while (seg != ring->deq_seg);
883
884 /* Reset the software enqueue and dequeue pointers */
885 ring->deq_seg = ring->first_seg;
886 ring->dequeue = ring->first_seg->trbs;
887 ring->enq_seg = ring->deq_seg;
888 ring->enqueue = ring->dequeue;
889
890 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
891 /*
892 * Ring is now zeroed, so the HW should look for change of ownership
893 * when the cycle bit is set to 1.
894 */
895 ring->cycle_state = 1;
896
897 /*
898 * Reset the hardware dequeue pointer.
899 * Yes, this will need to be re-written after resume, but we're paranoid
900 * and want to make sure the hardware doesn't access bogus memory
901 * because, say, the BIOS or an SMI started the host without changing
902 * the command ring pointers.
903 */
904 xhci_set_cmd_ring_deq(xhci);
905 }
906
907 /*
908 * Disable port wake bits if do_wakeup is not set.
909 *
910 * Also clear a possible internal port wake state left hanging for ports that
911 * detected termination but never successfully enumerated (trained to 0U).
912 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
913 * at enumeration clears this wake, force one here as well for unconnected ports
914 */
915
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)916 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
917 struct xhci_hub *rhub,
918 bool do_wakeup)
919 {
920 unsigned long flags;
921 u32 t1, t2, portsc;
922 int i;
923
924 spin_lock_irqsave(&xhci->lock, flags);
925
926 for (i = 0; i < rhub->num_ports; i++) {
927 portsc = readl(rhub->ports[i]->addr);
928 t1 = xhci_port_state_to_neutral(portsc);
929 t2 = t1;
930
931 /* clear wake bits if do_wake is not set */
932 if (!do_wakeup)
933 t2 &= ~PORT_WAKE_BITS;
934
935 /* Don't touch csc bit if connected or connect change is set */
936 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
937 t2 |= PORT_CSC;
938
939 if (t1 != t2) {
940 writel(t2, rhub->ports[i]->addr);
941 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
942 rhub->hcd->self.busnum, i + 1, portsc, t2);
943 }
944 }
945 spin_unlock_irqrestore(&xhci->lock, flags);
946 }
947
xhci_pending_portevent(struct xhci_hcd * xhci)948 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
949 {
950 struct xhci_port **ports;
951 int port_index;
952 u32 status;
953 u32 portsc;
954
955 status = readl(&xhci->op_regs->status);
956 if (status & STS_EINT)
957 return true;
958 /*
959 * Checking STS_EINT is not enough as there is a lag between a change
960 * bit being set and the Port Status Change Event that it generated
961 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
962 */
963
964 port_index = xhci->usb2_rhub.num_ports;
965 ports = xhci->usb2_rhub.ports;
966 while (port_index--) {
967 portsc = readl(ports[port_index]->addr);
968 if (portsc & PORT_CHANGE_MASK ||
969 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
970 return true;
971 }
972 port_index = xhci->usb3_rhub.num_ports;
973 ports = xhci->usb3_rhub.ports;
974 while (port_index--) {
975 portsc = readl(ports[port_index]->addr);
976 if (portsc & PORT_CHANGE_MASK ||
977 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
978 return true;
979 }
980 return false;
981 }
982
983 /*
984 * Stop HC (not bus-specific)
985 *
986 * This is called when the machine transition into S3/S4 mode.
987 *
988 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)989 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
990 {
991 int rc = 0;
992 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
993 struct usb_hcd *hcd = xhci_to_hcd(xhci);
994 u32 command;
995 u32 res;
996
997 if (!hcd->state)
998 return 0;
999
1000 if (hcd->state != HC_STATE_SUSPENDED ||
1001 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
1002 return -EINVAL;
1003
1004 /* Clear root port wake on bits if wakeup not allowed. */
1005 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1006 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1007
1008 if (!HCD_HW_ACCESSIBLE(hcd))
1009 return 0;
1010
1011 xhci_dbc_suspend(xhci);
1012
1013 /* Don't poll the roothubs on bus suspend. */
1014 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
1015 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1016 del_timer_sync(&hcd->rh_timer);
1017 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1018 del_timer_sync(&xhci->shared_hcd->rh_timer);
1019
1020 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1021 usleep_range(1000, 1500);
1022
1023 spin_lock_irq(&xhci->lock);
1024 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1025 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1026 /* step 1: stop endpoint */
1027 /* skipped assuming that port suspend has done */
1028
1029 /* step 2: clear Run/Stop bit */
1030 command = readl(&xhci->op_regs->command);
1031 command &= ~CMD_RUN;
1032 writel(command, &xhci->op_regs->command);
1033
1034 /* Some chips from Fresco Logic need an extraordinary delay */
1035 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1036
1037 if (xhci_handshake(&xhci->op_regs->status,
1038 STS_HALT, STS_HALT, delay)) {
1039 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1040 spin_unlock_irq(&xhci->lock);
1041 return -ETIMEDOUT;
1042 }
1043 xhci_clear_command_ring(xhci);
1044
1045 /* step 3: save registers */
1046 xhci_save_registers(xhci);
1047
1048 /* step 4: set CSS flag */
1049 command = readl(&xhci->op_regs->command);
1050 command |= CMD_CSS;
1051 writel(command, &xhci->op_regs->command);
1052 xhci->broken_suspend = 0;
1053 if (xhci_handshake(&xhci->op_regs->status,
1054 STS_SAVE, 0, 20 * 1000)) {
1055 /*
1056 * AMD SNPS xHC 3.0 occasionally does not clear the
1057 * SSS bit of USBSTS and when driver tries to poll
1058 * to see if the xHC clears BIT(8) which never happens
1059 * and driver assumes that controller is not responding
1060 * and times out. To workaround this, its good to check
1061 * if SRE and HCE bits are not set (as per xhci
1062 * Section 5.4.2) and bypass the timeout.
1063 */
1064 res = readl(&xhci->op_regs->status);
1065 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1066 (((res & STS_SRE) == 0) &&
1067 ((res & STS_HCE) == 0))) {
1068 xhci->broken_suspend = 1;
1069 } else {
1070 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1071 spin_unlock_irq(&xhci->lock);
1072 return -ETIMEDOUT;
1073 }
1074 }
1075 spin_unlock_irq(&xhci->lock);
1076
1077 /*
1078 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1079 * is about to be suspended.
1080 */
1081 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1082 (!(xhci_all_ports_seen_u0(xhci)))) {
1083 del_timer_sync(&xhci->comp_mode_recovery_timer);
1084 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1085 "%s: compliance mode recovery timer deleted",
1086 __func__);
1087 }
1088
1089 /* step 5: remove core well power */
1090 /* synchronize irq when using MSI-X */
1091 xhci_msix_sync_irqs(xhci);
1092
1093 return rc;
1094 }
1095 EXPORT_SYMBOL_GPL(xhci_suspend);
1096
1097 /*
1098 * start xHC (not bus-specific)
1099 *
1100 * This is called when the machine transition from S3/S4 mode.
1101 *
1102 */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1103 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1104 {
1105 u32 command, temp = 0;
1106 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1107 struct usb_hcd *secondary_hcd;
1108 int retval = 0;
1109 bool comp_timer_running = false;
1110 bool pending_portevent = false;
1111 bool reinit_xhc = false;
1112
1113 if (!hcd->state)
1114 return 0;
1115
1116 /* Wait a bit if either of the roothubs need to settle from the
1117 * transition into bus suspend.
1118 */
1119
1120 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1121 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1122 msleep(100);
1123
1124 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1125 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1126
1127 spin_lock_irq(&xhci->lock);
1128
1129 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1130 reinit_xhc = true;
1131
1132 if (!reinit_xhc) {
1133 /*
1134 * Some controllers might lose power during suspend, so wait
1135 * for controller not ready bit to clear, just as in xHC init.
1136 */
1137 retval = xhci_handshake(&xhci->op_regs->status,
1138 STS_CNR, 0, 10 * 1000 * 1000);
1139 if (retval) {
1140 xhci_warn(xhci, "Controller not ready at resume %d\n",
1141 retval);
1142 spin_unlock_irq(&xhci->lock);
1143 return retval;
1144 }
1145 /* step 1: restore register */
1146 xhci_restore_registers(xhci);
1147 /* step 2: initialize command ring buffer */
1148 xhci_set_cmd_ring_deq(xhci);
1149 /* step 3: restore state and start state*/
1150 /* step 3: set CRS flag */
1151 command = readl(&xhci->op_regs->command);
1152 command |= CMD_CRS;
1153 writel(command, &xhci->op_regs->command);
1154 /*
1155 * Some controllers take up to 55+ ms to complete the controller
1156 * restore so setting the timeout to 100ms. Xhci specification
1157 * doesn't mention any timeout value.
1158 */
1159 if (xhci_handshake(&xhci->op_regs->status,
1160 STS_RESTORE, 0, 100 * 1000)) {
1161 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1162 spin_unlock_irq(&xhci->lock);
1163 return -ETIMEDOUT;
1164 }
1165 }
1166
1167 temp = readl(&xhci->op_regs->status);
1168
1169 /* re-initialize the HC on Restore Error, or Host Controller Error */
1170 if (temp & (STS_SRE | STS_HCE)) {
1171 reinit_xhc = true;
1172 if (!xhci->broken_suspend)
1173 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1174 }
1175
1176 if (reinit_xhc) {
1177 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1178 !(xhci_all_ports_seen_u0(xhci))) {
1179 del_timer_sync(&xhci->comp_mode_recovery_timer);
1180 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1181 "Compliance Mode Recovery Timer deleted!");
1182 }
1183
1184 /* Let the USB core know _both_ roothubs lost power. */
1185 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1186 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1187
1188 xhci_dbg(xhci, "Stop HCD\n");
1189 xhci_halt(xhci);
1190 xhci_zero_64b_regs(xhci);
1191 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1192 spin_unlock_irq(&xhci->lock);
1193 if (retval)
1194 return retval;
1195 xhci_cleanup_msix(xhci);
1196
1197 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1198 temp = readl(&xhci->op_regs->status);
1199 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1200 temp = readl(&xhci->ir_set->irq_pending);
1201 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1202
1203 xhci_dbg(xhci, "cleaning up memory\n");
1204 xhci_mem_cleanup(xhci);
1205 xhci_debugfs_exit(xhci);
1206 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1207 readl(&xhci->op_regs->status));
1208
1209 /* USB core calls the PCI reinit and start functions twice:
1210 * first with the primary HCD, and then with the secondary HCD.
1211 * If we don't do the same, the host will never be started.
1212 */
1213 if (!usb_hcd_is_primary_hcd(hcd))
1214 secondary_hcd = hcd;
1215 else
1216 secondary_hcd = xhci->shared_hcd;
1217
1218 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1219 retval = xhci_init(hcd->primary_hcd);
1220 if (retval)
1221 return retval;
1222 comp_timer_running = true;
1223
1224 xhci_dbg(xhci, "Start the primary HCD\n");
1225 retval = xhci_run(hcd->primary_hcd);
1226 if (!retval) {
1227 xhci_dbg(xhci, "Start the secondary HCD\n");
1228 retval = xhci_run(secondary_hcd);
1229 }
1230 hcd->state = HC_STATE_SUSPENDED;
1231 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1232 goto done;
1233 }
1234
1235 /* step 4: set Run/Stop bit */
1236 command = readl(&xhci->op_regs->command);
1237 command |= CMD_RUN;
1238 writel(command, &xhci->op_regs->command);
1239 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1240 0, 250 * 1000);
1241
1242 /* step 5: walk topology and initialize portsc,
1243 * portpmsc and portli
1244 */
1245 /* this is done in bus_resume */
1246
1247 /* step 6: restart each of the previously
1248 * Running endpoints by ringing their doorbells
1249 */
1250
1251 spin_unlock_irq(&xhci->lock);
1252
1253 xhci_dbc_resume(xhci);
1254
1255 done:
1256 if (retval == 0) {
1257 /*
1258 * Resume roothubs only if there are pending events.
1259 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1260 * the first wake signalling failed, give it that chance.
1261 */
1262 pending_portevent = xhci_pending_portevent(xhci);
1263 if (!pending_portevent) {
1264 msleep(120);
1265 pending_portevent = xhci_pending_portevent(xhci);
1266 }
1267
1268 if (pending_portevent) {
1269 usb_hcd_resume_root_hub(xhci->shared_hcd);
1270 usb_hcd_resume_root_hub(hcd);
1271 }
1272 }
1273 /*
1274 * If system is subject to the Quirk, Compliance Mode Timer needs to
1275 * be re-initialized Always after a system resume. Ports are subject
1276 * to suffer the Compliance Mode issue again. It doesn't matter if
1277 * ports have entered previously to U0 before system's suspension.
1278 */
1279 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1280 compliance_mode_recovery_timer_init(xhci);
1281
1282 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1283 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1284
1285 /* Re-enable port polling. */
1286 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1287 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1288 usb_hcd_poll_rh_status(xhci->shared_hcd);
1289 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1290 usb_hcd_poll_rh_status(hcd);
1291
1292 return retval;
1293 }
1294 EXPORT_SYMBOL_GPL(xhci_resume);
1295 #endif /* CONFIG_PM */
1296
1297 /*-------------------------------------------------------------------------*/
1298
1299 /*
1300 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1301 * we'll copy the actual data into the TRB address register. This is limited to
1302 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1303 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1304 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1305 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1306 gfp_t mem_flags)
1307 {
1308 if (xhci_urb_suitable_for_idt(urb))
1309 return 0;
1310
1311 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1312 }
1313
1314 /*
1315 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1316 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1317 * value to right shift 1 for the bitmask.
1318 *
1319 * Index = (epnum * 2) + direction - 1,
1320 * where direction = 0 for OUT, 1 for IN.
1321 * For control endpoints, the IN index is used (OUT index is unused), so
1322 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1323 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1324 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1325 {
1326 unsigned int index;
1327 if (usb_endpoint_xfer_control(desc))
1328 index = (unsigned int) (usb_endpoint_num(desc)*2);
1329 else
1330 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1331 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1332 return index;
1333 }
1334
1335 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1336 * address from the XHCI endpoint index.
1337 */
xhci_get_endpoint_address(unsigned int ep_index)1338 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1339 {
1340 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1341 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1342 return direction | number;
1343 }
1344
1345 /* Find the flag for this endpoint (for use in the control context). Use the
1346 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1347 * bit 1, etc.
1348 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1349 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1350 {
1351 return 1 << (xhci_get_endpoint_index(desc) + 1);
1352 }
1353
1354 /* Find the flag for this endpoint (for use in the control context). Use the
1355 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1356 * bit 1, etc.
1357 */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1358 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1359 {
1360 return 1 << (ep_index + 1);
1361 }
1362
1363 /* Compute the last valid endpoint context index. Basically, this is the
1364 * endpoint index plus one. For slot contexts with more than valid endpoint,
1365 * we find the most significant bit set in the added contexts flags.
1366 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1367 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1368 */
xhci_last_valid_endpoint(u32 added_ctxs)1369 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1370 {
1371 return fls(added_ctxs) - 1;
1372 }
1373
1374 /* Returns 1 if the arguments are OK;
1375 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1376 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1377 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1378 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1379 const char *func) {
1380 struct xhci_hcd *xhci;
1381 struct xhci_virt_device *virt_dev;
1382
1383 if (!hcd || (check_ep && !ep) || !udev) {
1384 pr_debug("xHCI %s called with invalid args\n", func);
1385 return -EINVAL;
1386 }
1387 if (!udev->parent) {
1388 pr_debug("xHCI %s called for root hub\n", func);
1389 return 0;
1390 }
1391
1392 xhci = hcd_to_xhci(hcd);
1393 if (check_virt_dev) {
1394 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1395 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1396 func);
1397 return -EINVAL;
1398 }
1399
1400 virt_dev = xhci->devs[udev->slot_id];
1401 if (virt_dev->udev != udev) {
1402 xhci_dbg(xhci, "xHCI %s called with udev and "
1403 "virt_dev does not match\n", func);
1404 return -EINVAL;
1405 }
1406 }
1407
1408 if (xhci->xhc_state & XHCI_STATE_HALTED)
1409 return -ENODEV;
1410
1411 return 1;
1412 }
1413
1414 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1415 struct usb_device *udev, struct xhci_command *command,
1416 bool ctx_change, bool must_succeed);
1417
1418 /*
1419 * Full speed devices may have a max packet size greater than 8 bytes, but the
1420 * USB core doesn't know that until it reads the first 8 bytes of the
1421 * descriptor. If the usb_device's max packet size changes after that point,
1422 * we need to issue an evaluate context command and wait on it.
1423 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1424 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1425 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1426 {
1427 struct xhci_container_ctx *out_ctx;
1428 struct xhci_input_control_ctx *ctrl_ctx;
1429 struct xhci_ep_ctx *ep_ctx;
1430 struct xhci_command *command;
1431 int max_packet_size;
1432 int hw_max_packet_size;
1433 int ret = 0;
1434
1435 out_ctx = xhci->devs[slot_id]->out_ctx;
1436 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1437 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1438 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1439 if (hw_max_packet_size != max_packet_size) {
1440 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1441 "Max Packet Size for ep 0 changed.");
1442 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1443 "Max packet size in usb_device = %d",
1444 max_packet_size);
1445 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1446 "Max packet size in xHCI HW = %d",
1447 hw_max_packet_size);
1448 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1449 "Issuing evaluate context command.");
1450
1451 /* Set up the input context flags for the command */
1452 /* FIXME: This won't work if a non-default control endpoint
1453 * changes max packet sizes.
1454 */
1455
1456 command = xhci_alloc_command(xhci, true, mem_flags);
1457 if (!command)
1458 return -ENOMEM;
1459
1460 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1461 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1462 if (!ctrl_ctx) {
1463 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1464 __func__);
1465 ret = -ENOMEM;
1466 goto command_cleanup;
1467 }
1468 /* Set up the modified control endpoint 0 */
1469 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1470 xhci->devs[slot_id]->out_ctx, ep_index);
1471
1472 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1473 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1474 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1475 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1476
1477 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1478 ctrl_ctx->drop_flags = 0;
1479
1480 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1481 true, false);
1482
1483 /* Clean up the input context for later use by bandwidth
1484 * functions.
1485 */
1486 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1487 command_cleanup:
1488 kfree(command->completion);
1489 kfree(command);
1490 }
1491 return ret;
1492 }
1493
1494 /*
1495 * non-error returns are a promise to giveback() the urb later
1496 * we drop ownership so next owner (or urb unlink) can get it
1497 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1498 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1499 {
1500 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1501 unsigned long flags;
1502 int ret = 0;
1503 unsigned int slot_id, ep_index;
1504 unsigned int *ep_state;
1505 struct urb_priv *urb_priv;
1506 int num_tds;
1507
1508 if (!urb)
1509 return -EINVAL;
1510 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1511 true, true, __func__);
1512 if (ret <= 0)
1513 return ret ? ret : -EINVAL;
1514
1515 slot_id = urb->dev->slot_id;
1516 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1517 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1518
1519 if (!HCD_HW_ACCESSIBLE(hcd)) {
1520 if (!in_interrupt())
1521 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1522 return -ESHUTDOWN;
1523 }
1524 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1525 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1526 return -ENODEV;
1527 }
1528
1529 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1530 num_tds = urb->number_of_packets;
1531 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1532 urb->transfer_buffer_length > 0 &&
1533 urb->transfer_flags & URB_ZERO_PACKET &&
1534 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1535 num_tds = 2;
1536 else
1537 num_tds = 1;
1538
1539 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1540 if (!urb_priv)
1541 return -ENOMEM;
1542
1543 urb_priv->num_tds = num_tds;
1544 urb_priv->num_tds_done = 0;
1545 urb->hcpriv = urb_priv;
1546
1547 trace_xhci_urb_enqueue(urb);
1548
1549 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1550 /* Check to see if the max packet size for the default control
1551 * endpoint changed during FS device enumeration
1552 */
1553 if (urb->dev->speed == USB_SPEED_FULL) {
1554 ret = xhci_check_maxpacket(xhci, slot_id,
1555 ep_index, urb, mem_flags);
1556 if (ret < 0) {
1557 xhci_urb_free_priv(urb_priv);
1558 urb->hcpriv = NULL;
1559 return ret;
1560 }
1561 }
1562 }
1563
1564 spin_lock_irqsave(&xhci->lock, flags);
1565
1566 if (xhci->xhc_state & XHCI_STATE_DYING) {
1567 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1568 urb->ep->desc.bEndpointAddress, urb);
1569 ret = -ESHUTDOWN;
1570 goto free_priv;
1571 }
1572 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1573 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1574 *ep_state);
1575 ret = -EINVAL;
1576 goto free_priv;
1577 }
1578 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1579 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1580 ret = -EINVAL;
1581 goto free_priv;
1582 }
1583
1584 switch (usb_endpoint_type(&urb->ep->desc)) {
1585
1586 case USB_ENDPOINT_XFER_CONTROL:
1587 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1588 slot_id, ep_index);
1589 break;
1590 case USB_ENDPOINT_XFER_BULK:
1591 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1592 slot_id, ep_index);
1593 break;
1594 case USB_ENDPOINT_XFER_INT:
1595 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1596 slot_id, ep_index);
1597 break;
1598 case USB_ENDPOINT_XFER_ISOC:
1599 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1600 slot_id, ep_index);
1601 }
1602
1603 if (ret) {
1604 free_priv:
1605 xhci_urb_free_priv(urb_priv);
1606 urb->hcpriv = NULL;
1607 }
1608 spin_unlock_irqrestore(&xhci->lock, flags);
1609 return ret;
1610 }
1611
1612 /*
1613 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1614 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1615 * should pick up where it left off in the TD, unless a Set Transfer Ring
1616 * Dequeue Pointer is issued.
1617 *
1618 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1619 * the ring. Since the ring is a contiguous structure, they can't be physically
1620 * removed. Instead, there are two options:
1621 *
1622 * 1) If the HC is in the middle of processing the URB to be canceled, we
1623 * simply move the ring's dequeue pointer past those TRBs using the Set
1624 * Transfer Ring Dequeue Pointer command. This will be the common case,
1625 * when drivers timeout on the last submitted URB and attempt to cancel.
1626 *
1627 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1628 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1629 * HC will need to invalidate the any TRBs it has cached after the stop
1630 * endpoint command, as noted in the xHCI 0.95 errata.
1631 *
1632 * 3) The TD may have completed by the time the Stop Endpoint Command
1633 * completes, so software needs to handle that case too.
1634 *
1635 * This function should protect against the TD enqueueing code ringing the
1636 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1637 * It also needs to account for multiple cancellations on happening at the same
1638 * time for the same endpoint.
1639 *
1640 * Note that this function can be called in any context, or so says
1641 * usb_hcd_unlink_urb()
1642 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1643 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1644 {
1645 unsigned long flags;
1646 int ret, i;
1647 u32 temp;
1648 struct xhci_hcd *xhci;
1649 struct urb_priv *urb_priv;
1650 struct xhci_td *td;
1651 unsigned int ep_index;
1652 struct xhci_ring *ep_ring;
1653 struct xhci_virt_ep *ep;
1654 struct xhci_command *command;
1655 struct xhci_virt_device *vdev;
1656
1657 xhci = hcd_to_xhci(hcd);
1658 spin_lock_irqsave(&xhci->lock, flags);
1659
1660 trace_xhci_urb_dequeue(urb);
1661
1662 /* Make sure the URB hasn't completed or been unlinked already */
1663 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1664 if (ret)
1665 goto done;
1666
1667 /* give back URB now if we can't queue it for cancel */
1668 vdev = xhci->devs[urb->dev->slot_id];
1669 urb_priv = urb->hcpriv;
1670 if (!vdev || !urb_priv)
1671 goto err_giveback;
1672
1673 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1674 ep = &vdev->eps[ep_index];
1675 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1676 if (!ep || !ep_ring)
1677 goto err_giveback;
1678
1679 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1680 temp = readl(&xhci->op_regs->status);
1681 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1682 xhci_hc_died(xhci);
1683 goto done;
1684 }
1685
1686 /*
1687 * check ring is not re-allocated since URB was enqueued. If it is, then
1688 * make sure none of the ring related pointers in this URB private data
1689 * are touched, such as td_list, otherwise we overwrite freed data
1690 */
1691 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1692 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1693 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1694 td = &urb_priv->td[i];
1695 if (!list_empty(&td->cancelled_td_list))
1696 list_del_init(&td->cancelled_td_list);
1697 }
1698 goto err_giveback;
1699 }
1700
1701 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1702 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1703 "HC halted, freeing TD manually.");
1704 for (i = urb_priv->num_tds_done;
1705 i < urb_priv->num_tds;
1706 i++) {
1707 td = &urb_priv->td[i];
1708 if (!list_empty(&td->td_list))
1709 list_del_init(&td->td_list);
1710 if (!list_empty(&td->cancelled_td_list))
1711 list_del_init(&td->cancelled_td_list);
1712 }
1713 goto err_giveback;
1714 }
1715
1716 i = urb_priv->num_tds_done;
1717 if (i < urb_priv->num_tds)
1718 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1719 "Cancel URB %p, dev %s, ep 0x%x, "
1720 "starting at offset 0x%llx",
1721 urb, urb->dev->devpath,
1722 urb->ep->desc.bEndpointAddress,
1723 (unsigned long long) xhci_trb_virt_to_dma(
1724 urb_priv->td[i].start_seg,
1725 urb_priv->td[i].first_trb));
1726
1727 for (; i < urb_priv->num_tds; i++) {
1728 td = &urb_priv->td[i];
1729 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1730 }
1731
1732 /* Queue a stop endpoint command, but only if this is
1733 * the first cancellation to be handled.
1734 */
1735 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1736 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1737 if (!command) {
1738 ret = -ENOMEM;
1739 goto done;
1740 }
1741 ep->ep_state |= EP_STOP_CMD_PENDING;
1742 ep->stop_cmd_timer.expires = jiffies +
1743 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1744 add_timer(&ep->stop_cmd_timer);
1745 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1746 ep_index, 0);
1747 xhci_ring_cmd_db(xhci);
1748 }
1749 done:
1750 spin_unlock_irqrestore(&xhci->lock, flags);
1751 return ret;
1752
1753 err_giveback:
1754 if (urb_priv)
1755 xhci_urb_free_priv(urb_priv);
1756 usb_hcd_unlink_urb_from_ep(hcd, urb);
1757 spin_unlock_irqrestore(&xhci->lock, flags);
1758 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1759 return ret;
1760 }
1761
1762 /* Drop an endpoint from a new bandwidth configuration for this device.
1763 * Only one call to this function is allowed per endpoint before
1764 * check_bandwidth() or reset_bandwidth() must be called.
1765 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1766 * add the endpoint to the schedule with possibly new parameters denoted by a
1767 * different endpoint descriptor in usb_host_endpoint.
1768 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1769 * not allowed.
1770 *
1771 * The USB core will not allow URBs to be queued to an endpoint that is being
1772 * disabled, so there's no need for mutual exclusion to protect
1773 * the xhci->devs[slot_id] structure.
1774 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1775 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1776 struct usb_host_endpoint *ep)
1777 {
1778 struct xhci_hcd *xhci;
1779 struct xhci_container_ctx *in_ctx, *out_ctx;
1780 struct xhci_input_control_ctx *ctrl_ctx;
1781 unsigned int ep_index;
1782 struct xhci_ep_ctx *ep_ctx;
1783 u32 drop_flag;
1784 u32 new_add_flags, new_drop_flags;
1785 int ret;
1786
1787 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1788 if (ret <= 0)
1789 return ret;
1790 xhci = hcd_to_xhci(hcd);
1791 if (xhci->xhc_state & XHCI_STATE_DYING)
1792 return -ENODEV;
1793
1794 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1795 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1796 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1797 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1798 __func__, drop_flag);
1799 return 0;
1800 }
1801
1802 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1803 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1804 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1805 if (!ctrl_ctx) {
1806 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1807 __func__);
1808 return 0;
1809 }
1810
1811 ep_index = xhci_get_endpoint_index(&ep->desc);
1812 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1813 /* If the HC already knows the endpoint is disabled,
1814 * or the HCD has noted it is disabled, ignore this request
1815 */
1816 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1817 le32_to_cpu(ctrl_ctx->drop_flags) &
1818 xhci_get_endpoint_flag(&ep->desc)) {
1819 /* Do not warn when called after a usb_device_reset */
1820 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1821 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1822 __func__, ep);
1823 return 0;
1824 }
1825
1826 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1827 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1828
1829 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1830 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1831
1832 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1833
1834 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1835
1836 if (xhci->quirks & XHCI_MTK_HOST)
1837 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1838
1839 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1840 (unsigned int) ep->desc.bEndpointAddress,
1841 udev->slot_id,
1842 (unsigned int) new_drop_flags,
1843 (unsigned int) new_add_flags);
1844 return 0;
1845 }
1846
1847 /* Add an endpoint to a new possible bandwidth configuration for this device.
1848 * Only one call to this function is allowed per endpoint before
1849 * check_bandwidth() or reset_bandwidth() must be called.
1850 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1851 * add the endpoint to the schedule with possibly new parameters denoted by a
1852 * different endpoint descriptor in usb_host_endpoint.
1853 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1854 * not allowed.
1855 *
1856 * The USB core will not allow URBs to be queued to an endpoint until the
1857 * configuration or alt setting is installed in the device, so there's no need
1858 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1859 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1860 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1861 struct usb_host_endpoint *ep)
1862 {
1863 struct xhci_hcd *xhci;
1864 struct xhci_container_ctx *in_ctx;
1865 unsigned int ep_index;
1866 struct xhci_input_control_ctx *ctrl_ctx;
1867 struct xhci_ep_ctx *ep_ctx;
1868 u32 added_ctxs;
1869 u32 new_add_flags, new_drop_flags;
1870 struct xhci_virt_device *virt_dev;
1871 int ret = 0;
1872
1873 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1874 if (ret <= 0) {
1875 /* So we won't queue a reset ep command for a root hub */
1876 ep->hcpriv = NULL;
1877 return ret;
1878 }
1879 xhci = hcd_to_xhci(hcd);
1880 if (xhci->xhc_state & XHCI_STATE_DYING)
1881 return -ENODEV;
1882
1883 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1884 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1885 /* FIXME when we have to issue an evaluate endpoint command to
1886 * deal with ep0 max packet size changing once we get the
1887 * descriptors
1888 */
1889 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1890 __func__, added_ctxs);
1891 return 0;
1892 }
1893
1894 virt_dev = xhci->devs[udev->slot_id];
1895 in_ctx = virt_dev->in_ctx;
1896 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1897 if (!ctrl_ctx) {
1898 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1899 __func__);
1900 return 0;
1901 }
1902
1903 ep_index = xhci_get_endpoint_index(&ep->desc);
1904 /* If this endpoint is already in use, and the upper layers are trying
1905 * to add it again without dropping it, reject the addition.
1906 */
1907 if (virt_dev->eps[ep_index].ring &&
1908 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1909 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1910 "without dropping it.\n",
1911 (unsigned int) ep->desc.bEndpointAddress);
1912 return -EINVAL;
1913 }
1914
1915 /* If the HCD has already noted the endpoint is enabled,
1916 * ignore this request.
1917 */
1918 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1919 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1920 __func__, ep);
1921 return 0;
1922 }
1923
1924 /*
1925 * Configuration and alternate setting changes must be done in
1926 * process context, not interrupt context (or so documenation
1927 * for usb_set_interface() and usb_set_configuration() claim).
1928 */
1929 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1930 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1931 __func__, ep->desc.bEndpointAddress);
1932 return -ENOMEM;
1933 }
1934
1935 if (xhci->quirks & XHCI_MTK_HOST) {
1936 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1937 if (ret < 0) {
1938 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1939 virt_dev->eps[ep_index].new_ring = NULL;
1940 return ret;
1941 }
1942 }
1943
1944 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1945 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1946
1947 /* If xhci_endpoint_disable() was called for this endpoint, but the
1948 * xHC hasn't been notified yet through the check_bandwidth() call,
1949 * this re-adds a new state for the endpoint from the new endpoint
1950 * descriptors. We must drop and re-add this endpoint, so we leave the
1951 * drop flags alone.
1952 */
1953 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1954
1955 /* Store the usb_device pointer for later use */
1956 ep->hcpriv = udev;
1957
1958 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1959 trace_xhci_add_endpoint(ep_ctx);
1960
1961 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1962 (unsigned int) ep->desc.bEndpointAddress,
1963 udev->slot_id,
1964 (unsigned int) new_drop_flags,
1965 (unsigned int) new_add_flags);
1966 return 0;
1967 }
1968
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1969 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1970 {
1971 struct xhci_input_control_ctx *ctrl_ctx;
1972 struct xhci_ep_ctx *ep_ctx;
1973 struct xhci_slot_ctx *slot_ctx;
1974 int i;
1975
1976 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1977 if (!ctrl_ctx) {
1978 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1979 __func__);
1980 return;
1981 }
1982
1983 /* When a device's add flag and drop flag are zero, any subsequent
1984 * configure endpoint command will leave that endpoint's state
1985 * untouched. Make sure we don't leave any old state in the input
1986 * endpoint contexts.
1987 */
1988 ctrl_ctx->drop_flags = 0;
1989 ctrl_ctx->add_flags = 0;
1990 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1991 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1992 /* Endpoint 0 is always valid */
1993 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1994 for (i = 1; i < 31; i++) {
1995 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1996 ep_ctx->ep_info = 0;
1997 ep_ctx->ep_info2 = 0;
1998 ep_ctx->deq = 0;
1999 ep_ctx->tx_info = 0;
2000 }
2001 }
2002
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2003 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2004 struct usb_device *udev, u32 *cmd_status)
2005 {
2006 int ret;
2007
2008 switch (*cmd_status) {
2009 case COMP_COMMAND_ABORTED:
2010 case COMP_COMMAND_RING_STOPPED:
2011 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2012 ret = -ETIME;
2013 break;
2014 case COMP_RESOURCE_ERROR:
2015 dev_warn(&udev->dev,
2016 "Not enough host controller resources for new device state.\n");
2017 ret = -ENOMEM;
2018 /* FIXME: can we allocate more resources for the HC? */
2019 break;
2020 case COMP_BANDWIDTH_ERROR:
2021 case COMP_SECONDARY_BANDWIDTH_ERROR:
2022 dev_warn(&udev->dev,
2023 "Not enough bandwidth for new device state.\n");
2024 ret = -ENOSPC;
2025 /* FIXME: can we go back to the old state? */
2026 break;
2027 case COMP_TRB_ERROR:
2028 /* the HCD set up something wrong */
2029 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2030 "add flag = 1, "
2031 "and endpoint is not disabled.\n");
2032 ret = -EINVAL;
2033 break;
2034 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2035 dev_warn(&udev->dev,
2036 "ERROR: Incompatible device for endpoint configure command.\n");
2037 ret = -ENODEV;
2038 break;
2039 case COMP_SUCCESS:
2040 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2041 "Successful Endpoint Configure command");
2042 ret = 0;
2043 break;
2044 default:
2045 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2046 *cmd_status);
2047 ret = -EINVAL;
2048 break;
2049 }
2050 return ret;
2051 }
2052
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2053 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2054 struct usb_device *udev, u32 *cmd_status)
2055 {
2056 int ret;
2057
2058 switch (*cmd_status) {
2059 case COMP_COMMAND_ABORTED:
2060 case COMP_COMMAND_RING_STOPPED:
2061 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2062 ret = -ETIME;
2063 break;
2064 case COMP_PARAMETER_ERROR:
2065 dev_warn(&udev->dev,
2066 "WARN: xHCI driver setup invalid evaluate context command.\n");
2067 ret = -EINVAL;
2068 break;
2069 case COMP_SLOT_NOT_ENABLED_ERROR:
2070 dev_warn(&udev->dev,
2071 "WARN: slot not enabled for evaluate context command.\n");
2072 ret = -EINVAL;
2073 break;
2074 case COMP_CONTEXT_STATE_ERROR:
2075 dev_warn(&udev->dev,
2076 "WARN: invalid context state for evaluate context command.\n");
2077 ret = -EINVAL;
2078 break;
2079 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2080 dev_warn(&udev->dev,
2081 "ERROR: Incompatible device for evaluate context command.\n");
2082 ret = -ENODEV;
2083 break;
2084 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2085 /* Max Exit Latency too large error */
2086 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2087 ret = -EINVAL;
2088 break;
2089 case COMP_SUCCESS:
2090 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2091 "Successful evaluate context command");
2092 ret = 0;
2093 break;
2094 default:
2095 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2096 *cmd_status);
2097 ret = -EINVAL;
2098 break;
2099 }
2100 return ret;
2101 }
2102
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2103 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2104 struct xhci_input_control_ctx *ctrl_ctx)
2105 {
2106 u32 valid_add_flags;
2107 u32 valid_drop_flags;
2108
2109 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2110 * (bit 1). The default control endpoint is added during the Address
2111 * Device command and is never removed until the slot is disabled.
2112 */
2113 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2114 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2115
2116 /* Use hweight32 to count the number of ones in the add flags, or
2117 * number of endpoints added. Don't count endpoints that are changed
2118 * (both added and dropped).
2119 */
2120 return hweight32(valid_add_flags) -
2121 hweight32(valid_add_flags & valid_drop_flags);
2122 }
2123
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2124 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2125 struct xhci_input_control_ctx *ctrl_ctx)
2126 {
2127 u32 valid_add_flags;
2128 u32 valid_drop_flags;
2129
2130 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2131 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2132
2133 return hweight32(valid_drop_flags) -
2134 hweight32(valid_add_flags & valid_drop_flags);
2135 }
2136
2137 /*
2138 * We need to reserve the new number of endpoints before the configure endpoint
2139 * command completes. We can't subtract the dropped endpoints from the number
2140 * of active endpoints until the command completes because we can oversubscribe
2141 * the host in this case:
2142 *
2143 * - the first configure endpoint command drops more endpoints than it adds
2144 * - a second configure endpoint command that adds more endpoints is queued
2145 * - the first configure endpoint command fails, so the config is unchanged
2146 * - the second command may succeed, even though there isn't enough resources
2147 *
2148 * Must be called with xhci->lock held.
2149 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2150 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2151 struct xhci_input_control_ctx *ctrl_ctx)
2152 {
2153 u32 added_eps;
2154
2155 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2156 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2157 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2158 "Not enough ep ctxs: "
2159 "%u active, need to add %u, limit is %u.",
2160 xhci->num_active_eps, added_eps,
2161 xhci->limit_active_eps);
2162 return -ENOMEM;
2163 }
2164 xhci->num_active_eps += added_eps;
2165 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2166 "Adding %u ep ctxs, %u now active.", added_eps,
2167 xhci->num_active_eps);
2168 return 0;
2169 }
2170
2171 /*
2172 * The configure endpoint was failed by the xHC for some other reason, so we
2173 * need to revert the resources that failed configuration would have used.
2174 *
2175 * Must be called with xhci->lock held.
2176 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2177 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2178 struct xhci_input_control_ctx *ctrl_ctx)
2179 {
2180 u32 num_failed_eps;
2181
2182 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2183 xhci->num_active_eps -= num_failed_eps;
2184 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2185 "Removing %u failed ep ctxs, %u now active.",
2186 num_failed_eps,
2187 xhci->num_active_eps);
2188 }
2189
2190 /*
2191 * Now that the command has completed, clean up the active endpoint count by
2192 * subtracting out the endpoints that were dropped (but not changed).
2193 *
2194 * Must be called with xhci->lock held.
2195 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2196 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2197 struct xhci_input_control_ctx *ctrl_ctx)
2198 {
2199 u32 num_dropped_eps;
2200
2201 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2202 xhci->num_active_eps -= num_dropped_eps;
2203 if (num_dropped_eps)
2204 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2205 "Removing %u dropped ep ctxs, %u now active.",
2206 num_dropped_eps,
2207 xhci->num_active_eps);
2208 }
2209
xhci_get_block_size(struct usb_device * udev)2210 static unsigned int xhci_get_block_size(struct usb_device *udev)
2211 {
2212 switch (udev->speed) {
2213 case USB_SPEED_LOW:
2214 case USB_SPEED_FULL:
2215 return FS_BLOCK;
2216 case USB_SPEED_HIGH:
2217 return HS_BLOCK;
2218 case USB_SPEED_SUPER:
2219 case USB_SPEED_SUPER_PLUS:
2220 return SS_BLOCK;
2221 case USB_SPEED_UNKNOWN:
2222 case USB_SPEED_WIRELESS:
2223 default:
2224 /* Should never happen */
2225 return 1;
2226 }
2227 }
2228
2229 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2230 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2231 {
2232 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2233 return LS_OVERHEAD;
2234 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2235 return FS_OVERHEAD;
2236 return HS_OVERHEAD;
2237 }
2238
2239 /* If we are changing a LS/FS device under a HS hub,
2240 * make sure (if we are activating a new TT) that the HS bus has enough
2241 * bandwidth for this new TT.
2242 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2243 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2244 struct xhci_virt_device *virt_dev,
2245 int old_active_eps)
2246 {
2247 struct xhci_interval_bw_table *bw_table;
2248 struct xhci_tt_bw_info *tt_info;
2249
2250 /* Find the bandwidth table for the root port this TT is attached to. */
2251 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2252 tt_info = virt_dev->tt_info;
2253 /* If this TT already had active endpoints, the bandwidth for this TT
2254 * has already been added. Removing all periodic endpoints (and thus
2255 * making the TT enactive) will only decrease the bandwidth used.
2256 */
2257 if (old_active_eps)
2258 return 0;
2259 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2260 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2261 return -ENOMEM;
2262 return 0;
2263 }
2264 /* Not sure why we would have no new active endpoints...
2265 *
2266 * Maybe because of an Evaluate Context change for a hub update or a
2267 * control endpoint 0 max packet size change?
2268 * FIXME: skip the bandwidth calculation in that case.
2269 */
2270 return 0;
2271 }
2272
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2273 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2274 struct xhci_virt_device *virt_dev)
2275 {
2276 unsigned int bw_reserved;
2277
2278 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2279 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2280 return -ENOMEM;
2281
2282 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2283 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2284 return -ENOMEM;
2285
2286 return 0;
2287 }
2288
2289 /*
2290 * This algorithm is a very conservative estimate of the worst-case scheduling
2291 * scenario for any one interval. The hardware dynamically schedules the
2292 * packets, so we can't tell which microframe could be the limiting factor in
2293 * the bandwidth scheduling. This only takes into account periodic endpoints.
2294 *
2295 * Obviously, we can't solve an NP complete problem to find the minimum worst
2296 * case scenario. Instead, we come up with an estimate that is no less than
2297 * the worst case bandwidth used for any one microframe, but may be an
2298 * over-estimate.
2299 *
2300 * We walk the requirements for each endpoint by interval, starting with the
2301 * smallest interval, and place packets in the schedule where there is only one
2302 * possible way to schedule packets for that interval. In order to simplify
2303 * this algorithm, we record the largest max packet size for each interval, and
2304 * assume all packets will be that size.
2305 *
2306 * For interval 0, we obviously must schedule all packets for each interval.
2307 * The bandwidth for interval 0 is just the amount of data to be transmitted
2308 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2309 * the number of packets).
2310 *
2311 * For interval 1, we have two possible microframes to schedule those packets
2312 * in. For this algorithm, if we can schedule the same number of packets for
2313 * each possible scheduling opportunity (each microframe), we will do so. The
2314 * remaining number of packets will be saved to be transmitted in the gaps in
2315 * the next interval's scheduling sequence.
2316 *
2317 * As we move those remaining packets to be scheduled with interval 2 packets,
2318 * we have to double the number of remaining packets to transmit. This is
2319 * because the intervals are actually powers of 2, and we would be transmitting
2320 * the previous interval's packets twice in this interval. We also have to be
2321 * sure that when we look at the largest max packet size for this interval, we
2322 * also look at the largest max packet size for the remaining packets and take
2323 * the greater of the two.
2324 *
2325 * The algorithm continues to evenly distribute packets in each scheduling
2326 * opportunity, and push the remaining packets out, until we get to the last
2327 * interval. Then those packets and their associated overhead are just added
2328 * to the bandwidth used.
2329 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2330 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2331 struct xhci_virt_device *virt_dev,
2332 int old_active_eps)
2333 {
2334 unsigned int bw_reserved;
2335 unsigned int max_bandwidth;
2336 unsigned int bw_used;
2337 unsigned int block_size;
2338 struct xhci_interval_bw_table *bw_table;
2339 unsigned int packet_size = 0;
2340 unsigned int overhead = 0;
2341 unsigned int packets_transmitted = 0;
2342 unsigned int packets_remaining = 0;
2343 unsigned int i;
2344
2345 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2346 return xhci_check_ss_bw(xhci, virt_dev);
2347
2348 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2349 max_bandwidth = HS_BW_LIMIT;
2350 /* Convert percent of bus BW reserved to blocks reserved */
2351 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2352 } else {
2353 max_bandwidth = FS_BW_LIMIT;
2354 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2355 }
2356
2357 bw_table = virt_dev->bw_table;
2358 /* We need to translate the max packet size and max ESIT payloads into
2359 * the units the hardware uses.
2360 */
2361 block_size = xhci_get_block_size(virt_dev->udev);
2362
2363 /* If we are manipulating a LS/FS device under a HS hub, double check
2364 * that the HS bus has enough bandwidth if we are activing a new TT.
2365 */
2366 if (virt_dev->tt_info) {
2367 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2368 "Recalculating BW for rootport %u",
2369 virt_dev->real_port);
2370 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2371 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2372 "newly activated TT.\n");
2373 return -ENOMEM;
2374 }
2375 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2376 "Recalculating BW for TT slot %u port %u",
2377 virt_dev->tt_info->slot_id,
2378 virt_dev->tt_info->ttport);
2379 } else {
2380 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2381 "Recalculating BW for rootport %u",
2382 virt_dev->real_port);
2383 }
2384
2385 /* Add in how much bandwidth will be used for interval zero, or the
2386 * rounded max ESIT payload + number of packets * largest overhead.
2387 */
2388 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2389 bw_table->interval_bw[0].num_packets *
2390 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2391
2392 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2393 unsigned int bw_added;
2394 unsigned int largest_mps;
2395 unsigned int interval_overhead;
2396
2397 /*
2398 * How many packets could we transmit in this interval?
2399 * If packets didn't fit in the previous interval, we will need
2400 * to transmit that many packets twice within this interval.
2401 */
2402 packets_remaining = 2 * packets_remaining +
2403 bw_table->interval_bw[i].num_packets;
2404
2405 /* Find the largest max packet size of this or the previous
2406 * interval.
2407 */
2408 if (list_empty(&bw_table->interval_bw[i].endpoints))
2409 largest_mps = 0;
2410 else {
2411 struct xhci_virt_ep *virt_ep;
2412 struct list_head *ep_entry;
2413
2414 ep_entry = bw_table->interval_bw[i].endpoints.next;
2415 virt_ep = list_entry(ep_entry,
2416 struct xhci_virt_ep, bw_endpoint_list);
2417 /* Convert to blocks, rounding up */
2418 largest_mps = DIV_ROUND_UP(
2419 virt_ep->bw_info.max_packet_size,
2420 block_size);
2421 }
2422 if (largest_mps > packet_size)
2423 packet_size = largest_mps;
2424
2425 /* Use the larger overhead of this or the previous interval. */
2426 interval_overhead = xhci_get_largest_overhead(
2427 &bw_table->interval_bw[i]);
2428 if (interval_overhead > overhead)
2429 overhead = interval_overhead;
2430
2431 /* How many packets can we evenly distribute across
2432 * (1 << (i + 1)) possible scheduling opportunities?
2433 */
2434 packets_transmitted = packets_remaining >> (i + 1);
2435
2436 /* Add in the bandwidth used for those scheduled packets */
2437 bw_added = packets_transmitted * (overhead + packet_size);
2438
2439 /* How many packets do we have remaining to transmit? */
2440 packets_remaining = packets_remaining % (1 << (i + 1));
2441
2442 /* What largest max packet size should those packets have? */
2443 /* If we've transmitted all packets, don't carry over the
2444 * largest packet size.
2445 */
2446 if (packets_remaining == 0) {
2447 packet_size = 0;
2448 overhead = 0;
2449 } else if (packets_transmitted > 0) {
2450 /* Otherwise if we do have remaining packets, and we've
2451 * scheduled some packets in this interval, take the
2452 * largest max packet size from endpoints with this
2453 * interval.
2454 */
2455 packet_size = largest_mps;
2456 overhead = interval_overhead;
2457 }
2458 /* Otherwise carry over packet_size and overhead from the last
2459 * time we had a remainder.
2460 */
2461 bw_used += bw_added;
2462 if (bw_used > max_bandwidth) {
2463 xhci_warn(xhci, "Not enough bandwidth. "
2464 "Proposed: %u, Max: %u\n",
2465 bw_used, max_bandwidth);
2466 return -ENOMEM;
2467 }
2468 }
2469 /*
2470 * Ok, we know we have some packets left over after even-handedly
2471 * scheduling interval 15. We don't know which microframes they will
2472 * fit into, so we over-schedule and say they will be scheduled every
2473 * microframe.
2474 */
2475 if (packets_remaining > 0)
2476 bw_used += overhead + packet_size;
2477
2478 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2479 unsigned int port_index = virt_dev->real_port - 1;
2480
2481 /* OK, we're manipulating a HS device attached to a
2482 * root port bandwidth domain. Include the number of active TTs
2483 * in the bandwidth used.
2484 */
2485 bw_used += TT_HS_OVERHEAD *
2486 xhci->rh_bw[port_index].num_active_tts;
2487 }
2488
2489 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2490 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2491 "Available: %u " "percent",
2492 bw_used, max_bandwidth, bw_reserved,
2493 (max_bandwidth - bw_used - bw_reserved) * 100 /
2494 max_bandwidth);
2495
2496 bw_used += bw_reserved;
2497 if (bw_used > max_bandwidth) {
2498 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2499 bw_used, max_bandwidth);
2500 return -ENOMEM;
2501 }
2502
2503 bw_table->bw_used = bw_used;
2504 return 0;
2505 }
2506
xhci_is_async_ep(unsigned int ep_type)2507 static bool xhci_is_async_ep(unsigned int ep_type)
2508 {
2509 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2510 ep_type != ISOC_IN_EP &&
2511 ep_type != INT_IN_EP);
2512 }
2513
xhci_is_sync_in_ep(unsigned int ep_type)2514 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2515 {
2516 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2517 }
2518
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2519 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2520 {
2521 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2522
2523 if (ep_bw->ep_interval == 0)
2524 return SS_OVERHEAD_BURST +
2525 (ep_bw->mult * ep_bw->num_packets *
2526 (SS_OVERHEAD + mps));
2527 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2528 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2529 1 << ep_bw->ep_interval);
2530
2531 }
2532
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2533 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2534 struct xhci_bw_info *ep_bw,
2535 struct xhci_interval_bw_table *bw_table,
2536 struct usb_device *udev,
2537 struct xhci_virt_ep *virt_ep,
2538 struct xhci_tt_bw_info *tt_info)
2539 {
2540 struct xhci_interval_bw *interval_bw;
2541 int normalized_interval;
2542
2543 if (xhci_is_async_ep(ep_bw->type))
2544 return;
2545
2546 if (udev->speed >= USB_SPEED_SUPER) {
2547 if (xhci_is_sync_in_ep(ep_bw->type))
2548 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2549 xhci_get_ss_bw_consumed(ep_bw);
2550 else
2551 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2552 xhci_get_ss_bw_consumed(ep_bw);
2553 return;
2554 }
2555
2556 /* SuperSpeed endpoints never get added to intervals in the table, so
2557 * this check is only valid for HS/FS/LS devices.
2558 */
2559 if (list_empty(&virt_ep->bw_endpoint_list))
2560 return;
2561 /* For LS/FS devices, we need to translate the interval expressed in
2562 * microframes to frames.
2563 */
2564 if (udev->speed == USB_SPEED_HIGH)
2565 normalized_interval = ep_bw->ep_interval;
2566 else
2567 normalized_interval = ep_bw->ep_interval - 3;
2568
2569 if (normalized_interval == 0)
2570 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2571 interval_bw = &bw_table->interval_bw[normalized_interval];
2572 interval_bw->num_packets -= ep_bw->num_packets;
2573 switch (udev->speed) {
2574 case USB_SPEED_LOW:
2575 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2576 break;
2577 case USB_SPEED_FULL:
2578 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2579 break;
2580 case USB_SPEED_HIGH:
2581 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2582 break;
2583 case USB_SPEED_SUPER:
2584 case USB_SPEED_SUPER_PLUS:
2585 case USB_SPEED_UNKNOWN:
2586 case USB_SPEED_WIRELESS:
2587 /* Should never happen because only LS/FS/HS endpoints will get
2588 * added to the endpoint list.
2589 */
2590 return;
2591 }
2592 if (tt_info)
2593 tt_info->active_eps -= 1;
2594 list_del_init(&virt_ep->bw_endpoint_list);
2595 }
2596
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2597 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2598 struct xhci_bw_info *ep_bw,
2599 struct xhci_interval_bw_table *bw_table,
2600 struct usb_device *udev,
2601 struct xhci_virt_ep *virt_ep,
2602 struct xhci_tt_bw_info *tt_info)
2603 {
2604 struct xhci_interval_bw *interval_bw;
2605 struct xhci_virt_ep *smaller_ep;
2606 int normalized_interval;
2607
2608 if (xhci_is_async_ep(ep_bw->type))
2609 return;
2610
2611 if (udev->speed == USB_SPEED_SUPER) {
2612 if (xhci_is_sync_in_ep(ep_bw->type))
2613 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2614 xhci_get_ss_bw_consumed(ep_bw);
2615 else
2616 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2617 xhci_get_ss_bw_consumed(ep_bw);
2618 return;
2619 }
2620
2621 /* For LS/FS devices, we need to translate the interval expressed in
2622 * microframes to frames.
2623 */
2624 if (udev->speed == USB_SPEED_HIGH)
2625 normalized_interval = ep_bw->ep_interval;
2626 else
2627 normalized_interval = ep_bw->ep_interval - 3;
2628
2629 if (normalized_interval == 0)
2630 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2631 interval_bw = &bw_table->interval_bw[normalized_interval];
2632 interval_bw->num_packets += ep_bw->num_packets;
2633 switch (udev->speed) {
2634 case USB_SPEED_LOW:
2635 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2636 break;
2637 case USB_SPEED_FULL:
2638 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2639 break;
2640 case USB_SPEED_HIGH:
2641 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2642 break;
2643 case USB_SPEED_SUPER:
2644 case USB_SPEED_SUPER_PLUS:
2645 case USB_SPEED_UNKNOWN:
2646 case USB_SPEED_WIRELESS:
2647 /* Should never happen because only LS/FS/HS endpoints will get
2648 * added to the endpoint list.
2649 */
2650 return;
2651 }
2652
2653 if (tt_info)
2654 tt_info->active_eps += 1;
2655 /* Insert the endpoint into the list, largest max packet size first. */
2656 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2657 bw_endpoint_list) {
2658 if (ep_bw->max_packet_size >=
2659 smaller_ep->bw_info.max_packet_size) {
2660 /* Add the new ep before the smaller endpoint */
2661 list_add_tail(&virt_ep->bw_endpoint_list,
2662 &smaller_ep->bw_endpoint_list);
2663 return;
2664 }
2665 }
2666 /* Add the new endpoint at the end of the list. */
2667 list_add_tail(&virt_ep->bw_endpoint_list,
2668 &interval_bw->endpoints);
2669 }
2670
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2671 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2672 struct xhci_virt_device *virt_dev,
2673 int old_active_eps)
2674 {
2675 struct xhci_root_port_bw_info *rh_bw_info;
2676 if (!virt_dev->tt_info)
2677 return;
2678
2679 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2680 if (old_active_eps == 0 &&
2681 virt_dev->tt_info->active_eps != 0) {
2682 rh_bw_info->num_active_tts += 1;
2683 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2684 } else if (old_active_eps != 0 &&
2685 virt_dev->tt_info->active_eps == 0) {
2686 rh_bw_info->num_active_tts -= 1;
2687 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2688 }
2689 }
2690
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2691 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2692 struct xhci_virt_device *virt_dev,
2693 struct xhci_container_ctx *in_ctx)
2694 {
2695 struct xhci_bw_info ep_bw_info[31];
2696 int i;
2697 struct xhci_input_control_ctx *ctrl_ctx;
2698 int old_active_eps = 0;
2699
2700 if (virt_dev->tt_info)
2701 old_active_eps = virt_dev->tt_info->active_eps;
2702
2703 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2704 if (!ctrl_ctx) {
2705 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2706 __func__);
2707 return -ENOMEM;
2708 }
2709
2710 for (i = 0; i < 31; i++) {
2711 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2712 continue;
2713
2714 /* Make a copy of the BW info in case we need to revert this */
2715 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2716 sizeof(ep_bw_info[i]));
2717 /* Drop the endpoint from the interval table if the endpoint is
2718 * being dropped or changed.
2719 */
2720 if (EP_IS_DROPPED(ctrl_ctx, i))
2721 xhci_drop_ep_from_interval_table(xhci,
2722 &virt_dev->eps[i].bw_info,
2723 virt_dev->bw_table,
2724 virt_dev->udev,
2725 &virt_dev->eps[i],
2726 virt_dev->tt_info);
2727 }
2728 /* Overwrite the information stored in the endpoints' bw_info */
2729 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2730 for (i = 0; i < 31; i++) {
2731 /* Add any changed or added endpoints to the interval table */
2732 if (EP_IS_ADDED(ctrl_ctx, i))
2733 xhci_add_ep_to_interval_table(xhci,
2734 &virt_dev->eps[i].bw_info,
2735 virt_dev->bw_table,
2736 virt_dev->udev,
2737 &virt_dev->eps[i],
2738 virt_dev->tt_info);
2739 }
2740
2741 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2742 /* Ok, this fits in the bandwidth we have.
2743 * Update the number of active TTs.
2744 */
2745 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2746 return 0;
2747 }
2748
2749 /* We don't have enough bandwidth for this, revert the stored info. */
2750 for (i = 0; i < 31; i++) {
2751 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2752 continue;
2753
2754 /* Drop the new copies of any added or changed endpoints from
2755 * the interval table.
2756 */
2757 if (EP_IS_ADDED(ctrl_ctx, i)) {
2758 xhci_drop_ep_from_interval_table(xhci,
2759 &virt_dev->eps[i].bw_info,
2760 virt_dev->bw_table,
2761 virt_dev->udev,
2762 &virt_dev->eps[i],
2763 virt_dev->tt_info);
2764 }
2765 /* Revert the endpoint back to its old information */
2766 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2767 sizeof(ep_bw_info[i]));
2768 /* Add any changed or dropped endpoints back into the table */
2769 if (EP_IS_DROPPED(ctrl_ctx, i))
2770 xhci_add_ep_to_interval_table(xhci,
2771 &virt_dev->eps[i].bw_info,
2772 virt_dev->bw_table,
2773 virt_dev->udev,
2774 &virt_dev->eps[i],
2775 virt_dev->tt_info);
2776 }
2777 return -ENOMEM;
2778 }
2779
2780
2781 /* Issue a configure endpoint command or evaluate context command
2782 * and wait for it to finish.
2783 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2784 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2785 struct usb_device *udev,
2786 struct xhci_command *command,
2787 bool ctx_change, bool must_succeed)
2788 {
2789 int ret;
2790 unsigned long flags;
2791 struct xhci_input_control_ctx *ctrl_ctx;
2792 struct xhci_virt_device *virt_dev;
2793 struct xhci_slot_ctx *slot_ctx;
2794
2795 if (!command)
2796 return -EINVAL;
2797
2798 spin_lock_irqsave(&xhci->lock, flags);
2799
2800 if (xhci->xhc_state & XHCI_STATE_DYING) {
2801 spin_unlock_irqrestore(&xhci->lock, flags);
2802 return -ESHUTDOWN;
2803 }
2804
2805 virt_dev = xhci->devs[udev->slot_id];
2806
2807 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2808 if (!ctrl_ctx) {
2809 spin_unlock_irqrestore(&xhci->lock, flags);
2810 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2811 __func__);
2812 return -ENOMEM;
2813 }
2814
2815 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2816 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2817 spin_unlock_irqrestore(&xhci->lock, flags);
2818 xhci_warn(xhci, "Not enough host resources, "
2819 "active endpoint contexts = %u\n",
2820 xhci->num_active_eps);
2821 return -ENOMEM;
2822 }
2823 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2824 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2825 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2826 xhci_free_host_resources(xhci, ctrl_ctx);
2827 spin_unlock_irqrestore(&xhci->lock, flags);
2828 xhci_warn(xhci, "Not enough bandwidth\n");
2829 return -ENOMEM;
2830 }
2831
2832 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2833
2834 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2835 trace_xhci_configure_endpoint(slot_ctx);
2836
2837 if (!ctx_change)
2838 ret = xhci_queue_configure_endpoint(xhci, command,
2839 command->in_ctx->dma,
2840 udev->slot_id, must_succeed);
2841 else
2842 ret = xhci_queue_evaluate_context(xhci, command,
2843 command->in_ctx->dma,
2844 udev->slot_id, must_succeed);
2845 if (ret < 0) {
2846 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2847 xhci_free_host_resources(xhci, ctrl_ctx);
2848 spin_unlock_irqrestore(&xhci->lock, flags);
2849 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2850 "FIXME allocate a new ring segment");
2851 return -ENOMEM;
2852 }
2853 xhci_ring_cmd_db(xhci);
2854 spin_unlock_irqrestore(&xhci->lock, flags);
2855
2856 /* Wait for the configure endpoint command to complete */
2857 wait_for_completion(command->completion);
2858
2859 if (!ctx_change)
2860 ret = xhci_configure_endpoint_result(xhci, udev,
2861 &command->status);
2862 else
2863 ret = xhci_evaluate_context_result(xhci, udev,
2864 &command->status);
2865
2866 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2867 spin_lock_irqsave(&xhci->lock, flags);
2868 /* If the command failed, remove the reserved resources.
2869 * Otherwise, clean up the estimate to include dropped eps.
2870 */
2871 if (ret)
2872 xhci_free_host_resources(xhci, ctrl_ctx);
2873 else
2874 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2875 spin_unlock_irqrestore(&xhci->lock, flags);
2876 }
2877 return ret;
2878 }
2879
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2880 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2881 struct xhci_virt_device *vdev, int i)
2882 {
2883 struct xhci_virt_ep *ep = &vdev->eps[i];
2884
2885 if (ep->ep_state & EP_HAS_STREAMS) {
2886 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2887 xhci_get_endpoint_address(i));
2888 xhci_free_stream_info(xhci, ep->stream_info);
2889 ep->stream_info = NULL;
2890 ep->ep_state &= ~EP_HAS_STREAMS;
2891 }
2892 }
2893
2894 /* Called after one or more calls to xhci_add_endpoint() or
2895 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2896 * to call xhci_reset_bandwidth().
2897 *
2898 * Since we are in the middle of changing either configuration or
2899 * installing a new alt setting, the USB core won't allow URBs to be
2900 * enqueued for any endpoint on the old config or interface. Nothing
2901 * else should be touching the xhci->devs[slot_id] structure, so we
2902 * don't need to take the xhci->lock for manipulating that.
2903 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2904 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2905 {
2906 int i;
2907 int ret = 0;
2908 struct xhci_hcd *xhci;
2909 struct xhci_virt_device *virt_dev;
2910 struct xhci_input_control_ctx *ctrl_ctx;
2911 struct xhci_slot_ctx *slot_ctx;
2912 struct xhci_command *command;
2913
2914 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2915 if (ret <= 0)
2916 return ret;
2917 xhci = hcd_to_xhci(hcd);
2918 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2919 (xhci->xhc_state & XHCI_STATE_REMOVING))
2920 return -ENODEV;
2921
2922 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2923 virt_dev = xhci->devs[udev->slot_id];
2924
2925 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2926 if (!command)
2927 return -ENOMEM;
2928
2929 command->in_ctx = virt_dev->in_ctx;
2930
2931 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2932 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2933 if (!ctrl_ctx) {
2934 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2935 __func__);
2936 ret = -ENOMEM;
2937 goto command_cleanup;
2938 }
2939 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2940 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2941 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2942
2943 /* Don't issue the command if there's no endpoints to update. */
2944 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2945 ctrl_ctx->drop_flags == 0) {
2946 ret = 0;
2947 goto command_cleanup;
2948 }
2949 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2950 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2951 for (i = 31; i >= 1; i--) {
2952 __le32 le32 = cpu_to_le32(BIT(i));
2953
2954 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2955 || (ctrl_ctx->add_flags & le32) || i == 1) {
2956 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2957 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2958 break;
2959 }
2960 }
2961
2962 ret = xhci_configure_endpoint(xhci, udev, command,
2963 false, false);
2964 if (ret)
2965 /* Callee should call reset_bandwidth() */
2966 goto command_cleanup;
2967
2968 /* Free any rings that were dropped, but not changed. */
2969 for (i = 1; i < 31; i++) {
2970 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2971 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2972 xhci_free_endpoint_ring(xhci, virt_dev, i);
2973 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2974 }
2975 }
2976 xhci_zero_in_ctx(xhci, virt_dev);
2977 /*
2978 * Install any rings for completely new endpoints or changed endpoints,
2979 * and free any old rings from changed endpoints.
2980 */
2981 for (i = 1; i < 31; i++) {
2982 if (!virt_dev->eps[i].new_ring)
2983 continue;
2984 /* Only free the old ring if it exists.
2985 * It may not if this is the first add of an endpoint.
2986 */
2987 if (virt_dev->eps[i].ring) {
2988 xhci_free_endpoint_ring(xhci, virt_dev, i);
2989 }
2990 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2991 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2992 virt_dev->eps[i].new_ring = NULL;
2993 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2994 }
2995 command_cleanup:
2996 kfree(command->completion);
2997 kfree(command);
2998
2999 return ret;
3000 }
3001
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3002 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3003 {
3004 struct xhci_hcd *xhci;
3005 struct xhci_virt_device *virt_dev;
3006 int i, ret;
3007
3008 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3009 if (ret <= 0)
3010 return;
3011 xhci = hcd_to_xhci(hcd);
3012
3013 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3014 virt_dev = xhci->devs[udev->slot_id];
3015 /* Free any rings allocated for added endpoints */
3016 for (i = 0; i < 31; i++) {
3017 if (virt_dev->eps[i].new_ring) {
3018 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3019 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3020 virt_dev->eps[i].new_ring = NULL;
3021 }
3022 }
3023 xhci_zero_in_ctx(xhci, virt_dev);
3024 }
3025
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3026 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3027 struct xhci_container_ctx *in_ctx,
3028 struct xhci_container_ctx *out_ctx,
3029 struct xhci_input_control_ctx *ctrl_ctx,
3030 u32 add_flags, u32 drop_flags)
3031 {
3032 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3033 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3034 xhci_slot_copy(xhci, in_ctx, out_ctx);
3035 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3036 }
3037
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)3038 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
3039 unsigned int slot_id, unsigned int ep_index,
3040 struct xhci_dequeue_state *deq_state)
3041 {
3042 struct xhci_input_control_ctx *ctrl_ctx;
3043 struct xhci_container_ctx *in_ctx;
3044 struct xhci_ep_ctx *ep_ctx;
3045 u32 added_ctxs;
3046 dma_addr_t addr;
3047
3048 in_ctx = xhci->devs[slot_id]->in_ctx;
3049 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3050 if (!ctrl_ctx) {
3051 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3052 __func__);
3053 return;
3054 }
3055
3056 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3057 xhci->devs[slot_id]->out_ctx, ep_index);
3058 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3059 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3060 deq_state->new_deq_ptr);
3061 if (addr == 0) {
3062 xhci_warn(xhci, "WARN Cannot submit config ep after "
3063 "reset ep command\n");
3064 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3065 deq_state->new_deq_seg,
3066 deq_state->new_deq_ptr);
3067 return;
3068 }
3069 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3070
3071 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3072 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3073 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3074 added_ctxs, added_ctxs);
3075 }
3076
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id,struct xhci_td * td)3077 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3078 unsigned int ep_index, unsigned int stream_id,
3079 struct xhci_td *td)
3080 {
3081 struct xhci_dequeue_state deq_state;
3082
3083 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3084 "Cleaning up stalled endpoint ring");
3085 /* We need to move the HW's dequeue pointer past this TD,
3086 * or it will attempt to resend it on the next doorbell ring.
3087 */
3088 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3089 &deq_state);
3090
3091 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3092 return;
3093
3094 /* HW with the reset endpoint quirk will use the saved dequeue state to
3095 * issue a configure endpoint command later.
3096 */
3097 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3098 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3099 "Queueing new dequeue state");
3100 xhci_queue_new_dequeue_state(xhci, slot_id,
3101 ep_index, &deq_state);
3102 } else {
3103 /* Better hope no one uses the input context between now and the
3104 * reset endpoint completion!
3105 * XXX: No idea how this hardware will react when stream rings
3106 * are enabled.
3107 */
3108 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3109 "Setting up input context for "
3110 "configure endpoint command");
3111 xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3112 ep_index, &deq_state);
3113 }
3114 }
3115
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3116 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3117 struct usb_host_endpoint *host_ep)
3118 {
3119 struct xhci_hcd *xhci;
3120 struct xhci_virt_device *vdev;
3121 struct xhci_virt_ep *ep;
3122 struct usb_device *udev;
3123 unsigned long flags;
3124 unsigned int ep_index;
3125
3126 xhci = hcd_to_xhci(hcd);
3127 rescan:
3128 spin_lock_irqsave(&xhci->lock, flags);
3129
3130 udev = (struct usb_device *)host_ep->hcpriv;
3131 if (!udev || !udev->slot_id)
3132 goto done;
3133
3134 vdev = xhci->devs[udev->slot_id];
3135 if (!vdev)
3136 goto done;
3137
3138 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3139 ep = &vdev->eps[ep_index];
3140 if (!ep)
3141 goto done;
3142
3143 /* wait for hub_tt_work to finish clearing hub TT */
3144 if (ep->ep_state & EP_CLEARING_TT) {
3145 spin_unlock_irqrestore(&xhci->lock, flags);
3146 schedule_timeout_uninterruptible(1);
3147 goto rescan;
3148 }
3149
3150 if (ep->ep_state)
3151 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3152 ep->ep_state);
3153 done:
3154 host_ep->hcpriv = NULL;
3155 spin_unlock_irqrestore(&xhci->lock, flags);
3156 }
3157
3158 /*
3159 * Called after usb core issues a clear halt control message.
3160 * The host side of the halt should already be cleared by a reset endpoint
3161 * command issued when the STALL event was received.
3162 *
3163 * The reset endpoint command may only be issued to endpoints in the halted
3164 * state. For software that wishes to reset the data toggle or sequence number
3165 * of an endpoint that isn't in the halted state this function will issue a
3166 * configure endpoint command with the Drop and Add bits set for the target
3167 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3168 */
3169
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3170 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3171 struct usb_host_endpoint *host_ep)
3172 {
3173 struct xhci_hcd *xhci;
3174 struct usb_device *udev;
3175 struct xhci_virt_device *vdev;
3176 struct xhci_virt_ep *ep;
3177 struct xhci_input_control_ctx *ctrl_ctx;
3178 struct xhci_command *stop_cmd, *cfg_cmd;
3179 unsigned int ep_index;
3180 unsigned long flags;
3181 u32 ep_flag;
3182 int err;
3183
3184 xhci = hcd_to_xhci(hcd);
3185 if (!host_ep->hcpriv)
3186 return;
3187 udev = (struct usb_device *) host_ep->hcpriv;
3188 vdev = xhci->devs[udev->slot_id];
3189
3190 /*
3191 * vdev may be lost due to xHC restore error and re-initialization
3192 * during S3/S4 resume. A new vdev will be allocated later by
3193 * xhci_discover_or_reset_device()
3194 */
3195 if (!udev->slot_id || !vdev)
3196 return;
3197 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3198 ep = &vdev->eps[ep_index];
3199 if (!ep)
3200 return;
3201
3202 /* Bail out if toggle is already being cleared by a endpoint reset */
3203 spin_lock_irqsave(&xhci->lock, flags);
3204 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3205 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3206 spin_unlock_irqrestore(&xhci->lock, flags);
3207 return;
3208 }
3209 spin_unlock_irqrestore(&xhci->lock, flags);
3210 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3211 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3212 usb_endpoint_xfer_isoc(&host_ep->desc))
3213 return;
3214
3215 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3216
3217 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3218 return;
3219
3220 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3221 if (!stop_cmd)
3222 return;
3223
3224 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3225 if (!cfg_cmd)
3226 goto cleanup;
3227
3228 spin_lock_irqsave(&xhci->lock, flags);
3229
3230 /* block queuing new trbs and ringing ep doorbell */
3231 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3232
3233 /*
3234 * Make sure endpoint ring is empty before resetting the toggle/seq.
3235 * Driver is required to synchronously cancel all transfer request.
3236 * Stop the endpoint to force xHC to update the output context
3237 */
3238
3239 if (!list_empty(&ep->ring->td_list)) {
3240 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3241 spin_unlock_irqrestore(&xhci->lock, flags);
3242 xhci_free_command(xhci, cfg_cmd);
3243 goto cleanup;
3244 }
3245
3246 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3247 ep_index, 0);
3248 if (err < 0) {
3249 spin_unlock_irqrestore(&xhci->lock, flags);
3250 xhci_free_command(xhci, cfg_cmd);
3251 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3252 __func__, err);
3253 goto cleanup;
3254 }
3255
3256 xhci_ring_cmd_db(xhci);
3257 spin_unlock_irqrestore(&xhci->lock, flags);
3258
3259 wait_for_completion(stop_cmd->completion);
3260
3261 spin_lock_irqsave(&xhci->lock, flags);
3262
3263 /* config ep command clears toggle if add and drop ep flags are set */
3264 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3265 if (!ctrl_ctx) {
3266 spin_unlock_irqrestore(&xhci->lock, flags);
3267 xhci_free_command(xhci, cfg_cmd);
3268 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3269 __func__);
3270 goto cleanup;
3271 }
3272
3273 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3274 ctrl_ctx, ep_flag, ep_flag);
3275 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3276
3277 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3278 udev->slot_id, false);
3279 if (err < 0) {
3280 spin_unlock_irqrestore(&xhci->lock, flags);
3281 xhci_free_command(xhci, cfg_cmd);
3282 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3283 __func__, err);
3284 goto cleanup;
3285 }
3286
3287 xhci_ring_cmd_db(xhci);
3288 spin_unlock_irqrestore(&xhci->lock, flags);
3289
3290 wait_for_completion(cfg_cmd->completion);
3291
3292 xhci_free_command(xhci, cfg_cmd);
3293 cleanup:
3294 xhci_free_command(xhci, stop_cmd);
3295 spin_lock_irqsave(&xhci->lock, flags);
3296 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3297 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3298 spin_unlock_irqrestore(&xhci->lock, flags);
3299 }
3300
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3301 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3302 struct usb_device *udev, struct usb_host_endpoint *ep,
3303 unsigned int slot_id)
3304 {
3305 int ret;
3306 unsigned int ep_index;
3307 unsigned int ep_state;
3308
3309 if (!ep)
3310 return -EINVAL;
3311 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3312 if (ret <= 0)
3313 return ret ? ret : -EINVAL;
3314 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3315 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3316 " descriptor for ep 0x%x does not support streams\n",
3317 ep->desc.bEndpointAddress);
3318 return -EINVAL;
3319 }
3320
3321 ep_index = xhci_get_endpoint_index(&ep->desc);
3322 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3323 if (ep_state & EP_HAS_STREAMS ||
3324 ep_state & EP_GETTING_STREAMS) {
3325 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3326 "already has streams set up.\n",
3327 ep->desc.bEndpointAddress);
3328 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3329 "dynamic stream context array reallocation.\n");
3330 return -EINVAL;
3331 }
3332 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3333 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3334 "endpoint 0x%x; URBs are pending.\n",
3335 ep->desc.bEndpointAddress);
3336 return -EINVAL;
3337 }
3338 return 0;
3339 }
3340
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3341 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3342 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3343 {
3344 unsigned int max_streams;
3345
3346 /* The stream context array size must be a power of two */
3347 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3348 /*
3349 * Find out how many primary stream array entries the host controller
3350 * supports. Later we may use secondary stream arrays (similar to 2nd
3351 * level page entries), but that's an optional feature for xHCI host
3352 * controllers. xHCs must support at least 4 stream IDs.
3353 */
3354 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3355 if (*num_stream_ctxs > max_streams) {
3356 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3357 max_streams);
3358 *num_stream_ctxs = max_streams;
3359 *num_streams = max_streams;
3360 }
3361 }
3362
3363 /* Returns an error code if one of the endpoint already has streams.
3364 * This does not change any data structures, it only checks and gathers
3365 * information.
3366 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3367 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3368 struct usb_device *udev,
3369 struct usb_host_endpoint **eps, unsigned int num_eps,
3370 unsigned int *num_streams, u32 *changed_ep_bitmask)
3371 {
3372 unsigned int max_streams;
3373 unsigned int endpoint_flag;
3374 int i;
3375 int ret;
3376
3377 for (i = 0; i < num_eps; i++) {
3378 ret = xhci_check_streams_endpoint(xhci, udev,
3379 eps[i], udev->slot_id);
3380 if (ret < 0)
3381 return ret;
3382
3383 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3384 if (max_streams < (*num_streams - 1)) {
3385 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3386 eps[i]->desc.bEndpointAddress,
3387 max_streams);
3388 *num_streams = max_streams+1;
3389 }
3390
3391 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3392 if (*changed_ep_bitmask & endpoint_flag)
3393 return -EINVAL;
3394 *changed_ep_bitmask |= endpoint_flag;
3395 }
3396 return 0;
3397 }
3398
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3399 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3400 struct usb_device *udev,
3401 struct usb_host_endpoint **eps, unsigned int num_eps)
3402 {
3403 u32 changed_ep_bitmask = 0;
3404 unsigned int slot_id;
3405 unsigned int ep_index;
3406 unsigned int ep_state;
3407 int i;
3408
3409 slot_id = udev->slot_id;
3410 if (!xhci->devs[slot_id])
3411 return 0;
3412
3413 for (i = 0; i < num_eps; i++) {
3414 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3415 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3416 /* Are streams already being freed for the endpoint? */
3417 if (ep_state & EP_GETTING_NO_STREAMS) {
3418 xhci_warn(xhci, "WARN Can't disable streams for "
3419 "endpoint 0x%x, "
3420 "streams are being disabled already\n",
3421 eps[i]->desc.bEndpointAddress);
3422 return 0;
3423 }
3424 /* Are there actually any streams to free? */
3425 if (!(ep_state & EP_HAS_STREAMS) &&
3426 !(ep_state & EP_GETTING_STREAMS)) {
3427 xhci_warn(xhci, "WARN Can't disable streams for "
3428 "endpoint 0x%x, "
3429 "streams are already disabled!\n",
3430 eps[i]->desc.bEndpointAddress);
3431 xhci_warn(xhci, "WARN xhci_free_streams() called "
3432 "with non-streams endpoint\n");
3433 return 0;
3434 }
3435 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3436 }
3437 return changed_ep_bitmask;
3438 }
3439
3440 /*
3441 * The USB device drivers use this function (through the HCD interface in USB
3442 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3443 * coordinate mass storage command queueing across multiple endpoints (basically
3444 * a stream ID == a task ID).
3445 *
3446 * Setting up streams involves allocating the same size stream context array
3447 * for each endpoint and issuing a configure endpoint command for all endpoints.
3448 *
3449 * Don't allow the call to succeed if one endpoint only supports one stream
3450 * (which means it doesn't support streams at all).
3451 *
3452 * Drivers may get less stream IDs than they asked for, if the host controller
3453 * hardware or endpoints claim they can't support the number of requested
3454 * stream IDs.
3455 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3456 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3457 struct usb_host_endpoint **eps, unsigned int num_eps,
3458 unsigned int num_streams, gfp_t mem_flags)
3459 {
3460 int i, ret;
3461 struct xhci_hcd *xhci;
3462 struct xhci_virt_device *vdev;
3463 struct xhci_command *config_cmd;
3464 struct xhci_input_control_ctx *ctrl_ctx;
3465 unsigned int ep_index;
3466 unsigned int num_stream_ctxs;
3467 unsigned int max_packet;
3468 unsigned long flags;
3469 u32 changed_ep_bitmask = 0;
3470
3471 if (!eps)
3472 return -EINVAL;
3473
3474 /* Add one to the number of streams requested to account for
3475 * stream 0 that is reserved for xHCI usage.
3476 */
3477 num_streams += 1;
3478 xhci = hcd_to_xhci(hcd);
3479 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3480 num_streams);
3481
3482 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3483 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3484 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3485 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3486 return -ENOSYS;
3487 }
3488
3489 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3490 if (!config_cmd)
3491 return -ENOMEM;
3492
3493 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3494 if (!ctrl_ctx) {
3495 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3496 __func__);
3497 xhci_free_command(xhci, config_cmd);
3498 return -ENOMEM;
3499 }
3500
3501 /* Check to make sure all endpoints are not already configured for
3502 * streams. While we're at it, find the maximum number of streams that
3503 * all the endpoints will support and check for duplicate endpoints.
3504 */
3505 spin_lock_irqsave(&xhci->lock, flags);
3506 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3507 num_eps, &num_streams, &changed_ep_bitmask);
3508 if (ret < 0) {
3509 xhci_free_command(xhci, config_cmd);
3510 spin_unlock_irqrestore(&xhci->lock, flags);
3511 return ret;
3512 }
3513 if (num_streams <= 1) {
3514 xhci_warn(xhci, "WARN: endpoints can't handle "
3515 "more than one stream.\n");
3516 xhci_free_command(xhci, config_cmd);
3517 spin_unlock_irqrestore(&xhci->lock, flags);
3518 return -EINVAL;
3519 }
3520 vdev = xhci->devs[udev->slot_id];
3521 /* Mark each endpoint as being in transition, so
3522 * xhci_urb_enqueue() will reject all URBs.
3523 */
3524 for (i = 0; i < num_eps; i++) {
3525 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3526 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3527 }
3528 spin_unlock_irqrestore(&xhci->lock, flags);
3529
3530 /* Setup internal data structures and allocate HW data structures for
3531 * streams (but don't install the HW structures in the input context
3532 * until we're sure all memory allocation succeeded).
3533 */
3534 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3535 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3536 num_stream_ctxs, num_streams);
3537
3538 for (i = 0; i < num_eps; i++) {
3539 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3540 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3541 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3542 num_stream_ctxs,
3543 num_streams,
3544 max_packet, mem_flags);
3545 if (!vdev->eps[ep_index].stream_info)
3546 goto cleanup;
3547 /* Set maxPstreams in endpoint context and update deq ptr to
3548 * point to stream context array. FIXME
3549 */
3550 }
3551
3552 /* Set up the input context for a configure endpoint command. */
3553 for (i = 0; i < num_eps; i++) {
3554 struct xhci_ep_ctx *ep_ctx;
3555
3556 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3557 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3558
3559 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3560 vdev->out_ctx, ep_index);
3561 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3562 vdev->eps[ep_index].stream_info);
3563 }
3564 /* Tell the HW to drop its old copy of the endpoint context info
3565 * and add the updated copy from the input context.
3566 */
3567 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3568 vdev->out_ctx, ctrl_ctx,
3569 changed_ep_bitmask, changed_ep_bitmask);
3570
3571 /* Issue and wait for the configure endpoint command */
3572 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3573 false, false);
3574
3575 /* xHC rejected the configure endpoint command for some reason, so we
3576 * leave the old ring intact and free our internal streams data
3577 * structure.
3578 */
3579 if (ret < 0)
3580 goto cleanup;
3581
3582 spin_lock_irqsave(&xhci->lock, flags);
3583 for (i = 0; i < num_eps; i++) {
3584 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3585 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3586 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3587 udev->slot_id, ep_index);
3588 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3589 }
3590 xhci_free_command(xhci, config_cmd);
3591 spin_unlock_irqrestore(&xhci->lock, flags);
3592
3593 for (i = 0; i < num_eps; i++) {
3594 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3595 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3596 }
3597 /* Subtract 1 for stream 0, which drivers can't use */
3598 return num_streams - 1;
3599
3600 cleanup:
3601 /* If it didn't work, free the streams! */
3602 for (i = 0; i < num_eps; i++) {
3603 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3604 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3605 vdev->eps[ep_index].stream_info = NULL;
3606 /* FIXME Unset maxPstreams in endpoint context and
3607 * update deq ptr to point to normal string ring.
3608 */
3609 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3610 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3611 xhci_endpoint_zero(xhci, vdev, eps[i]);
3612 }
3613 xhci_free_command(xhci, config_cmd);
3614 return -ENOMEM;
3615 }
3616
3617 /* Transition the endpoint from using streams to being a "normal" endpoint
3618 * without streams.
3619 *
3620 * Modify the endpoint context state, submit a configure endpoint command,
3621 * and free all endpoint rings for streams if that completes successfully.
3622 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3623 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3624 struct usb_host_endpoint **eps, unsigned int num_eps,
3625 gfp_t mem_flags)
3626 {
3627 int i, ret;
3628 struct xhci_hcd *xhci;
3629 struct xhci_virt_device *vdev;
3630 struct xhci_command *command;
3631 struct xhci_input_control_ctx *ctrl_ctx;
3632 unsigned int ep_index;
3633 unsigned long flags;
3634 u32 changed_ep_bitmask;
3635
3636 xhci = hcd_to_xhci(hcd);
3637 vdev = xhci->devs[udev->slot_id];
3638
3639 /* Set up a configure endpoint command to remove the streams rings */
3640 spin_lock_irqsave(&xhci->lock, flags);
3641 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3642 udev, eps, num_eps);
3643 if (changed_ep_bitmask == 0) {
3644 spin_unlock_irqrestore(&xhci->lock, flags);
3645 return -EINVAL;
3646 }
3647
3648 /* Use the xhci_command structure from the first endpoint. We may have
3649 * allocated too many, but the driver may call xhci_free_streams() for
3650 * each endpoint it grouped into one call to xhci_alloc_streams().
3651 */
3652 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3653 command = vdev->eps[ep_index].stream_info->free_streams_command;
3654 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3655 if (!ctrl_ctx) {
3656 spin_unlock_irqrestore(&xhci->lock, flags);
3657 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3658 __func__);
3659 return -EINVAL;
3660 }
3661
3662 for (i = 0; i < num_eps; i++) {
3663 struct xhci_ep_ctx *ep_ctx;
3664
3665 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3666 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3667 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3668 EP_GETTING_NO_STREAMS;
3669
3670 xhci_endpoint_copy(xhci, command->in_ctx,
3671 vdev->out_ctx, ep_index);
3672 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3673 &vdev->eps[ep_index]);
3674 }
3675 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3676 vdev->out_ctx, ctrl_ctx,
3677 changed_ep_bitmask, changed_ep_bitmask);
3678 spin_unlock_irqrestore(&xhci->lock, flags);
3679
3680 /* Issue and wait for the configure endpoint command,
3681 * which must succeed.
3682 */
3683 ret = xhci_configure_endpoint(xhci, udev, command,
3684 false, true);
3685
3686 /* xHC rejected the configure endpoint command for some reason, so we
3687 * leave the streams rings intact.
3688 */
3689 if (ret < 0)
3690 return ret;
3691
3692 spin_lock_irqsave(&xhci->lock, flags);
3693 for (i = 0; i < num_eps; i++) {
3694 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3695 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3696 vdev->eps[ep_index].stream_info = NULL;
3697 /* FIXME Unset maxPstreams in endpoint context and
3698 * update deq ptr to point to normal string ring.
3699 */
3700 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3701 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3702 }
3703 spin_unlock_irqrestore(&xhci->lock, flags);
3704
3705 return 0;
3706 }
3707
3708 /*
3709 * Deletes endpoint resources for endpoints that were active before a Reset
3710 * Device command, or a Disable Slot command. The Reset Device command leaves
3711 * the control endpoint intact, whereas the Disable Slot command deletes it.
3712 *
3713 * Must be called with xhci->lock held.
3714 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3715 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3716 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3717 {
3718 int i;
3719 unsigned int num_dropped_eps = 0;
3720 unsigned int drop_flags = 0;
3721
3722 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3723 if (virt_dev->eps[i].ring) {
3724 drop_flags |= 1 << i;
3725 num_dropped_eps++;
3726 }
3727 }
3728 xhci->num_active_eps -= num_dropped_eps;
3729 if (num_dropped_eps)
3730 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3731 "Dropped %u ep ctxs, flags = 0x%x, "
3732 "%u now active.",
3733 num_dropped_eps, drop_flags,
3734 xhci->num_active_eps);
3735 }
3736
3737 /*
3738 * This submits a Reset Device Command, which will set the device state to 0,
3739 * set the device address to 0, and disable all the endpoints except the default
3740 * control endpoint. The USB core should come back and call
3741 * xhci_address_device(), and then re-set up the configuration. If this is
3742 * called because of a usb_reset_and_verify_device(), then the old alternate
3743 * settings will be re-installed through the normal bandwidth allocation
3744 * functions.
3745 *
3746 * Wait for the Reset Device command to finish. Remove all structures
3747 * associated with the endpoints that were disabled. Clear the input device
3748 * structure? Reset the control endpoint 0 max packet size?
3749 *
3750 * If the virt_dev to be reset does not exist or does not match the udev,
3751 * it means the device is lost, possibly due to the xHC restore error and
3752 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3753 * re-allocate the device.
3754 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3755 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3756 struct usb_device *udev)
3757 {
3758 int ret, i;
3759 unsigned long flags;
3760 struct xhci_hcd *xhci;
3761 unsigned int slot_id;
3762 struct xhci_virt_device *virt_dev;
3763 struct xhci_command *reset_device_cmd;
3764 struct xhci_slot_ctx *slot_ctx;
3765 int old_active_eps = 0;
3766
3767 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3768 if (ret <= 0)
3769 return ret;
3770 xhci = hcd_to_xhci(hcd);
3771 slot_id = udev->slot_id;
3772 virt_dev = xhci->devs[slot_id];
3773 if (!virt_dev) {
3774 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3775 "not exist. Re-allocate the device\n", slot_id);
3776 ret = xhci_alloc_dev(hcd, udev);
3777 if (ret == 1)
3778 return 0;
3779 else
3780 return -EINVAL;
3781 }
3782
3783 if (virt_dev->tt_info)
3784 old_active_eps = virt_dev->tt_info->active_eps;
3785
3786 if (virt_dev->udev != udev) {
3787 /* If the virt_dev and the udev does not match, this virt_dev
3788 * may belong to another udev.
3789 * Re-allocate the device.
3790 */
3791 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3792 "not match the udev. Re-allocate the device\n",
3793 slot_id);
3794 ret = xhci_alloc_dev(hcd, udev);
3795 if (ret == 1)
3796 return 0;
3797 else
3798 return -EINVAL;
3799 }
3800
3801 /* If device is not setup, there is no point in resetting it */
3802 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3803 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3804 SLOT_STATE_DISABLED)
3805 return 0;
3806
3807 trace_xhci_discover_or_reset_device(slot_ctx);
3808
3809 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3810 /* Allocate the command structure that holds the struct completion.
3811 * Assume we're in process context, since the normal device reset
3812 * process has to wait for the device anyway. Storage devices are
3813 * reset as part of error handling, so use GFP_NOIO instead of
3814 * GFP_KERNEL.
3815 */
3816 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3817 if (!reset_device_cmd) {
3818 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3819 return -ENOMEM;
3820 }
3821
3822 /* Attempt to submit the Reset Device command to the command ring */
3823 spin_lock_irqsave(&xhci->lock, flags);
3824
3825 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3826 if (ret) {
3827 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3828 spin_unlock_irqrestore(&xhci->lock, flags);
3829 goto command_cleanup;
3830 }
3831 xhci_ring_cmd_db(xhci);
3832 spin_unlock_irqrestore(&xhci->lock, flags);
3833
3834 /* Wait for the Reset Device command to finish */
3835 wait_for_completion(reset_device_cmd->completion);
3836
3837 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3838 * unless we tried to reset a slot ID that wasn't enabled,
3839 * or the device wasn't in the addressed or configured state.
3840 */
3841 ret = reset_device_cmd->status;
3842 switch (ret) {
3843 case COMP_COMMAND_ABORTED:
3844 case COMP_COMMAND_RING_STOPPED:
3845 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3846 ret = -ETIME;
3847 goto command_cleanup;
3848 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3849 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3850 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3851 slot_id,
3852 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3853 xhci_dbg(xhci, "Not freeing device rings.\n");
3854 /* Don't treat this as an error. May change my mind later. */
3855 ret = 0;
3856 goto command_cleanup;
3857 case COMP_SUCCESS:
3858 xhci_dbg(xhci, "Successful reset device command.\n");
3859 break;
3860 default:
3861 if (xhci_is_vendor_info_code(xhci, ret))
3862 break;
3863 xhci_warn(xhci, "Unknown completion code %u for "
3864 "reset device command.\n", ret);
3865 ret = -EINVAL;
3866 goto command_cleanup;
3867 }
3868
3869 /* Free up host controller endpoint resources */
3870 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3871 spin_lock_irqsave(&xhci->lock, flags);
3872 /* Don't delete the default control endpoint resources */
3873 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3874 spin_unlock_irqrestore(&xhci->lock, flags);
3875 }
3876
3877 /* Everything but endpoint 0 is disabled, so free the rings. */
3878 for (i = 1; i < 31; i++) {
3879 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3880
3881 if (ep->ep_state & EP_HAS_STREAMS) {
3882 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3883 xhci_get_endpoint_address(i));
3884 xhci_free_stream_info(xhci, ep->stream_info);
3885 ep->stream_info = NULL;
3886 ep->ep_state &= ~EP_HAS_STREAMS;
3887 }
3888
3889 if (ep->ring) {
3890 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3891 xhci_free_endpoint_ring(xhci, virt_dev, i);
3892 }
3893 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3894 xhci_drop_ep_from_interval_table(xhci,
3895 &virt_dev->eps[i].bw_info,
3896 virt_dev->bw_table,
3897 udev,
3898 &virt_dev->eps[i],
3899 virt_dev->tt_info);
3900 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3901 }
3902 /* If necessary, update the number of active TTs on this root port */
3903 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3904 virt_dev->flags = 0;
3905 ret = 0;
3906
3907 command_cleanup:
3908 xhci_free_command(xhci, reset_device_cmd);
3909 return ret;
3910 }
3911
3912 /*
3913 * At this point, the struct usb_device is about to go away, the device has
3914 * disconnected, and all traffic has been stopped and the endpoints have been
3915 * disabled. Free any HC data structures associated with that device.
3916 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3917 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3918 {
3919 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3920 struct xhci_virt_device *virt_dev;
3921 struct xhci_slot_ctx *slot_ctx;
3922 unsigned long flags;
3923 int i, ret;
3924
3925 /*
3926 * We called pm_runtime_get_noresume when the device was attached.
3927 * Decrement the counter here to allow controller to runtime suspend
3928 * if no devices remain.
3929 */
3930 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3931 pm_runtime_put_noidle(hcd->self.controller);
3932
3933 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3934 /* If the host is halted due to driver unload, we still need to free the
3935 * device.
3936 */
3937 if (ret <= 0 && ret != -ENODEV)
3938 return;
3939
3940 virt_dev = xhci->devs[udev->slot_id];
3941 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3942 trace_xhci_free_dev(slot_ctx);
3943
3944 /* Stop any wayward timer functions (which may grab the lock) */
3945 for (i = 0; i < 31; i++) {
3946 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3947 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3948 }
3949 virt_dev->udev = NULL;
3950 xhci_disable_slot(xhci, udev->slot_id);
3951
3952 spin_lock_irqsave(&xhci->lock, flags);
3953 xhci_free_virt_device(xhci, udev->slot_id);
3954 spin_unlock_irqrestore(&xhci->lock, flags);
3955
3956 }
3957
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3958 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3959 {
3960 struct xhci_command *command;
3961 unsigned long flags;
3962 u32 state;
3963 int ret = 0;
3964
3965 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3966 if (!command)
3967 return -ENOMEM;
3968
3969 xhci_debugfs_remove_slot(xhci, slot_id);
3970
3971 spin_lock_irqsave(&xhci->lock, flags);
3972 /* Don't disable the slot if the host controller is dead. */
3973 state = readl(&xhci->op_regs->status);
3974 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3975 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3976 spin_unlock_irqrestore(&xhci->lock, flags);
3977 kfree(command);
3978 return -ENODEV;
3979 }
3980
3981 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3982 slot_id);
3983 if (ret) {
3984 spin_unlock_irqrestore(&xhci->lock, flags);
3985 kfree(command);
3986 return ret;
3987 }
3988 xhci_ring_cmd_db(xhci);
3989 spin_unlock_irqrestore(&xhci->lock, flags);
3990
3991 wait_for_completion(command->completion);
3992
3993 if (command->status != COMP_SUCCESS)
3994 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3995 slot_id, command->status);
3996
3997 xhci_free_command(xhci, command);
3998
3999 return ret;
4000 }
4001
4002 /*
4003 * Checks if we have enough host controller resources for the default control
4004 * endpoint.
4005 *
4006 * Must be called with xhci->lock held.
4007 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4008 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4009 {
4010 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4011 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4012 "Not enough ep ctxs: "
4013 "%u active, need to add 1, limit is %u.",
4014 xhci->num_active_eps, xhci->limit_active_eps);
4015 return -ENOMEM;
4016 }
4017 xhci->num_active_eps += 1;
4018 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4019 "Adding 1 ep ctx, %u now active.",
4020 xhci->num_active_eps);
4021 return 0;
4022 }
4023
4024
4025 /*
4026 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4027 * timed out, or allocating memory failed. Returns 1 on success.
4028 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4029 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4030 {
4031 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4032 struct xhci_virt_device *vdev;
4033 struct xhci_slot_ctx *slot_ctx;
4034 unsigned long flags;
4035 int ret, slot_id;
4036 struct xhci_command *command;
4037
4038 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4039 if (!command)
4040 return 0;
4041
4042 spin_lock_irqsave(&xhci->lock, flags);
4043 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4044 if (ret) {
4045 spin_unlock_irqrestore(&xhci->lock, flags);
4046 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4047 xhci_free_command(xhci, command);
4048 return 0;
4049 }
4050 xhci_ring_cmd_db(xhci);
4051 spin_unlock_irqrestore(&xhci->lock, flags);
4052
4053 wait_for_completion(command->completion);
4054 slot_id = command->slot_id;
4055
4056 if (!slot_id || command->status != COMP_SUCCESS) {
4057 xhci_err(xhci, "Error while assigning device slot ID\n");
4058 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4059 HCS_MAX_SLOTS(
4060 readl(&xhci->cap_regs->hcs_params1)));
4061 xhci_free_command(xhci, command);
4062 return 0;
4063 }
4064
4065 xhci_free_command(xhci, command);
4066
4067 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4068 spin_lock_irqsave(&xhci->lock, flags);
4069 ret = xhci_reserve_host_control_ep_resources(xhci);
4070 if (ret) {
4071 spin_unlock_irqrestore(&xhci->lock, flags);
4072 xhci_warn(xhci, "Not enough host resources, "
4073 "active endpoint contexts = %u\n",
4074 xhci->num_active_eps);
4075 goto disable_slot;
4076 }
4077 spin_unlock_irqrestore(&xhci->lock, flags);
4078 }
4079 /* Use GFP_NOIO, since this function can be called from
4080 * xhci_discover_or_reset_device(), which may be called as part of
4081 * mass storage driver error handling.
4082 */
4083 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4084 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4085 goto disable_slot;
4086 }
4087 vdev = xhci->devs[slot_id];
4088 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4089 trace_xhci_alloc_dev(slot_ctx);
4090
4091 udev->slot_id = slot_id;
4092
4093 xhci_debugfs_create_slot(xhci, slot_id);
4094
4095 /*
4096 * If resetting upon resume, we can't put the controller into runtime
4097 * suspend if there is a device attached.
4098 */
4099 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4100 pm_runtime_get_noresume(hcd->self.controller);
4101
4102 /* Is this a LS or FS device under a HS hub? */
4103 /* Hub or peripherial? */
4104 return 1;
4105
4106 disable_slot:
4107 xhci_disable_slot(xhci, udev->slot_id);
4108 xhci_free_virt_device(xhci, udev->slot_id);
4109
4110 return 0;
4111 }
4112
4113 /*
4114 * Issue an Address Device command and optionally send a corresponding
4115 * SetAddress request to the device.
4116 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4117 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4118 enum xhci_setup_dev setup)
4119 {
4120 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4121 unsigned long flags;
4122 struct xhci_virt_device *virt_dev;
4123 int ret = 0;
4124 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4125 struct xhci_slot_ctx *slot_ctx;
4126 struct xhci_input_control_ctx *ctrl_ctx;
4127 u64 temp_64;
4128 struct xhci_command *command = NULL;
4129
4130 mutex_lock(&xhci->mutex);
4131
4132 if (xhci->xhc_state) { /* dying, removing or halted */
4133 ret = -ESHUTDOWN;
4134 goto out;
4135 }
4136
4137 if (!udev->slot_id) {
4138 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4139 "Bad Slot ID %d", udev->slot_id);
4140 ret = -EINVAL;
4141 goto out;
4142 }
4143
4144 virt_dev = xhci->devs[udev->slot_id];
4145
4146 if (WARN_ON(!virt_dev)) {
4147 /*
4148 * In plug/unplug torture test with an NEC controller,
4149 * a zero-dereference was observed once due to virt_dev = 0.
4150 * Print useful debug rather than crash if it is observed again!
4151 */
4152 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4153 udev->slot_id);
4154 ret = -EINVAL;
4155 goto out;
4156 }
4157 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4158 trace_xhci_setup_device_slot(slot_ctx);
4159
4160 if (setup == SETUP_CONTEXT_ONLY) {
4161 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4162 SLOT_STATE_DEFAULT) {
4163 xhci_dbg(xhci, "Slot already in default state\n");
4164 goto out;
4165 }
4166 }
4167
4168 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4169 if (!command) {
4170 ret = -ENOMEM;
4171 goto out;
4172 }
4173
4174 command->in_ctx = virt_dev->in_ctx;
4175
4176 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4177 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4178 if (!ctrl_ctx) {
4179 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4180 __func__);
4181 ret = -EINVAL;
4182 goto out;
4183 }
4184 /*
4185 * If this is the first Set Address since device plug-in or
4186 * virt_device realloaction after a resume with an xHCI power loss,
4187 * then set up the slot context.
4188 */
4189 if (!slot_ctx->dev_info)
4190 xhci_setup_addressable_virt_dev(xhci, udev);
4191 /* Otherwise, update the control endpoint ring enqueue pointer. */
4192 else
4193 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4194 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4195 ctrl_ctx->drop_flags = 0;
4196
4197 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4198 le32_to_cpu(slot_ctx->dev_info) >> 27);
4199
4200 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4201 spin_lock_irqsave(&xhci->lock, flags);
4202 trace_xhci_setup_device(virt_dev);
4203 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4204 udev->slot_id, setup);
4205 if (ret) {
4206 spin_unlock_irqrestore(&xhci->lock, flags);
4207 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4208 "FIXME: allocate a command ring segment");
4209 goto out;
4210 }
4211 xhci_ring_cmd_db(xhci);
4212 spin_unlock_irqrestore(&xhci->lock, flags);
4213
4214 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4215 wait_for_completion(command->completion);
4216
4217 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4218 * the SetAddress() "recovery interval" required by USB and aborting the
4219 * command on a timeout.
4220 */
4221 switch (command->status) {
4222 case COMP_COMMAND_ABORTED:
4223 case COMP_COMMAND_RING_STOPPED:
4224 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4225 ret = -ETIME;
4226 break;
4227 case COMP_CONTEXT_STATE_ERROR:
4228 case COMP_SLOT_NOT_ENABLED_ERROR:
4229 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4230 act, udev->slot_id);
4231 ret = -EINVAL;
4232 break;
4233 case COMP_USB_TRANSACTION_ERROR:
4234 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4235
4236 mutex_unlock(&xhci->mutex);
4237 ret = xhci_disable_slot(xhci, udev->slot_id);
4238 xhci_free_virt_device(xhci, udev->slot_id);
4239 if (!ret)
4240 xhci_alloc_dev(hcd, udev);
4241 kfree(command->completion);
4242 kfree(command);
4243 return -EPROTO;
4244 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4245 dev_warn(&udev->dev,
4246 "ERROR: Incompatible device for setup %s command\n", act);
4247 ret = -ENODEV;
4248 break;
4249 case COMP_SUCCESS:
4250 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4251 "Successful setup %s command", act);
4252 break;
4253 default:
4254 xhci_err(xhci,
4255 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4256 act, command->status);
4257 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4258 ret = -EINVAL;
4259 break;
4260 }
4261 if (ret)
4262 goto out;
4263 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4264 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4265 "Op regs DCBAA ptr = %#016llx", temp_64);
4266 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4267 "Slot ID %d dcbaa entry @%p = %#016llx",
4268 udev->slot_id,
4269 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4270 (unsigned long long)
4271 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4272 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4273 "Output Context DMA address = %#08llx",
4274 (unsigned long long)virt_dev->out_ctx->dma);
4275 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4276 le32_to_cpu(slot_ctx->dev_info) >> 27);
4277 /*
4278 * USB core uses address 1 for the roothubs, so we add one to the
4279 * address given back to us by the HC.
4280 */
4281 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4282 le32_to_cpu(slot_ctx->dev_info) >> 27);
4283 /* Zero the input context control for later use */
4284 ctrl_ctx->add_flags = 0;
4285 ctrl_ctx->drop_flags = 0;
4286 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4287 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4288
4289 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4290 "Internal device address = %d",
4291 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4292 out:
4293 mutex_unlock(&xhci->mutex);
4294 if (command) {
4295 kfree(command->completion);
4296 kfree(command);
4297 }
4298 return ret;
4299 }
4300
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4301 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4302 {
4303 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4304 }
4305
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4306 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4307 {
4308 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4309 }
4310
4311 /*
4312 * Transfer the port index into real index in the HW port status
4313 * registers. Caculate offset between the port's PORTSC register
4314 * and port status base. Divide the number of per port register
4315 * to get the real index. The raw port number bases 1.
4316 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4317 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4318 {
4319 struct xhci_hub *rhub;
4320
4321 rhub = xhci_get_rhub(hcd);
4322 return rhub->ports[port1 - 1]->hw_portnum + 1;
4323 }
4324
4325 /*
4326 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4327 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4328 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4329 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4330 struct usb_device *udev, u16 max_exit_latency)
4331 {
4332 struct xhci_virt_device *virt_dev;
4333 struct xhci_command *command;
4334 struct xhci_input_control_ctx *ctrl_ctx;
4335 struct xhci_slot_ctx *slot_ctx;
4336 unsigned long flags;
4337 int ret;
4338
4339 spin_lock_irqsave(&xhci->lock, flags);
4340
4341 virt_dev = xhci->devs[udev->slot_id];
4342
4343 /*
4344 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4345 * xHC was re-initialized. Exit latency will be set later after
4346 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4347 */
4348
4349 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4350 spin_unlock_irqrestore(&xhci->lock, flags);
4351 return 0;
4352 }
4353
4354 /* Attempt to issue an Evaluate Context command to change the MEL. */
4355 command = xhci->lpm_command;
4356 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4357 if (!ctrl_ctx) {
4358 spin_unlock_irqrestore(&xhci->lock, flags);
4359 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4360 __func__);
4361 return -ENOMEM;
4362 }
4363
4364 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4365 spin_unlock_irqrestore(&xhci->lock, flags);
4366
4367 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4368 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4369 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4370 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4371 slot_ctx->dev_state = 0;
4372
4373 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4374 "Set up evaluate context for LPM MEL change.");
4375
4376 /* Issue and wait for the evaluate context command. */
4377 ret = xhci_configure_endpoint(xhci, udev, command,
4378 true, true);
4379
4380 if (!ret) {
4381 spin_lock_irqsave(&xhci->lock, flags);
4382 virt_dev->current_mel = max_exit_latency;
4383 spin_unlock_irqrestore(&xhci->lock, flags);
4384 }
4385 return ret;
4386 }
4387
4388 #ifdef CONFIG_PM
4389
4390 /* BESL to HIRD Encoding array for USB2 LPM */
4391 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4392 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4393
4394 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4395 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4396 struct usb_device *udev)
4397 {
4398 int u2del, besl, besl_host;
4399 int besl_device = 0;
4400 u32 field;
4401
4402 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4403 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4404
4405 if (field & USB_BESL_SUPPORT) {
4406 for (besl_host = 0; besl_host < 16; besl_host++) {
4407 if (xhci_besl_encoding[besl_host] >= u2del)
4408 break;
4409 }
4410 /* Use baseline BESL value as default */
4411 if (field & USB_BESL_BASELINE_VALID)
4412 besl_device = USB_GET_BESL_BASELINE(field);
4413 else if (field & USB_BESL_DEEP_VALID)
4414 besl_device = USB_GET_BESL_DEEP(field);
4415 } else {
4416 if (u2del <= 50)
4417 besl_host = 0;
4418 else
4419 besl_host = (u2del - 51) / 75 + 1;
4420 }
4421
4422 besl = besl_host + besl_device;
4423 if (besl > 15)
4424 besl = 15;
4425
4426 return besl;
4427 }
4428
4429 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4430 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4431 {
4432 u32 field;
4433 int l1;
4434 int besld = 0;
4435 int hirdm = 0;
4436
4437 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4438
4439 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4440 l1 = udev->l1_params.timeout / 256;
4441
4442 /* device has preferred BESLD */
4443 if (field & USB_BESL_DEEP_VALID) {
4444 besld = USB_GET_BESL_DEEP(field);
4445 hirdm = 1;
4446 }
4447
4448 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4449 }
4450
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4451 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4452 struct usb_device *udev, int enable)
4453 {
4454 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4455 struct xhci_port **ports;
4456 __le32 __iomem *pm_addr, *hlpm_addr;
4457 u32 pm_val, hlpm_val, field;
4458 unsigned int port_num;
4459 unsigned long flags;
4460 int hird, exit_latency;
4461 int ret;
4462
4463 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4464 return -EPERM;
4465
4466 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4467 !udev->lpm_capable)
4468 return -EPERM;
4469
4470 if (!udev->parent || udev->parent->parent ||
4471 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4472 return -EPERM;
4473
4474 if (udev->usb2_hw_lpm_capable != 1)
4475 return -EPERM;
4476
4477 spin_lock_irqsave(&xhci->lock, flags);
4478
4479 ports = xhci->usb2_rhub.ports;
4480 port_num = udev->portnum - 1;
4481 pm_addr = ports[port_num]->addr + PORTPMSC;
4482 pm_val = readl(pm_addr);
4483 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4484
4485 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4486 enable ? "enable" : "disable", port_num + 1);
4487
4488 if (enable) {
4489 /* Host supports BESL timeout instead of HIRD */
4490 if (udev->usb2_hw_lpm_besl_capable) {
4491 /* if device doesn't have a preferred BESL value use a
4492 * default one which works with mixed HIRD and BESL
4493 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4494 */
4495 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4496 if ((field & USB_BESL_SUPPORT) &&
4497 (field & USB_BESL_BASELINE_VALID))
4498 hird = USB_GET_BESL_BASELINE(field);
4499 else
4500 hird = udev->l1_params.besl;
4501
4502 exit_latency = xhci_besl_encoding[hird];
4503 spin_unlock_irqrestore(&xhci->lock, flags);
4504
4505 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4506 * input context for link powermanagement evaluate
4507 * context commands. It is protected by hcd->bandwidth
4508 * mutex and is shared by all devices. We need to set
4509 * the max ext latency in USB 2 BESL LPM as well, so
4510 * use the same mutex and xhci_change_max_exit_latency()
4511 */
4512 mutex_lock(hcd->bandwidth_mutex);
4513 ret = xhci_change_max_exit_latency(xhci, udev,
4514 exit_latency);
4515 mutex_unlock(hcd->bandwidth_mutex);
4516
4517 if (ret < 0)
4518 return ret;
4519 spin_lock_irqsave(&xhci->lock, flags);
4520
4521 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4522 writel(hlpm_val, hlpm_addr);
4523 /* flush write */
4524 readl(hlpm_addr);
4525 } else {
4526 hird = xhci_calculate_hird_besl(xhci, udev);
4527 }
4528
4529 pm_val &= ~PORT_HIRD_MASK;
4530 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4531 writel(pm_val, pm_addr);
4532 pm_val = readl(pm_addr);
4533 pm_val |= PORT_HLE;
4534 writel(pm_val, pm_addr);
4535 /* flush write */
4536 readl(pm_addr);
4537 } else {
4538 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4539 writel(pm_val, pm_addr);
4540 /* flush write */
4541 readl(pm_addr);
4542 if (udev->usb2_hw_lpm_besl_capable) {
4543 spin_unlock_irqrestore(&xhci->lock, flags);
4544 mutex_lock(hcd->bandwidth_mutex);
4545 xhci_change_max_exit_latency(xhci, udev, 0);
4546 mutex_unlock(hcd->bandwidth_mutex);
4547 readl_poll_timeout(ports[port_num]->addr, pm_val,
4548 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4549 100, 10000);
4550 return 0;
4551 }
4552 }
4553
4554 spin_unlock_irqrestore(&xhci->lock, flags);
4555 return 0;
4556 }
4557
4558 /* check if a usb2 port supports a given extened capability protocol
4559 * only USB2 ports extended protocol capability values are cached.
4560 * Return 1 if capability is supported
4561 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4562 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4563 unsigned capability)
4564 {
4565 u32 port_offset, port_count;
4566 int i;
4567
4568 for (i = 0; i < xhci->num_ext_caps; i++) {
4569 if (xhci->ext_caps[i] & capability) {
4570 /* port offsets starts at 1 */
4571 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4572 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4573 if (port >= port_offset &&
4574 port < port_offset + port_count)
4575 return 1;
4576 }
4577 }
4578 return 0;
4579 }
4580
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4581 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4582 {
4583 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4584 int portnum = udev->portnum - 1;
4585
4586 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4587 return 0;
4588
4589 /* we only support lpm for non-hub device connected to root hub yet */
4590 if (!udev->parent || udev->parent->parent ||
4591 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4592 return 0;
4593
4594 if (xhci->hw_lpm_support == 1 &&
4595 xhci_check_usb2_port_capability(
4596 xhci, portnum, XHCI_HLC)) {
4597 udev->usb2_hw_lpm_capable = 1;
4598 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4599 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4600 if (xhci_check_usb2_port_capability(xhci, portnum,
4601 XHCI_BLC))
4602 udev->usb2_hw_lpm_besl_capable = 1;
4603 }
4604
4605 return 0;
4606 }
4607
4608 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4609
4610 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4611 static unsigned long long xhci_service_interval_to_ns(
4612 struct usb_endpoint_descriptor *desc)
4613 {
4614 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4615 }
4616
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4617 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4618 enum usb3_link_state state)
4619 {
4620 unsigned long long sel;
4621 unsigned long long pel;
4622 unsigned int max_sel_pel;
4623 char *state_name;
4624
4625 switch (state) {
4626 case USB3_LPM_U1:
4627 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4628 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4629 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4630 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4631 state_name = "U1";
4632 break;
4633 case USB3_LPM_U2:
4634 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4635 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4636 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4637 state_name = "U2";
4638 break;
4639 default:
4640 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4641 __func__);
4642 return USB3_LPM_DISABLED;
4643 }
4644
4645 if (sel <= max_sel_pel && pel <= max_sel_pel)
4646 return USB3_LPM_DEVICE_INITIATED;
4647
4648 if (sel > max_sel_pel)
4649 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4650 "due to long SEL %llu ms\n",
4651 state_name, sel);
4652 else
4653 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4654 "due to long PEL %llu ms\n",
4655 state_name, pel);
4656 return USB3_LPM_DISABLED;
4657 }
4658
4659 /* The U1 timeout should be the maximum of the following values:
4660 * - For control endpoints, U1 system exit latency (SEL) * 3
4661 * - For bulk endpoints, U1 SEL * 5
4662 * - For interrupt endpoints:
4663 * - Notification EPs, U1 SEL * 3
4664 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4665 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4666 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4667 static unsigned long long xhci_calculate_intel_u1_timeout(
4668 struct usb_device *udev,
4669 struct usb_endpoint_descriptor *desc)
4670 {
4671 unsigned long long timeout_ns;
4672 int ep_type;
4673 int intr_type;
4674
4675 ep_type = usb_endpoint_type(desc);
4676 switch (ep_type) {
4677 case USB_ENDPOINT_XFER_CONTROL:
4678 timeout_ns = udev->u1_params.sel * 3;
4679 break;
4680 case USB_ENDPOINT_XFER_BULK:
4681 timeout_ns = udev->u1_params.sel * 5;
4682 break;
4683 case USB_ENDPOINT_XFER_INT:
4684 intr_type = usb_endpoint_interrupt_type(desc);
4685 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4686 timeout_ns = udev->u1_params.sel * 3;
4687 break;
4688 }
4689 /* Otherwise the calculation is the same as isoc eps */
4690 fallthrough;
4691 case USB_ENDPOINT_XFER_ISOC:
4692 timeout_ns = xhci_service_interval_to_ns(desc);
4693 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4694 if (timeout_ns < udev->u1_params.sel * 2)
4695 timeout_ns = udev->u1_params.sel * 2;
4696 break;
4697 default:
4698 return 0;
4699 }
4700
4701 return timeout_ns;
4702 }
4703
4704 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4705 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4706 struct usb_device *udev,
4707 struct usb_endpoint_descriptor *desc)
4708 {
4709 unsigned long long timeout_ns;
4710
4711 /* Prevent U1 if service interval is shorter than U1 exit latency */
4712 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4713 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4714 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4715 return USB3_LPM_DISABLED;
4716 }
4717 }
4718
4719 if (xhci->quirks & XHCI_INTEL_HOST)
4720 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4721 else
4722 timeout_ns = udev->u1_params.sel;
4723
4724 /* The U1 timeout is encoded in 1us intervals.
4725 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4726 */
4727 if (timeout_ns == USB3_LPM_DISABLED)
4728 timeout_ns = 1;
4729 else
4730 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4731
4732 /* If the necessary timeout value is bigger than what we can set in the
4733 * USB 3.0 hub, we have to disable hub-initiated U1.
4734 */
4735 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4736 return timeout_ns;
4737 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4738 "due to long timeout %llu ms\n", timeout_ns);
4739 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4740 }
4741
4742 /* The U2 timeout should be the maximum of:
4743 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4744 * - largest bInterval of any active periodic endpoint (to avoid going
4745 * into lower power link states between intervals).
4746 * - the U2 Exit Latency of the device
4747 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4748 static unsigned long long xhci_calculate_intel_u2_timeout(
4749 struct usb_device *udev,
4750 struct usb_endpoint_descriptor *desc)
4751 {
4752 unsigned long long timeout_ns;
4753 unsigned long long u2_del_ns;
4754
4755 timeout_ns = 10 * 1000 * 1000;
4756
4757 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4758 (xhci_service_interval_to_ns(desc) > timeout_ns))
4759 timeout_ns = xhci_service_interval_to_ns(desc);
4760
4761 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4762 if (u2_del_ns > timeout_ns)
4763 timeout_ns = u2_del_ns;
4764
4765 return timeout_ns;
4766 }
4767
4768 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4769 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4770 struct usb_device *udev,
4771 struct usb_endpoint_descriptor *desc)
4772 {
4773 unsigned long long timeout_ns;
4774
4775 /* Prevent U2 if service interval is shorter than U2 exit latency */
4776 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4777 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4778 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4779 return USB3_LPM_DISABLED;
4780 }
4781 }
4782
4783 if (xhci->quirks & XHCI_INTEL_HOST)
4784 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4785 else
4786 timeout_ns = udev->u2_params.sel;
4787
4788 /* The U2 timeout is encoded in 256us intervals */
4789 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4790 /* If the necessary timeout value is bigger than what we can set in the
4791 * USB 3.0 hub, we have to disable hub-initiated U2.
4792 */
4793 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4794 return timeout_ns;
4795 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4796 "due to long timeout %llu ms\n", timeout_ns);
4797 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4798 }
4799
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4800 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4801 struct usb_device *udev,
4802 struct usb_endpoint_descriptor *desc,
4803 enum usb3_link_state state,
4804 u16 *timeout)
4805 {
4806 if (state == USB3_LPM_U1)
4807 return xhci_calculate_u1_timeout(xhci, udev, desc);
4808 else if (state == USB3_LPM_U2)
4809 return xhci_calculate_u2_timeout(xhci, udev, desc);
4810
4811 return USB3_LPM_DISABLED;
4812 }
4813
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4814 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4815 struct usb_device *udev,
4816 struct usb_endpoint_descriptor *desc,
4817 enum usb3_link_state state,
4818 u16 *timeout)
4819 {
4820 u16 alt_timeout;
4821
4822 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4823 desc, state, timeout);
4824
4825 /* If we found we can't enable hub-initiated LPM, and
4826 * the U1 or U2 exit latency was too high to allow
4827 * device-initiated LPM as well, then we will disable LPM
4828 * for this device, so stop searching any further.
4829 */
4830 if (alt_timeout == USB3_LPM_DISABLED) {
4831 *timeout = alt_timeout;
4832 return -E2BIG;
4833 }
4834 if (alt_timeout > *timeout)
4835 *timeout = alt_timeout;
4836 return 0;
4837 }
4838
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4839 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4840 struct usb_device *udev,
4841 struct usb_host_interface *alt,
4842 enum usb3_link_state state,
4843 u16 *timeout)
4844 {
4845 int j;
4846
4847 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4848 if (xhci_update_timeout_for_endpoint(xhci, udev,
4849 &alt->endpoint[j].desc, state, timeout))
4850 return -E2BIG;
4851 continue;
4852 }
4853 return 0;
4854 }
4855
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4856 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4857 enum usb3_link_state state)
4858 {
4859 struct usb_device *parent;
4860 unsigned int num_hubs;
4861
4862 if (state == USB3_LPM_U2)
4863 return 0;
4864
4865 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4866 for (parent = udev->parent, num_hubs = 0; parent->parent;
4867 parent = parent->parent)
4868 num_hubs++;
4869
4870 if (num_hubs < 2)
4871 return 0;
4872
4873 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4874 " below second-tier hub.\n");
4875 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4876 "to decrease power consumption.\n");
4877 return -E2BIG;
4878 }
4879
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4880 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4881 struct usb_device *udev,
4882 enum usb3_link_state state)
4883 {
4884 if (xhci->quirks & XHCI_INTEL_HOST)
4885 return xhci_check_intel_tier_policy(udev, state);
4886 else
4887 return 0;
4888 }
4889
4890 /* Returns the U1 or U2 timeout that should be enabled.
4891 * If the tier check or timeout setting functions return with a non-zero exit
4892 * code, that means the timeout value has been finalized and we shouldn't look
4893 * at any more endpoints.
4894 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4895 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4896 struct usb_device *udev, enum usb3_link_state state)
4897 {
4898 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4899 struct usb_host_config *config;
4900 char *state_name;
4901 int i;
4902 u16 timeout = USB3_LPM_DISABLED;
4903
4904 if (state == USB3_LPM_U1)
4905 state_name = "U1";
4906 else if (state == USB3_LPM_U2)
4907 state_name = "U2";
4908 else {
4909 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4910 state);
4911 return timeout;
4912 }
4913
4914 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4915 return timeout;
4916
4917 /* Gather some information about the currently installed configuration
4918 * and alternate interface settings.
4919 */
4920 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4921 state, &timeout))
4922 return timeout;
4923
4924 config = udev->actconfig;
4925 if (!config)
4926 return timeout;
4927
4928 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4929 struct usb_driver *driver;
4930 struct usb_interface *intf = config->interface[i];
4931
4932 if (!intf)
4933 continue;
4934
4935 /* Check if any currently bound drivers want hub-initiated LPM
4936 * disabled.
4937 */
4938 if (intf->dev.driver) {
4939 driver = to_usb_driver(intf->dev.driver);
4940 if (driver && driver->disable_hub_initiated_lpm) {
4941 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4942 state_name, driver->name);
4943 timeout = xhci_get_timeout_no_hub_lpm(udev,
4944 state);
4945 if (timeout == USB3_LPM_DISABLED)
4946 return timeout;
4947 }
4948 }
4949
4950 /* Not sure how this could happen... */
4951 if (!intf->cur_altsetting)
4952 continue;
4953
4954 if (xhci_update_timeout_for_interface(xhci, udev,
4955 intf->cur_altsetting,
4956 state, &timeout))
4957 return timeout;
4958 }
4959 return timeout;
4960 }
4961
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4962 static int calculate_max_exit_latency(struct usb_device *udev,
4963 enum usb3_link_state state_changed,
4964 u16 hub_encoded_timeout)
4965 {
4966 unsigned long long u1_mel_us = 0;
4967 unsigned long long u2_mel_us = 0;
4968 unsigned long long mel_us = 0;
4969 bool disabling_u1;
4970 bool disabling_u2;
4971 bool enabling_u1;
4972 bool enabling_u2;
4973
4974 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4975 hub_encoded_timeout == USB3_LPM_DISABLED);
4976 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4977 hub_encoded_timeout == USB3_LPM_DISABLED);
4978
4979 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4980 hub_encoded_timeout != USB3_LPM_DISABLED);
4981 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4982 hub_encoded_timeout != USB3_LPM_DISABLED);
4983
4984 /* If U1 was already enabled and we're not disabling it,
4985 * or we're going to enable U1, account for the U1 max exit latency.
4986 */
4987 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4988 enabling_u1)
4989 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4990 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4991 enabling_u2)
4992 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4993
4994 if (u1_mel_us > u2_mel_us)
4995 mel_us = u1_mel_us;
4996 else
4997 mel_us = u2_mel_us;
4998 /* xHCI host controller max exit latency field is only 16 bits wide. */
4999 if (mel_us > MAX_EXIT) {
5000 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5001 "is too big.\n", mel_us);
5002 return -E2BIG;
5003 }
5004 return mel_us;
5005 }
5006
5007 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5008 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5009 struct usb_device *udev, enum usb3_link_state state)
5010 {
5011 struct xhci_hcd *xhci;
5012 struct xhci_port *port;
5013 u16 hub_encoded_timeout;
5014 int mel;
5015 int ret;
5016
5017 xhci = hcd_to_xhci(hcd);
5018 /* The LPM timeout values are pretty host-controller specific, so don't
5019 * enable hub-initiated timeouts unless the vendor has provided
5020 * information about their timeout algorithm.
5021 */
5022 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5023 !xhci->devs[udev->slot_id])
5024 return USB3_LPM_DISABLED;
5025
5026 /* If connected to root port then check port can handle lpm */
5027 if (udev->parent && !udev->parent->parent) {
5028 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5029 if (port->lpm_incapable)
5030 return USB3_LPM_DISABLED;
5031 }
5032
5033 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5034 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5035 if (mel < 0) {
5036 /* Max Exit Latency is too big, disable LPM. */
5037 hub_encoded_timeout = USB3_LPM_DISABLED;
5038 mel = 0;
5039 }
5040
5041 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5042 if (ret)
5043 return ret;
5044 return hub_encoded_timeout;
5045 }
5046
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5047 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5048 struct usb_device *udev, enum usb3_link_state state)
5049 {
5050 struct xhci_hcd *xhci;
5051 u16 mel;
5052
5053 xhci = hcd_to_xhci(hcd);
5054 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5055 !xhci->devs[udev->slot_id])
5056 return 0;
5057
5058 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5059 return xhci_change_max_exit_latency(xhci, udev, mel);
5060 }
5061 #else /* CONFIG_PM */
5062
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5063 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5064 struct usb_device *udev, int enable)
5065 {
5066 return 0;
5067 }
5068
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5069 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5070 {
5071 return 0;
5072 }
5073
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5074 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5075 struct usb_device *udev, enum usb3_link_state state)
5076 {
5077 return USB3_LPM_DISABLED;
5078 }
5079
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5080 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5081 struct usb_device *udev, enum usb3_link_state state)
5082 {
5083 return 0;
5084 }
5085 #endif /* CONFIG_PM */
5086
5087 /*-------------------------------------------------------------------------*/
5088
5089 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5090 * internal data structures for the device.
5091 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5092 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5093 struct usb_tt *tt, gfp_t mem_flags)
5094 {
5095 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5096 struct xhci_virt_device *vdev;
5097 struct xhci_command *config_cmd;
5098 struct xhci_input_control_ctx *ctrl_ctx;
5099 struct xhci_slot_ctx *slot_ctx;
5100 unsigned long flags;
5101 unsigned think_time;
5102 int ret;
5103
5104 /* Ignore root hubs */
5105 if (!hdev->parent)
5106 return 0;
5107
5108 vdev = xhci->devs[hdev->slot_id];
5109 if (!vdev) {
5110 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5111 return -EINVAL;
5112 }
5113
5114 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5115 if (!config_cmd)
5116 return -ENOMEM;
5117
5118 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5119 if (!ctrl_ctx) {
5120 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5121 __func__);
5122 xhci_free_command(xhci, config_cmd);
5123 return -ENOMEM;
5124 }
5125
5126 spin_lock_irqsave(&xhci->lock, flags);
5127 if (hdev->speed == USB_SPEED_HIGH &&
5128 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5129 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5130 xhci_free_command(xhci, config_cmd);
5131 spin_unlock_irqrestore(&xhci->lock, flags);
5132 return -ENOMEM;
5133 }
5134
5135 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5136 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5137 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5138 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5139 /*
5140 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5141 * but it may be already set to 1 when setup an xHCI virtual
5142 * device, so clear it anyway.
5143 */
5144 if (tt->multi)
5145 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5146 else if (hdev->speed == USB_SPEED_FULL)
5147 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5148
5149 if (xhci->hci_version > 0x95) {
5150 xhci_dbg(xhci, "xHCI version %x needs hub "
5151 "TT think time and number of ports\n",
5152 (unsigned int) xhci->hci_version);
5153 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5154 /* Set TT think time - convert from ns to FS bit times.
5155 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5156 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5157 *
5158 * xHCI 1.0: this field shall be 0 if the device is not a
5159 * High-spped hub.
5160 */
5161 think_time = tt->think_time;
5162 if (think_time != 0)
5163 think_time = (think_time / 666) - 1;
5164 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5165 slot_ctx->tt_info |=
5166 cpu_to_le32(TT_THINK_TIME(think_time));
5167 } else {
5168 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5169 "TT think time or number of ports\n",
5170 (unsigned int) xhci->hci_version);
5171 }
5172 slot_ctx->dev_state = 0;
5173 spin_unlock_irqrestore(&xhci->lock, flags);
5174
5175 xhci_dbg(xhci, "Set up %s for hub device.\n",
5176 (xhci->hci_version > 0x95) ?
5177 "configure endpoint" : "evaluate context");
5178
5179 /* Issue and wait for the configure endpoint or
5180 * evaluate context command.
5181 */
5182 if (xhci->hci_version > 0x95)
5183 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5184 false, false);
5185 else
5186 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5187 true, false);
5188
5189 xhci_free_command(xhci, config_cmd);
5190 return ret;
5191 }
5192 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5193
xhci_get_frame(struct usb_hcd * hcd)5194 static int xhci_get_frame(struct usb_hcd *hcd)
5195 {
5196 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5197 /* EHCI mods by the periodic size. Why? */
5198 return readl(&xhci->run_regs->microframe_index) >> 3;
5199 }
5200
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5201 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5202 {
5203 struct xhci_hcd *xhci;
5204 /*
5205 * TODO: Check with DWC3 clients for sysdev according to
5206 * quirks
5207 */
5208 struct device *dev = hcd->self.sysdev;
5209 unsigned int minor_rev;
5210 int retval;
5211
5212 /* Accept arbitrarily long scatter-gather lists */
5213 hcd->self.sg_tablesize = ~0;
5214
5215 /* support to build packet from discontinuous buffers */
5216 hcd->self.no_sg_constraint = 1;
5217
5218 /* XHCI controllers don't stop the ep queue on short packets :| */
5219 hcd->self.no_stop_on_short = 1;
5220
5221 xhci = hcd_to_xhci(hcd);
5222
5223 if (usb_hcd_is_primary_hcd(hcd)) {
5224 xhci->main_hcd = hcd;
5225 xhci->usb2_rhub.hcd = hcd;
5226 /* Mark the first roothub as being USB 2.0.
5227 * The xHCI driver will register the USB 3.0 roothub.
5228 */
5229 hcd->speed = HCD_USB2;
5230 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5231 /*
5232 * USB 2.0 roothub under xHCI has an integrated TT,
5233 * (rate matching hub) as opposed to having an OHCI/UHCI
5234 * companion controller.
5235 */
5236 hcd->has_tt = 1;
5237 } else {
5238 /*
5239 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5240 * should return 0x31 for sbrn, or that the minor revision
5241 * is a two digit BCD containig minor and sub-minor numbers.
5242 * This was later clarified in xHCI 1.2.
5243 *
5244 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5245 * minor revision set to 0x1 instead of 0x10.
5246 */
5247 if (xhci->usb3_rhub.min_rev == 0x1)
5248 minor_rev = 1;
5249 else
5250 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5251
5252 switch (minor_rev) {
5253 case 2:
5254 hcd->speed = HCD_USB32;
5255 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5256 hcd->self.root_hub->rx_lanes = 2;
5257 hcd->self.root_hub->tx_lanes = 2;
5258 break;
5259 case 1:
5260 hcd->speed = HCD_USB31;
5261 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5262 break;
5263 }
5264 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5265 minor_rev,
5266 minor_rev ? "Enhanced " : "");
5267
5268 xhci->usb3_rhub.hcd = hcd;
5269 /* xHCI private pointer was set in xhci_pci_probe for the second
5270 * registered roothub.
5271 */
5272 return 0;
5273 }
5274
5275 mutex_init(&xhci->mutex);
5276 xhci->cap_regs = hcd->regs;
5277 xhci->op_regs = hcd->regs +
5278 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5279 xhci->run_regs = hcd->regs +
5280 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5281 /* Cache read-only capability registers */
5282 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5283 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5284 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5285 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5286 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5287 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5288 if (xhci->hci_version > 0x100)
5289 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5290
5291 xhci->quirks |= quirks;
5292
5293 get_quirks(dev, xhci);
5294
5295 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5296 * success event after a short transfer. This quirk will ignore such
5297 * spurious event.
5298 */
5299 if (xhci->hci_version > 0x96)
5300 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5301
5302 /* Make sure the HC is halted. */
5303 retval = xhci_halt(xhci);
5304 if (retval)
5305 return retval;
5306
5307 xhci_zero_64b_regs(xhci);
5308
5309 xhci_dbg(xhci, "Resetting HCD\n");
5310 /* Reset the internal HC memory state and registers. */
5311 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5312 if (retval)
5313 return retval;
5314 xhci_dbg(xhci, "Reset complete\n");
5315
5316 /*
5317 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5318 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5319 * address memory pointers actually. So, this driver clears the AC64
5320 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5321 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5322 */
5323 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5324 xhci->hcc_params &= ~BIT(0);
5325
5326 /* Set dma_mask and coherent_dma_mask to 64-bits,
5327 * if xHC supports 64-bit addressing */
5328 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5329 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5330 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5331 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5332 } else {
5333 /*
5334 * This is to avoid error in cases where a 32-bit USB
5335 * controller is used on a 64-bit capable system.
5336 */
5337 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5338 if (retval)
5339 return retval;
5340 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5341 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5342 }
5343
5344 xhci_dbg(xhci, "Calling HCD init\n");
5345 /* Initialize HCD and host controller data structures. */
5346 retval = xhci_init(hcd);
5347 if (retval)
5348 return retval;
5349 xhci_dbg(xhci, "Called HCD init\n");
5350
5351 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5352 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5353
5354 return 0;
5355 }
5356 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5357
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5358 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5359 struct usb_host_endpoint *ep)
5360 {
5361 struct xhci_hcd *xhci;
5362 struct usb_device *udev;
5363 unsigned int slot_id;
5364 unsigned int ep_index;
5365 unsigned long flags;
5366
5367 xhci = hcd_to_xhci(hcd);
5368
5369 spin_lock_irqsave(&xhci->lock, flags);
5370 udev = (struct usb_device *)ep->hcpriv;
5371 slot_id = udev->slot_id;
5372 ep_index = xhci_get_endpoint_index(&ep->desc);
5373
5374 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5375 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5376 spin_unlock_irqrestore(&xhci->lock, flags);
5377 }
5378
5379 static const struct hc_driver xhci_hc_driver = {
5380 .description = "xhci-hcd",
5381 .product_desc = "xHCI Host Controller",
5382 .hcd_priv_size = sizeof(struct xhci_hcd),
5383
5384 /*
5385 * generic hardware linkage
5386 */
5387 .irq = xhci_irq,
5388 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5389 HCD_BH,
5390
5391 /*
5392 * basic lifecycle operations
5393 */
5394 .reset = NULL, /* set in xhci_init_driver() */
5395 .start = xhci_run,
5396 .stop = xhci_stop,
5397 .shutdown = xhci_shutdown,
5398
5399 /*
5400 * managing i/o requests and associated device resources
5401 */
5402 .map_urb_for_dma = xhci_map_urb_for_dma,
5403 .urb_enqueue = xhci_urb_enqueue,
5404 .urb_dequeue = xhci_urb_dequeue,
5405 .alloc_dev = xhci_alloc_dev,
5406 .free_dev = xhci_free_dev,
5407 .alloc_streams = xhci_alloc_streams,
5408 .free_streams = xhci_free_streams,
5409 .add_endpoint = xhci_add_endpoint,
5410 .drop_endpoint = xhci_drop_endpoint,
5411 .endpoint_disable = xhci_endpoint_disable,
5412 .endpoint_reset = xhci_endpoint_reset,
5413 .check_bandwidth = xhci_check_bandwidth,
5414 .reset_bandwidth = xhci_reset_bandwidth,
5415 .address_device = xhci_address_device,
5416 .enable_device = xhci_enable_device,
5417 .update_hub_device = xhci_update_hub_device,
5418 .reset_device = xhci_discover_or_reset_device,
5419
5420 /*
5421 * scheduling support
5422 */
5423 .get_frame_number = xhci_get_frame,
5424
5425 /*
5426 * root hub support
5427 */
5428 .hub_control = xhci_hub_control,
5429 .hub_status_data = xhci_hub_status_data,
5430 .bus_suspend = xhci_bus_suspend,
5431 .bus_resume = xhci_bus_resume,
5432 .get_resuming_ports = xhci_get_resuming_ports,
5433
5434 /*
5435 * call back when device connected and addressed
5436 */
5437 .update_device = xhci_update_device,
5438 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5439 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5440 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5441 .find_raw_port_number = xhci_find_raw_port_number,
5442 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5443 };
5444
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5445 void xhci_init_driver(struct hc_driver *drv,
5446 const struct xhci_driver_overrides *over)
5447 {
5448 BUG_ON(!over);
5449
5450 /* Copy the generic table to drv then apply the overrides */
5451 *drv = xhci_hc_driver;
5452
5453 if (over) {
5454 drv->hcd_priv_size += over->extra_priv_size;
5455 if (over->reset)
5456 drv->reset = over->reset;
5457 if (over->start)
5458 drv->start = over->start;
5459 if (over->check_bandwidth)
5460 drv->check_bandwidth = over->check_bandwidth;
5461 if (over->reset_bandwidth)
5462 drv->reset_bandwidth = over->reset_bandwidth;
5463 if (over->update_hub_device)
5464 drv->update_hub_device = over->update_hub_device;
5465 }
5466 }
5467 EXPORT_SYMBOL_GPL(xhci_init_driver);
5468
5469 MODULE_DESCRIPTION(DRIVER_DESC);
5470 MODULE_AUTHOR(DRIVER_AUTHOR);
5471 MODULE_LICENSE("GPL");
5472
xhci_hcd_init(void)5473 static int __init xhci_hcd_init(void)
5474 {
5475 /*
5476 * Check the compiler generated sizes of structures that must be laid
5477 * out in specific ways for hardware access.
5478 */
5479 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5480 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5481 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5482 /* xhci_device_control has eight fields, and also
5483 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5484 */
5485 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5486 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5487 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5488 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5489 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5490 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5491 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5492
5493 if (usb_disabled())
5494 return -ENODEV;
5495
5496 xhci_debugfs_create_root();
5497
5498 return 0;
5499 }
5500
5501 /*
5502 * If an init function is provided, an exit function must also be provided
5503 * to allow module unload.
5504 */
xhci_hcd_fini(void)5505 static void __exit xhci_hcd_fini(void)
5506 {
5507 xhci_debugfs_remove_root();
5508 }
5509
5510 module_init(xhci_hcd_init);
5511 module_exit(xhci_hcd_fini);
5512