1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_extfree_item.h"
18 #include "xfs_log.h"
19 #include "xfs_btree.h"
20 #include "xfs_rmap.h"
21 #include "xfs_alloc.h"
22 #include "xfs_bmap.h"
23 #include "xfs_trace.h"
24 #include "xfs_error.h"
25 #include "xfs_log_priv.h"
26 #include "xfs_log_recover.h"
27
28 kmem_zone_t *xfs_efi_zone;
29 kmem_zone_t *xfs_efd_zone;
30
31 static const struct xfs_item_ops xfs_efi_item_ops;
32
EFI_ITEM(struct xfs_log_item * lip)33 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
34 {
35 return container_of(lip, struct xfs_efi_log_item, efi_item);
36 }
37
38 STATIC void
xfs_efi_item_free(struct xfs_efi_log_item * efip)39 xfs_efi_item_free(
40 struct xfs_efi_log_item *efip)
41 {
42 kmem_free(efip->efi_item.li_lv_shadow);
43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44 kmem_free(efip);
45 else
46 kmem_cache_free(xfs_efi_zone, efip);
47 }
48
49 /*
50 * Freeing the efi requires that we remove it from the AIL if it has already
51 * been placed there. However, the EFI may not yet have been placed in the AIL
52 * when called by xfs_efi_release() from EFD processing due to the ordering of
53 * committed vs unpin operations in bulk insert operations. Hence the reference
54 * count to ensure only the last caller frees the EFI.
55 */
56 STATIC void
xfs_efi_release(struct xfs_efi_log_item * efip)57 xfs_efi_release(
58 struct xfs_efi_log_item *efip)
59 {
60 ASSERT(atomic_read(&efip->efi_refcount) > 0);
61 if (atomic_dec_and_test(&efip->efi_refcount)) {
62 xfs_trans_ail_delete(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
63 xfs_efi_item_free(efip);
64 }
65 }
66
67 /*
68 * This returns the number of iovecs needed to log the given efi item.
69 * We only need 1 iovec for an efi item. It just logs the efi_log_format
70 * structure.
71 */
72 static inline int
xfs_efi_item_sizeof(struct xfs_efi_log_item * efip)73 xfs_efi_item_sizeof(
74 struct xfs_efi_log_item *efip)
75 {
76 return sizeof(struct xfs_efi_log_format) +
77 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
78 }
79
80 STATIC void
xfs_efi_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)81 xfs_efi_item_size(
82 struct xfs_log_item *lip,
83 int *nvecs,
84 int *nbytes)
85 {
86 *nvecs += 1;
87 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
88 }
89
90 /*
91 * This is called to fill in the vector of log iovecs for the
92 * given efi log item. We use only 1 iovec, and we point that
93 * at the efi_log_format structure embedded in the efi item.
94 * It is at this point that we assert that all of the extent
95 * slots in the efi item have been filled.
96 */
97 STATIC void
xfs_efi_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)98 xfs_efi_item_format(
99 struct xfs_log_item *lip,
100 struct xfs_log_vec *lv)
101 {
102 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
103 struct xfs_log_iovec *vecp = NULL;
104
105 ASSERT(atomic_read(&efip->efi_next_extent) ==
106 efip->efi_format.efi_nextents);
107
108 efip->efi_format.efi_type = XFS_LI_EFI;
109 efip->efi_format.efi_size = 1;
110
111 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
112 &efip->efi_format,
113 xfs_efi_item_sizeof(efip));
114 }
115
116
117 /*
118 * The unpin operation is the last place an EFI is manipulated in the log. It is
119 * either inserted in the AIL or aborted in the event of a log I/O error. In
120 * either case, the EFI transaction has been successfully committed to make it
121 * this far. Therefore, we expect whoever committed the EFI to either construct
122 * and commit the EFD or drop the EFD's reference in the event of error. Simply
123 * drop the log's EFI reference now that the log is done with it.
124 */
125 STATIC void
xfs_efi_item_unpin(struct xfs_log_item * lip,int remove)126 xfs_efi_item_unpin(
127 struct xfs_log_item *lip,
128 int remove)
129 {
130 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
131 xfs_efi_release(efip);
132 }
133
134 /*
135 * The EFI has been either committed or aborted if the transaction has been
136 * cancelled. If the transaction was cancelled, an EFD isn't going to be
137 * constructed and thus we free the EFI here directly.
138 */
139 STATIC void
xfs_efi_item_release(struct xfs_log_item * lip)140 xfs_efi_item_release(
141 struct xfs_log_item *lip)
142 {
143 xfs_efi_release(EFI_ITEM(lip));
144 }
145
146 /*
147 * Allocate and initialize an efi item with the given number of extents.
148 */
149 STATIC struct xfs_efi_log_item *
xfs_efi_init(struct xfs_mount * mp,uint nextents)150 xfs_efi_init(
151 struct xfs_mount *mp,
152 uint nextents)
153
154 {
155 struct xfs_efi_log_item *efip;
156 uint size;
157
158 ASSERT(nextents > 0);
159 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
160 size = (uint)(sizeof(struct xfs_efi_log_item) +
161 ((nextents - 1) * sizeof(xfs_extent_t)));
162 efip = kmem_zalloc(size, 0);
163 } else {
164 efip = kmem_cache_zalloc(xfs_efi_zone,
165 GFP_KERNEL | __GFP_NOFAIL);
166 }
167
168 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
169 efip->efi_format.efi_nextents = nextents;
170 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
171 atomic_set(&efip->efi_next_extent, 0);
172 atomic_set(&efip->efi_refcount, 2);
173
174 return efip;
175 }
176
177 /*
178 * Copy an EFI format buffer from the given buf, and into the destination
179 * EFI format structure.
180 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
181 * one of which will be the native format for this kernel.
182 * It will handle the conversion of formats if necessary.
183 */
184 STATIC int
xfs_efi_copy_format(xfs_log_iovec_t * buf,xfs_efi_log_format_t * dst_efi_fmt)185 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
186 {
187 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
188 uint i;
189 uint len = sizeof(xfs_efi_log_format_t) +
190 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
191 uint len32 = sizeof(xfs_efi_log_format_32_t) +
192 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
193 uint len64 = sizeof(xfs_efi_log_format_64_t) +
194 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
195
196 if (buf->i_len == len) {
197 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
198 return 0;
199 } else if (buf->i_len == len32) {
200 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
201
202 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
203 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
204 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
205 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
206 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
207 dst_efi_fmt->efi_extents[i].ext_start =
208 src_efi_fmt_32->efi_extents[i].ext_start;
209 dst_efi_fmt->efi_extents[i].ext_len =
210 src_efi_fmt_32->efi_extents[i].ext_len;
211 }
212 return 0;
213 } else if (buf->i_len == len64) {
214 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
215
216 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
217 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
218 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
219 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
220 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
221 dst_efi_fmt->efi_extents[i].ext_start =
222 src_efi_fmt_64->efi_extents[i].ext_start;
223 dst_efi_fmt->efi_extents[i].ext_len =
224 src_efi_fmt_64->efi_extents[i].ext_len;
225 }
226 return 0;
227 }
228 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
229 return -EFSCORRUPTED;
230 }
231
EFD_ITEM(struct xfs_log_item * lip)232 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
233 {
234 return container_of(lip, struct xfs_efd_log_item, efd_item);
235 }
236
237 STATIC void
xfs_efd_item_free(struct xfs_efd_log_item * efdp)238 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
239 {
240 kmem_free(efdp->efd_item.li_lv_shadow);
241 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
242 kmem_free(efdp);
243 else
244 kmem_cache_free(xfs_efd_zone, efdp);
245 }
246
247 /*
248 * This returns the number of iovecs needed to log the given efd item.
249 * We only need 1 iovec for an efd item. It just logs the efd_log_format
250 * structure.
251 */
252 static inline int
xfs_efd_item_sizeof(struct xfs_efd_log_item * efdp)253 xfs_efd_item_sizeof(
254 struct xfs_efd_log_item *efdp)
255 {
256 return sizeof(xfs_efd_log_format_t) +
257 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
258 }
259
260 STATIC void
xfs_efd_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)261 xfs_efd_item_size(
262 struct xfs_log_item *lip,
263 int *nvecs,
264 int *nbytes)
265 {
266 *nvecs += 1;
267 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
268 }
269
270 /*
271 * This is called to fill in the vector of log iovecs for the
272 * given efd log item. We use only 1 iovec, and we point that
273 * at the efd_log_format structure embedded in the efd item.
274 * It is at this point that we assert that all of the extent
275 * slots in the efd item have been filled.
276 */
277 STATIC void
xfs_efd_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)278 xfs_efd_item_format(
279 struct xfs_log_item *lip,
280 struct xfs_log_vec *lv)
281 {
282 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
283 struct xfs_log_iovec *vecp = NULL;
284
285 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
286
287 efdp->efd_format.efd_type = XFS_LI_EFD;
288 efdp->efd_format.efd_size = 1;
289
290 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
291 &efdp->efd_format,
292 xfs_efd_item_sizeof(efdp));
293 }
294
295 /*
296 * The EFD is either committed or aborted if the transaction is cancelled. If
297 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
298 */
299 STATIC void
xfs_efd_item_release(struct xfs_log_item * lip)300 xfs_efd_item_release(
301 struct xfs_log_item *lip)
302 {
303 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
304
305 xfs_efi_release(efdp->efd_efip);
306 xfs_efd_item_free(efdp);
307 }
308
309 static const struct xfs_item_ops xfs_efd_item_ops = {
310 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED,
311 .iop_size = xfs_efd_item_size,
312 .iop_format = xfs_efd_item_format,
313 .iop_release = xfs_efd_item_release,
314 };
315
316 /*
317 * Allocate an "extent free done" log item that will hold nextents worth of
318 * extents. The caller must use all nextents extents, because we are not
319 * flexible about this at all.
320 */
321 static struct xfs_efd_log_item *
xfs_trans_get_efd(struct xfs_trans * tp,struct xfs_efi_log_item * efip,unsigned int nextents)322 xfs_trans_get_efd(
323 struct xfs_trans *tp,
324 struct xfs_efi_log_item *efip,
325 unsigned int nextents)
326 {
327 struct xfs_efd_log_item *efdp;
328
329 ASSERT(nextents > 0);
330
331 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
332 efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
333 (nextents - 1) * sizeof(struct xfs_extent),
334 0);
335 } else {
336 efdp = kmem_cache_zalloc(xfs_efd_zone,
337 GFP_KERNEL | __GFP_NOFAIL);
338 }
339
340 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
341 &xfs_efd_item_ops);
342 efdp->efd_efip = efip;
343 efdp->efd_format.efd_nextents = nextents;
344 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
345
346 xfs_trans_add_item(tp, &efdp->efd_item);
347 return efdp;
348 }
349
350 /*
351 * Free an extent and log it to the EFD. Note that the transaction is marked
352 * dirty regardless of whether the extent free succeeds or fails to support the
353 * EFI/EFD lifecycle rules.
354 */
355 static int
xfs_trans_free_extent(struct xfs_trans * tp,struct xfs_efd_log_item * efdp,xfs_fsblock_t start_block,xfs_extlen_t ext_len,const struct xfs_owner_info * oinfo,bool skip_discard)356 xfs_trans_free_extent(
357 struct xfs_trans *tp,
358 struct xfs_efd_log_item *efdp,
359 xfs_fsblock_t start_block,
360 xfs_extlen_t ext_len,
361 const struct xfs_owner_info *oinfo,
362 bool skip_discard)
363 {
364 struct xfs_mount *mp = tp->t_mountp;
365 struct xfs_extent *extp;
366 uint next_extent;
367 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block);
368 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp,
369 start_block);
370 int error;
371
372 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
373
374 error = __xfs_free_extent(tp, start_block, ext_len,
375 oinfo, XFS_AG_RESV_NONE, skip_discard);
376 /*
377 * Mark the transaction dirty, even on error. This ensures the
378 * transaction is aborted, which:
379 *
380 * 1.) releases the EFI and frees the EFD
381 * 2.) shuts down the filesystem
382 */
383 tp->t_flags |= XFS_TRANS_DIRTY;
384 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
385
386 next_extent = efdp->efd_next_extent;
387 ASSERT(next_extent < efdp->efd_format.efd_nextents);
388 extp = &(efdp->efd_format.efd_extents[next_extent]);
389 extp->ext_start = start_block;
390 extp->ext_len = ext_len;
391 efdp->efd_next_extent++;
392
393 return error;
394 }
395
396 /* Sort bmap items by AG. */
397 static int
xfs_extent_free_diff_items(void * priv,const struct list_head * a,const struct list_head * b)398 xfs_extent_free_diff_items(
399 void *priv,
400 const struct list_head *a,
401 const struct list_head *b)
402 {
403 struct xfs_mount *mp = priv;
404 struct xfs_extent_free_item *ra;
405 struct xfs_extent_free_item *rb;
406
407 ra = container_of(a, struct xfs_extent_free_item, xefi_list);
408 rb = container_of(b, struct xfs_extent_free_item, xefi_list);
409 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
410 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
411 }
412
413 /* Log a free extent to the intent item. */
414 STATIC void
xfs_extent_free_log_item(struct xfs_trans * tp,struct xfs_efi_log_item * efip,struct xfs_extent_free_item * free)415 xfs_extent_free_log_item(
416 struct xfs_trans *tp,
417 struct xfs_efi_log_item *efip,
418 struct xfs_extent_free_item *free)
419 {
420 uint next_extent;
421 struct xfs_extent *extp;
422
423 tp->t_flags |= XFS_TRANS_DIRTY;
424 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
425
426 /*
427 * atomic_inc_return gives us the value after the increment;
428 * we want to use it as an array index so we need to subtract 1 from
429 * it.
430 */
431 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
432 ASSERT(next_extent < efip->efi_format.efi_nextents);
433 extp = &efip->efi_format.efi_extents[next_extent];
434 extp->ext_start = free->xefi_startblock;
435 extp->ext_len = free->xefi_blockcount;
436 }
437
438 static struct xfs_log_item *
xfs_extent_free_create_intent(struct xfs_trans * tp,struct list_head * items,unsigned int count,bool sort)439 xfs_extent_free_create_intent(
440 struct xfs_trans *tp,
441 struct list_head *items,
442 unsigned int count,
443 bool sort)
444 {
445 struct xfs_mount *mp = tp->t_mountp;
446 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count);
447 struct xfs_extent_free_item *free;
448
449 ASSERT(count > 0);
450
451 xfs_trans_add_item(tp, &efip->efi_item);
452 if (sort)
453 list_sort(mp, items, xfs_extent_free_diff_items);
454 list_for_each_entry(free, items, xefi_list)
455 xfs_extent_free_log_item(tp, efip, free);
456 return &efip->efi_item;
457 }
458
459 /* Get an EFD so we can process all the free extents. */
460 static struct xfs_log_item *
xfs_extent_free_create_done(struct xfs_trans * tp,struct xfs_log_item * intent,unsigned int count)461 xfs_extent_free_create_done(
462 struct xfs_trans *tp,
463 struct xfs_log_item *intent,
464 unsigned int count)
465 {
466 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
467 }
468
469 /* Process a free extent. */
470 STATIC int
xfs_extent_free_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)471 xfs_extent_free_finish_item(
472 struct xfs_trans *tp,
473 struct xfs_log_item *done,
474 struct list_head *item,
475 struct xfs_btree_cur **state)
476 {
477 struct xfs_extent_free_item *free;
478 int error;
479
480 free = container_of(item, struct xfs_extent_free_item, xefi_list);
481 error = xfs_trans_free_extent(tp, EFD_ITEM(done),
482 free->xefi_startblock,
483 free->xefi_blockcount,
484 &free->xefi_oinfo, free->xefi_skip_discard);
485 kmem_cache_free(xfs_bmap_free_item_zone, free);
486 return error;
487 }
488
489 /* Abort all pending EFIs. */
490 STATIC void
xfs_extent_free_abort_intent(struct xfs_log_item * intent)491 xfs_extent_free_abort_intent(
492 struct xfs_log_item *intent)
493 {
494 xfs_efi_release(EFI_ITEM(intent));
495 }
496
497 /* Cancel a free extent. */
498 STATIC void
xfs_extent_free_cancel_item(struct list_head * item)499 xfs_extent_free_cancel_item(
500 struct list_head *item)
501 {
502 struct xfs_extent_free_item *free;
503
504 free = container_of(item, struct xfs_extent_free_item, xefi_list);
505 kmem_cache_free(xfs_bmap_free_item_zone, free);
506 }
507
508 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
509 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
510 .create_intent = xfs_extent_free_create_intent,
511 .abort_intent = xfs_extent_free_abort_intent,
512 .create_done = xfs_extent_free_create_done,
513 .finish_item = xfs_extent_free_finish_item,
514 .cancel_item = xfs_extent_free_cancel_item,
515 };
516
517 /*
518 * AGFL blocks are accounted differently in the reserve pools and are not
519 * inserted into the busy extent list.
520 */
521 STATIC int
xfs_agfl_free_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)522 xfs_agfl_free_finish_item(
523 struct xfs_trans *tp,
524 struct xfs_log_item *done,
525 struct list_head *item,
526 struct xfs_btree_cur **state)
527 {
528 struct xfs_mount *mp = tp->t_mountp;
529 struct xfs_efd_log_item *efdp = EFD_ITEM(done);
530 struct xfs_extent_free_item *free;
531 struct xfs_extent *extp;
532 struct xfs_buf *agbp;
533 int error;
534 xfs_agnumber_t agno;
535 xfs_agblock_t agbno;
536 uint next_extent;
537
538 free = container_of(item, struct xfs_extent_free_item, xefi_list);
539 ASSERT(free->xefi_blockcount == 1);
540 agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
541 agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
542
543 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
544
545 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
546 if (!error)
547 error = xfs_free_agfl_block(tp, agno, agbno, agbp,
548 &free->xefi_oinfo);
549
550 /*
551 * Mark the transaction dirty, even on error. This ensures the
552 * transaction is aborted, which:
553 *
554 * 1.) releases the EFI and frees the EFD
555 * 2.) shuts down the filesystem
556 */
557 tp->t_flags |= XFS_TRANS_DIRTY;
558 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
559
560 next_extent = efdp->efd_next_extent;
561 ASSERT(next_extent < efdp->efd_format.efd_nextents);
562 extp = &(efdp->efd_format.efd_extents[next_extent]);
563 extp->ext_start = free->xefi_startblock;
564 extp->ext_len = free->xefi_blockcount;
565 efdp->efd_next_extent++;
566
567 kmem_cache_free(xfs_bmap_free_item_zone, free);
568 return error;
569 }
570
571 /* sub-type with special handling for AGFL deferred frees */
572 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
573 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
574 .create_intent = xfs_extent_free_create_intent,
575 .abort_intent = xfs_extent_free_abort_intent,
576 .create_done = xfs_extent_free_create_done,
577 .finish_item = xfs_agfl_free_finish_item,
578 .cancel_item = xfs_extent_free_cancel_item,
579 };
580
581 /*
582 * Process an extent free intent item that was recovered from
583 * the log. We need to free the extents that it describes.
584 */
585 STATIC int
xfs_efi_item_recover(struct xfs_log_item * lip,struct list_head * capture_list)586 xfs_efi_item_recover(
587 struct xfs_log_item *lip,
588 struct list_head *capture_list)
589 {
590 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
591 struct xfs_mount *mp = lip->li_mountp;
592 struct xfs_efd_log_item *efdp;
593 struct xfs_trans *tp;
594 struct xfs_extent *extp;
595 xfs_fsblock_t startblock_fsb;
596 int i;
597 int error = 0;
598
599 /*
600 * First check the validity of the extents described by the
601 * EFI. If any are bad, then assume that all are bad and
602 * just toss the EFI.
603 */
604 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
605 extp = &efip->efi_format.efi_extents[i];
606 startblock_fsb = XFS_BB_TO_FSB(mp,
607 XFS_FSB_TO_DADDR(mp, extp->ext_start));
608 if (startblock_fsb == 0 ||
609 extp->ext_len == 0 ||
610 startblock_fsb >= mp->m_sb.sb_dblocks ||
611 extp->ext_len >= mp->m_sb.sb_agblocks)
612 return -EFSCORRUPTED;
613 }
614
615 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
616 if (error)
617 return error;
618 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
619
620 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
621 extp = &efip->efi_format.efi_extents[i];
622 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
623 extp->ext_len,
624 &XFS_RMAP_OINFO_ANY_OWNER, false);
625 if (error)
626 goto abort_error;
627
628 }
629
630 return xfs_defer_ops_capture_and_commit(tp, NULL, capture_list);
631
632 abort_error:
633 xfs_trans_cancel(tp);
634 return error;
635 }
636
637 STATIC bool
xfs_efi_item_match(struct xfs_log_item * lip,uint64_t intent_id)638 xfs_efi_item_match(
639 struct xfs_log_item *lip,
640 uint64_t intent_id)
641 {
642 return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
643 }
644
645 /* Relog an intent item to push the log tail forward. */
646 static struct xfs_log_item *
xfs_efi_item_relog(struct xfs_log_item * intent,struct xfs_trans * tp)647 xfs_efi_item_relog(
648 struct xfs_log_item *intent,
649 struct xfs_trans *tp)
650 {
651 struct xfs_efd_log_item *efdp;
652 struct xfs_efi_log_item *efip;
653 struct xfs_extent *extp;
654 unsigned int count;
655
656 count = EFI_ITEM(intent)->efi_format.efi_nextents;
657 extp = EFI_ITEM(intent)->efi_format.efi_extents;
658
659 tp->t_flags |= XFS_TRANS_DIRTY;
660 efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
661 efdp->efd_next_extent = count;
662 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
663 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
664
665 efip = xfs_efi_init(tp->t_mountp, count);
666 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
667 atomic_set(&efip->efi_next_extent, count);
668 xfs_trans_add_item(tp, &efip->efi_item);
669 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
670 return &efip->efi_item;
671 }
672
673 static const struct xfs_item_ops xfs_efi_item_ops = {
674 .iop_size = xfs_efi_item_size,
675 .iop_format = xfs_efi_item_format,
676 .iop_unpin = xfs_efi_item_unpin,
677 .iop_release = xfs_efi_item_release,
678 .iop_recover = xfs_efi_item_recover,
679 .iop_match = xfs_efi_item_match,
680 .iop_relog = xfs_efi_item_relog,
681 };
682
683 /*
684 * This routine is called to create an in-core extent free intent
685 * item from the efi format structure which was logged on disk.
686 * It allocates an in-core efi, copies the extents from the format
687 * structure into it, and adds the efi to the AIL with the given
688 * LSN.
689 */
690 STATIC int
xlog_recover_efi_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)691 xlog_recover_efi_commit_pass2(
692 struct xlog *log,
693 struct list_head *buffer_list,
694 struct xlog_recover_item *item,
695 xfs_lsn_t lsn)
696 {
697 struct xfs_mount *mp = log->l_mp;
698 struct xfs_efi_log_item *efip;
699 struct xfs_efi_log_format *efi_formatp;
700 int error;
701
702 efi_formatp = item->ri_buf[0].i_addr;
703
704 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
705 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
706 if (error) {
707 xfs_efi_item_free(efip);
708 return error;
709 }
710 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
711 /*
712 * Insert the intent into the AIL directly and drop one reference so
713 * that finishing or canceling the work will drop the other.
714 */
715 xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
716 xfs_efi_release(efip);
717 return 0;
718 }
719
720 const struct xlog_recover_item_ops xlog_efi_item_ops = {
721 .item_type = XFS_LI_EFI,
722 .commit_pass2 = xlog_recover_efi_commit_pass2,
723 };
724
725 /*
726 * This routine is called when an EFD format structure is found in a committed
727 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
728 * was still in the log. To do this it searches the AIL for the EFI with an id
729 * equal to that in the EFD format structure. If we find it we drop the EFD
730 * reference, which removes the EFI from the AIL and frees it.
731 */
732 STATIC int
xlog_recover_efd_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)733 xlog_recover_efd_commit_pass2(
734 struct xlog *log,
735 struct list_head *buffer_list,
736 struct xlog_recover_item *item,
737 xfs_lsn_t lsn)
738 {
739 struct xfs_efd_log_format *efd_formatp;
740
741 efd_formatp = item->ri_buf[0].i_addr;
742 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
743 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
744 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
745 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
746
747 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
748 return 0;
749 }
750
751 const struct xlog_recover_item_ops xlog_efd_item_ops = {
752 .item_type = XFS_LI_EFD,
753 .commit_pass2 = xlog_recover_efd_commit_pass2,
754 };
755