1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/strings/cord.h"
16
17 #include <algorithm>
18 #include <atomic>
19 #include <cstddef>
20 #include <cstdio>
21 #include <cstdlib>
22 #include <iomanip>
23 #include <iostream>
24 #include <limits>
25 #include <ostream>
26 #include <sstream>
27 #include <type_traits>
28 #include <unordered_set>
29 #include <vector>
30
31 #include "absl/base/casts.h"
32 #include "absl/base/internal/raw_logging.h"
33 #include "absl/base/macros.h"
34 #include "absl/base/port.h"
35 #include "absl/container/fixed_array.h"
36 #include "absl/container/inlined_vector.h"
37 #include "absl/strings/escaping.h"
38 #include "absl/strings/internal/cord_internal.h"
39 #include "absl/strings/internal/cord_rep_btree.h"
40 #include "absl/strings/internal/cord_rep_flat.h"
41 #include "absl/strings/internal/cordz_statistics.h"
42 #include "absl/strings/internal/cordz_update_scope.h"
43 #include "absl/strings/internal/cordz_update_tracker.h"
44 #include "absl/strings/internal/resize_uninitialized.h"
45 #include "absl/strings/str_cat.h"
46 #include "absl/strings/str_format.h"
47 #include "absl/strings/str_join.h"
48 #include "absl/strings/string_view.h"
49
50 namespace absl {
51 ABSL_NAMESPACE_BEGIN
52
53 using ::absl::cord_internal::CordRep;
54 using ::absl::cord_internal::CordRepBtree;
55 using ::absl::cord_internal::CordRepConcat;
56 using ::absl::cord_internal::CordRepExternal;
57 using ::absl::cord_internal::CordRepFlat;
58 using ::absl::cord_internal::CordRepSubstring;
59 using ::absl::cord_internal::CordzUpdateTracker;
60 using ::absl::cord_internal::InlineData;
61 using ::absl::cord_internal::kMaxFlatLength;
62 using ::absl::cord_internal::kMinFlatLength;
63
64 using ::absl::cord_internal::kInlinedVectorSize;
65 using ::absl::cord_internal::kMaxBytesToCopy;
66
Fibonacci(unsigned char n,uint64_t a=0,uint64_t b=1)67 constexpr uint64_t Fibonacci(unsigned char n, uint64_t a = 0, uint64_t b = 1) {
68 return n == 0 ? a : Fibonacci(n - 1, b, a + b);
69 }
70
71 static_assert(Fibonacci(63) == 6557470319842,
72 "Fibonacci values computed incorrectly");
73
74 // Minimum length required for a given depth tree -- a tree is considered
75 // balanced if
76 // length(t) >= min_length[depth(t)]
77 // The root node depth is allowed to become twice as large to reduce rebalancing
78 // for larger strings (see IsRootBalanced).
79 static constexpr uint64_t min_length[] = {
80 Fibonacci(2), Fibonacci(3), Fibonacci(4), Fibonacci(5),
81 Fibonacci(6), Fibonacci(7), Fibonacci(8), Fibonacci(9),
82 Fibonacci(10), Fibonacci(11), Fibonacci(12), Fibonacci(13),
83 Fibonacci(14), Fibonacci(15), Fibonacci(16), Fibonacci(17),
84 Fibonacci(18), Fibonacci(19), Fibonacci(20), Fibonacci(21),
85 Fibonacci(22), Fibonacci(23), Fibonacci(24), Fibonacci(25),
86 Fibonacci(26), Fibonacci(27), Fibonacci(28), Fibonacci(29),
87 Fibonacci(30), Fibonacci(31), Fibonacci(32), Fibonacci(33),
88 Fibonacci(34), Fibonacci(35), Fibonacci(36), Fibonacci(37),
89 Fibonacci(38), Fibonacci(39), Fibonacci(40), Fibonacci(41),
90 Fibonacci(42), Fibonacci(43), Fibonacci(44), Fibonacci(45),
91 Fibonacci(46), Fibonacci(47),
92 0xffffffffffffffffull, // Avoid overflow
93 };
94
95 static const int kMinLengthSize = ABSL_ARRAYSIZE(min_length);
96
btree_enabled()97 static inline bool btree_enabled() {
98 return cord_internal::cord_btree_enabled.load(
99 std::memory_order_relaxed);
100 }
101
IsRootBalanced(CordRep * node)102 static inline bool IsRootBalanced(CordRep* node) {
103 if (!node->IsConcat()) {
104 return true;
105 } else if (node->concat()->depth() <= 15) {
106 return true;
107 } else if (node->concat()->depth() > kMinLengthSize) {
108 return false;
109 } else {
110 // Allow depth to become twice as large as implied by fibonacci rule to
111 // reduce rebalancing for larger strings.
112 return (node->length >= min_length[node->concat()->depth() / 2]);
113 }
114 }
115
116 static CordRep* Rebalance(CordRep* node);
117 static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
118 int indent = 0);
119 static bool VerifyNode(CordRep* root, CordRep* start_node,
120 bool full_validation);
121
VerifyTree(CordRep * node)122 static inline CordRep* VerifyTree(CordRep* node) {
123 // Verification is expensive, so only do it in debug mode.
124 // Even in debug mode we normally do only light validation.
125 // If you are debugging Cord itself, you should define the
126 // macro EXTRA_CORD_VALIDATION, e.g. by adding
127 // --copt=-DEXTRA_CORD_VALIDATION to the blaze line.
128 #ifdef EXTRA_CORD_VALIDATION
129 assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/true));
130 #else // EXTRA_CORD_VALIDATION
131 assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/false));
132 #endif // EXTRA_CORD_VALIDATION
133 static_cast<void>(&VerifyNode);
134
135 return node;
136 }
137
138 // Return the depth of a node
Depth(const CordRep * rep)139 static int Depth(const CordRep* rep) {
140 if (rep->IsConcat()) {
141 return rep->concat()->depth();
142 } else {
143 return 0;
144 }
145 }
146
SetConcatChildren(CordRepConcat * concat,CordRep * left,CordRep * right)147 static void SetConcatChildren(CordRepConcat* concat, CordRep* left,
148 CordRep* right) {
149 concat->left = left;
150 concat->right = right;
151
152 concat->length = left->length + right->length;
153 concat->set_depth(1 + std::max(Depth(left), Depth(right)));
154 }
155
156 // Create a concatenation of the specified nodes.
157 // Does not change the refcounts of "left" and "right".
158 // The returned node has a refcount of 1.
RawConcat(CordRep * left,CordRep * right)159 static CordRep* RawConcat(CordRep* left, CordRep* right) {
160 // Avoid making degenerate concat nodes (one child is empty)
161 if (left == nullptr) return right;
162 if (right == nullptr) return left;
163 if (left->length == 0) {
164 CordRep::Unref(left);
165 return right;
166 }
167 if (right->length == 0) {
168 CordRep::Unref(right);
169 return left;
170 }
171
172 CordRepConcat* rep = new CordRepConcat();
173 rep->tag = cord_internal::CONCAT;
174 SetConcatChildren(rep, left, right);
175
176 return rep;
177 }
178
Concat(CordRep * left,CordRep * right)179 static CordRep* Concat(CordRep* left, CordRep* right) {
180 CordRep* rep = RawConcat(left, right);
181 if (rep != nullptr && !IsRootBalanced(rep)) {
182 rep = Rebalance(rep);
183 }
184 return VerifyTree(rep);
185 }
186
187 // Make a balanced tree out of an array of leaf nodes.
MakeBalancedTree(CordRep ** reps,size_t n)188 static CordRep* MakeBalancedTree(CordRep** reps, size_t n) {
189 // Make repeated passes over the array, merging adjacent pairs
190 // until we are left with just a single node.
191 while (n > 1) {
192 size_t dst = 0;
193 for (size_t src = 0; src < n; src += 2) {
194 if (src + 1 < n) {
195 reps[dst] = Concat(reps[src], reps[src + 1]);
196 } else {
197 reps[dst] = reps[src];
198 }
199 dst++;
200 }
201 n = dst;
202 }
203
204 return reps[0];
205 }
206
CreateFlat(const char * data,size_t length,size_t alloc_hint)207 static CordRepFlat* CreateFlat(const char* data, size_t length,
208 size_t alloc_hint) {
209 CordRepFlat* flat = CordRepFlat::New(length + alloc_hint);
210 flat->length = length;
211 memcpy(flat->Data(), data, length);
212 return flat;
213 }
214
215 // Creates a new flat or Btree out of the specified array.
216 // The returned node has a refcount of 1.
NewBtree(const char * data,size_t length,size_t alloc_hint)217 static CordRep* NewBtree(const char* data, size_t length, size_t alloc_hint) {
218 if (length <= kMaxFlatLength) {
219 return CreateFlat(data, length, alloc_hint);
220 }
221 CordRepFlat* flat = CreateFlat(data, kMaxFlatLength, 0);
222 data += kMaxFlatLength;
223 length -= kMaxFlatLength;
224 auto* root = CordRepBtree::Create(flat);
225 return CordRepBtree::Append(root, {data, length}, alloc_hint);
226 }
227
228 // Create a new tree out of the specified array.
229 // The returned node has a refcount of 1.
NewTree(const char * data,size_t length,size_t alloc_hint)230 static CordRep* NewTree(const char* data, size_t length, size_t alloc_hint) {
231 if (length == 0) return nullptr;
232 if (btree_enabled()) {
233 return NewBtree(data, length, alloc_hint);
234 }
235 absl::FixedArray<CordRep*> reps((length - 1) / kMaxFlatLength + 1);
236 size_t n = 0;
237 do {
238 const size_t len = std::min(length, kMaxFlatLength);
239 CordRepFlat* rep = CordRepFlat::New(len + alloc_hint);
240 rep->length = len;
241 memcpy(rep->Data(), data, len);
242 reps[n++] = VerifyTree(rep);
243 data += len;
244 length -= len;
245 } while (length != 0);
246 return MakeBalancedTree(reps.data(), n);
247 }
248
249 namespace cord_internal {
250
InitializeCordRepExternal(absl::string_view data,CordRepExternal * rep)251 void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep) {
252 assert(!data.empty());
253 rep->length = data.size();
254 rep->tag = EXTERNAL;
255 rep->base = data.data();
256 VerifyTree(rep);
257 }
258
259 } // namespace cord_internal
260
NewSubstring(CordRep * child,size_t offset,size_t length)261 static CordRep* NewSubstring(CordRep* child, size_t offset, size_t length) {
262 // Never create empty substring nodes
263 if (length == 0) {
264 CordRep::Unref(child);
265 return nullptr;
266 } else {
267 CordRepSubstring* rep = new CordRepSubstring();
268 assert((offset + length) <= child->length);
269 rep->length = length;
270 rep->tag = cord_internal::SUBSTRING;
271 rep->start = offset;
272 rep->child = child;
273 return VerifyTree(rep);
274 }
275 }
276
277 // Creates a CordRep from the provided string. If the string is large enough,
278 // and not wasteful, we move the string into an external cord rep, preserving
279 // the already allocated string contents.
280 // Requires the provided string length to be larger than `kMaxInline`.
CordRepFromString(std::string && src)281 static CordRep* CordRepFromString(std::string&& src) {
282 assert(src.length() > cord_internal::kMaxInline);
283 if (
284 // String is short: copy data to avoid external block overhead.
285 src.size() <= kMaxBytesToCopy ||
286 // String is wasteful: copy data to avoid pinning too much unused memory.
287 src.size() < src.capacity() / 2
288 ) {
289 return NewTree(src.data(), src.size(), 0);
290 }
291
292 struct StringReleaser {
293 void operator()(absl::string_view /* data */) {}
294 std::string data;
295 };
296 const absl::string_view original_data = src;
297 auto* rep =
298 static_cast<::absl::cord_internal::CordRepExternalImpl<StringReleaser>*>(
299 absl::cord_internal::NewExternalRep(original_data,
300 StringReleaser{std::move(src)}));
301 // Moving src may have invalidated its data pointer, so adjust it.
302 rep->base = rep->template get<0>().data.data();
303 return rep;
304 }
305
306 // --------------------------------------------------------------------
307 // Cord::InlineRep functions
308
309 constexpr unsigned char Cord::InlineRep::kMaxInline;
310
set_data(const char * data,size_t n,bool nullify_tail)311 inline void Cord::InlineRep::set_data(const char* data, size_t n,
312 bool nullify_tail) {
313 static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");
314
315 cord_internal::SmallMemmove(data_.as_chars(), data, n, nullify_tail);
316 set_inline_size(n);
317 }
318
set_data(size_t n)319 inline char* Cord::InlineRep::set_data(size_t n) {
320 assert(n <= kMaxInline);
321 ResetToEmpty();
322 set_inline_size(n);
323 return data_.as_chars();
324 }
325
reduce_size(size_t n)326 inline void Cord::InlineRep::reduce_size(size_t n) {
327 size_t tag = inline_size();
328 assert(tag <= kMaxInline);
329 assert(tag >= n);
330 tag -= n;
331 memset(data_.as_chars() + tag, 0, n);
332 set_inline_size(static_cast<char>(tag));
333 }
334
remove_prefix(size_t n)335 inline void Cord::InlineRep::remove_prefix(size_t n) {
336 cord_internal::SmallMemmove(data_.as_chars(), data_.as_chars() + n,
337 inline_size() - n);
338 reduce_size(n);
339 }
340
341 // Returns `rep` converted into a CordRepBtree.
342 // Directly returns `rep` if `rep` is already a CordRepBtree.
ForceBtree(CordRep * rep)343 static CordRepBtree* ForceBtree(CordRep* rep) {
344 return rep->IsBtree() ? rep->btree() : CordRepBtree::Create(rep);
345 }
346
AppendTreeToInlined(CordRep * tree,MethodIdentifier method)347 void Cord::InlineRep::AppendTreeToInlined(CordRep* tree,
348 MethodIdentifier method) {
349 assert(!is_tree());
350 if (!data_.is_empty()) {
351 CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
352 if (btree_enabled()) {
353 tree = CordRepBtree::Append(CordRepBtree::Create(flat), tree);
354 } else {
355 tree = Concat(flat, tree);
356 }
357 }
358 EmplaceTree(tree, method);
359 }
360
AppendTreeToTree(CordRep * tree,MethodIdentifier method)361 void Cord::InlineRep::AppendTreeToTree(CordRep* tree, MethodIdentifier method) {
362 assert(is_tree());
363 const CordzUpdateScope scope(data_.cordz_info(), method);
364 if (btree_enabled()) {
365 tree = CordRepBtree::Append(ForceBtree(data_.as_tree()), tree);
366 } else {
367 tree = Concat(data_.as_tree(), tree);
368 }
369 SetTree(tree, scope);
370 }
371
AppendTree(CordRep * tree,MethodIdentifier method)372 void Cord::InlineRep::AppendTree(CordRep* tree, MethodIdentifier method) {
373 if (tree == nullptr) return;
374 if (data_.is_tree()) {
375 AppendTreeToTree(tree, method);
376 } else {
377 AppendTreeToInlined(tree, method);
378 }
379 }
380
PrependTreeToInlined(CordRep * tree,MethodIdentifier method)381 void Cord::InlineRep::PrependTreeToInlined(CordRep* tree,
382 MethodIdentifier method) {
383 assert(!is_tree());
384 if (!data_.is_empty()) {
385 CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
386 if (btree_enabled()) {
387 tree = CordRepBtree::Prepend(CordRepBtree::Create(flat), tree);
388 } else {
389 tree = Concat(tree, flat);
390 }
391 }
392 EmplaceTree(tree, method);
393 }
394
PrependTreeToTree(CordRep * tree,MethodIdentifier method)395 void Cord::InlineRep::PrependTreeToTree(CordRep* tree,
396 MethodIdentifier method) {
397 assert(is_tree());
398 const CordzUpdateScope scope(data_.cordz_info(), method);
399 if (btree_enabled()) {
400 tree = CordRepBtree::Prepend(ForceBtree(data_.as_tree()), tree);
401 } else {
402 tree = Concat(tree, data_.as_tree());
403 }
404 SetTree(tree, scope);
405 }
406
PrependTree(CordRep * tree,MethodIdentifier method)407 void Cord::InlineRep::PrependTree(CordRep* tree, MethodIdentifier method) {
408 assert(tree != nullptr);
409 if (data_.is_tree()) {
410 PrependTreeToTree(tree, method);
411 } else {
412 PrependTreeToInlined(tree, method);
413 }
414 }
415
416 // Searches for a non-full flat node at the rightmost leaf of the tree. If a
417 // suitable leaf is found, the function will update the length field for all
418 // nodes to account for the size increase. The append region address will be
419 // written to region and the actual size increase will be written to size.
PrepareAppendRegion(CordRep * root,char ** region,size_t * size,size_t max_length)420 static inline bool PrepareAppendRegion(CordRep* root, char** region,
421 size_t* size, size_t max_length) {
422 if (root->IsBtree() && root->refcount.IsOne()) {
423 Span<char> span = root->btree()->GetAppendBuffer(max_length);
424 if (!span.empty()) {
425 *region = span.data();
426 *size = span.size();
427 return true;
428 }
429 }
430
431 // Search down the right-hand path for a non-full FLAT node.
432 CordRep* dst = root;
433 while (dst->IsConcat() && dst->refcount.IsOne()) {
434 dst = dst->concat()->right;
435 }
436
437 if (!dst->IsFlat() || !dst->refcount.IsOne()) {
438 *region = nullptr;
439 *size = 0;
440 return false;
441 }
442
443 const size_t in_use = dst->length;
444 const size_t capacity = dst->flat()->Capacity();
445 if (in_use == capacity) {
446 *region = nullptr;
447 *size = 0;
448 return false;
449 }
450
451 size_t size_increase = std::min(capacity - in_use, max_length);
452
453 // We need to update the length fields for all nodes, including the leaf node.
454 for (CordRep* rep = root; rep != dst; rep = rep->concat()->right) {
455 rep->length += size_increase;
456 }
457 dst->length += size_increase;
458
459 *region = dst->flat()->Data() + in_use;
460 *size = size_increase;
461 return true;
462 }
463
464 template <bool has_length>
GetAppendRegion(char ** region,size_t * size,size_t length)465 void Cord::InlineRep::GetAppendRegion(char** region, size_t* size,
466 size_t length) {
467 auto constexpr method = CordzUpdateTracker::kGetAppendRegion;
468
469 CordRep* root = tree();
470 size_t sz = root ? root->length : inline_size();
471 if (root == nullptr) {
472 size_t available = kMaxInline - sz;
473 if (available >= (has_length ? length : 1)) {
474 *region = data_.as_chars() + sz;
475 *size = has_length ? length : available;
476 set_inline_size(has_length ? sz + length : kMaxInline);
477 return;
478 }
479 }
480
481 size_t extra = has_length ? length : (std::max)(sz, kMinFlatLength);
482 CordRep* rep = root ? root : MakeFlatWithExtraCapacity(extra);
483 CordzUpdateScope scope(root ? data_.cordz_info() : nullptr, method);
484 if (PrepareAppendRegion(rep, region, size, length)) {
485 CommitTree(root, rep, scope, method);
486 return;
487 }
488
489 // Allocate new node.
490 CordRepFlat* new_node = CordRepFlat::New(extra);
491 new_node->length = std::min(new_node->Capacity(), length);
492 *region = new_node->Data();
493 *size = new_node->length;
494
495 if (btree_enabled()) {
496 rep = CordRepBtree::Append(ForceBtree(rep), new_node);
497 } else {
498 rep = Concat(rep, new_node);
499 }
500 CommitTree(root, rep, scope, method);
501 }
502
503 // Computes the memory side of the provided edge which must be a valid data edge
504 // for a btrtee, i.e., a FLAT, EXTERNAL or SUBSTRING of a FLAT or EXTERNAL node.
RepMemoryUsageDataEdge(const CordRep * rep,size_t * total_mem_usage)505 static bool RepMemoryUsageDataEdge(const CordRep* rep,
506 size_t* total_mem_usage) {
507 size_t maybe_sub_size = 0;
508 if (ABSL_PREDICT_FALSE(rep->IsSubstring())) {
509 maybe_sub_size = sizeof(cord_internal::CordRepSubstring);
510 rep = rep->substring()->child;
511 }
512 if (rep->IsFlat()) {
513 *total_mem_usage += maybe_sub_size + rep->flat()->AllocatedSize();
514 return true;
515 }
516 if (rep->IsExternal()) {
517 // We don't know anything about the embedded / bound data, but we can safely
518 // assume it is 'at least' a word / pointer to data. In the future we may
519 // choose to use the 'data' byte as a tag to identify the types of some
520 // well-known externals, such as a std::string instance.
521 *total_mem_usage += maybe_sub_size +
522 sizeof(cord_internal::CordRepExternalImpl<intptr_t>) +
523 rep->length;
524 return true;
525 }
526 return false;
527 }
528
529 // If the rep is a leaf, this will increment the value at total_mem_usage and
530 // will return true.
RepMemoryUsageLeaf(const CordRep * rep,size_t * total_mem_usage)531 static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
532 if (rep->IsFlat()) {
533 *total_mem_usage += rep->flat()->AllocatedSize();
534 return true;
535 }
536 if (rep->IsExternal()) {
537 // We don't know anything about the embedded / bound data, but we can safely
538 // assume it is 'at least' a word / pointer to data. In the future we may
539 // choose to use the 'data' byte as a tag to identify the types of some
540 // well-known externals, such as a std::string instance.
541 *total_mem_usage +=
542 sizeof(cord_internal::CordRepExternalImpl<intptr_t>) + rep->length;
543 return true;
544 }
545 return false;
546 }
547
AssignSlow(const Cord::InlineRep & src)548 void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
549 assert(&src != this);
550 assert(is_tree() || src.is_tree());
551 auto constexpr method = CordzUpdateTracker::kAssignCord;
552 if (ABSL_PREDICT_TRUE(!is_tree())) {
553 EmplaceTree(CordRep::Ref(src.as_tree()), src.data_, method);
554 return;
555 }
556
557 CordRep* tree = as_tree();
558 if (CordRep* src_tree = src.tree()) {
559 // Leave any existing `cordz_info` in place, and let MaybeTrackCord()
560 // decide if this cord should be (or remains to be) sampled or not.
561 data_.set_tree(CordRep::Ref(src_tree));
562 CordzInfo::MaybeTrackCord(data_, src.data_, method);
563 } else {
564 CordzInfo::MaybeUntrackCord(data_.cordz_info());
565 data_ = src.data_;
566 }
567 CordRep::Unref(tree);
568 }
569
UnrefTree()570 void Cord::InlineRep::UnrefTree() {
571 if (is_tree()) {
572 CordzInfo::MaybeUntrackCord(data_.cordz_info());
573 CordRep::Unref(tree());
574 }
575 }
576
577 // --------------------------------------------------------------------
578 // Constructors and destructors
579
Cord(absl::string_view src,MethodIdentifier method)580 Cord::Cord(absl::string_view src, MethodIdentifier method)
581 : contents_(InlineData::kDefaultInit) {
582 const size_t n = src.size();
583 if (n <= InlineRep::kMaxInline) {
584 contents_.set_data(src.data(), n, true);
585 } else {
586 CordRep* rep = NewTree(src.data(), n, 0);
587 contents_.EmplaceTree(rep, method);
588 }
589 }
590
591 template <typename T, Cord::EnableIfString<T>>
Cord(T && src)592 Cord::Cord(T&& src) : contents_(InlineData::kDefaultInit) {
593 if (src.size() <= InlineRep::kMaxInline) {
594 contents_.set_data(src.data(), src.size(), true);
595 } else {
596 CordRep* rep = CordRepFromString(std::forward<T>(src));
597 contents_.EmplaceTree(rep, CordzUpdateTracker::kConstructorString);
598 }
599 }
600
601 template Cord::Cord(std::string&& src);
602
603 // The destruction code is separate so that the compiler can determine
604 // that it does not need to call the destructor on a moved-from Cord.
DestroyCordSlow()605 void Cord::DestroyCordSlow() {
606 assert(contents_.is_tree());
607 CordzInfo::MaybeUntrackCord(contents_.cordz_info());
608 CordRep::Unref(VerifyTree(contents_.as_tree()));
609 }
610
611 // --------------------------------------------------------------------
612 // Mutators
613
Clear()614 void Cord::Clear() {
615 if (CordRep* tree = contents_.clear()) {
616 CordRep::Unref(tree);
617 }
618 }
619
AssignLargeString(std::string && src)620 Cord& Cord::AssignLargeString(std::string&& src) {
621 auto constexpr method = CordzUpdateTracker::kAssignString;
622 assert(src.size() > kMaxBytesToCopy);
623 CordRep* rep = CordRepFromString(std::move(src));
624 if (CordRep* tree = contents_.tree()) {
625 CordzUpdateScope scope(contents_.cordz_info(), method);
626 contents_.SetTree(rep, scope);
627 CordRep::Unref(tree);
628 } else {
629 contents_.EmplaceTree(rep, method);
630 }
631 return *this;
632 }
633
operator =(absl::string_view src)634 Cord& Cord::operator=(absl::string_view src) {
635 auto constexpr method = CordzUpdateTracker::kAssignString;
636 const char* data = src.data();
637 size_t length = src.size();
638 CordRep* tree = contents_.tree();
639 if (length <= InlineRep::kMaxInline) {
640 // Embed into this->contents_, which is somewhat subtle:
641 // - MaybeUntrackCord must be called before Unref(tree).
642 // - MaybeUntrackCord must be called before set_data() clobbers cordz_info.
643 // - set_data() must be called before Unref(tree) as it may reference tree.
644 if (tree != nullptr) CordzInfo::MaybeUntrackCord(contents_.cordz_info());
645 contents_.set_data(data, length, true);
646 if (tree != nullptr) CordRep::Unref(tree);
647 return *this;
648 }
649 if (tree != nullptr) {
650 CordzUpdateScope scope(contents_.cordz_info(), method);
651 if (tree->IsFlat() && tree->flat()->Capacity() >= length &&
652 tree->refcount.IsOne()) {
653 // Copy in place if the existing FLAT node is reusable.
654 memmove(tree->flat()->Data(), data, length);
655 tree->length = length;
656 VerifyTree(tree);
657 return *this;
658 }
659 contents_.SetTree(NewTree(data, length, 0), scope);
660 CordRep::Unref(tree);
661 } else {
662 contents_.EmplaceTree(NewTree(data, length, 0), method);
663 }
664 return *this;
665 }
666
667 // TODO(sanjay): Move to Cord::InlineRep section of file. For now,
668 // we keep it here to make diffs easier.
AppendArray(absl::string_view src,MethodIdentifier method)669 void Cord::InlineRep::AppendArray(absl::string_view src,
670 MethodIdentifier method) {
671 if (src.empty()) return; // memcpy(_, nullptr, 0) is undefined.
672
673 size_t appended = 0;
674 CordRep* rep = tree();
675 const CordRep* const root = rep;
676 CordzUpdateScope scope(root ? cordz_info() : nullptr, method);
677 if (root != nullptr) {
678 char* region;
679 if (PrepareAppendRegion(rep, ®ion, &appended, src.size())) {
680 memcpy(region, src.data(), appended);
681 }
682 } else {
683 // Try to fit in the inline buffer if possible.
684 size_t inline_length = inline_size();
685 if (src.size() <= kMaxInline - inline_length) {
686 // Append new data to embedded array
687 memcpy(data_.as_chars() + inline_length, src.data(), src.size());
688 set_inline_size(inline_length + src.size());
689 return;
690 }
691
692 // Note: we don't concern ourselves if src aliases data stored in the
693 // inlined data of 'this', as we update the InlineData only at the end.
694 // We are going from an inline size to beyond inline size. Make the new size
695 // either double the inlined size, or the added size + 10%.
696 const size_t size1 = inline_length * 2 + src.size();
697 const size_t size2 = inline_length + src.size() / 10;
698 rep = CordRepFlat::New(std::max<size_t>(size1, size2));
699 appended = std::min(src.size(), rep->flat()->Capacity() - inline_length);
700 memcpy(rep->flat()->Data(), data_.as_chars(), inline_length);
701 memcpy(rep->flat()->Data() + inline_length, src.data(), appended);
702 rep->length = inline_length + appended;
703 }
704
705 src.remove_prefix(appended);
706 if (src.empty()) {
707 CommitTree(root, rep, scope, method);
708 return;
709 }
710
711 if (btree_enabled()) {
712 // TODO(b/192061034): keep legacy 10% growth rate: consider other rates.
713 rep = ForceBtree(rep);
714 const size_t alloc_hint = (std::min)(kMaxFlatLength, rep->length / 10);
715 rep = CordRepBtree::Append(rep->btree(), src, alloc_hint);
716 } else {
717 // Use new block(s) for any remaining bytes that were not handled above.
718 // Alloc extra memory only if the right child of the root of the new tree
719 // is going to be a FLAT node, which will permit further inplace appends.
720 size_t length = src.size();
721 if (src.size() < kMaxFlatLength) {
722 // The new length is either
723 // - old size + 10%
724 // - old_size + src.size()
725 // This will cause a reasonable conservative step-up in size that is
726 // still large enough to avoid excessive amounts of small fragments
727 // being added.
728 length = std::max<size_t>(rep->length / 10, src.size());
729 }
730 rep = Concat(rep, NewTree(src.data(), src.size(), length - src.size()));
731 }
732 CommitTree(root, rep, scope, method);
733 }
734
TakeRep() const735 inline CordRep* Cord::TakeRep() const& {
736 return CordRep::Ref(contents_.tree());
737 }
738
TakeRep()739 inline CordRep* Cord::TakeRep() && {
740 CordRep* rep = contents_.tree();
741 contents_.clear();
742 return rep;
743 }
744
745 template <typename C>
AppendImpl(C && src)746 inline void Cord::AppendImpl(C&& src) {
747 auto constexpr method = CordzUpdateTracker::kAppendCord;
748 if (empty()) {
749 // Since destination is empty, we can avoid allocating a node,
750 if (src.contents_.is_tree()) {
751 // by taking the tree directly
752 CordRep* rep = std::forward<C>(src).TakeRep();
753 contents_.EmplaceTree(rep, method);
754 } else {
755 // or copying over inline data
756 contents_.data_ = src.contents_.data_;
757 }
758 return;
759 }
760
761 // For short cords, it is faster to copy data if there is room in dst.
762 const size_t src_size = src.contents_.size();
763 if (src_size <= kMaxBytesToCopy) {
764 CordRep* src_tree = src.contents_.tree();
765 if (src_tree == nullptr) {
766 // src has embedded data.
767 contents_.AppendArray({src.contents_.data(), src_size}, method);
768 return;
769 }
770 if (src_tree->IsFlat()) {
771 // src tree just has one flat node.
772 contents_.AppendArray({src_tree->flat()->Data(), src_size}, method);
773 return;
774 }
775 if (&src == this) {
776 // ChunkIterator below assumes that src is not modified during traversal.
777 Append(Cord(src));
778 return;
779 }
780 // TODO(mec): Should we only do this if "dst" has space?
781 for (absl::string_view chunk : src.Chunks()) {
782 Append(chunk);
783 }
784 return;
785 }
786
787 // Guaranteed to be a tree (kMaxBytesToCopy > kInlinedSize)
788 CordRep* rep = std::forward<C>(src).TakeRep();
789 contents_.AppendTree(rep, CordzUpdateTracker::kAppendCord);
790 }
791
Append(const Cord & src)792 void Cord::Append(const Cord& src) {
793 AppendImpl(src);
794 }
795
Append(Cord && src)796 void Cord::Append(Cord&& src) {
797 AppendImpl(std::move(src));
798 }
799
800 template <typename T, Cord::EnableIfString<T>>
Append(T && src)801 void Cord::Append(T&& src) {
802 if (src.size() <= kMaxBytesToCopy) {
803 Append(absl::string_view(src));
804 } else {
805 CordRep* rep = CordRepFromString(std::forward<T>(src));
806 contents_.AppendTree(rep, CordzUpdateTracker::kAppendString);
807 }
808 }
809
810 template void Cord::Append(std::string&& src);
811
Prepend(const Cord & src)812 void Cord::Prepend(const Cord& src) {
813 CordRep* src_tree = src.contents_.tree();
814 if (src_tree != nullptr) {
815 CordRep::Ref(src_tree);
816 contents_.PrependTree(src_tree, CordzUpdateTracker::kPrependCord);
817 return;
818 }
819
820 // `src` cord is inlined.
821 absl::string_view src_contents(src.contents_.data(), src.contents_.size());
822 return Prepend(src_contents);
823 }
824
Prepend(absl::string_view src)825 void Cord::Prepend(absl::string_view src) {
826 if (src.empty()) return; // memcpy(_, nullptr, 0) is undefined.
827 if (!contents_.is_tree()) {
828 size_t cur_size = contents_.inline_size();
829 if (cur_size + src.size() <= InlineRep::kMaxInline) {
830 // Use embedded storage.
831 char data[InlineRep::kMaxInline + 1] = {0};
832 memcpy(data, src.data(), src.size());
833 memcpy(data + src.size(), contents_.data(), cur_size);
834 memcpy(contents_.data_.as_chars(), data, InlineRep::kMaxInline + 1);
835 contents_.set_inline_size(cur_size + src.size());
836 return;
837 }
838 }
839 CordRep* rep = NewTree(src.data(), src.size(), 0);
840 contents_.PrependTree(rep, CordzUpdateTracker::kPrependString);
841 }
842
843 template <typename T, Cord::EnableIfString<T>>
Prepend(T && src)844 inline void Cord::Prepend(T&& src) {
845 if (src.size() <= kMaxBytesToCopy) {
846 Prepend(absl::string_view(src));
847 } else {
848 CordRep* rep = CordRepFromString(std::forward<T>(src));
849 contents_.PrependTree(rep, CordzUpdateTracker::kPrependString);
850 }
851 }
852
853 template void Cord::Prepend(std::string&& src);
854
RemovePrefixFrom(CordRep * node,size_t n)855 static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
856 if (n >= node->length) return nullptr;
857 if (n == 0) return CordRep::Ref(node);
858 absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack;
859
860 while (node->IsConcat()) {
861 assert(n <= node->length);
862 if (n < node->concat()->left->length) {
863 // Push right to stack, descend left.
864 rhs_stack.push_back(node->concat()->right);
865 node = node->concat()->left;
866 } else {
867 // Drop left, descend right.
868 n -= node->concat()->left->length;
869 node = node->concat()->right;
870 }
871 }
872 assert(n <= node->length);
873
874 if (n == 0) {
875 CordRep::Ref(node);
876 } else {
877 size_t start = n;
878 size_t len = node->length - n;
879 if (node->IsSubstring()) {
880 // Consider in-place update of node, similar to in RemoveSuffixFrom().
881 start += node->substring()->start;
882 node = node->substring()->child;
883 }
884 node = NewSubstring(CordRep::Ref(node), start, len);
885 }
886 while (!rhs_stack.empty()) {
887 node = Concat(node, CordRep::Ref(rhs_stack.back()));
888 rhs_stack.pop_back();
889 }
890 return node;
891 }
892
893 // RemoveSuffixFrom() is very similar to RemovePrefixFrom(), with the
894 // exception that removing a suffix has an optimization where a node may be
895 // edited in place iff that node and all its ancestors have a refcount of 1.
RemoveSuffixFrom(CordRep * node,size_t n)896 static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
897 if (n >= node->length) return nullptr;
898 if (n == 0) return CordRep::Ref(node);
899 absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack;
900 bool inplace_ok = node->refcount.IsOne();
901
902 while (node->IsConcat()) {
903 assert(n <= node->length);
904 if (n < node->concat()->right->length) {
905 // Push left to stack, descend right.
906 lhs_stack.push_back(node->concat()->left);
907 node = node->concat()->right;
908 } else {
909 // Drop right, descend left.
910 n -= node->concat()->right->length;
911 node = node->concat()->left;
912 }
913 inplace_ok = inplace_ok && node->refcount.IsOne();
914 }
915 assert(n <= node->length);
916
917 if (n == 0) {
918 CordRep::Ref(node);
919 } else if (inplace_ok && !node->IsExternal()) {
920 // Consider making a new buffer if the current node capacity is much
921 // larger than the new length.
922 CordRep::Ref(node);
923 node->length -= n;
924 } else {
925 size_t start = 0;
926 size_t len = node->length - n;
927 if (node->IsSubstring()) {
928 start = node->substring()->start;
929 node = node->substring()->child;
930 }
931 node = NewSubstring(CordRep::Ref(node), start, len);
932 }
933 while (!lhs_stack.empty()) {
934 node = Concat(CordRep::Ref(lhs_stack.back()), node);
935 lhs_stack.pop_back();
936 }
937 return node;
938 }
939
RemovePrefix(size_t n)940 void Cord::RemovePrefix(size_t n) {
941 ABSL_INTERNAL_CHECK(n <= size(),
942 absl::StrCat("Requested prefix size ", n,
943 " exceeds Cord's size ", size()));
944 CordRep* tree = contents_.tree();
945 if (tree == nullptr) {
946 contents_.remove_prefix(n);
947 } else {
948 auto constexpr method = CordzUpdateTracker::kRemovePrefix;
949 CordzUpdateScope scope(contents_.cordz_info(), method);
950 if (tree->IsBtree()) {
951 CordRep* old = tree;
952 tree = tree->btree()->SubTree(n, tree->length - n);
953 CordRep::Unref(old);
954 } else {
955 CordRep* newrep = RemovePrefixFrom(tree, n);
956 CordRep::Unref(tree);
957 tree = VerifyTree(newrep);
958 }
959 contents_.SetTreeOrEmpty(tree, scope);
960 }
961 }
962
RemoveSuffix(size_t n)963 void Cord::RemoveSuffix(size_t n) {
964 ABSL_INTERNAL_CHECK(n <= size(),
965 absl::StrCat("Requested suffix size ", n,
966 " exceeds Cord's size ", size()));
967 CordRep* tree = contents_.tree();
968 if (tree == nullptr) {
969 contents_.reduce_size(n);
970 } else {
971 auto constexpr method = CordzUpdateTracker::kRemoveSuffix;
972 CordzUpdateScope scope(contents_.cordz_info(), method);
973 if (tree->IsBtree()) {
974 CordRep* old = tree;
975 tree = tree->btree()->SubTree(0, tree->length - n);
976 CordRep::Unref(old);
977 } else {
978 CordRep* newrep = RemoveSuffixFrom(tree, n);
979 CordRep::Unref(tree);
980 tree = VerifyTree(newrep);
981 }
982 contents_.SetTreeOrEmpty(tree, scope);
983 }
984 }
985
986 // Work item for NewSubRange().
987 struct SubRange {
SubRangeabsl::SubRange988 SubRange(CordRep* a_node, size_t a_pos, size_t a_n)
989 : node(a_node), pos(a_pos), n(a_n) {}
990 CordRep* node; // nullptr means concat last 2 results.
991 size_t pos;
992 size_t n;
993 };
994
NewSubRange(CordRep * node,size_t pos,size_t n)995 static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
996 absl::InlinedVector<CordRep*, kInlinedVectorSize> results;
997 absl::InlinedVector<SubRange, kInlinedVectorSize> todo;
998 todo.push_back(SubRange(node, pos, n));
999 do {
1000 const SubRange& sr = todo.back();
1001 node = sr.node;
1002 pos = sr.pos;
1003 n = sr.n;
1004 todo.pop_back();
1005
1006 if (node == nullptr) {
1007 assert(results.size() >= 2);
1008 CordRep* right = results.back();
1009 results.pop_back();
1010 CordRep* left = results.back();
1011 results.pop_back();
1012 results.push_back(Concat(left, right));
1013 } else if (pos == 0 && n == node->length) {
1014 results.push_back(CordRep::Ref(node));
1015 } else if (!node->IsConcat()) {
1016 if (node->IsSubstring()) {
1017 pos += node->substring()->start;
1018 node = node->substring()->child;
1019 }
1020 results.push_back(NewSubstring(CordRep::Ref(node), pos, n));
1021 } else if (pos + n <= node->concat()->left->length) {
1022 todo.push_back(SubRange(node->concat()->left, pos, n));
1023 } else if (pos >= node->concat()->left->length) {
1024 pos -= node->concat()->left->length;
1025 todo.push_back(SubRange(node->concat()->right, pos, n));
1026 } else {
1027 size_t left_n = node->concat()->left->length - pos;
1028 todo.push_back(SubRange(nullptr, 0, 0)); // Concat()
1029 todo.push_back(SubRange(node->concat()->right, 0, n - left_n));
1030 todo.push_back(SubRange(node->concat()->left, pos, left_n));
1031 }
1032 } while (!todo.empty());
1033 assert(results.size() == 1);
1034 return results[0];
1035 }
1036
Subcord(size_t pos,size_t new_size) const1037 Cord Cord::Subcord(size_t pos, size_t new_size) const {
1038 Cord sub_cord;
1039 size_t length = size();
1040 if (pos > length) pos = length;
1041 if (new_size > length - pos) new_size = length - pos;
1042 if (new_size == 0) return sub_cord;
1043
1044 CordRep* tree = contents_.tree();
1045 if (tree == nullptr) {
1046 // sub_cord is newly constructed, no need to re-zero-out the tail of
1047 // contents_ memory.
1048 sub_cord.contents_.set_data(contents_.data() + pos, new_size, false);
1049 return sub_cord;
1050 }
1051
1052 if (new_size <= InlineRep::kMaxInline) {
1053 char* dest = sub_cord.contents_.data_.as_chars();
1054 Cord::ChunkIterator it = chunk_begin();
1055 it.AdvanceBytes(pos);
1056 size_t remaining_size = new_size;
1057 while (remaining_size > it->size()) {
1058 cord_internal::SmallMemmove(dest, it->data(), it->size());
1059 remaining_size -= it->size();
1060 dest += it->size();
1061 ++it;
1062 }
1063 cord_internal::SmallMemmove(dest, it->data(), remaining_size);
1064 sub_cord.contents_.set_inline_size(new_size);
1065 return sub_cord;
1066 }
1067
1068 if (tree->IsBtree()) {
1069 tree = tree->btree()->SubTree(pos, new_size);
1070 } else {
1071 tree = NewSubRange(tree, pos, new_size);
1072 }
1073 sub_cord.contents_.EmplaceTree(tree, contents_.data_,
1074 CordzUpdateTracker::kSubCord);
1075 return sub_cord;
1076 }
1077
1078 // --------------------------------------------------------------------
1079 // Balancing
1080
1081 class CordForest {
1082 public:
CordForest(size_t length)1083 explicit CordForest(size_t length)
1084 : root_length_(length), trees_(kMinLengthSize, nullptr) {}
1085
Build(CordRep * cord_root)1086 void Build(CordRep* cord_root) {
1087 std::vector<CordRep*> pending = {cord_root};
1088
1089 while (!pending.empty()) {
1090 CordRep* node = pending.back();
1091 pending.pop_back();
1092 CheckNode(node);
1093 if (ABSL_PREDICT_FALSE(!node->IsConcat())) {
1094 AddNode(node);
1095 continue;
1096 }
1097
1098 CordRepConcat* concat_node = node->concat();
1099 if (concat_node->depth() >= kMinLengthSize ||
1100 concat_node->length < min_length[concat_node->depth()]) {
1101 pending.push_back(concat_node->right);
1102 pending.push_back(concat_node->left);
1103
1104 if (concat_node->refcount.IsOne()) {
1105 concat_node->left = concat_freelist_;
1106 concat_freelist_ = concat_node;
1107 } else {
1108 CordRep::Ref(concat_node->right);
1109 CordRep::Ref(concat_node->left);
1110 CordRep::Unref(concat_node);
1111 }
1112 } else {
1113 AddNode(node);
1114 }
1115 }
1116 }
1117
ConcatNodes()1118 CordRep* ConcatNodes() {
1119 CordRep* sum = nullptr;
1120 for (auto* node : trees_) {
1121 if (node == nullptr) continue;
1122
1123 sum = PrependNode(node, sum);
1124 root_length_ -= node->length;
1125 if (root_length_ == 0) break;
1126 }
1127 ABSL_INTERNAL_CHECK(sum != nullptr, "Failed to locate sum node");
1128 return VerifyTree(sum);
1129 }
1130
1131 private:
AppendNode(CordRep * node,CordRep * sum)1132 CordRep* AppendNode(CordRep* node, CordRep* sum) {
1133 return (sum == nullptr) ? node : MakeConcat(sum, node);
1134 }
1135
PrependNode(CordRep * node,CordRep * sum)1136 CordRep* PrependNode(CordRep* node, CordRep* sum) {
1137 return (sum == nullptr) ? node : MakeConcat(node, sum);
1138 }
1139
AddNode(CordRep * node)1140 void AddNode(CordRep* node) {
1141 CordRep* sum = nullptr;
1142
1143 // Collect together everything with which we will merge with node
1144 int i = 0;
1145 for (; node->length > min_length[i + 1]; ++i) {
1146 auto& tree_at_i = trees_[i];
1147
1148 if (tree_at_i == nullptr) continue;
1149 sum = PrependNode(tree_at_i, sum);
1150 tree_at_i = nullptr;
1151 }
1152
1153 sum = AppendNode(node, sum);
1154
1155 // Insert sum into appropriate place in the forest
1156 for (; sum->length >= min_length[i]; ++i) {
1157 auto& tree_at_i = trees_[i];
1158 if (tree_at_i == nullptr) continue;
1159
1160 sum = MakeConcat(tree_at_i, sum);
1161 tree_at_i = nullptr;
1162 }
1163
1164 // min_length[0] == 1, which means sum->length >= min_length[0]
1165 assert(i > 0);
1166 trees_[i - 1] = sum;
1167 }
1168
1169 // Make concat node trying to resue existing CordRepConcat nodes we
1170 // already collected in the concat_freelist_.
MakeConcat(CordRep * left,CordRep * right)1171 CordRep* MakeConcat(CordRep* left, CordRep* right) {
1172 if (concat_freelist_ == nullptr) return RawConcat(left, right);
1173
1174 CordRepConcat* rep = concat_freelist_;
1175 if (concat_freelist_->left == nullptr) {
1176 concat_freelist_ = nullptr;
1177 } else {
1178 concat_freelist_ = concat_freelist_->left->concat();
1179 }
1180 SetConcatChildren(rep, left, right);
1181
1182 return rep;
1183 }
1184
CheckNode(CordRep * node)1185 static void CheckNode(CordRep* node) {
1186 ABSL_INTERNAL_CHECK(node->length != 0u, "");
1187 if (node->IsConcat()) {
1188 ABSL_INTERNAL_CHECK(node->concat()->left != nullptr, "");
1189 ABSL_INTERNAL_CHECK(node->concat()->right != nullptr, "");
1190 ABSL_INTERNAL_CHECK(node->length == (node->concat()->left->length +
1191 node->concat()->right->length),
1192 "");
1193 }
1194 }
1195
1196 size_t root_length_;
1197
1198 // use an inlined vector instead of a flat array to get bounds checking
1199 absl::InlinedVector<CordRep*, kInlinedVectorSize> trees_;
1200
1201 // List of concat nodes we can re-use for Cord balancing.
1202 CordRepConcat* concat_freelist_ = nullptr;
1203 };
1204
Rebalance(CordRep * node)1205 static CordRep* Rebalance(CordRep* node) {
1206 VerifyTree(node);
1207 assert(node->IsConcat());
1208
1209 if (node->length == 0) {
1210 return nullptr;
1211 }
1212
1213 CordForest forest(node->length);
1214 forest.Build(node);
1215 return forest.ConcatNodes();
1216 }
1217
1218 // --------------------------------------------------------------------
1219 // Comparators
1220
1221 namespace {
1222
ClampResult(int memcmp_res)1223 int ClampResult(int memcmp_res) {
1224 return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
1225 }
1226
CompareChunks(absl::string_view * lhs,absl::string_view * rhs,size_t * size_to_compare)1227 int CompareChunks(absl::string_view* lhs, absl::string_view* rhs,
1228 size_t* size_to_compare) {
1229 size_t compared_size = std::min(lhs->size(), rhs->size());
1230 assert(*size_to_compare >= compared_size);
1231 *size_to_compare -= compared_size;
1232
1233 int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
1234 if (memcmp_res != 0) return memcmp_res;
1235
1236 lhs->remove_prefix(compared_size);
1237 rhs->remove_prefix(compared_size);
1238
1239 return 0;
1240 }
1241
1242 // This overload set computes comparison results from memcmp result. This
1243 // interface is used inside GenericCompare below. Differet implementations
1244 // are specialized for int and bool. For int we clamp result to {-1, 0, 1}
1245 // set. For bool we just interested in "value == 0".
1246 template <typename ResultType>
ComputeCompareResult(int memcmp_res)1247 ResultType ComputeCompareResult(int memcmp_res) {
1248 return ClampResult(memcmp_res);
1249 }
1250 template <>
ComputeCompareResult(int memcmp_res)1251 bool ComputeCompareResult<bool>(int memcmp_res) {
1252 return memcmp_res == 0;
1253 }
1254
1255 } // namespace
1256
1257 // Helper routine. Locates the first flat or external chunk of the Cord without
1258 // initializing the iterator, and returns a string_view referencing the data.
FindFlatStartPiece() const1259 inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
1260 if (!is_tree()) {
1261 return absl::string_view(data_.as_chars(), data_.inline_size());
1262 }
1263
1264 CordRep* node = tree();
1265 if (node->IsFlat()) {
1266 return absl::string_view(node->flat()->Data(), node->length);
1267 }
1268
1269 if (node->IsExternal()) {
1270 return absl::string_view(node->external()->base, node->length);
1271 }
1272
1273 if (node->IsBtree()) {
1274 CordRepBtree* tree = node->btree();
1275 int height = tree->height();
1276 while (--height >= 0) {
1277 tree = tree->Edge(CordRepBtree::kFront)->btree();
1278 }
1279 return tree->Data(tree->begin());
1280 }
1281
1282 // Walk down the left branches until we hit a non-CONCAT node.
1283 while (node->IsConcat()) {
1284 node = node->concat()->left;
1285 }
1286
1287 // Get the child node if we encounter a SUBSTRING.
1288 size_t offset = 0;
1289 size_t length = node->length;
1290 assert(length != 0);
1291
1292 if (node->IsSubstring()) {
1293 offset = node->substring()->start;
1294 node = node->substring()->child;
1295 }
1296
1297 if (node->IsFlat()) {
1298 return absl::string_view(node->flat()->Data() + offset, length);
1299 }
1300
1301 assert(node->IsExternal() && "Expect FLAT or EXTERNAL node here");
1302
1303 return absl::string_view(node->external()->base + offset, length);
1304 }
1305
CompareSlowPath(absl::string_view rhs,size_t compared_size,size_t size_to_compare) const1306 inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
1307 size_t size_to_compare) const {
1308 auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
1309 if (!chunk->empty()) return true;
1310 ++*it;
1311 if (it->bytes_remaining_ == 0) return false;
1312 *chunk = **it;
1313 return true;
1314 };
1315
1316 Cord::ChunkIterator lhs_it = chunk_begin();
1317
1318 // compared_size is inside first chunk.
1319 absl::string_view lhs_chunk =
1320 (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
1321 assert(compared_size <= lhs_chunk.size());
1322 assert(compared_size <= rhs.size());
1323 lhs_chunk.remove_prefix(compared_size);
1324 rhs.remove_prefix(compared_size);
1325 size_to_compare -= compared_size; // skip already compared size.
1326
1327 while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
1328 int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
1329 if (comparison_result != 0) return comparison_result;
1330 if (size_to_compare == 0) return 0;
1331 }
1332
1333 return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
1334 }
1335
CompareSlowPath(const Cord & rhs,size_t compared_size,size_t size_to_compare) const1336 inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
1337 size_t size_to_compare) const {
1338 auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
1339 if (!chunk->empty()) return true;
1340 ++*it;
1341 if (it->bytes_remaining_ == 0) return false;
1342 *chunk = **it;
1343 return true;
1344 };
1345
1346 Cord::ChunkIterator lhs_it = chunk_begin();
1347 Cord::ChunkIterator rhs_it = rhs.chunk_begin();
1348
1349 // compared_size is inside both first chunks.
1350 absl::string_view lhs_chunk =
1351 (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
1352 absl::string_view rhs_chunk =
1353 (rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
1354 assert(compared_size <= lhs_chunk.size());
1355 assert(compared_size <= rhs_chunk.size());
1356 lhs_chunk.remove_prefix(compared_size);
1357 rhs_chunk.remove_prefix(compared_size);
1358 size_to_compare -= compared_size; // skip already compared size.
1359
1360 while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
1361 int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
1362 if (memcmp_res != 0) return memcmp_res;
1363 if (size_to_compare == 0) return 0;
1364 }
1365
1366 return static_cast<int>(rhs_chunk.empty()) -
1367 static_cast<int>(lhs_chunk.empty());
1368 }
1369
GetFirstChunk(const Cord & c)1370 inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
1371 return c.contents_.FindFlatStartPiece();
1372 }
GetFirstChunk(absl::string_view sv)1373 inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
1374 return sv;
1375 }
1376
1377 // Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
1378 // that 'size_to_compare' is greater that size of smallest of first chunks.
1379 template <typename ResultType, typename RHS>
GenericCompare(const Cord & lhs,const RHS & rhs,size_t size_to_compare)1380 ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
1381 size_t size_to_compare) {
1382 absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
1383 absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);
1384
1385 size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
1386 assert(size_to_compare >= compared_size);
1387 int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
1388 if (compared_size == size_to_compare || memcmp_res != 0) {
1389 return ComputeCompareResult<ResultType>(memcmp_res);
1390 }
1391
1392 return ComputeCompareResult<ResultType>(
1393 lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
1394 }
1395
EqualsImpl(absl::string_view rhs,size_t size_to_compare) const1396 bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
1397 return GenericCompare<bool>(*this, rhs, size_to_compare);
1398 }
1399
EqualsImpl(const Cord & rhs,size_t size_to_compare) const1400 bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
1401 return GenericCompare<bool>(*this, rhs, size_to_compare);
1402 }
1403
1404 template <typename RHS>
SharedCompareImpl(const Cord & lhs,const RHS & rhs)1405 inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
1406 size_t lhs_size = lhs.size();
1407 size_t rhs_size = rhs.size();
1408 if (lhs_size == rhs_size) {
1409 return GenericCompare<int>(lhs, rhs, lhs_size);
1410 }
1411 if (lhs_size < rhs_size) {
1412 auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
1413 return data_comp_res == 0 ? -1 : data_comp_res;
1414 }
1415
1416 auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
1417 return data_comp_res == 0 ? +1 : data_comp_res;
1418 }
1419
Compare(absl::string_view rhs) const1420 int Cord::Compare(absl::string_view rhs) const {
1421 return SharedCompareImpl(*this, rhs);
1422 }
1423
CompareImpl(const Cord & rhs) const1424 int Cord::CompareImpl(const Cord& rhs) const {
1425 return SharedCompareImpl(*this, rhs);
1426 }
1427
EndsWith(absl::string_view rhs) const1428 bool Cord::EndsWith(absl::string_view rhs) const {
1429 size_t my_size = size();
1430 size_t rhs_size = rhs.size();
1431
1432 if (my_size < rhs_size) return false;
1433
1434 Cord tmp(*this);
1435 tmp.RemovePrefix(my_size - rhs_size);
1436 return tmp.EqualsImpl(rhs, rhs_size);
1437 }
1438
EndsWith(const Cord & rhs) const1439 bool Cord::EndsWith(const Cord& rhs) const {
1440 size_t my_size = size();
1441 size_t rhs_size = rhs.size();
1442
1443 if (my_size < rhs_size) return false;
1444
1445 Cord tmp(*this);
1446 tmp.RemovePrefix(my_size - rhs_size);
1447 return tmp.EqualsImpl(rhs, rhs_size);
1448 }
1449
1450 // --------------------------------------------------------------------
1451 // Misc.
1452
operator std::string() const1453 Cord::operator std::string() const {
1454 std::string s;
1455 absl::CopyCordToString(*this, &s);
1456 return s;
1457 }
1458
CopyCordToString(const Cord & src,std::string * dst)1459 void CopyCordToString(const Cord& src, std::string* dst) {
1460 if (!src.contents_.is_tree()) {
1461 src.contents_.CopyTo(dst);
1462 } else {
1463 absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
1464 src.CopyToArraySlowPath(&(*dst)[0]);
1465 }
1466 }
1467
CopyToArraySlowPath(char * dst) const1468 void Cord::CopyToArraySlowPath(char* dst) const {
1469 assert(contents_.is_tree());
1470 absl::string_view fragment;
1471 if (GetFlatAux(contents_.tree(), &fragment)) {
1472 memcpy(dst, fragment.data(), fragment.size());
1473 return;
1474 }
1475 for (absl::string_view chunk : Chunks()) {
1476 memcpy(dst, chunk.data(), chunk.size());
1477 dst += chunk.size();
1478 }
1479 }
1480
AdvanceStack()1481 Cord::ChunkIterator& Cord::ChunkIterator::AdvanceStack() {
1482 auto& stack_of_right_children = stack_of_right_children_;
1483 if (stack_of_right_children.empty()) {
1484 assert(!current_chunk_.empty()); // Called on invalid iterator.
1485 // We have reached the end of the Cord.
1486 return *this;
1487 }
1488
1489 // Process the next node on the stack.
1490 CordRep* node = stack_of_right_children.back();
1491 stack_of_right_children.pop_back();
1492
1493 // Walk down the left branches until we hit a non-CONCAT node. Save the
1494 // right children to the stack for subsequent traversal.
1495 while (node->IsConcat()) {
1496 stack_of_right_children.push_back(node->concat()->right);
1497 node = node->concat()->left;
1498 }
1499
1500 // Get the child node if we encounter a SUBSTRING.
1501 size_t offset = 0;
1502 size_t length = node->length;
1503 if (node->IsSubstring()) {
1504 offset = node->substring()->start;
1505 node = node->substring()->child;
1506 }
1507
1508 assert(node->IsExternal() || node->IsFlat());
1509 assert(length != 0);
1510 const char* data =
1511 node->IsExternal() ? node->external()->base : node->flat()->Data();
1512 current_chunk_ = absl::string_view(data + offset, length);
1513 current_leaf_ = node;
1514 return *this;
1515 }
1516
AdvanceAndReadBytes(size_t n)1517 Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
1518 ABSL_HARDENING_ASSERT(bytes_remaining_ >= n &&
1519 "Attempted to iterate past `end()`");
1520 Cord subcord;
1521 auto constexpr method = CordzUpdateTracker::kCordReader;
1522
1523 if (n <= InlineRep::kMaxInline) {
1524 // Range to read fits in inline data. Flatten it.
1525 char* data = subcord.contents_.set_data(n);
1526 while (n > current_chunk_.size()) {
1527 memcpy(data, current_chunk_.data(), current_chunk_.size());
1528 data += current_chunk_.size();
1529 n -= current_chunk_.size();
1530 ++*this;
1531 }
1532 memcpy(data, current_chunk_.data(), n);
1533 if (n < current_chunk_.size()) {
1534 RemoveChunkPrefix(n);
1535 } else if (n > 0) {
1536 ++*this;
1537 }
1538 return subcord;
1539 }
1540
1541 if (btree_reader_) {
1542 size_t chunk_size = current_chunk_.size();
1543 if (n <= chunk_size && n <= kMaxBytesToCopy) {
1544 subcord = Cord(current_chunk_.substr(0, n), method);
1545 if (n < chunk_size) {
1546 current_chunk_.remove_prefix(n);
1547 } else {
1548 current_chunk_ = btree_reader_.Next();
1549 }
1550 } else {
1551 CordRep* rep;
1552 current_chunk_ = btree_reader_.Read(n, chunk_size, rep);
1553 subcord.contents_.EmplaceTree(rep, method);
1554 }
1555 bytes_remaining_ -= n;
1556 return subcord;
1557 }
1558
1559 auto& stack_of_right_children = stack_of_right_children_;
1560 if (n < current_chunk_.size()) {
1561 // Range to read is a proper subrange of the current chunk.
1562 assert(current_leaf_ != nullptr);
1563 CordRep* subnode = CordRep::Ref(current_leaf_);
1564 const char* data = subnode->IsExternal() ? subnode->external()->base
1565 : subnode->flat()->Data();
1566 subnode = NewSubstring(subnode, current_chunk_.data() - data, n);
1567 subcord.contents_.EmplaceTree(VerifyTree(subnode), method);
1568 RemoveChunkPrefix(n);
1569 return subcord;
1570 }
1571
1572 // Range to read begins with a proper subrange of the current chunk.
1573 assert(!current_chunk_.empty());
1574 assert(current_leaf_ != nullptr);
1575 CordRep* subnode = CordRep::Ref(current_leaf_);
1576 if (current_chunk_.size() < subnode->length) {
1577 const char* data = subnode->IsExternal() ? subnode->external()->base
1578 : subnode->flat()->Data();
1579 subnode = NewSubstring(subnode, current_chunk_.data() - data,
1580 current_chunk_.size());
1581 }
1582 n -= current_chunk_.size();
1583 bytes_remaining_ -= current_chunk_.size();
1584
1585 // Process the next node(s) on the stack, reading whole subtrees depending on
1586 // their length and how many bytes we are advancing.
1587 CordRep* node = nullptr;
1588 while (!stack_of_right_children.empty()) {
1589 node = stack_of_right_children.back();
1590 stack_of_right_children.pop_back();
1591 if (node->length > n) break;
1592 // TODO(qrczak): This might unnecessarily recreate existing concat nodes.
1593 // Avoiding that would need pretty complicated logic (instead of
1594 // current_leaf, keep current_subtree_ which points to the highest node
1595 // such that the current leaf can be found on the path of left children
1596 // starting from current_subtree_; delay creating subnode while node is
1597 // below current_subtree_; find the proper node along the path of left
1598 // children starting from current_subtree_ if this loop exits while staying
1599 // below current_subtree_; etc.; alternatively, push parents instead of
1600 // right children on the stack).
1601 subnode = Concat(subnode, CordRep::Ref(node));
1602 n -= node->length;
1603 bytes_remaining_ -= node->length;
1604 node = nullptr;
1605 }
1606
1607 if (node == nullptr) {
1608 // We have reached the end of the Cord.
1609 assert(bytes_remaining_ == 0);
1610 subcord.contents_.EmplaceTree(VerifyTree(subnode), method);
1611 return subcord;
1612 }
1613
1614 // Walk down the appropriate branches until we hit a non-CONCAT node. Save the
1615 // right children to the stack for subsequent traversal.
1616 while (node->IsConcat()) {
1617 if (node->concat()->left->length > n) {
1618 // Push right, descend left.
1619 stack_of_right_children.push_back(node->concat()->right);
1620 node = node->concat()->left;
1621 } else {
1622 // Read left, descend right.
1623 subnode = Concat(subnode, CordRep::Ref(node->concat()->left));
1624 n -= node->concat()->left->length;
1625 bytes_remaining_ -= node->concat()->left->length;
1626 node = node->concat()->right;
1627 }
1628 }
1629
1630 // Get the child node if we encounter a SUBSTRING.
1631 size_t offset = 0;
1632 size_t length = node->length;
1633 if (node->IsSubstring()) {
1634 offset = node->substring()->start;
1635 node = node->substring()->child;
1636 }
1637
1638 // Range to read ends with a proper (possibly empty) subrange of the current
1639 // chunk.
1640 assert(node->IsExternal() || node->IsFlat());
1641 assert(length > n);
1642 if (n > 0) {
1643 subnode = Concat(subnode, NewSubstring(CordRep::Ref(node), offset, n));
1644 }
1645 const char* data =
1646 node->IsExternal() ? node->external()->base : node->flat()->Data();
1647 current_chunk_ = absl::string_view(data + offset + n, length - n);
1648 current_leaf_ = node;
1649 bytes_remaining_ -= n;
1650 subcord.contents_.EmplaceTree(VerifyTree(subnode), method);
1651 return subcord;
1652 }
1653
AdvanceBytesSlowPath(size_t n)1654 void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) {
1655 assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
1656 assert(n >= current_chunk_.size()); // This should only be called when
1657 // iterating to a new node.
1658
1659 n -= current_chunk_.size();
1660 bytes_remaining_ -= current_chunk_.size();
1661
1662 if (stack_of_right_children_.empty()) {
1663 // We have reached the end of the Cord.
1664 assert(bytes_remaining_ == 0);
1665 return;
1666 }
1667
1668 // Process the next node(s) on the stack, skipping whole subtrees depending on
1669 // their length and how many bytes we are advancing.
1670 CordRep* node = nullptr;
1671 auto& stack_of_right_children = stack_of_right_children_;
1672 while (!stack_of_right_children.empty()) {
1673 node = stack_of_right_children.back();
1674 stack_of_right_children.pop_back();
1675 if (node->length > n) break;
1676 n -= node->length;
1677 bytes_remaining_ -= node->length;
1678 node = nullptr;
1679 }
1680
1681 if (node == nullptr) {
1682 // We have reached the end of the Cord.
1683 assert(bytes_remaining_ == 0);
1684 return;
1685 }
1686
1687 // Walk down the appropriate branches until we hit a non-CONCAT node. Save the
1688 // right children to the stack for subsequent traversal.
1689 while (node->IsConcat()) {
1690 if (node->concat()->left->length > n) {
1691 // Push right, descend left.
1692 stack_of_right_children.push_back(node->concat()->right);
1693 node = node->concat()->left;
1694 } else {
1695 // Skip left, descend right.
1696 n -= node->concat()->left->length;
1697 bytes_remaining_ -= node->concat()->left->length;
1698 node = node->concat()->right;
1699 }
1700 }
1701
1702 // Get the child node if we encounter a SUBSTRING.
1703 size_t offset = 0;
1704 size_t length = node->length;
1705 if (node->IsSubstring()) {
1706 offset = node->substring()->start;
1707 node = node->substring()->child;
1708 }
1709
1710 assert(node->IsExternal() || node->IsFlat());
1711 assert(length > n);
1712 const char* data =
1713 node->IsExternal() ? node->external()->base : node->flat()->Data();
1714 current_chunk_ = absl::string_view(data + offset + n, length - n);
1715 current_leaf_ = node;
1716 bytes_remaining_ -= n;
1717 }
1718
operator [](size_t i) const1719 char Cord::operator[](size_t i) const {
1720 ABSL_HARDENING_ASSERT(i < size());
1721 size_t offset = i;
1722 const CordRep* rep = contents_.tree();
1723 if (rep == nullptr) {
1724 return contents_.data()[i];
1725 }
1726 while (true) {
1727 assert(rep != nullptr);
1728 assert(offset < rep->length);
1729 if (rep->IsFlat()) {
1730 // Get the "i"th character directly from the flat array.
1731 return rep->flat()->Data()[offset];
1732 } else if (rep->IsBtree()) {
1733 return rep->btree()->GetCharacter(offset);
1734 } else if (rep->IsExternal()) {
1735 // Get the "i"th character from the external array.
1736 return rep->external()->base[offset];
1737 } else if (rep->IsConcat()) {
1738 // Recursively branch to the side of the concatenation that the "i"th
1739 // character is on.
1740 size_t left_length = rep->concat()->left->length;
1741 if (offset < left_length) {
1742 rep = rep->concat()->left;
1743 } else {
1744 offset -= left_length;
1745 rep = rep->concat()->right;
1746 }
1747 } else {
1748 // This must be a substring a node, so bypass it to get to the child.
1749 assert(rep->IsSubstring());
1750 offset += rep->substring()->start;
1751 rep = rep->substring()->child;
1752 }
1753 }
1754 }
1755
FlattenSlowPath()1756 absl::string_view Cord::FlattenSlowPath() {
1757 assert(contents_.is_tree());
1758 size_t total_size = size();
1759 CordRep* new_rep;
1760 char* new_buffer;
1761
1762 // Try to put the contents into a new flat rep. If they won't fit in the
1763 // biggest possible flat node, use an external rep instead.
1764 if (total_size <= kMaxFlatLength) {
1765 new_rep = CordRepFlat::New(total_size);
1766 new_rep->length = total_size;
1767 new_buffer = new_rep->flat()->Data();
1768 CopyToArraySlowPath(new_buffer);
1769 } else {
1770 new_buffer = std::allocator<char>().allocate(total_size);
1771 CopyToArraySlowPath(new_buffer);
1772 new_rep = absl::cord_internal::NewExternalRep(
1773 absl::string_view(new_buffer, total_size), [](absl::string_view s) {
1774 std::allocator<char>().deallocate(const_cast<char*>(s.data()),
1775 s.size());
1776 });
1777 }
1778 CordzUpdateScope scope(contents_.cordz_info(), CordzUpdateTracker::kFlatten);
1779 CordRep::Unref(contents_.as_tree());
1780 contents_.SetTree(new_rep, scope);
1781 return absl::string_view(new_buffer, total_size);
1782 }
1783
GetFlatAux(CordRep * rep,absl::string_view * fragment)1784 /* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
1785 assert(rep != nullptr);
1786 if (rep->IsFlat()) {
1787 *fragment = absl::string_view(rep->flat()->Data(), rep->length);
1788 return true;
1789 } else if (rep->IsExternal()) {
1790 *fragment = absl::string_view(rep->external()->base, rep->length);
1791 return true;
1792 } else if (rep->IsBtree()) {
1793 return rep->btree()->IsFlat(fragment);
1794 } else if (rep->IsSubstring()) {
1795 CordRep* child = rep->substring()->child;
1796 if (child->IsFlat()) {
1797 *fragment = absl::string_view(
1798 child->flat()->Data() + rep->substring()->start, rep->length);
1799 return true;
1800 } else if (child->IsExternal()) {
1801 *fragment = absl::string_view(
1802 child->external()->base + rep->substring()->start, rep->length);
1803 return true;
1804 } else if (child->IsBtree()) {
1805 return child->btree()->IsFlat(rep->substring()->start, rep->length,
1806 fragment);
1807 }
1808 }
1809 return false;
1810 }
1811
ForEachChunkAux(absl::cord_internal::CordRep * rep,absl::FunctionRef<void (absl::string_view)> callback)1812 /* static */ void Cord::ForEachChunkAux(
1813 absl::cord_internal::CordRep* rep,
1814 absl::FunctionRef<void(absl::string_view)> callback) {
1815 if (rep->IsBtree()) {
1816 ChunkIterator it(rep), end;
1817 while (it != end) {
1818 callback(*it);
1819 ++it;
1820 }
1821 return;
1822 }
1823
1824 assert(rep != nullptr);
1825 int stack_pos = 0;
1826 constexpr int stack_max = 128;
1827 // Stack of right branches for tree traversal
1828 absl::cord_internal::CordRep* stack[stack_max];
1829 absl::cord_internal::CordRep* current_node = rep;
1830 while (true) {
1831 if (current_node->IsConcat()) {
1832 if (stack_pos == stack_max) {
1833 // There's no more room on our stack array to add another right branch,
1834 // and the idea is to avoid allocations, so call this function
1835 // recursively to navigate this subtree further. (This is not something
1836 // we expect to happen in practice).
1837 ForEachChunkAux(current_node, callback);
1838
1839 // Pop the next right branch and iterate.
1840 current_node = stack[--stack_pos];
1841 continue;
1842 } else {
1843 // Save the right branch for later traversal and continue down the left
1844 // branch.
1845 stack[stack_pos++] = current_node->concat()->right;
1846 current_node = current_node->concat()->left;
1847 continue;
1848 }
1849 }
1850 // This is a leaf node, so invoke our callback.
1851 absl::string_view chunk;
1852 bool success = GetFlatAux(current_node, &chunk);
1853 assert(success);
1854 if (success) {
1855 callback(chunk);
1856 }
1857 if (stack_pos == 0) {
1858 // end of traversal
1859 return;
1860 }
1861 current_node = stack[--stack_pos];
1862 }
1863 }
1864
DumpNode(CordRep * rep,bool include_data,std::ostream * os,int indent)1865 static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
1866 int indent) {
1867 const int kIndentStep = 1;
1868 absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
1869 absl::InlinedVector<int, kInlinedVectorSize> indents;
1870 for (;;) {
1871 *os << std::setw(3) << rep->refcount.Get();
1872 *os << " " << std::setw(7) << rep->length;
1873 *os << " [";
1874 if (include_data) *os << static_cast<void*>(rep);
1875 *os << "]";
1876 *os << " " << (IsRootBalanced(rep) ? 'b' : 'u');
1877 *os << " " << std::setw(indent) << "";
1878 if (rep->IsConcat()) {
1879 *os << "CONCAT depth=" << Depth(rep) << "\n";
1880 indent += kIndentStep;
1881 indents.push_back(indent);
1882 stack.push_back(rep->concat()->right);
1883 rep = rep->concat()->left;
1884 } else if (rep->IsSubstring()) {
1885 *os << "SUBSTRING @ " << rep->substring()->start << "\n";
1886 indent += kIndentStep;
1887 rep = rep->substring()->child;
1888 } else { // Leaf or ring
1889 if (rep->IsExternal()) {
1890 *os << "EXTERNAL [";
1891 if (include_data)
1892 *os << absl::CEscape(std::string(rep->external()->base, rep->length));
1893 *os << "]\n";
1894 } else if (rep->IsFlat()) {
1895 *os << "FLAT cap=" << rep->flat()->Capacity() << " [";
1896 if (include_data)
1897 *os << absl::CEscape(std::string(rep->flat()->Data(), rep->length));
1898 *os << "]\n";
1899 } else {
1900 CordRepBtree::Dump(rep, /*label=*/ "", include_data, *os);
1901 }
1902 if (stack.empty()) break;
1903 rep = stack.back();
1904 stack.pop_back();
1905 indent = indents.back();
1906 indents.pop_back();
1907 }
1908 }
1909 ABSL_INTERNAL_CHECK(indents.empty(), "");
1910 }
1911
ReportError(CordRep * root,CordRep * node)1912 static std::string ReportError(CordRep* root, CordRep* node) {
1913 std::ostringstream buf;
1914 buf << "Error at node " << node << " in:";
1915 DumpNode(root, true, &buf);
1916 return buf.str();
1917 }
1918
VerifyNode(CordRep * root,CordRep * start_node,bool full_validation)1919 static bool VerifyNode(CordRep* root, CordRep* start_node,
1920 bool full_validation) {
1921 absl::InlinedVector<CordRep*, 2> worklist;
1922 worklist.push_back(start_node);
1923 do {
1924 CordRep* node = worklist.back();
1925 worklist.pop_back();
1926
1927 ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
1928 if (node != root) {
1929 ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
1930 }
1931
1932 if (node->IsConcat()) {
1933 ABSL_INTERNAL_CHECK(node->concat()->left != nullptr,
1934 ReportError(root, node));
1935 ABSL_INTERNAL_CHECK(node->concat()->right != nullptr,
1936 ReportError(root, node));
1937 ABSL_INTERNAL_CHECK((node->length == node->concat()->left->length +
1938 node->concat()->right->length),
1939 ReportError(root, node));
1940 if (full_validation) {
1941 worklist.push_back(node->concat()->right);
1942 worklist.push_back(node->concat()->left);
1943 }
1944 } else if (node->IsFlat()) {
1945 ABSL_INTERNAL_CHECK(node->length <= node->flat()->Capacity(),
1946 ReportError(root, node));
1947 } else if (node->IsExternal()) {
1948 ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
1949 ReportError(root, node));
1950 } else if (node->IsSubstring()) {
1951 ABSL_INTERNAL_CHECK(
1952 node->substring()->start < node->substring()->child->length,
1953 ReportError(root, node));
1954 ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
1955 node->substring()->child->length,
1956 ReportError(root, node));
1957 }
1958 } while (!worklist.empty());
1959 return true;
1960 }
1961
1962 // Traverses the tree and computes the total memory allocated.
MemoryUsageAux(const CordRep * rep)1963 /* static */ size_t Cord::MemoryUsageAux(const CordRep* rep) {
1964 size_t total_mem_usage = 0;
1965
1966 // Allow a quick exit for the common case that the root is a leaf.
1967 if (RepMemoryUsageLeaf(rep, &total_mem_usage)) {
1968 return total_mem_usage;
1969 }
1970
1971 // Iterate over the tree. cur_node is never a leaf node and leaf nodes will
1972 // never be appended to tree_stack. This reduces overhead from manipulating
1973 // tree_stack.
1974 absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack;
1975 const CordRep* cur_node = rep;
1976 while (true) {
1977 const CordRep* next_node = nullptr;
1978
1979 if (cur_node->IsConcat()) {
1980 total_mem_usage += sizeof(CordRepConcat);
1981 const CordRep* left = cur_node->concat()->left;
1982 if (!RepMemoryUsageLeaf(left, &total_mem_usage)) {
1983 next_node = left;
1984 }
1985
1986 const CordRep* right = cur_node->concat()->right;
1987 if (!RepMemoryUsageLeaf(right, &total_mem_usage)) {
1988 if (next_node) {
1989 tree_stack.push_back(next_node);
1990 }
1991 next_node = right;
1992 }
1993 } else if (cur_node->IsBtree()) {
1994 total_mem_usage += sizeof(CordRepBtree);
1995 const CordRepBtree* node = cur_node->btree();
1996 if (node->height() == 0) {
1997 for (const CordRep* edge : node->Edges()) {
1998 RepMemoryUsageDataEdge(edge, &total_mem_usage);
1999 }
2000 } else {
2001 for (const CordRep* edge : node->Edges()) {
2002 tree_stack.push_back(edge);
2003 }
2004 }
2005 } else {
2006 // Since cur_node is not a leaf or a concat node it must be a substring.
2007 assert(cur_node->IsSubstring());
2008 total_mem_usage += sizeof(CordRepSubstring);
2009 next_node = cur_node->substring()->child;
2010 if (RepMemoryUsageLeaf(next_node, &total_mem_usage)) {
2011 next_node = nullptr;
2012 }
2013 }
2014
2015 if (!next_node) {
2016 if (tree_stack.empty()) {
2017 return total_mem_usage;
2018 }
2019 next_node = tree_stack.back();
2020 tree_stack.pop_back();
2021 }
2022 cur_node = next_node;
2023 }
2024 }
2025
operator <<(std::ostream & out,const Cord & cord)2026 std::ostream& operator<<(std::ostream& out, const Cord& cord) {
2027 for (absl::string_view chunk : cord.Chunks()) {
2028 out.write(chunk.data(), chunk.size());
2029 }
2030 return out;
2031 }
2032
2033 namespace strings_internal {
FlatOverhead()2034 size_t CordTestAccess::FlatOverhead() { return cord_internal::kFlatOverhead; }
MaxFlatLength()2035 size_t CordTestAccess::MaxFlatLength() { return cord_internal::kMaxFlatLength; }
FlatTagToLength(uint8_t tag)2036 size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
2037 return cord_internal::TagToLength(tag);
2038 }
LengthToTag(size_t s)2039 uint8_t CordTestAccess::LengthToTag(size_t s) {
2040 ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
2041 return cord_internal::AllocatedSizeToTag(s + cord_internal::kFlatOverhead);
2042 }
SizeofCordRepConcat()2043 size_t CordTestAccess::SizeofCordRepConcat() { return sizeof(CordRepConcat); }
SizeofCordRepExternal()2044 size_t CordTestAccess::SizeofCordRepExternal() {
2045 return sizeof(CordRepExternal);
2046 }
SizeofCordRepSubstring()2047 size_t CordTestAccess::SizeofCordRepSubstring() {
2048 return sizeof(CordRepSubstring);
2049 }
2050 } // namespace strings_internal
2051 ABSL_NAMESPACE_END
2052 } // namespace absl
2053