1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Processor capabilities determination functions.
4 *
5 * Copyright (C) xxxx the Anonymous
6 * Copyright (C) 1994 - 2006 Ralf Baechle
7 * Copyright (C) 2003, 2004 Maciej W. Rozycki
8 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
9 */
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/smp.h>
14 #include <linux/stddef.h>
15 #include <linux/export.h>
16
17 #include <asm/bugs.h>
18 #include <asm/cpu.h>
19 #include <asm/cpu-features.h>
20 #include <asm/cpu-type.h>
21 #include <asm/fpu.h>
22 #include <asm/mipsregs.h>
23 #include <asm/mipsmtregs.h>
24 #include <asm/msa.h>
25 #include <asm/watch.h>
26 #include <asm/elf.h>
27 #include <asm/pgtable-bits.h>
28 #include <asm/spram.h>
29 #include <linux/uaccess.h>
30
31 #include "fpu-probe.h"
32
33 #include <asm/mach-loongson64/cpucfg-emul.h>
34
35 /* Hardware capabilities */
36 unsigned int elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38
cpu_get_msa_id(void)39 static inline unsigned long cpu_get_msa_id(void)
40 {
41 unsigned long status, msa_id;
42
43 status = read_c0_status();
44 __enable_fpu(FPU_64BIT);
45 enable_msa();
46 msa_id = read_msa_ir();
47 disable_msa();
48 write_c0_status(status);
49 return msa_id;
50 }
51
52 static int mips_dsp_disabled;
53
dsp_disable(char * s)54 static int __init dsp_disable(char *s)
55 {
56 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
57 mips_dsp_disabled = 1;
58
59 return 1;
60 }
61
62 __setup("nodsp", dsp_disable);
63
64 static int mips_htw_disabled;
65
htw_disable(char * s)66 static int __init htw_disable(char *s)
67 {
68 mips_htw_disabled = 1;
69 cpu_data[0].options &= ~MIPS_CPU_HTW;
70 write_c0_pwctl(read_c0_pwctl() &
71 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
72
73 return 1;
74 }
75
76 __setup("nohtw", htw_disable);
77
78 static int mips_ftlb_disabled;
79 static int mips_has_ftlb_configured;
80
81 enum ftlb_flags {
82 FTLB_EN = 1 << 0,
83 FTLB_SET_PROB = 1 << 1,
84 };
85
86 static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
87
ftlb_disable(char * s)88 static int __init ftlb_disable(char *s)
89 {
90 unsigned int config4, mmuextdef;
91
92 /*
93 * If the core hasn't done any FTLB configuration, there is nothing
94 * for us to do here.
95 */
96 if (!mips_has_ftlb_configured)
97 return 1;
98
99 /* Disable it in the boot cpu */
100 if (set_ftlb_enable(&cpu_data[0], 0)) {
101 pr_warn("Can't turn FTLB off\n");
102 return 1;
103 }
104
105 config4 = read_c0_config4();
106
107 /* Check that FTLB has been disabled */
108 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
109 /* MMUSIZEEXT == VTLB ON, FTLB OFF */
110 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
111 /* This should never happen */
112 pr_warn("FTLB could not be disabled!\n");
113 return 1;
114 }
115
116 mips_ftlb_disabled = 1;
117 mips_has_ftlb_configured = 0;
118
119 /*
120 * noftlb is mainly used for debug purposes so print
121 * an informative message instead of using pr_debug()
122 */
123 pr_info("FTLB has been disabled\n");
124
125 /*
126 * Some of these bits are duplicated in the decode_config4.
127 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
128 * once FTLB has been disabled so undo what decode_config4 did.
129 */
130 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
131 cpu_data[0].tlbsizeftlbsets;
132 cpu_data[0].tlbsizeftlbsets = 0;
133 cpu_data[0].tlbsizeftlbways = 0;
134
135 return 1;
136 }
137
138 __setup("noftlb", ftlb_disable);
139
140 /*
141 * Check if the CPU has per tc perf counters
142 */
cpu_set_mt_per_tc_perf(struct cpuinfo_mips * c)143 static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
144 {
145 if (read_c0_config7() & MTI_CONF7_PTC)
146 c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
147 }
148
check_errata(void)149 static inline void check_errata(void)
150 {
151 struct cpuinfo_mips *c = ¤t_cpu_data;
152
153 switch (current_cpu_type()) {
154 case CPU_34K:
155 /*
156 * Erratum "RPS May Cause Incorrect Instruction Execution"
157 * This code only handles VPE0, any SMP/RTOS code
158 * making use of VPE1 will be responsable for that VPE.
159 */
160 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
161 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
162 break;
163 default:
164 break;
165 }
166 }
167
check_bugs32(void)168 void __init check_bugs32(void)
169 {
170 check_errata();
171 }
172
173 /*
174 * Probe whether cpu has config register by trying to play with
175 * alternate cache bit and see whether it matters.
176 * It's used by cpu_probe to distinguish between R3000A and R3081.
177 */
cpu_has_confreg(void)178 static inline int cpu_has_confreg(void)
179 {
180 #ifdef CONFIG_CPU_R3000
181 extern unsigned long r3k_cache_size(unsigned long);
182 unsigned long size1, size2;
183 unsigned long cfg = read_c0_conf();
184
185 size1 = r3k_cache_size(ST0_ISC);
186 write_c0_conf(cfg ^ R30XX_CONF_AC);
187 size2 = r3k_cache_size(ST0_ISC);
188 write_c0_conf(cfg);
189 return size1 != size2;
190 #else
191 return 0;
192 #endif
193 }
194
set_elf_platform(int cpu,const char * plat)195 static inline void set_elf_platform(int cpu, const char *plat)
196 {
197 if (cpu == 0)
198 __elf_platform = plat;
199 }
200
set_elf_base_platform(const char * plat)201 static inline void set_elf_base_platform(const char *plat)
202 {
203 if (__elf_base_platform == NULL) {
204 __elf_base_platform = plat;
205 }
206 }
207
cpu_probe_vmbits(struct cpuinfo_mips * c)208 static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
209 {
210 #ifdef __NEED_VMBITS_PROBE
211 write_c0_entryhi(0x3fffffffffffe000ULL);
212 back_to_back_c0_hazard();
213 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
214 #endif
215 }
216
set_isa(struct cpuinfo_mips * c,unsigned int isa)217 static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
218 {
219 switch (isa) {
220 case MIPS_CPU_ISA_M64R5:
221 c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5;
222 set_elf_base_platform("mips64r5");
223 fallthrough;
224 case MIPS_CPU_ISA_M64R2:
225 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
226 set_elf_base_platform("mips64r2");
227 fallthrough;
228 case MIPS_CPU_ISA_M64R1:
229 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
230 set_elf_base_platform("mips64");
231 fallthrough;
232 case MIPS_CPU_ISA_V:
233 c->isa_level |= MIPS_CPU_ISA_V;
234 set_elf_base_platform("mips5");
235 fallthrough;
236 case MIPS_CPU_ISA_IV:
237 c->isa_level |= MIPS_CPU_ISA_IV;
238 set_elf_base_platform("mips4");
239 fallthrough;
240 case MIPS_CPU_ISA_III:
241 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
242 set_elf_base_platform("mips3");
243 break;
244
245 /* R6 incompatible with everything else */
246 case MIPS_CPU_ISA_M64R6:
247 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
248 set_elf_base_platform("mips64r6");
249 fallthrough;
250 case MIPS_CPU_ISA_M32R6:
251 c->isa_level |= MIPS_CPU_ISA_M32R6;
252 set_elf_base_platform("mips32r6");
253 /* Break here so we don't add incompatible ISAs */
254 break;
255 case MIPS_CPU_ISA_M32R5:
256 c->isa_level |= MIPS_CPU_ISA_M32R5;
257 set_elf_base_platform("mips32r5");
258 fallthrough;
259 case MIPS_CPU_ISA_M32R2:
260 c->isa_level |= MIPS_CPU_ISA_M32R2;
261 set_elf_base_platform("mips32r2");
262 fallthrough;
263 case MIPS_CPU_ISA_M32R1:
264 c->isa_level |= MIPS_CPU_ISA_M32R1;
265 set_elf_base_platform("mips32");
266 fallthrough;
267 case MIPS_CPU_ISA_II:
268 c->isa_level |= MIPS_CPU_ISA_II;
269 set_elf_base_platform("mips2");
270 break;
271 }
272 }
273
274 static char unknown_isa[] = KERN_ERR \
275 "Unsupported ISA type, c0.config0: %d.";
276
calculate_ftlb_probability(struct cpuinfo_mips * c)277 static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
278 {
279
280 unsigned int probability = c->tlbsize / c->tlbsizevtlb;
281
282 /*
283 * 0 = All TLBWR instructions go to FTLB
284 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
285 * FTLB and 1 goes to the VTLB.
286 * 2 = 7:1: As above with 7:1 ratio.
287 * 3 = 3:1: As above with 3:1 ratio.
288 *
289 * Use the linear midpoint as the probability threshold.
290 */
291 if (probability >= 12)
292 return 1;
293 else if (probability >= 6)
294 return 2;
295 else
296 /*
297 * So FTLB is less than 4 times bigger than VTLB.
298 * A 3:1 ratio can still be useful though.
299 */
300 return 3;
301 }
302
set_ftlb_enable(struct cpuinfo_mips * c,enum ftlb_flags flags)303 static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
304 {
305 unsigned int config;
306
307 /* It's implementation dependent how the FTLB can be enabled */
308 switch (c->cputype) {
309 case CPU_PROAPTIV:
310 case CPU_P5600:
311 case CPU_P6600:
312 /* proAptiv & related cores use Config6 to enable the FTLB */
313 config = read_c0_config6();
314
315 if (flags & FTLB_EN)
316 config |= MTI_CONF6_FTLBEN;
317 else
318 config &= ~MTI_CONF6_FTLBEN;
319
320 if (flags & FTLB_SET_PROB) {
321 config &= ~(3 << MTI_CONF6_FTLBP_SHIFT);
322 config |= calculate_ftlb_probability(c)
323 << MTI_CONF6_FTLBP_SHIFT;
324 }
325
326 write_c0_config6(config);
327 back_to_back_c0_hazard();
328 break;
329 case CPU_I6400:
330 case CPU_I6500:
331 /* There's no way to disable the FTLB */
332 if (!(flags & FTLB_EN))
333 return 1;
334 return 0;
335 case CPU_LOONGSON64:
336 /* Flush ITLB, DTLB, VTLB and FTLB */
337 write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
338 LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
339 /* Loongson-3 cores use Config6 to enable the FTLB */
340 config = read_c0_config6();
341 if (flags & FTLB_EN)
342 /* Enable FTLB */
343 write_c0_config6(config & ~LOONGSON_CONF6_FTLBDIS);
344 else
345 /* Disable FTLB */
346 write_c0_config6(config | LOONGSON_CONF6_FTLBDIS);
347 break;
348 default:
349 return 1;
350 }
351
352 return 0;
353 }
354
mm_config(struct cpuinfo_mips * c)355 static int mm_config(struct cpuinfo_mips *c)
356 {
357 unsigned int config0, update, mm;
358
359 config0 = read_c0_config();
360 mm = config0 & MIPS_CONF_MM;
361
362 /*
363 * It's implementation dependent what type of write-merge is supported
364 * and whether it can be enabled/disabled. If it is settable lets make
365 * the merging allowed by default. Some platforms might have
366 * write-through caching unsupported. In this case just ignore the
367 * CP0.Config.MM bit field value.
368 */
369 switch (c->cputype) {
370 case CPU_24K:
371 case CPU_34K:
372 case CPU_74K:
373 case CPU_P5600:
374 case CPU_P6600:
375 c->options |= MIPS_CPU_MM_FULL;
376 update = MIPS_CONF_MM_FULL;
377 break;
378 case CPU_1004K:
379 case CPU_1074K:
380 case CPU_INTERAPTIV:
381 case CPU_PROAPTIV:
382 mm = 0;
383 fallthrough;
384 default:
385 update = 0;
386 break;
387 }
388
389 if (update) {
390 config0 = (config0 & ~MIPS_CONF_MM) | update;
391 write_c0_config(config0);
392 } else if (mm == MIPS_CONF_MM_SYSAD) {
393 c->options |= MIPS_CPU_MM_SYSAD;
394 } else if (mm == MIPS_CONF_MM_FULL) {
395 c->options |= MIPS_CPU_MM_FULL;
396 }
397
398 return 0;
399 }
400
decode_config0(struct cpuinfo_mips * c)401 static inline unsigned int decode_config0(struct cpuinfo_mips *c)
402 {
403 unsigned int config0;
404 int isa, mt;
405
406 config0 = read_c0_config();
407
408 /*
409 * Look for Standard TLB or Dual VTLB and FTLB
410 */
411 mt = config0 & MIPS_CONF_MT;
412 if (mt == MIPS_CONF_MT_TLB)
413 c->options |= MIPS_CPU_TLB;
414 else if (mt == MIPS_CONF_MT_FTLB)
415 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
416
417 isa = (config0 & MIPS_CONF_AT) >> 13;
418 switch (isa) {
419 case 0:
420 switch ((config0 & MIPS_CONF_AR) >> 10) {
421 case 0:
422 set_isa(c, MIPS_CPU_ISA_M32R1);
423 break;
424 case 1:
425 set_isa(c, MIPS_CPU_ISA_M32R2);
426 break;
427 case 2:
428 set_isa(c, MIPS_CPU_ISA_M32R6);
429 break;
430 default:
431 goto unknown;
432 }
433 break;
434 case 2:
435 switch ((config0 & MIPS_CONF_AR) >> 10) {
436 case 0:
437 set_isa(c, MIPS_CPU_ISA_M64R1);
438 break;
439 case 1:
440 set_isa(c, MIPS_CPU_ISA_M64R2);
441 break;
442 case 2:
443 set_isa(c, MIPS_CPU_ISA_M64R6);
444 break;
445 default:
446 goto unknown;
447 }
448 break;
449 default:
450 goto unknown;
451 }
452
453 return config0 & MIPS_CONF_M;
454
455 unknown:
456 panic(unknown_isa, config0);
457 }
458
decode_config1(struct cpuinfo_mips * c)459 static inline unsigned int decode_config1(struct cpuinfo_mips *c)
460 {
461 unsigned int config1;
462
463 config1 = read_c0_config1();
464
465 if (config1 & MIPS_CONF1_MD)
466 c->ases |= MIPS_ASE_MDMX;
467 if (config1 & MIPS_CONF1_PC)
468 c->options |= MIPS_CPU_PERF;
469 if (config1 & MIPS_CONF1_WR)
470 c->options |= MIPS_CPU_WATCH;
471 if (config1 & MIPS_CONF1_CA)
472 c->ases |= MIPS_ASE_MIPS16;
473 if (config1 & MIPS_CONF1_EP)
474 c->options |= MIPS_CPU_EJTAG;
475 if (config1 & MIPS_CONF1_FP) {
476 c->options |= MIPS_CPU_FPU;
477 c->options |= MIPS_CPU_32FPR;
478 }
479 if (cpu_has_tlb) {
480 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
481 c->tlbsizevtlb = c->tlbsize;
482 c->tlbsizeftlbsets = 0;
483 }
484
485 return config1 & MIPS_CONF_M;
486 }
487
decode_config2(struct cpuinfo_mips * c)488 static inline unsigned int decode_config2(struct cpuinfo_mips *c)
489 {
490 unsigned int config2;
491
492 config2 = read_c0_config2();
493
494 if (config2 & MIPS_CONF2_SL)
495 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
496
497 return config2 & MIPS_CONF_M;
498 }
499
decode_config3(struct cpuinfo_mips * c)500 static inline unsigned int decode_config3(struct cpuinfo_mips *c)
501 {
502 unsigned int config3;
503
504 config3 = read_c0_config3();
505
506 if (config3 & MIPS_CONF3_SM) {
507 c->ases |= MIPS_ASE_SMARTMIPS;
508 c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
509 }
510 if (config3 & MIPS_CONF3_RXI)
511 c->options |= MIPS_CPU_RIXI;
512 if (config3 & MIPS_CONF3_CTXTC)
513 c->options |= MIPS_CPU_CTXTC;
514 if (config3 & MIPS_CONF3_DSP)
515 c->ases |= MIPS_ASE_DSP;
516 if (config3 & MIPS_CONF3_DSP2P) {
517 c->ases |= MIPS_ASE_DSP2P;
518 if (cpu_has_mips_r6)
519 c->ases |= MIPS_ASE_DSP3;
520 }
521 if (config3 & MIPS_CONF3_VINT)
522 c->options |= MIPS_CPU_VINT;
523 if (config3 & MIPS_CONF3_VEIC)
524 c->options |= MIPS_CPU_VEIC;
525 if (config3 & MIPS_CONF3_LPA)
526 c->options |= MIPS_CPU_LPA;
527 if (config3 & MIPS_CONF3_MT)
528 c->ases |= MIPS_ASE_MIPSMT;
529 if (config3 & MIPS_CONF3_ULRI)
530 c->options |= MIPS_CPU_ULRI;
531 if (config3 & MIPS_CONF3_ISA)
532 c->options |= MIPS_CPU_MICROMIPS;
533 if (config3 & MIPS_CONF3_VZ)
534 c->ases |= MIPS_ASE_VZ;
535 if (config3 & MIPS_CONF3_SC)
536 c->options |= MIPS_CPU_SEGMENTS;
537 if (config3 & MIPS_CONF3_BI)
538 c->options |= MIPS_CPU_BADINSTR;
539 if (config3 & MIPS_CONF3_BP)
540 c->options |= MIPS_CPU_BADINSTRP;
541 if (config3 & MIPS_CONF3_MSA)
542 c->ases |= MIPS_ASE_MSA;
543 if (config3 & MIPS_CONF3_PW) {
544 c->htw_seq = 0;
545 c->options |= MIPS_CPU_HTW;
546 }
547 if (config3 & MIPS_CONF3_CDMM)
548 c->options |= MIPS_CPU_CDMM;
549 if (config3 & MIPS_CONF3_SP)
550 c->options |= MIPS_CPU_SP;
551
552 return config3 & MIPS_CONF_M;
553 }
554
decode_config4(struct cpuinfo_mips * c)555 static inline unsigned int decode_config4(struct cpuinfo_mips *c)
556 {
557 unsigned int config4;
558 unsigned int newcf4;
559 unsigned int mmuextdef;
560 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
561 unsigned long asid_mask;
562
563 config4 = read_c0_config4();
564
565 if (cpu_has_tlb) {
566 if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
567 c->options |= MIPS_CPU_TLBINV;
568
569 /*
570 * R6 has dropped the MMUExtDef field from config4.
571 * On R6 the fields always describe the FTLB, and only if it is
572 * present according to Config.MT.
573 */
574 if (!cpu_has_mips_r6)
575 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
576 else if (cpu_has_ftlb)
577 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
578 else
579 mmuextdef = 0;
580
581 switch (mmuextdef) {
582 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
583 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
584 c->tlbsizevtlb = c->tlbsize;
585 break;
586 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
587 c->tlbsizevtlb +=
588 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
589 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
590 c->tlbsize = c->tlbsizevtlb;
591 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
592 fallthrough;
593 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
594 if (mips_ftlb_disabled)
595 break;
596 newcf4 = (config4 & ~ftlb_page) |
597 (page_size_ftlb(mmuextdef) <<
598 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
599 write_c0_config4(newcf4);
600 back_to_back_c0_hazard();
601 config4 = read_c0_config4();
602 if (config4 != newcf4) {
603 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
604 PAGE_SIZE, config4);
605 /* Switch FTLB off */
606 set_ftlb_enable(c, 0);
607 mips_ftlb_disabled = 1;
608 break;
609 }
610 c->tlbsizeftlbsets = 1 <<
611 ((config4 & MIPS_CONF4_FTLBSETS) >>
612 MIPS_CONF4_FTLBSETS_SHIFT);
613 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
614 MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
615 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
616 mips_has_ftlb_configured = 1;
617 break;
618 }
619 }
620
621 c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
622 >> MIPS_CONF4_KSCREXIST_SHIFT;
623
624 asid_mask = MIPS_ENTRYHI_ASID;
625 if (config4 & MIPS_CONF4_AE)
626 asid_mask |= MIPS_ENTRYHI_ASIDX;
627 set_cpu_asid_mask(c, asid_mask);
628
629 /*
630 * Warn if the computed ASID mask doesn't match the mask the kernel
631 * is built for. This may indicate either a serious problem or an
632 * easy optimisation opportunity, but either way should be addressed.
633 */
634 WARN_ON(asid_mask != cpu_asid_mask(c));
635
636 return config4 & MIPS_CONF_M;
637 }
638
decode_config5(struct cpuinfo_mips * c)639 static inline unsigned int decode_config5(struct cpuinfo_mips *c)
640 {
641 unsigned int config5, max_mmid_width;
642 unsigned long asid_mask;
643
644 config5 = read_c0_config5();
645 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
646
647 if (cpu_has_mips_r6) {
648 if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
649 config5 |= MIPS_CONF5_MI;
650 else
651 config5 &= ~MIPS_CONF5_MI;
652 }
653
654 write_c0_config5(config5);
655
656 if (config5 & MIPS_CONF5_EVA)
657 c->options |= MIPS_CPU_EVA;
658 if (config5 & MIPS_CONF5_MRP)
659 c->options |= MIPS_CPU_MAAR;
660 if (config5 & MIPS_CONF5_LLB)
661 c->options |= MIPS_CPU_RW_LLB;
662 if (config5 & MIPS_CONF5_MVH)
663 c->options |= MIPS_CPU_MVH;
664 if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
665 c->options |= MIPS_CPU_VP;
666 if (config5 & MIPS_CONF5_CA2)
667 c->ases |= MIPS_ASE_MIPS16E2;
668
669 if (config5 & MIPS_CONF5_CRCP)
670 elf_hwcap |= HWCAP_MIPS_CRC32;
671
672 if (cpu_has_mips_r6) {
673 /* Ensure the write to config5 above takes effect */
674 back_to_back_c0_hazard();
675
676 /* Check whether we successfully enabled MMID support */
677 config5 = read_c0_config5();
678 if (config5 & MIPS_CONF5_MI)
679 c->options |= MIPS_CPU_MMID;
680
681 /*
682 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
683 * for the CPU we're running on, or if CPUs in an SMP system
684 * have inconsistent MMID support.
685 */
686 WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
687
688 if (cpu_has_mmid) {
689 write_c0_memorymapid(~0ul);
690 back_to_back_c0_hazard();
691 asid_mask = read_c0_memorymapid();
692
693 /*
694 * We maintain a bitmap to track MMID allocation, and
695 * need a sensible upper bound on the size of that
696 * bitmap. The initial CPU with MMID support (I6500)
697 * supports 16 bit MMIDs, which gives us an 8KiB
698 * bitmap. The architecture recommends that hardware
699 * support 32 bit MMIDs, which would give us a 512MiB
700 * bitmap - that's too big in most cases.
701 *
702 * Cap MMID width at 16 bits for now & we can revisit
703 * this if & when hardware supports anything wider.
704 */
705 max_mmid_width = 16;
706 if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
707 pr_info("Capping MMID width at %d bits",
708 max_mmid_width);
709 asid_mask = GENMASK(max_mmid_width - 1, 0);
710 }
711
712 set_cpu_asid_mask(c, asid_mask);
713 }
714 }
715
716 return config5 & MIPS_CONF_M;
717 }
718
decode_configs(struct cpuinfo_mips * c)719 static void decode_configs(struct cpuinfo_mips *c)
720 {
721 int ok;
722
723 /* MIPS32 or MIPS64 compliant CPU. */
724 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
725 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
726
727 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
728
729 /* Enable FTLB if present and not disabled */
730 set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
731
732 ok = decode_config0(c); /* Read Config registers. */
733 BUG_ON(!ok); /* Arch spec violation! */
734 if (ok)
735 ok = decode_config1(c);
736 if (ok)
737 ok = decode_config2(c);
738 if (ok)
739 ok = decode_config3(c);
740 if (ok)
741 ok = decode_config4(c);
742 if (ok)
743 ok = decode_config5(c);
744
745 /* Probe the EBase.WG bit */
746 if (cpu_has_mips_r2_r6) {
747 u64 ebase;
748 unsigned int status;
749
750 /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
751 ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
752 : (s32)read_c0_ebase();
753 if (ebase & MIPS_EBASE_WG) {
754 /* WG bit already set, we can avoid the clumsy probe */
755 c->options |= MIPS_CPU_EBASE_WG;
756 } else {
757 /* Its UNDEFINED to change EBase while BEV=0 */
758 status = read_c0_status();
759 write_c0_status(status | ST0_BEV);
760 irq_enable_hazard();
761 /*
762 * On pre-r6 cores, this may well clobber the upper bits
763 * of EBase. This is hard to avoid without potentially
764 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
765 */
766 if (cpu_has_mips64r6)
767 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
768 else
769 write_c0_ebase(ebase | MIPS_EBASE_WG);
770 back_to_back_c0_hazard();
771 /* Restore BEV */
772 write_c0_status(status);
773 if (read_c0_ebase() & MIPS_EBASE_WG) {
774 c->options |= MIPS_CPU_EBASE_WG;
775 write_c0_ebase(ebase);
776 }
777 }
778 }
779
780 /* configure the FTLB write probability */
781 set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
782
783 mips_probe_watch_registers(c);
784
785 #ifndef CONFIG_MIPS_CPS
786 if (cpu_has_mips_r2_r6) {
787 unsigned int core;
788
789 core = get_ebase_cpunum();
790 if (cpu_has_mipsmt)
791 core >>= fls(core_nvpes()) - 1;
792 cpu_set_core(c, core);
793 }
794 #endif
795 }
796
797 /*
798 * Probe for certain guest capabilities by writing config bits and reading back.
799 * Finally write back the original value.
800 */
801 #define probe_gc0_config(name, maxconf, bits) \
802 do { \
803 unsigned int tmp; \
804 tmp = read_gc0_##name(); \
805 write_gc0_##name(tmp | (bits)); \
806 back_to_back_c0_hazard(); \
807 maxconf = read_gc0_##name(); \
808 write_gc0_##name(tmp); \
809 } while (0)
810
811 /*
812 * Probe for dynamic guest capabilities by changing certain config bits and
813 * reading back to see if they change. Finally write back the original value.
814 */
815 #define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \
816 do { \
817 maxconf = read_gc0_##name(); \
818 write_gc0_##name(maxconf ^ (bits)); \
819 back_to_back_c0_hazard(); \
820 dynconf = maxconf ^ read_gc0_##name(); \
821 write_gc0_##name(maxconf); \
822 maxconf |= dynconf; \
823 } while (0)
824
decode_guest_config0(struct cpuinfo_mips * c)825 static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
826 {
827 unsigned int config0;
828
829 probe_gc0_config(config, config0, MIPS_CONF_M);
830
831 if (config0 & MIPS_CONF_M)
832 c->guest.conf |= BIT(1);
833 return config0 & MIPS_CONF_M;
834 }
835
decode_guest_config1(struct cpuinfo_mips * c)836 static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
837 {
838 unsigned int config1, config1_dyn;
839
840 probe_gc0_config_dyn(config1, config1, config1_dyn,
841 MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
842 MIPS_CONF1_FP);
843
844 if (config1 & MIPS_CONF1_FP)
845 c->guest.options |= MIPS_CPU_FPU;
846 if (config1_dyn & MIPS_CONF1_FP)
847 c->guest.options_dyn |= MIPS_CPU_FPU;
848
849 if (config1 & MIPS_CONF1_WR)
850 c->guest.options |= MIPS_CPU_WATCH;
851 if (config1_dyn & MIPS_CONF1_WR)
852 c->guest.options_dyn |= MIPS_CPU_WATCH;
853
854 if (config1 & MIPS_CONF1_PC)
855 c->guest.options |= MIPS_CPU_PERF;
856 if (config1_dyn & MIPS_CONF1_PC)
857 c->guest.options_dyn |= MIPS_CPU_PERF;
858
859 if (config1 & MIPS_CONF_M)
860 c->guest.conf |= BIT(2);
861 return config1 & MIPS_CONF_M;
862 }
863
decode_guest_config2(struct cpuinfo_mips * c)864 static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
865 {
866 unsigned int config2;
867
868 probe_gc0_config(config2, config2, MIPS_CONF_M);
869
870 if (config2 & MIPS_CONF_M)
871 c->guest.conf |= BIT(3);
872 return config2 & MIPS_CONF_M;
873 }
874
decode_guest_config3(struct cpuinfo_mips * c)875 static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
876 {
877 unsigned int config3, config3_dyn;
878
879 probe_gc0_config_dyn(config3, config3, config3_dyn,
880 MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
881 MIPS_CONF3_CTXTC);
882
883 if (config3 & MIPS_CONF3_CTXTC)
884 c->guest.options |= MIPS_CPU_CTXTC;
885 if (config3_dyn & MIPS_CONF3_CTXTC)
886 c->guest.options_dyn |= MIPS_CPU_CTXTC;
887
888 if (config3 & MIPS_CONF3_PW)
889 c->guest.options |= MIPS_CPU_HTW;
890
891 if (config3 & MIPS_CONF3_ULRI)
892 c->guest.options |= MIPS_CPU_ULRI;
893
894 if (config3 & MIPS_CONF3_SC)
895 c->guest.options |= MIPS_CPU_SEGMENTS;
896
897 if (config3 & MIPS_CONF3_BI)
898 c->guest.options |= MIPS_CPU_BADINSTR;
899 if (config3 & MIPS_CONF3_BP)
900 c->guest.options |= MIPS_CPU_BADINSTRP;
901
902 if (config3 & MIPS_CONF3_MSA)
903 c->guest.ases |= MIPS_ASE_MSA;
904 if (config3_dyn & MIPS_CONF3_MSA)
905 c->guest.ases_dyn |= MIPS_ASE_MSA;
906
907 if (config3 & MIPS_CONF_M)
908 c->guest.conf |= BIT(4);
909 return config3 & MIPS_CONF_M;
910 }
911
decode_guest_config4(struct cpuinfo_mips * c)912 static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
913 {
914 unsigned int config4;
915
916 probe_gc0_config(config4, config4,
917 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
918
919 c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
920 >> MIPS_CONF4_KSCREXIST_SHIFT;
921
922 if (config4 & MIPS_CONF_M)
923 c->guest.conf |= BIT(5);
924 return config4 & MIPS_CONF_M;
925 }
926
decode_guest_config5(struct cpuinfo_mips * c)927 static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
928 {
929 unsigned int config5, config5_dyn;
930
931 probe_gc0_config_dyn(config5, config5, config5_dyn,
932 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
933
934 if (config5 & MIPS_CONF5_MRP)
935 c->guest.options |= MIPS_CPU_MAAR;
936 if (config5_dyn & MIPS_CONF5_MRP)
937 c->guest.options_dyn |= MIPS_CPU_MAAR;
938
939 if (config5 & MIPS_CONF5_LLB)
940 c->guest.options |= MIPS_CPU_RW_LLB;
941
942 if (config5 & MIPS_CONF5_MVH)
943 c->guest.options |= MIPS_CPU_MVH;
944
945 if (config5 & MIPS_CONF_M)
946 c->guest.conf |= BIT(6);
947 return config5 & MIPS_CONF_M;
948 }
949
decode_guest_configs(struct cpuinfo_mips * c)950 static inline void decode_guest_configs(struct cpuinfo_mips *c)
951 {
952 unsigned int ok;
953
954 ok = decode_guest_config0(c);
955 if (ok)
956 ok = decode_guest_config1(c);
957 if (ok)
958 ok = decode_guest_config2(c);
959 if (ok)
960 ok = decode_guest_config3(c);
961 if (ok)
962 ok = decode_guest_config4(c);
963 if (ok)
964 decode_guest_config5(c);
965 }
966
cpu_probe_guestctl0(struct cpuinfo_mips * c)967 static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
968 {
969 unsigned int guestctl0, temp;
970
971 guestctl0 = read_c0_guestctl0();
972
973 if (guestctl0 & MIPS_GCTL0_G0E)
974 c->options |= MIPS_CPU_GUESTCTL0EXT;
975 if (guestctl0 & MIPS_GCTL0_G1)
976 c->options |= MIPS_CPU_GUESTCTL1;
977 if (guestctl0 & MIPS_GCTL0_G2)
978 c->options |= MIPS_CPU_GUESTCTL2;
979 if (!(guestctl0 & MIPS_GCTL0_RAD)) {
980 c->options |= MIPS_CPU_GUESTID;
981
982 /*
983 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
984 * first, otherwise all data accesses will be fully virtualised
985 * as if they were performed by guest mode.
986 */
987 write_c0_guestctl1(0);
988 tlbw_use_hazard();
989
990 write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
991 back_to_back_c0_hazard();
992 temp = read_c0_guestctl0();
993
994 if (temp & MIPS_GCTL0_DRG) {
995 write_c0_guestctl0(guestctl0);
996 c->options |= MIPS_CPU_DRG;
997 }
998 }
999 }
1000
cpu_probe_guestctl1(struct cpuinfo_mips * c)1001 static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1002 {
1003 if (cpu_has_guestid) {
1004 /* determine the number of bits of GuestID available */
1005 write_c0_guestctl1(MIPS_GCTL1_ID);
1006 back_to_back_c0_hazard();
1007 c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1008 >> MIPS_GCTL1_ID_SHIFT;
1009 write_c0_guestctl1(0);
1010 }
1011 }
1012
cpu_probe_gtoffset(struct cpuinfo_mips * c)1013 static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1014 {
1015 /* determine the number of bits of GTOffset available */
1016 write_c0_gtoffset(0xffffffff);
1017 back_to_back_c0_hazard();
1018 c->gtoffset_mask = read_c0_gtoffset();
1019 write_c0_gtoffset(0);
1020 }
1021
cpu_probe_vz(struct cpuinfo_mips * c)1022 static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1023 {
1024 cpu_probe_guestctl0(c);
1025 if (cpu_has_guestctl1)
1026 cpu_probe_guestctl1(c);
1027
1028 cpu_probe_gtoffset(c);
1029
1030 decode_guest_configs(c);
1031 }
1032
1033 #define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1034 | MIPS_CPU_COUNTER)
1035
cpu_probe_legacy(struct cpuinfo_mips * c,unsigned int cpu)1036 static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1037 {
1038 switch (c->processor_id & PRID_IMP_MASK) {
1039 case PRID_IMP_R2000:
1040 c->cputype = CPU_R2000;
1041 __cpu_name[cpu] = "R2000";
1042 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1043 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1044 MIPS_CPU_NOFPUEX;
1045 if (__cpu_has_fpu())
1046 c->options |= MIPS_CPU_FPU;
1047 c->tlbsize = 64;
1048 break;
1049 case PRID_IMP_R3000:
1050 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1051 if (cpu_has_confreg()) {
1052 c->cputype = CPU_R3081E;
1053 __cpu_name[cpu] = "R3081";
1054 } else {
1055 c->cputype = CPU_R3000A;
1056 __cpu_name[cpu] = "R3000A";
1057 }
1058 } else {
1059 c->cputype = CPU_R3000;
1060 __cpu_name[cpu] = "R3000";
1061 }
1062 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1063 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1064 MIPS_CPU_NOFPUEX;
1065 if (__cpu_has_fpu())
1066 c->options |= MIPS_CPU_FPU;
1067 c->tlbsize = 64;
1068 break;
1069 case PRID_IMP_R4000:
1070 if (read_c0_config() & CONF_SC) {
1071 if ((c->processor_id & PRID_REV_MASK) >=
1072 PRID_REV_R4400) {
1073 c->cputype = CPU_R4400PC;
1074 __cpu_name[cpu] = "R4400PC";
1075 } else {
1076 c->cputype = CPU_R4000PC;
1077 __cpu_name[cpu] = "R4000PC";
1078 }
1079 } else {
1080 int cca = read_c0_config() & CONF_CM_CMASK;
1081 int mc;
1082
1083 /*
1084 * SC and MC versions can't be reliably told apart,
1085 * but only the latter support coherent caching
1086 * modes so assume the firmware has set the KSEG0
1087 * coherency attribute reasonably (if uncached, we
1088 * assume SC).
1089 */
1090 switch (cca) {
1091 case CONF_CM_CACHABLE_CE:
1092 case CONF_CM_CACHABLE_COW:
1093 case CONF_CM_CACHABLE_CUW:
1094 mc = 1;
1095 break;
1096 default:
1097 mc = 0;
1098 break;
1099 }
1100 if ((c->processor_id & PRID_REV_MASK) >=
1101 PRID_REV_R4400) {
1102 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1103 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1104 } else {
1105 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1106 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1107 }
1108 }
1109
1110 set_isa(c, MIPS_CPU_ISA_III);
1111 c->fpu_msk31 |= FPU_CSR_CONDX;
1112 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1113 MIPS_CPU_WATCH | MIPS_CPU_VCE |
1114 MIPS_CPU_LLSC;
1115 c->tlbsize = 48;
1116 break;
1117 case PRID_IMP_VR41XX:
1118 set_isa(c, MIPS_CPU_ISA_III);
1119 c->fpu_msk31 |= FPU_CSR_CONDX;
1120 c->options = R4K_OPTS;
1121 c->tlbsize = 32;
1122 switch (c->processor_id & 0xf0) {
1123 case PRID_REV_VR4111:
1124 c->cputype = CPU_VR4111;
1125 __cpu_name[cpu] = "NEC VR4111";
1126 break;
1127 case PRID_REV_VR4121:
1128 c->cputype = CPU_VR4121;
1129 __cpu_name[cpu] = "NEC VR4121";
1130 break;
1131 case PRID_REV_VR4122:
1132 if ((c->processor_id & 0xf) < 0x3) {
1133 c->cputype = CPU_VR4122;
1134 __cpu_name[cpu] = "NEC VR4122";
1135 } else {
1136 c->cputype = CPU_VR4181A;
1137 __cpu_name[cpu] = "NEC VR4181A";
1138 }
1139 break;
1140 case PRID_REV_VR4130:
1141 if ((c->processor_id & 0xf) < 0x4) {
1142 c->cputype = CPU_VR4131;
1143 __cpu_name[cpu] = "NEC VR4131";
1144 } else {
1145 c->cputype = CPU_VR4133;
1146 c->options |= MIPS_CPU_LLSC;
1147 __cpu_name[cpu] = "NEC VR4133";
1148 }
1149 break;
1150 default:
1151 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1152 c->cputype = CPU_VR41XX;
1153 __cpu_name[cpu] = "NEC Vr41xx";
1154 break;
1155 }
1156 break;
1157 case PRID_IMP_R4600:
1158 c->cputype = CPU_R4600;
1159 __cpu_name[cpu] = "R4600";
1160 set_isa(c, MIPS_CPU_ISA_III);
1161 c->fpu_msk31 |= FPU_CSR_CONDX;
1162 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1163 MIPS_CPU_LLSC;
1164 c->tlbsize = 48;
1165 break;
1166 #if 0
1167 case PRID_IMP_R4650:
1168 /*
1169 * This processor doesn't have an MMU, so it's not
1170 * "real easy" to run Linux on it. It is left purely
1171 * for documentation. Commented out because it shares
1172 * it's c0_prid id number with the TX3900.
1173 */
1174 c->cputype = CPU_R4650;
1175 __cpu_name[cpu] = "R4650";
1176 set_isa(c, MIPS_CPU_ISA_III);
1177 c->fpu_msk31 |= FPU_CSR_CONDX;
1178 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1179 c->tlbsize = 48;
1180 break;
1181 #endif
1182 case PRID_IMP_TX39:
1183 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1184 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1185
1186 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1187 c->cputype = CPU_TX3927;
1188 __cpu_name[cpu] = "TX3927";
1189 c->tlbsize = 64;
1190 } else {
1191 switch (c->processor_id & PRID_REV_MASK) {
1192 case PRID_REV_TX3912:
1193 c->cputype = CPU_TX3912;
1194 __cpu_name[cpu] = "TX3912";
1195 c->tlbsize = 32;
1196 break;
1197 case PRID_REV_TX3922:
1198 c->cputype = CPU_TX3922;
1199 __cpu_name[cpu] = "TX3922";
1200 c->tlbsize = 64;
1201 break;
1202 }
1203 }
1204 break;
1205 case PRID_IMP_R4700:
1206 c->cputype = CPU_R4700;
1207 __cpu_name[cpu] = "R4700";
1208 set_isa(c, MIPS_CPU_ISA_III);
1209 c->fpu_msk31 |= FPU_CSR_CONDX;
1210 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1211 MIPS_CPU_LLSC;
1212 c->tlbsize = 48;
1213 break;
1214 case PRID_IMP_TX49:
1215 c->cputype = CPU_TX49XX;
1216 __cpu_name[cpu] = "R49XX";
1217 set_isa(c, MIPS_CPU_ISA_III);
1218 c->fpu_msk31 |= FPU_CSR_CONDX;
1219 c->options = R4K_OPTS | MIPS_CPU_LLSC;
1220 if (!(c->processor_id & 0x08))
1221 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1222 c->tlbsize = 48;
1223 break;
1224 case PRID_IMP_R5000:
1225 c->cputype = CPU_R5000;
1226 __cpu_name[cpu] = "R5000";
1227 set_isa(c, MIPS_CPU_ISA_IV);
1228 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1229 MIPS_CPU_LLSC;
1230 c->tlbsize = 48;
1231 break;
1232 case PRID_IMP_R5500:
1233 c->cputype = CPU_R5500;
1234 __cpu_name[cpu] = "R5500";
1235 set_isa(c, MIPS_CPU_ISA_IV);
1236 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1237 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1238 c->tlbsize = 48;
1239 break;
1240 case PRID_IMP_NEVADA:
1241 c->cputype = CPU_NEVADA;
1242 __cpu_name[cpu] = "Nevada";
1243 set_isa(c, MIPS_CPU_ISA_IV);
1244 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1245 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1246 c->tlbsize = 48;
1247 break;
1248 case PRID_IMP_RM7000:
1249 c->cputype = CPU_RM7000;
1250 __cpu_name[cpu] = "RM7000";
1251 set_isa(c, MIPS_CPU_ISA_IV);
1252 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1253 MIPS_CPU_LLSC;
1254 /*
1255 * Undocumented RM7000: Bit 29 in the info register of
1256 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1257 * entries.
1258 *
1259 * 29 1 => 64 entry JTLB
1260 * 0 => 48 entry JTLB
1261 */
1262 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1263 break;
1264 case PRID_IMP_R10000:
1265 c->cputype = CPU_R10000;
1266 __cpu_name[cpu] = "R10000";
1267 set_isa(c, MIPS_CPU_ISA_IV);
1268 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1269 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1270 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1271 MIPS_CPU_LLSC;
1272 c->tlbsize = 64;
1273 break;
1274 case PRID_IMP_R12000:
1275 c->cputype = CPU_R12000;
1276 __cpu_name[cpu] = "R12000";
1277 set_isa(c, MIPS_CPU_ISA_IV);
1278 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1279 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1280 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1281 MIPS_CPU_LLSC;
1282 c->tlbsize = 64;
1283 write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST);
1284 break;
1285 case PRID_IMP_R14000:
1286 if (((c->processor_id >> 4) & 0x0f) > 2) {
1287 c->cputype = CPU_R16000;
1288 __cpu_name[cpu] = "R16000";
1289 } else {
1290 c->cputype = CPU_R14000;
1291 __cpu_name[cpu] = "R14000";
1292 }
1293 set_isa(c, MIPS_CPU_ISA_IV);
1294 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1295 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1296 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1297 MIPS_CPU_LLSC;
1298 c->tlbsize = 64;
1299 write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST);
1300 break;
1301 case PRID_IMP_LOONGSON_64C: /* Loongson-2/3 */
1302 switch (c->processor_id & PRID_REV_MASK) {
1303 case PRID_REV_LOONGSON2E:
1304 c->cputype = CPU_LOONGSON2EF;
1305 __cpu_name[cpu] = "ICT Loongson-2";
1306 set_elf_platform(cpu, "loongson2e");
1307 set_isa(c, MIPS_CPU_ISA_III);
1308 c->fpu_msk31 |= FPU_CSR_CONDX;
1309 break;
1310 case PRID_REV_LOONGSON2F:
1311 c->cputype = CPU_LOONGSON2EF;
1312 __cpu_name[cpu] = "ICT Loongson-2";
1313 set_elf_platform(cpu, "loongson2f");
1314 set_isa(c, MIPS_CPU_ISA_III);
1315 c->fpu_msk31 |= FPU_CSR_CONDX;
1316 break;
1317 case PRID_REV_LOONGSON3A_R1:
1318 c->cputype = CPU_LOONGSON64;
1319 __cpu_name[cpu] = "ICT Loongson-3";
1320 set_elf_platform(cpu, "loongson3a");
1321 set_isa(c, MIPS_CPU_ISA_M64R1);
1322 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1323 MIPS_ASE_LOONGSON_EXT);
1324 break;
1325 case PRID_REV_LOONGSON3B_R1:
1326 case PRID_REV_LOONGSON3B_R2:
1327 c->cputype = CPU_LOONGSON64;
1328 __cpu_name[cpu] = "ICT Loongson-3";
1329 set_elf_platform(cpu, "loongson3b");
1330 set_isa(c, MIPS_CPU_ISA_M64R1);
1331 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1332 MIPS_ASE_LOONGSON_EXT);
1333 break;
1334 }
1335
1336 c->options = R4K_OPTS |
1337 MIPS_CPU_FPU | MIPS_CPU_LLSC |
1338 MIPS_CPU_32FPR;
1339 c->tlbsize = 64;
1340 set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID);
1341 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1342 break;
1343 case PRID_IMP_LOONGSON_32: /* Loongson-1 */
1344 decode_configs(c);
1345
1346 c->cputype = CPU_LOONGSON32;
1347
1348 switch (c->processor_id & PRID_REV_MASK) {
1349 case PRID_REV_LOONGSON1B:
1350 __cpu_name[cpu] = "Loongson 1B";
1351 break;
1352 }
1353
1354 break;
1355 }
1356 }
1357
cpu_probe_mips(struct cpuinfo_mips * c,unsigned int cpu)1358 static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1359 {
1360 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1361 switch (c->processor_id & PRID_IMP_MASK) {
1362 case PRID_IMP_QEMU_GENERIC:
1363 c->writecombine = _CACHE_UNCACHED;
1364 c->cputype = CPU_QEMU_GENERIC;
1365 __cpu_name[cpu] = "MIPS GENERIC QEMU";
1366 break;
1367 case PRID_IMP_4KC:
1368 c->cputype = CPU_4KC;
1369 c->writecombine = _CACHE_UNCACHED;
1370 __cpu_name[cpu] = "MIPS 4Kc";
1371 break;
1372 case PRID_IMP_4KEC:
1373 case PRID_IMP_4KECR2:
1374 c->cputype = CPU_4KEC;
1375 c->writecombine = _CACHE_UNCACHED;
1376 __cpu_name[cpu] = "MIPS 4KEc";
1377 break;
1378 case PRID_IMP_4KSC:
1379 case PRID_IMP_4KSD:
1380 c->cputype = CPU_4KSC;
1381 c->writecombine = _CACHE_UNCACHED;
1382 __cpu_name[cpu] = "MIPS 4KSc";
1383 break;
1384 case PRID_IMP_5KC:
1385 c->cputype = CPU_5KC;
1386 c->writecombine = _CACHE_UNCACHED;
1387 __cpu_name[cpu] = "MIPS 5Kc";
1388 break;
1389 case PRID_IMP_5KE:
1390 c->cputype = CPU_5KE;
1391 c->writecombine = _CACHE_UNCACHED;
1392 __cpu_name[cpu] = "MIPS 5KE";
1393 break;
1394 case PRID_IMP_20KC:
1395 c->cputype = CPU_20KC;
1396 c->writecombine = _CACHE_UNCACHED;
1397 __cpu_name[cpu] = "MIPS 20Kc";
1398 break;
1399 case PRID_IMP_24K:
1400 c->cputype = CPU_24K;
1401 c->writecombine = _CACHE_UNCACHED;
1402 __cpu_name[cpu] = "MIPS 24Kc";
1403 break;
1404 case PRID_IMP_24KE:
1405 c->cputype = CPU_24K;
1406 c->writecombine = _CACHE_UNCACHED;
1407 __cpu_name[cpu] = "MIPS 24KEc";
1408 break;
1409 case PRID_IMP_25KF:
1410 c->cputype = CPU_25KF;
1411 c->writecombine = _CACHE_UNCACHED;
1412 __cpu_name[cpu] = "MIPS 25Kc";
1413 break;
1414 case PRID_IMP_34K:
1415 c->cputype = CPU_34K;
1416 c->writecombine = _CACHE_UNCACHED;
1417 __cpu_name[cpu] = "MIPS 34Kc";
1418 cpu_set_mt_per_tc_perf(c);
1419 break;
1420 case PRID_IMP_74K:
1421 c->cputype = CPU_74K;
1422 c->writecombine = _CACHE_UNCACHED;
1423 __cpu_name[cpu] = "MIPS 74Kc";
1424 break;
1425 case PRID_IMP_M14KC:
1426 c->cputype = CPU_M14KC;
1427 c->writecombine = _CACHE_UNCACHED;
1428 __cpu_name[cpu] = "MIPS M14Kc";
1429 break;
1430 case PRID_IMP_M14KEC:
1431 c->cputype = CPU_M14KEC;
1432 c->writecombine = _CACHE_UNCACHED;
1433 __cpu_name[cpu] = "MIPS M14KEc";
1434 break;
1435 case PRID_IMP_1004K:
1436 c->cputype = CPU_1004K;
1437 c->writecombine = _CACHE_UNCACHED;
1438 __cpu_name[cpu] = "MIPS 1004Kc";
1439 cpu_set_mt_per_tc_perf(c);
1440 break;
1441 case PRID_IMP_1074K:
1442 c->cputype = CPU_1074K;
1443 c->writecombine = _CACHE_UNCACHED;
1444 __cpu_name[cpu] = "MIPS 1074Kc";
1445 break;
1446 case PRID_IMP_INTERAPTIV_UP:
1447 c->cputype = CPU_INTERAPTIV;
1448 __cpu_name[cpu] = "MIPS interAptiv";
1449 cpu_set_mt_per_tc_perf(c);
1450 break;
1451 case PRID_IMP_INTERAPTIV_MP:
1452 c->cputype = CPU_INTERAPTIV;
1453 __cpu_name[cpu] = "MIPS interAptiv (multi)";
1454 cpu_set_mt_per_tc_perf(c);
1455 break;
1456 case PRID_IMP_PROAPTIV_UP:
1457 c->cputype = CPU_PROAPTIV;
1458 __cpu_name[cpu] = "MIPS proAptiv";
1459 break;
1460 case PRID_IMP_PROAPTIV_MP:
1461 c->cputype = CPU_PROAPTIV;
1462 __cpu_name[cpu] = "MIPS proAptiv (multi)";
1463 break;
1464 case PRID_IMP_P5600:
1465 c->cputype = CPU_P5600;
1466 __cpu_name[cpu] = "MIPS P5600";
1467 break;
1468 case PRID_IMP_P6600:
1469 c->cputype = CPU_P6600;
1470 __cpu_name[cpu] = "MIPS P6600";
1471 break;
1472 case PRID_IMP_I6400:
1473 c->cputype = CPU_I6400;
1474 __cpu_name[cpu] = "MIPS I6400";
1475 break;
1476 case PRID_IMP_I6500:
1477 c->cputype = CPU_I6500;
1478 __cpu_name[cpu] = "MIPS I6500";
1479 break;
1480 case PRID_IMP_M5150:
1481 c->cputype = CPU_M5150;
1482 __cpu_name[cpu] = "MIPS M5150";
1483 break;
1484 case PRID_IMP_M6250:
1485 c->cputype = CPU_M6250;
1486 __cpu_name[cpu] = "MIPS M6250";
1487 break;
1488 }
1489
1490 decode_configs(c);
1491
1492 spram_config();
1493
1494 mm_config(c);
1495
1496 switch (__get_cpu_type(c->cputype)) {
1497 case CPU_M5150:
1498 case CPU_P5600:
1499 set_isa(c, MIPS_CPU_ISA_M32R5);
1500 break;
1501 case CPU_I6500:
1502 c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1503 fallthrough;
1504 case CPU_I6400:
1505 c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1506 fallthrough;
1507 default:
1508 break;
1509 }
1510
1511 /* Recent MIPS cores use the implementation-dependent ExcCode 16 for
1512 * cache/FTLB parity exceptions.
1513 */
1514 switch (__get_cpu_type(c->cputype)) {
1515 case CPU_PROAPTIV:
1516 case CPU_P5600:
1517 case CPU_P6600:
1518 case CPU_I6400:
1519 case CPU_I6500:
1520 c->options |= MIPS_CPU_FTLBPAREX;
1521 break;
1522 }
1523 }
1524
cpu_probe_alchemy(struct cpuinfo_mips * c,unsigned int cpu)1525 static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1526 {
1527 decode_configs(c);
1528 switch (c->processor_id & PRID_IMP_MASK) {
1529 case PRID_IMP_AU1_REV1:
1530 case PRID_IMP_AU1_REV2:
1531 c->cputype = CPU_ALCHEMY;
1532 switch ((c->processor_id >> 24) & 0xff) {
1533 case 0:
1534 __cpu_name[cpu] = "Au1000";
1535 break;
1536 case 1:
1537 __cpu_name[cpu] = "Au1500";
1538 break;
1539 case 2:
1540 __cpu_name[cpu] = "Au1100";
1541 break;
1542 case 3:
1543 __cpu_name[cpu] = "Au1550";
1544 break;
1545 case 4:
1546 __cpu_name[cpu] = "Au1200";
1547 if ((c->processor_id & PRID_REV_MASK) == 2)
1548 __cpu_name[cpu] = "Au1250";
1549 break;
1550 case 5:
1551 __cpu_name[cpu] = "Au1210";
1552 break;
1553 default:
1554 __cpu_name[cpu] = "Au1xxx";
1555 break;
1556 }
1557 break;
1558 }
1559 }
1560
cpu_probe_sibyte(struct cpuinfo_mips * c,unsigned int cpu)1561 static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1562 {
1563 decode_configs(c);
1564
1565 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1566 switch (c->processor_id & PRID_IMP_MASK) {
1567 case PRID_IMP_SB1:
1568 c->cputype = CPU_SB1;
1569 __cpu_name[cpu] = "SiByte SB1";
1570 /* FPU in pass1 is known to have issues. */
1571 if ((c->processor_id & PRID_REV_MASK) < 0x02)
1572 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1573 break;
1574 case PRID_IMP_SB1A:
1575 c->cputype = CPU_SB1A;
1576 __cpu_name[cpu] = "SiByte SB1A";
1577 break;
1578 }
1579 }
1580
cpu_probe_sandcraft(struct cpuinfo_mips * c,unsigned int cpu)1581 static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1582 {
1583 decode_configs(c);
1584 switch (c->processor_id & PRID_IMP_MASK) {
1585 case PRID_IMP_SR71000:
1586 c->cputype = CPU_SR71000;
1587 __cpu_name[cpu] = "Sandcraft SR71000";
1588 c->scache.ways = 8;
1589 c->tlbsize = 64;
1590 break;
1591 }
1592 }
1593
cpu_probe_nxp(struct cpuinfo_mips * c,unsigned int cpu)1594 static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1595 {
1596 decode_configs(c);
1597 switch (c->processor_id & PRID_IMP_MASK) {
1598 case PRID_IMP_PR4450:
1599 c->cputype = CPU_PR4450;
1600 __cpu_name[cpu] = "Philips PR4450";
1601 set_isa(c, MIPS_CPU_ISA_M32R1);
1602 break;
1603 }
1604 }
1605
cpu_probe_broadcom(struct cpuinfo_mips * c,unsigned int cpu)1606 static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1607 {
1608 decode_configs(c);
1609 switch (c->processor_id & PRID_IMP_MASK) {
1610 case PRID_IMP_BMIPS32_REV4:
1611 case PRID_IMP_BMIPS32_REV8:
1612 c->cputype = CPU_BMIPS32;
1613 __cpu_name[cpu] = "Broadcom BMIPS32";
1614 set_elf_platform(cpu, "bmips32");
1615 break;
1616 case PRID_IMP_BMIPS3300:
1617 case PRID_IMP_BMIPS3300_ALT:
1618 case PRID_IMP_BMIPS3300_BUG:
1619 c->cputype = CPU_BMIPS3300;
1620 __cpu_name[cpu] = "Broadcom BMIPS3300";
1621 set_elf_platform(cpu, "bmips3300");
1622 break;
1623 case PRID_IMP_BMIPS43XX: {
1624 int rev = c->processor_id & PRID_REV_MASK;
1625
1626 if (rev >= PRID_REV_BMIPS4380_LO &&
1627 rev <= PRID_REV_BMIPS4380_HI) {
1628 c->cputype = CPU_BMIPS4380;
1629 __cpu_name[cpu] = "Broadcom BMIPS4380";
1630 set_elf_platform(cpu, "bmips4380");
1631 c->options |= MIPS_CPU_RIXI;
1632 } else {
1633 c->cputype = CPU_BMIPS4350;
1634 __cpu_name[cpu] = "Broadcom BMIPS4350";
1635 set_elf_platform(cpu, "bmips4350");
1636 }
1637 break;
1638 }
1639 case PRID_IMP_BMIPS5000:
1640 case PRID_IMP_BMIPS5200:
1641 c->cputype = CPU_BMIPS5000;
1642 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1643 __cpu_name[cpu] = "Broadcom BMIPS5200";
1644 else
1645 __cpu_name[cpu] = "Broadcom BMIPS5000";
1646 set_elf_platform(cpu, "bmips5000");
1647 c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1648 break;
1649 }
1650 }
1651
cpu_probe_cavium(struct cpuinfo_mips * c,unsigned int cpu)1652 static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1653 {
1654 decode_configs(c);
1655 switch (c->processor_id & PRID_IMP_MASK) {
1656 case PRID_IMP_CAVIUM_CN38XX:
1657 case PRID_IMP_CAVIUM_CN31XX:
1658 case PRID_IMP_CAVIUM_CN30XX:
1659 c->cputype = CPU_CAVIUM_OCTEON;
1660 __cpu_name[cpu] = "Cavium Octeon";
1661 goto platform;
1662 case PRID_IMP_CAVIUM_CN58XX:
1663 case PRID_IMP_CAVIUM_CN56XX:
1664 case PRID_IMP_CAVIUM_CN50XX:
1665 case PRID_IMP_CAVIUM_CN52XX:
1666 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1667 __cpu_name[cpu] = "Cavium Octeon+";
1668 platform:
1669 set_elf_platform(cpu, "octeon");
1670 break;
1671 case PRID_IMP_CAVIUM_CN61XX:
1672 case PRID_IMP_CAVIUM_CN63XX:
1673 case PRID_IMP_CAVIUM_CN66XX:
1674 case PRID_IMP_CAVIUM_CN68XX:
1675 case PRID_IMP_CAVIUM_CNF71XX:
1676 c->cputype = CPU_CAVIUM_OCTEON2;
1677 __cpu_name[cpu] = "Cavium Octeon II";
1678 set_elf_platform(cpu, "octeon2");
1679 break;
1680 case PRID_IMP_CAVIUM_CN70XX:
1681 case PRID_IMP_CAVIUM_CN73XX:
1682 case PRID_IMP_CAVIUM_CNF75XX:
1683 case PRID_IMP_CAVIUM_CN78XX:
1684 c->cputype = CPU_CAVIUM_OCTEON3;
1685 __cpu_name[cpu] = "Cavium Octeon III";
1686 set_elf_platform(cpu, "octeon3");
1687 break;
1688 default:
1689 printk(KERN_INFO "Unknown Octeon chip!\n");
1690 c->cputype = CPU_UNKNOWN;
1691 break;
1692 }
1693 }
1694
1695 #ifdef CONFIG_CPU_LOONGSON64
1696 #include <loongson_regs.h>
1697
decode_cpucfg(struct cpuinfo_mips * c)1698 static inline void decode_cpucfg(struct cpuinfo_mips *c)
1699 {
1700 u32 cfg1 = read_cpucfg(LOONGSON_CFG1);
1701 u32 cfg2 = read_cpucfg(LOONGSON_CFG2);
1702 u32 cfg3 = read_cpucfg(LOONGSON_CFG3);
1703
1704 if (cfg1 & LOONGSON_CFG1_MMI)
1705 c->ases |= MIPS_ASE_LOONGSON_MMI;
1706
1707 if (cfg2 & LOONGSON_CFG2_LEXT1)
1708 c->ases |= MIPS_ASE_LOONGSON_EXT;
1709
1710 if (cfg2 & LOONGSON_CFG2_LEXT2)
1711 c->ases |= MIPS_ASE_LOONGSON_EXT2;
1712
1713 if (cfg2 & LOONGSON_CFG2_LSPW) {
1714 c->options |= MIPS_CPU_LDPTE;
1715 c->guest.options |= MIPS_CPU_LDPTE;
1716 }
1717
1718 if (cfg3 & LOONGSON_CFG3_LCAMP)
1719 c->ases |= MIPS_ASE_LOONGSON_CAM;
1720 }
1721
cpu_probe_loongson(struct cpuinfo_mips * c,unsigned int cpu)1722 static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1723 {
1724 /* All Loongson processors covered here define ExcCode 16 as GSExc. */
1725 c->options |= MIPS_CPU_GSEXCEX;
1726
1727 switch (c->processor_id & PRID_IMP_MASK) {
1728 case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */
1729 switch (c->processor_id & PRID_REV_MASK) {
1730 case PRID_REV_LOONGSON2K_R1_0:
1731 case PRID_REV_LOONGSON2K_R1_1:
1732 case PRID_REV_LOONGSON2K_R1_2:
1733 case PRID_REV_LOONGSON2K_R1_3:
1734 c->cputype = CPU_LOONGSON64;
1735 __cpu_name[cpu] = "Loongson-2K";
1736 set_elf_platform(cpu, "gs264e");
1737 set_isa(c, MIPS_CPU_ISA_M64R2);
1738 break;
1739 }
1740 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT |
1741 MIPS_ASE_LOONGSON_EXT2);
1742 break;
1743 case PRID_IMP_LOONGSON_64C: /* Loongson-3 Classic */
1744 switch (c->processor_id & PRID_REV_MASK) {
1745 case PRID_REV_LOONGSON3A_R2_0:
1746 case PRID_REV_LOONGSON3A_R2_1:
1747 c->cputype = CPU_LOONGSON64;
1748 __cpu_name[cpu] = "ICT Loongson-3";
1749 set_elf_platform(cpu, "loongson3a");
1750 set_isa(c, MIPS_CPU_ISA_M64R2);
1751 break;
1752 case PRID_REV_LOONGSON3A_R3_0:
1753 case PRID_REV_LOONGSON3A_R3_1:
1754 c->cputype = CPU_LOONGSON64;
1755 __cpu_name[cpu] = "ICT Loongson-3";
1756 set_elf_platform(cpu, "loongson3a");
1757 set_isa(c, MIPS_CPU_ISA_M64R2);
1758 break;
1759 }
1760 /*
1761 * Loongson-3 Classic did not implement MIPS standard TLBINV
1762 * but implemented TLBINVF and EHINV. As currently we're only
1763 * using these two features, enable MIPS_CPU_TLBINV as well.
1764 *
1765 * Also some early Loongson-3A2000 had wrong TLB type in Config
1766 * register, we correct it here.
1767 */
1768 c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1769 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1770 MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
1771 c->ases &= ~MIPS_ASE_VZ; /* VZ of Loongson-3A2000/3000 is incomplete */
1772 break;
1773 case PRID_IMP_LOONGSON_64G:
1774 c->cputype = CPU_LOONGSON64;
1775 __cpu_name[cpu] = "ICT Loongson-3";
1776 set_elf_platform(cpu, "loongson3a");
1777 set_isa(c, MIPS_CPU_ISA_M64R2);
1778 decode_cpucfg(c);
1779 break;
1780 default:
1781 panic("Unknown Loongson Processor ID!");
1782 break;
1783 }
1784
1785 decode_configs(c);
1786 }
1787 #else
cpu_probe_loongson(struct cpuinfo_mips * c,unsigned int cpu)1788 static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { }
1789 #endif
1790
cpu_probe_ingenic(struct cpuinfo_mips * c,unsigned int cpu)1791 static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1792 {
1793 decode_configs(c);
1794
1795 /*
1796 * XBurst misses a config2 register, so config3 decode was skipped in
1797 * decode_configs().
1798 */
1799 decode_config3(c);
1800
1801 /* XBurst does not implement the CP0 counter. */
1802 c->options &= ~MIPS_CPU_COUNTER;
1803 BUG_ON(__builtin_constant_p(cpu_has_counter) && cpu_has_counter);
1804
1805 /* XBurst has virtually tagged icache */
1806 c->icache.flags |= MIPS_CACHE_VTAG;
1807
1808 switch (c->processor_id & PRID_IMP_MASK) {
1809
1810 /* XBurst®1 with MXU1.0/MXU1.1 SIMD ISA */
1811 case PRID_IMP_XBURST_REV1:
1812
1813 /*
1814 * The XBurst core by default attempts to avoid branch target
1815 * buffer lookups by detecting & special casing loops. This
1816 * feature will cause BogoMIPS and lpj calculate in error.
1817 * Set cp0 config7 bit 4 to disable this feature.
1818 */
1819 set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
1820
1821 switch (c->processor_id & PRID_COMP_MASK) {
1822
1823 /*
1824 * The config0 register in the XBurst CPUs with a processor ID of
1825 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
1826 * but they don't actually support this ISA.
1827 */
1828 case PRID_COMP_INGENIC_D0:
1829 c->isa_level &= ~MIPS_CPU_ISA_M32R2;
1830
1831 /* FPU is not properly detected on JZ4760(B). */
1832 if (c->processor_id == 0x2ed0024f)
1833 c->options |= MIPS_CPU_FPU;
1834
1835 fallthrough;
1836
1837 /*
1838 * The config0 register in the XBurst CPUs with a processor ID of
1839 * PRID_COMP_INGENIC_D0 or PRID_COMP_INGENIC_D1 has an abandoned
1840 * huge page tlb mode, this mode is not compatible with the MIPS
1841 * standard, it will cause tlbmiss and into an infinite loop
1842 * (line 21 in the tlb-funcs.S) when starting the init process.
1843 * After chip reset, the default is HPTLB mode, Write 0xa9000000
1844 * to cp0 register 5 sel 4 to switch back to VTLB mode to prevent
1845 * getting stuck.
1846 */
1847 case PRID_COMP_INGENIC_D1:
1848 write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS);
1849 break;
1850
1851 default:
1852 break;
1853 }
1854 fallthrough;
1855
1856 /* XBurst®1 with MXU2.0 SIMD ISA */
1857 case PRID_IMP_XBURST_REV2:
1858 /* Ingenic uses the WA bit to achieve write-combine memory writes */
1859 c->writecombine = _CACHE_CACHABLE_WA;
1860 c->cputype = CPU_XBURST;
1861 __cpu_name[cpu] = "Ingenic XBurst";
1862 break;
1863
1864 /* XBurst®2 with MXU2.1 SIMD ISA */
1865 case PRID_IMP_XBURST2:
1866 c->cputype = CPU_XBURST;
1867 __cpu_name[cpu] = "Ingenic XBurst II";
1868 break;
1869
1870 default:
1871 panic("Unknown Ingenic Processor ID!");
1872 break;
1873 }
1874 }
1875
cpu_probe_netlogic(struct cpuinfo_mips * c,int cpu)1876 static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1877 {
1878 decode_configs(c);
1879
1880 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1881 c->cputype = CPU_ALCHEMY;
1882 __cpu_name[cpu] = "Au1300";
1883 /* following stuff is not for Alchemy */
1884 return;
1885 }
1886
1887 c->options = (MIPS_CPU_TLB |
1888 MIPS_CPU_4KEX |
1889 MIPS_CPU_COUNTER |
1890 MIPS_CPU_DIVEC |
1891 MIPS_CPU_WATCH |
1892 MIPS_CPU_EJTAG |
1893 MIPS_CPU_LLSC);
1894
1895 switch (c->processor_id & PRID_IMP_MASK) {
1896 case PRID_IMP_NETLOGIC_XLP2XX:
1897 case PRID_IMP_NETLOGIC_XLP9XX:
1898 case PRID_IMP_NETLOGIC_XLP5XX:
1899 c->cputype = CPU_XLP;
1900 __cpu_name[cpu] = "Broadcom XLPII";
1901 break;
1902
1903 case PRID_IMP_NETLOGIC_XLP8XX:
1904 case PRID_IMP_NETLOGIC_XLP3XX:
1905 c->cputype = CPU_XLP;
1906 __cpu_name[cpu] = "Netlogic XLP";
1907 break;
1908
1909 case PRID_IMP_NETLOGIC_XLR732:
1910 case PRID_IMP_NETLOGIC_XLR716:
1911 case PRID_IMP_NETLOGIC_XLR532:
1912 case PRID_IMP_NETLOGIC_XLR308:
1913 case PRID_IMP_NETLOGIC_XLR532C:
1914 case PRID_IMP_NETLOGIC_XLR516C:
1915 case PRID_IMP_NETLOGIC_XLR508C:
1916 case PRID_IMP_NETLOGIC_XLR308C:
1917 c->cputype = CPU_XLR;
1918 __cpu_name[cpu] = "Netlogic XLR";
1919 break;
1920
1921 case PRID_IMP_NETLOGIC_XLS608:
1922 case PRID_IMP_NETLOGIC_XLS408:
1923 case PRID_IMP_NETLOGIC_XLS404:
1924 case PRID_IMP_NETLOGIC_XLS208:
1925 case PRID_IMP_NETLOGIC_XLS204:
1926 case PRID_IMP_NETLOGIC_XLS108:
1927 case PRID_IMP_NETLOGIC_XLS104:
1928 case PRID_IMP_NETLOGIC_XLS616B:
1929 case PRID_IMP_NETLOGIC_XLS608B:
1930 case PRID_IMP_NETLOGIC_XLS416B:
1931 case PRID_IMP_NETLOGIC_XLS412B:
1932 case PRID_IMP_NETLOGIC_XLS408B:
1933 case PRID_IMP_NETLOGIC_XLS404B:
1934 c->cputype = CPU_XLR;
1935 __cpu_name[cpu] = "Netlogic XLS";
1936 break;
1937
1938 default:
1939 pr_info("Unknown Netlogic chip id [%02x]!\n",
1940 c->processor_id);
1941 c->cputype = CPU_XLR;
1942 break;
1943 }
1944
1945 if (c->cputype == CPU_XLP) {
1946 set_isa(c, MIPS_CPU_ISA_M64R2);
1947 c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
1948 /* This will be updated again after all threads are woken up */
1949 c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
1950 } else {
1951 set_isa(c, MIPS_CPU_ISA_M64R1);
1952 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1953 }
1954 c->kscratch_mask = 0xf;
1955 }
1956
1957 #ifdef CONFIG_64BIT
1958 /* For use by uaccess.h */
1959 u64 __ua_limit;
1960 EXPORT_SYMBOL(__ua_limit);
1961 #endif
1962
1963 const char *__cpu_name[NR_CPUS];
1964 const char *__elf_platform;
1965 const char *__elf_base_platform;
1966
cpu_probe(void)1967 void cpu_probe(void)
1968 {
1969 struct cpuinfo_mips *c = ¤t_cpu_data;
1970 unsigned int cpu = smp_processor_id();
1971
1972 /*
1973 * Set a default elf platform, cpu probe may later
1974 * overwrite it with a more precise value
1975 */
1976 set_elf_platform(cpu, "mips");
1977
1978 c->processor_id = PRID_IMP_UNKNOWN;
1979 c->fpu_id = FPIR_IMP_NONE;
1980 c->cputype = CPU_UNKNOWN;
1981 c->writecombine = _CACHE_UNCACHED;
1982
1983 c->fpu_csr31 = FPU_CSR_RN;
1984 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1985
1986 c->processor_id = read_c0_prid();
1987 switch (c->processor_id & PRID_COMP_MASK) {
1988 case PRID_COMP_LEGACY:
1989 cpu_probe_legacy(c, cpu);
1990 break;
1991 case PRID_COMP_MIPS:
1992 cpu_probe_mips(c, cpu);
1993 break;
1994 case PRID_COMP_ALCHEMY:
1995 cpu_probe_alchemy(c, cpu);
1996 break;
1997 case PRID_COMP_SIBYTE:
1998 cpu_probe_sibyte(c, cpu);
1999 break;
2000 case PRID_COMP_BROADCOM:
2001 cpu_probe_broadcom(c, cpu);
2002 break;
2003 case PRID_COMP_SANDCRAFT:
2004 cpu_probe_sandcraft(c, cpu);
2005 break;
2006 case PRID_COMP_NXP:
2007 cpu_probe_nxp(c, cpu);
2008 break;
2009 case PRID_COMP_CAVIUM:
2010 cpu_probe_cavium(c, cpu);
2011 break;
2012 case PRID_COMP_LOONGSON:
2013 cpu_probe_loongson(c, cpu);
2014 break;
2015 case PRID_COMP_INGENIC_13:
2016 case PRID_COMP_INGENIC_D0:
2017 case PRID_COMP_INGENIC_D1:
2018 case PRID_COMP_INGENIC_E1:
2019 cpu_probe_ingenic(c, cpu);
2020 break;
2021 case PRID_COMP_NETLOGIC:
2022 cpu_probe_netlogic(c, cpu);
2023 break;
2024 }
2025
2026 BUG_ON(!__cpu_name[cpu]);
2027 BUG_ON(c->cputype == CPU_UNKNOWN);
2028
2029 /*
2030 * Platform code can force the cpu type to optimize code
2031 * generation. In that case be sure the cpu type is correctly
2032 * manually setup otherwise it could trigger some nasty bugs.
2033 */
2034 BUG_ON(current_cpu_type() != c->cputype);
2035
2036 if (cpu_has_rixi) {
2037 /* Enable the RIXI exceptions */
2038 set_c0_pagegrain(PG_IEC);
2039 back_to_back_c0_hazard();
2040 /* Verify the IEC bit is set */
2041 if (read_c0_pagegrain() & PG_IEC)
2042 c->options |= MIPS_CPU_RIXIEX;
2043 }
2044
2045 if (mips_fpu_disabled)
2046 c->options &= ~MIPS_CPU_FPU;
2047
2048 if (mips_dsp_disabled)
2049 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2050
2051 if (mips_htw_disabled) {
2052 c->options &= ~MIPS_CPU_HTW;
2053 write_c0_pwctl(read_c0_pwctl() &
2054 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2055 }
2056
2057 if (c->options & MIPS_CPU_FPU)
2058 cpu_set_fpu_opts(c);
2059 else
2060 cpu_set_nofpu_opts(c);
2061
2062 if (cpu_has_mips_r2_r6) {
2063 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2064 /* R2 has Performance Counter Interrupt indicator */
2065 c->options |= MIPS_CPU_PCI;
2066 }
2067 else
2068 c->srsets = 1;
2069
2070 if (cpu_has_mips_r6)
2071 elf_hwcap |= HWCAP_MIPS_R6;
2072
2073 if (cpu_has_msa) {
2074 c->msa_id = cpu_get_msa_id();
2075 WARN(c->msa_id & MSA_IR_WRPF,
2076 "Vector register partitioning unimplemented!");
2077 elf_hwcap |= HWCAP_MIPS_MSA;
2078 }
2079
2080 if (cpu_has_mips16)
2081 elf_hwcap |= HWCAP_MIPS_MIPS16;
2082
2083 if (cpu_has_mdmx)
2084 elf_hwcap |= HWCAP_MIPS_MDMX;
2085
2086 if (cpu_has_mips3d)
2087 elf_hwcap |= HWCAP_MIPS_MIPS3D;
2088
2089 if (cpu_has_smartmips)
2090 elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
2091
2092 if (cpu_has_dsp)
2093 elf_hwcap |= HWCAP_MIPS_DSP;
2094
2095 if (cpu_has_dsp2)
2096 elf_hwcap |= HWCAP_MIPS_DSP2;
2097
2098 if (cpu_has_dsp3)
2099 elf_hwcap |= HWCAP_MIPS_DSP3;
2100
2101 if (cpu_has_mips16e2)
2102 elf_hwcap |= HWCAP_MIPS_MIPS16E2;
2103
2104 if (cpu_has_loongson_mmi)
2105 elf_hwcap |= HWCAP_LOONGSON_MMI;
2106
2107 if (cpu_has_loongson_ext)
2108 elf_hwcap |= HWCAP_LOONGSON_EXT;
2109
2110 if (cpu_has_loongson_ext2)
2111 elf_hwcap |= HWCAP_LOONGSON_EXT2;
2112
2113 if (cpu_has_vz)
2114 cpu_probe_vz(c);
2115
2116 cpu_probe_vmbits(c);
2117
2118 /* Synthesize CPUCFG data if running on Loongson processors;
2119 * no-op otherwise.
2120 *
2121 * This looks at previously probed features, so keep this at bottom.
2122 */
2123 loongson3_cpucfg_synthesize_data(c);
2124
2125 #ifdef CONFIG_64BIT
2126 if (cpu == 0)
2127 __ua_limit = ~((1ull << cpu_vmbits) - 1);
2128 #endif
2129 }
2130
cpu_report(void)2131 void cpu_report(void)
2132 {
2133 struct cpuinfo_mips *c = ¤t_cpu_data;
2134
2135 pr_info("CPU%d revision is: %08x (%s)\n",
2136 smp_processor_id(), c->processor_id, cpu_name_string());
2137 if (c->options & MIPS_CPU_FPU)
2138 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2139 if (cpu_has_msa)
2140 pr_info("MSA revision is: %08x\n", c->msa_id);
2141 }
2142
cpu_set_cluster(struct cpuinfo_mips * cpuinfo,unsigned int cluster)2143 void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2144 {
2145 /* Ensure the core number fits in the field */
2146 WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2147 MIPS_GLOBALNUMBER_CLUSTER_SHF));
2148
2149 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2150 cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2151 }
2152
cpu_set_core(struct cpuinfo_mips * cpuinfo,unsigned int core)2153 void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2154 {
2155 /* Ensure the core number fits in the field */
2156 WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2157
2158 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2159 cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2160 }
2161
cpu_set_vpe_id(struct cpuinfo_mips * cpuinfo,unsigned int vpe)2162 void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2163 {
2164 /* Ensure the VP(E) ID fits in the field */
2165 WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2166
2167 /* Ensure we're not using VP(E)s without support */
2168 WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2169 !IS_ENABLED(CONFIG_CPU_MIPSR6));
2170
2171 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2172 cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2173 }
2174