• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // This file is a copy of Chromium's /src/base/containers/linked_list.h with the following
6 // modifications:
7 //   - Added iterators for ranged based iterations
8 //   - Added in list check before removing node to prevent segfault, now returns true iff removed
9 //   - Added MoveInto functionality for moving list elements to another list
10 
11 #ifndef COMMON_LINKED_LIST_H
12 #define COMMON_LINKED_LIST_H
13 
14 #include "common/Assert.h"
15 
16 // Simple LinkedList type. (See the Q&A section to understand how this
17 // differs from std::list).
18 //
19 // To use, start by declaring the class which will be contained in the linked
20 // list, as extending LinkNode (this gives it next/previous pointers).
21 //
22 //   class MyNodeType : public LinkNode<MyNodeType> {
23 //     ...
24 //   };
25 //
26 // Next, to keep track of the list's head/tail, use a LinkedList instance:
27 //
28 //   LinkedList<MyNodeType> list;
29 //
30 // To add elements to the list, use any of LinkedList::Append,
31 // LinkNode::InsertBefore, or LinkNode::InsertAfter:
32 //
33 //   LinkNode<MyNodeType>* n1 = ...;
34 //   LinkNode<MyNodeType>* n2 = ...;
35 //   LinkNode<MyNodeType>* n3 = ...;
36 //
37 //   list.Append(n1);
38 //   list.Append(n3);
39 //   n3->InsertBefore(n3);
40 //
41 // Lastly, to iterate through the linked list forwards:
42 //
43 //   for (LinkNode<MyNodeType>* node = list.head();
44 //        node != list.end();
45 //        node = node->next()) {
46 //     MyNodeType* value = node->value();
47 //     ...
48 //   }
49 //
50 //   for (LinkNode<MyNodeType*> node : list) {
51 //     MyNodeType* value = node->value();
52 //     ...
53 //   }
54 //
55 // Or to iterate the linked list backwards:
56 //
57 //   for (LinkNode<MyNodeType>* node = list.tail();
58 //        node != list.end();
59 //        node = node->previous()) {
60 //     MyNodeType* value = node->value();
61 //     ...
62 //   }
63 //
64 // Questions and Answers:
65 //
66 // Q. Should I use std::list or base::LinkedList?
67 //
68 // A. The main reason to use base::LinkedList over std::list is
69 //    performance. If you don't care about the performance differences
70 //    then use an STL container, as it makes for better code readability.
71 //
72 //    Comparing the performance of base::LinkedList<T> to std::list<T*>:
73 //
74 //    * Erasing an element of type T* from base::LinkedList<T> is
75 //      an O(1) operation. Whereas for std::list<T*> it is O(n).
76 //      That is because with std::list<T*> you must obtain an
77 //      iterator to the T* element before you can call erase(iterator).
78 //
79 //    * Insertion operations with base::LinkedList<T> never require
80 //      heap allocations.
81 //
82 // Q. How does base::LinkedList implementation differ from std::list?
83 //
84 // A. Doubly-linked lists are made up of nodes that contain "next" and
85 //    "previous" pointers that reference other nodes in the list.
86 //
87 //    With base::LinkedList<T>, the type being inserted already reserves
88 //    space for the "next" and "previous" pointers (base::LinkNode<T>*).
89 //    Whereas with std::list<T> the type can be anything, so the implementation
90 //    needs to glue on the "next" and "previous" pointers using
91 //    some internal node type.
92 
93 // Forward declarations of the types in order for recursive referencing and friending.
94 template <typename T>
95 class LinkNode;
96 template <typename T>
97 class LinkedList;
98 
99 template <typename T>
100 class LinkNode {
101   public:
LinkNode()102     LinkNode() : previous_(nullptr), next_(nullptr) {
103     }
LinkNode(LinkNode<T> * previous,LinkNode<T> * next)104     LinkNode(LinkNode<T>* previous, LinkNode<T>* next) : previous_(previous), next_(next) {
105     }
106 
LinkNode(LinkNode<T> && rhs)107     LinkNode(LinkNode<T>&& rhs) {
108         next_ = rhs.next_;
109         rhs.next_ = nullptr;
110         previous_ = rhs.previous_;
111         rhs.previous_ = nullptr;
112 
113         // If the node belongs to a list, next_ and previous_ are both non-null.
114         // Otherwise, they are both null.
115         if (next_) {
116             next_->previous_ = this;
117             previous_->next_ = this;
118         }
119     }
120 
121     // Insert |this| into the linked list, before |e|.
InsertBefore(LinkNode<T> * e)122     void InsertBefore(LinkNode<T>* e) {
123         this->next_ = e;
124         this->previous_ = e->previous_;
125         e->previous_->next_ = this;
126         e->previous_ = this;
127     }
128 
129     // Insert |this| into the linked list, after |e|.
InsertAfter(LinkNode<T> * e)130     void InsertAfter(LinkNode<T>* e) {
131         this->next_ = e->next_;
132         this->previous_ = e;
133         e->next_->previous_ = this;
134         e->next_ = this;
135     }
136 
137     // Check if |this| is in a list.
IsInList()138     bool IsInList() const {
139         ASSERT((this->previous_ == nullptr) == (this->next_ == nullptr));
140         return this->next_ != nullptr;
141     }
142 
143     // Remove |this| from the linked list. Returns true iff removed from a list.
RemoveFromList()144     bool RemoveFromList() {
145         if (!IsInList()) {
146             return false;
147         }
148 
149         this->previous_->next_ = this->next_;
150         this->next_->previous_ = this->previous_;
151         // next() and previous() return non-null if and only this node is not in any list.
152         this->next_ = nullptr;
153         this->previous_ = nullptr;
154         return true;
155     }
156 
previous()157     LinkNode<T>* previous() const {
158         return previous_;
159     }
160 
next()161     LinkNode<T>* next() const {
162         return next_;
163     }
164 
165     // Cast from the node-type to the value type.
value()166     const T* value() const {
167         return static_cast<const T*>(this);
168     }
169 
value()170     T* value() {
171         return static_cast<T*>(this);
172     }
173 
174   private:
175     friend class LinkedList<T>;
176     LinkNode<T>* previous_;
177     LinkNode<T>* next_;
178 };
179 
180 template <typename T>
181 class LinkedList {
182   public:
183     // The "root" node is self-referential, and forms the basis of a circular
184     // list (root_.next() will point back to the start of the list,
185     // and root_->previous() wraps around to the end of the list).
LinkedList()186     LinkedList() : root_(&root_, &root_) {
187     }
188 
~LinkedList()189     ~LinkedList() {
190         // If any LinkNodes still exist in the LinkedList, there will be outstanding references to
191         // root_ even after it has been freed. We should remove root_ from the list to prevent any
192         // future access.
193         root_.RemoveFromList();
194     }
195 
196     // Appends |e| to the end of the linked list.
Append(LinkNode<T> * e)197     void Append(LinkNode<T>* e) {
198         e->InsertBefore(&root_);
199     }
200 
201     // Moves all elements (in order) of the list and appends them into |l| leaving the list empty.
MoveInto(LinkedList<T> * l)202     void MoveInto(LinkedList<T>* l) {
203         if (empty()) {
204             return;
205         }
206         l->root_.previous_->next_ = root_.next_;
207         root_.next_->previous_ = l->root_.previous_;
208         l->root_.previous_ = root_.previous_;
209         root_.previous_->next_ = &l->root_;
210 
211         root_.next_ = &root_;
212         root_.previous_ = &root_;
213     }
214 
head()215     LinkNode<T>* head() const {
216         return root_.next();
217     }
218 
tail()219     LinkNode<T>* tail() const {
220         return root_.previous();
221     }
222 
end()223     const LinkNode<T>* end() const {
224         return &root_;
225     }
226 
empty()227     bool empty() const {
228         return head() == end();
229     }
230 
231   private:
232     LinkNode<T> root_;
233 };
234 
235 template <typename T>
236 class LinkedListIterator {
237   public:
LinkedListIterator(LinkNode<T> * node)238     LinkedListIterator(LinkNode<T>* node) : current_(node), next_(node->next()) {
239     }
240 
241     // We keep an early reference to the next node in the list so that even if the current element
242     // is modified or removed from the list, we have a valid next node.
243     LinkedListIterator<T> const& operator++() {
244         current_ = next_;
245         next_ = current_->next();
246         return *this;
247     }
248 
249     bool operator!=(const LinkedListIterator<T>& other) const {
250         return current_ != other.current_;
251     }
252 
253     LinkNode<T>* operator*() const {
254         return current_;
255     }
256 
257   private:
258     LinkNode<T>* current_;
259     LinkNode<T>* next_;
260 };
261 
262 template <typename T>
begin(LinkedList<T> & l)263 LinkedListIterator<T> begin(LinkedList<T>& l) {
264     return LinkedListIterator<T>(l.head());
265 }
266 
267 // Free end function does't use LinkedList<T>::end because of it's const nature. Instead we wrap
268 // around from tail.
269 template <typename T>
end(LinkedList<T> & l)270 LinkedListIterator<T> end(LinkedList<T>& l) {
271     return LinkedListIterator<T>(l.tail()->next());
272 }
273 
274 #endif  // COMMON_LINKED_LIST_H
275