• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69 
70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72 
73 /* See "Frequency meter" comments, below. */
74 
75 struct fmeter {
76 	int cnt;		/* unprocessed events count */
77 	int val;		/* most recent output value */
78 	time64_t time;		/* clock (secs) when val computed */
79 	spinlock_t lock;	/* guards read or write of above */
80 };
81 
82 struct cpuset {
83 	struct cgroup_subsys_state css;
84 
85 	unsigned long flags;		/* "unsigned long" so bitops work */
86 
87 	/*
88 	 * On default hierarchy:
89 	 *
90 	 * The user-configured masks can only be changed by writing to
91 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
92 	 * parent masks.
93 	 *
94 	 * The effective masks is the real masks that apply to the tasks
95 	 * in the cpuset. They may be changed if the configured masks are
96 	 * changed or hotplug happens.
97 	 *
98 	 * effective_mask == configured_mask & parent's effective_mask,
99 	 * and if it ends up empty, it will inherit the parent's mask.
100 	 *
101 	 *
102 	 * On legacy hierachy:
103 	 *
104 	 * The user-configured masks are always the same with effective masks.
105 	 */
106 
107 	/* user-configured CPUs and Memory Nodes allow to tasks */
108 	cpumask_var_t cpus_allowed;
109 	cpumask_var_t cpus_requested;
110 	nodemask_t mems_allowed;
111 
112 	/* effective CPUs and Memory Nodes allow to tasks */
113 	cpumask_var_t effective_cpus;
114 	nodemask_t effective_mems;
115 
116 	/*
117 	 * CPUs allocated to child sub-partitions (default hierarchy only)
118 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
119 	 * - effective_cpus and subparts_cpus are mutually exclusive.
120 	 *
121 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
122 	 * may have offlined ones.
123 	 */
124 	cpumask_var_t subparts_cpus;
125 
126 	/*
127 	 * This is old Memory Nodes tasks took on.
128 	 *
129 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
130 	 * - A new cpuset's old_mems_allowed is initialized when some
131 	 *   task is moved into it.
132 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
133 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
134 	 *   then old_mems_allowed is updated to mems_allowed.
135 	 */
136 	nodemask_t old_mems_allowed;
137 
138 	struct fmeter fmeter;		/* memory_pressure filter */
139 
140 	/*
141 	 * Tasks are being attached to this cpuset.  Used to prevent
142 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
143 	 */
144 	int attach_in_progress;
145 
146 	/* partition number for rebuild_sched_domains() */
147 	int pn;
148 
149 	/* for custom sched domain */
150 	int relax_domain_level;
151 
152 	/* number of CPUs in subparts_cpus */
153 	int nr_subparts_cpus;
154 
155 	/* partition root state */
156 	int partition_root_state;
157 
158 	/*
159 	 * Default hierarchy only:
160 	 * use_parent_ecpus - set if using parent's effective_cpus
161 	 * child_ecpus_count - # of children with use_parent_ecpus set
162 	 */
163 	int use_parent_ecpus;
164 	int child_ecpus_count;
165 };
166 
167 /*
168  * Partition root states:
169  *
170  *   0 - not a partition root
171  *
172  *   1 - partition root
173  *
174  *  -1 - invalid partition root
175  *       None of the cpus in cpus_allowed can be put into the parent's
176  *       subparts_cpus. In this case, the cpuset is not a real partition
177  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
178  *       and the cpuset can be restored back to a partition root if the
179  *       parent cpuset can give more CPUs back to this child cpuset.
180  */
181 #define PRS_DISABLED		0
182 #define PRS_ENABLED		1
183 #define PRS_ERROR		-1
184 
185 /*
186  * Temporary cpumasks for working with partitions that are passed among
187  * functions to avoid memory allocation in inner functions.
188  */
189 struct tmpmasks {
190 	cpumask_var_t addmask, delmask;	/* For partition root */
191 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
192 };
193 
css_cs(struct cgroup_subsys_state * css)194 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
195 {
196 	return css ? container_of(css, struct cpuset, css) : NULL;
197 }
198 
199 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)200 static inline struct cpuset *task_cs(struct task_struct *task)
201 {
202 	return css_cs(task_css(task, cpuset_cgrp_id));
203 }
204 
parent_cs(struct cpuset * cs)205 static inline struct cpuset *parent_cs(struct cpuset *cs)
206 {
207 	return css_cs(cs->css.parent);
208 }
209 
210 /* bits in struct cpuset flags field */
211 typedef enum {
212 	CS_ONLINE,
213 	CS_CPU_EXCLUSIVE,
214 	CS_MEM_EXCLUSIVE,
215 	CS_MEM_HARDWALL,
216 	CS_MEMORY_MIGRATE,
217 	CS_SCHED_LOAD_BALANCE,
218 	CS_SPREAD_PAGE,
219 	CS_SPREAD_SLAB,
220 } cpuset_flagbits_t;
221 
222 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)223 static inline bool is_cpuset_online(struct cpuset *cs)
224 {
225 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
226 }
227 
is_cpu_exclusive(const struct cpuset * cs)228 static inline int is_cpu_exclusive(const struct cpuset *cs)
229 {
230 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
231 }
232 
is_mem_exclusive(const struct cpuset * cs)233 static inline int is_mem_exclusive(const struct cpuset *cs)
234 {
235 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
236 }
237 
is_mem_hardwall(const struct cpuset * cs)238 static inline int is_mem_hardwall(const struct cpuset *cs)
239 {
240 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
241 }
242 
is_sched_load_balance(const struct cpuset * cs)243 static inline int is_sched_load_balance(const struct cpuset *cs)
244 {
245 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
246 }
247 
is_memory_migrate(const struct cpuset * cs)248 static inline int is_memory_migrate(const struct cpuset *cs)
249 {
250 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
251 }
252 
is_spread_page(const struct cpuset * cs)253 static inline int is_spread_page(const struct cpuset *cs)
254 {
255 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
256 }
257 
is_spread_slab(const struct cpuset * cs)258 static inline int is_spread_slab(const struct cpuset *cs)
259 {
260 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
261 }
262 
is_partition_root(const struct cpuset * cs)263 static inline int is_partition_root(const struct cpuset *cs)
264 {
265 	return cs->partition_root_state > 0;
266 }
267 
268 static struct cpuset top_cpuset = {
269 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
270 		  (1 << CS_MEM_EXCLUSIVE)),
271 	.partition_root_state = PRS_ENABLED,
272 };
273 
274 /**
275  * cpuset_for_each_child - traverse online children of a cpuset
276  * @child_cs: loop cursor pointing to the current child
277  * @pos_css: used for iteration
278  * @parent_cs: target cpuset to walk children of
279  *
280  * Walk @child_cs through the online children of @parent_cs.  Must be used
281  * with RCU read locked.
282  */
283 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
284 	css_for_each_child((pos_css), &(parent_cs)->css)		\
285 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
286 
287 /**
288  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
289  * @des_cs: loop cursor pointing to the current descendant
290  * @pos_css: used for iteration
291  * @root_cs: target cpuset to walk ancestor of
292  *
293  * Walk @des_cs through the online descendants of @root_cs.  Must be used
294  * with RCU read locked.  The caller may modify @pos_css by calling
295  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
296  * iteration and the first node to be visited.
297  */
298 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
299 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
300 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
301 
302 /*
303  * There are two global locks guarding cpuset structures - cpuset_mutex and
304  * callback_lock. We also require taking task_lock() when dereferencing a
305  * task's cpuset pointer. See "The task_lock() exception", at the end of this
306  * comment.
307  *
308  * A task must hold both locks to modify cpusets.  If a task holds
309  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
310  * is the only task able to also acquire callback_lock and be able to
311  * modify cpusets.  It can perform various checks on the cpuset structure
312  * first, knowing nothing will change.  It can also allocate memory while
313  * just holding cpuset_mutex.  While it is performing these checks, various
314  * callback routines can briefly acquire callback_lock to query cpusets.
315  * Once it is ready to make the changes, it takes callback_lock, blocking
316  * everyone else.
317  *
318  * Calls to the kernel memory allocator can not be made while holding
319  * callback_lock, as that would risk double tripping on callback_lock
320  * from one of the callbacks into the cpuset code from within
321  * __alloc_pages().
322  *
323  * If a task is only holding callback_lock, then it has read-only
324  * access to cpusets.
325  *
326  * Now, the task_struct fields mems_allowed and mempolicy may be changed
327  * by other task, we use alloc_lock in the task_struct fields to protect
328  * them.
329  *
330  * The cpuset_common_file_read() handlers only hold callback_lock across
331  * small pieces of code, such as when reading out possibly multi-word
332  * cpumasks and nodemasks.
333  *
334  * Accessing a task's cpuset should be done in accordance with the
335  * guidelines for accessing subsystem state in kernel/cgroup.c
336  */
337 
338 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
339 
cpuset_read_lock(void)340 void cpuset_read_lock(void)
341 {
342 	percpu_down_read(&cpuset_rwsem);
343 }
344 
cpuset_read_unlock(void)345 void cpuset_read_unlock(void)
346 {
347 	percpu_up_read(&cpuset_rwsem);
348 }
349 
350 static DEFINE_SPINLOCK(callback_lock);
351 
352 static struct workqueue_struct *cpuset_migrate_mm_wq;
353 
354 /*
355  * CPU / memory hotplug is handled asynchronously.
356  */
357 static void cpuset_hotplug_workfn(struct work_struct *work);
358 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
359 
360 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
361 
362 /*
363  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
364  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
365  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
366  * With v2 behavior, "cpus" and "mems" are always what the users have
367  * requested and won't be changed by hotplug events. Only the effective
368  * cpus or mems will be affected.
369  */
is_in_v2_mode(void)370 static inline bool is_in_v2_mode(void)
371 {
372 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
373 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
374 }
375 
376 /*
377  * Return in pmask the portion of a cpusets's cpus_allowed that
378  * are online.  If none are online, walk up the cpuset hierarchy
379  * until we find one that does have some online cpus.
380  *
381  * One way or another, we guarantee to return some non-empty subset
382  * of cpu_online_mask.
383  *
384  * Call with callback_lock or cpuset_mutex held.
385  */
guarantee_online_cpus(struct cpuset * cs,struct cpumask * pmask)386 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
387 {
388 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
389 		cs = parent_cs(cs);
390 		if (unlikely(!cs)) {
391 			/*
392 			 * The top cpuset doesn't have any online cpu as a
393 			 * consequence of a race between cpuset_hotplug_work
394 			 * and cpu hotplug notifier.  But we know the top
395 			 * cpuset's effective_cpus is on its way to be
396 			 * identical to cpu_online_mask.
397 			 */
398 			cpumask_copy(pmask, cpu_online_mask);
399 			return;
400 		}
401 	}
402 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
403 }
404 
405 /*
406  * Return in *pmask the portion of a cpusets's mems_allowed that
407  * are online, with memory.  If none are online with memory, walk
408  * up the cpuset hierarchy until we find one that does have some
409  * online mems.  The top cpuset always has some mems online.
410  *
411  * One way or another, we guarantee to return some non-empty subset
412  * of node_states[N_MEMORY].
413  *
414  * Call with callback_lock or cpuset_mutex held.
415  */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)416 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
417 {
418 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
419 		cs = parent_cs(cs);
420 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
421 }
422 
423 /*
424  * update task's spread flag if cpuset's page/slab spread flag is set
425  *
426  * Call with callback_lock or cpuset_mutex held.
427  */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)428 static void cpuset_update_task_spread_flag(struct cpuset *cs,
429 					struct task_struct *tsk)
430 {
431 	if (is_spread_page(cs))
432 		task_set_spread_page(tsk);
433 	else
434 		task_clear_spread_page(tsk);
435 
436 	if (is_spread_slab(cs))
437 		task_set_spread_slab(tsk);
438 	else
439 		task_clear_spread_slab(tsk);
440 }
441 
442 /*
443  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
444  *
445  * One cpuset is a subset of another if all its allowed CPUs and
446  * Memory Nodes are a subset of the other, and its exclusive flags
447  * are only set if the other's are set.  Call holding cpuset_mutex.
448  */
449 
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)450 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
451 {
452 	return	cpumask_subset(p->cpus_requested, q->cpus_requested) &&
453 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
454 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
455 		is_mem_exclusive(p) <= is_mem_exclusive(q);
456 }
457 
458 /**
459  * alloc_cpumasks - allocate three cpumasks for cpuset
460  * @cs:  the cpuset that have cpumasks to be allocated.
461  * @tmp: the tmpmasks structure pointer
462  * Return: 0 if successful, -ENOMEM otherwise.
463  *
464  * Only one of the two input arguments should be non-NULL.
465  */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)466 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
467 {
468 	cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
469 
470 	if (cs) {
471 		pmask1 = &cs->cpus_allowed;
472 		pmask2 = &cs->effective_cpus;
473 		pmask3 = &cs->subparts_cpus;
474 		pmask4 = &cs->cpus_requested;
475 	} else {
476 		pmask1 = &tmp->new_cpus;
477 		pmask2 = &tmp->addmask;
478 		pmask3 = &tmp->delmask;
479 	}
480 
481 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
482 		return -ENOMEM;
483 
484 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
485 		goto free_one;
486 
487 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
488 		goto free_two;
489 
490 	if (cs && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
491 		goto free_three;
492 
493 	return 0;
494 
495 free_three:
496 	free_cpumask_var(*pmask3);
497 free_two:
498 	free_cpumask_var(*pmask2);
499 free_one:
500 	free_cpumask_var(*pmask1);
501 	return -ENOMEM;
502 }
503 
504 /**
505  * free_cpumasks - free cpumasks in a tmpmasks structure
506  * @cs:  the cpuset that have cpumasks to be free.
507  * @tmp: the tmpmasks structure pointer
508  */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)509 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
510 {
511 	if (cs) {
512 		free_cpumask_var(cs->cpus_allowed);
513 		free_cpumask_var(cs->cpus_requested);
514 		free_cpumask_var(cs->effective_cpus);
515 		free_cpumask_var(cs->subparts_cpus);
516 	}
517 	if (tmp) {
518 		free_cpumask_var(tmp->new_cpus);
519 		free_cpumask_var(tmp->addmask);
520 		free_cpumask_var(tmp->delmask);
521 	}
522 }
523 
524 /**
525  * alloc_trial_cpuset - allocate a trial cpuset
526  * @cs: the cpuset that the trial cpuset duplicates
527  */
alloc_trial_cpuset(struct cpuset * cs)528 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
529 {
530 	struct cpuset *trial;
531 
532 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
533 	if (!trial)
534 		return NULL;
535 
536 	if (alloc_cpumasks(trial, NULL)) {
537 		kfree(trial);
538 		return NULL;
539 	}
540 
541 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
542 	cpumask_copy(trial->cpus_requested, cs->cpus_requested);
543 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
544 	return trial;
545 }
546 
547 /**
548  * free_cpuset - free the cpuset
549  * @cs: the cpuset to be freed
550  */
free_cpuset(struct cpuset * cs)551 static inline void free_cpuset(struct cpuset *cs)
552 {
553 	free_cpumasks(cs, NULL);
554 	kfree(cs);
555 }
556 
557 /*
558  * validate_change() - Used to validate that any proposed cpuset change
559  *		       follows the structural rules for cpusets.
560  *
561  * If we replaced the flag and mask values of the current cpuset
562  * (cur) with those values in the trial cpuset (trial), would
563  * our various subset and exclusive rules still be valid?  Presumes
564  * cpuset_mutex held.
565  *
566  * 'cur' is the address of an actual, in-use cpuset.  Operations
567  * such as list traversal that depend on the actual address of the
568  * cpuset in the list must use cur below, not trial.
569  *
570  * 'trial' is the address of bulk structure copy of cur, with
571  * perhaps one or more of the fields cpus_allowed, mems_allowed,
572  * or flags changed to new, trial values.
573  *
574  * Return 0 if valid, -errno if not.
575  */
576 
validate_change(struct cpuset * cur,struct cpuset * trial)577 static int validate_change(struct cpuset *cur, struct cpuset *trial)
578 {
579 	struct cgroup_subsys_state *css;
580 	struct cpuset *c, *par;
581 	int ret;
582 
583 	rcu_read_lock();
584 
585 	/* Each of our child cpusets must be a subset of us */
586 	ret = -EBUSY;
587 	cpuset_for_each_child(c, css, cur)
588 		if (!is_cpuset_subset(c, trial))
589 			goto out;
590 
591 	/* Remaining checks don't apply to root cpuset */
592 	ret = 0;
593 	if (cur == &top_cpuset)
594 		goto out;
595 
596 	par = parent_cs(cur);
597 
598 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
599 	ret = -EACCES;
600 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
601 		goto out;
602 
603 	/*
604 	 * If either I or some sibling (!= me) is exclusive, we can't
605 	 * overlap
606 	 */
607 	ret = -EINVAL;
608 	cpuset_for_each_child(c, css, par) {
609 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
610 		    c != cur &&
611 		    cpumask_intersects(trial->cpus_requested,
612 				       c->cpus_requested))
613 			goto out;
614 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
615 		    c != cur &&
616 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
617 			goto out;
618 	}
619 
620 	/*
621 	 * Cpusets with tasks - existing or newly being attached - can't
622 	 * be changed to have empty cpus_allowed or mems_allowed.
623 	 */
624 	ret = -ENOSPC;
625 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
626 		if (!cpumask_empty(cur->cpus_allowed) &&
627 		    cpumask_empty(trial->cpus_allowed))
628 			goto out;
629 		if (!nodes_empty(cur->mems_allowed) &&
630 		    nodes_empty(trial->mems_allowed))
631 			goto out;
632 	}
633 
634 	/*
635 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
636 	 * tasks.
637 	 */
638 	ret = -EBUSY;
639 	if (is_cpu_exclusive(cur) &&
640 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
641 				       trial->cpus_allowed))
642 		goto out;
643 
644 	ret = 0;
645 out:
646 	rcu_read_unlock();
647 	return ret;
648 }
649 
650 #ifdef CONFIG_SMP
651 /*
652  * Helper routine for generate_sched_domains().
653  * Do cpusets a, b have overlapping effective cpus_allowed masks?
654  */
cpusets_overlap(struct cpuset * a,struct cpuset * b)655 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
656 {
657 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
658 }
659 
660 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)661 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
662 {
663 	if (dattr->relax_domain_level < c->relax_domain_level)
664 		dattr->relax_domain_level = c->relax_domain_level;
665 	return;
666 }
667 
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)668 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
669 				    struct cpuset *root_cs)
670 {
671 	struct cpuset *cp;
672 	struct cgroup_subsys_state *pos_css;
673 
674 	rcu_read_lock();
675 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
676 		/* skip the whole subtree if @cp doesn't have any CPU */
677 		if (cpumask_empty(cp->cpus_allowed)) {
678 			pos_css = css_rightmost_descendant(pos_css);
679 			continue;
680 		}
681 
682 		if (is_sched_load_balance(cp))
683 			update_domain_attr(dattr, cp);
684 	}
685 	rcu_read_unlock();
686 }
687 
688 /* Must be called with cpuset_mutex held.  */
nr_cpusets(void)689 static inline int nr_cpusets(void)
690 {
691 	/* jump label reference count + the top-level cpuset */
692 	return static_key_count(&cpusets_enabled_key.key) + 1;
693 }
694 
695 /*
696  * generate_sched_domains()
697  *
698  * This function builds a partial partition of the systems CPUs
699  * A 'partial partition' is a set of non-overlapping subsets whose
700  * union is a subset of that set.
701  * The output of this function needs to be passed to kernel/sched/core.c
702  * partition_sched_domains() routine, which will rebuild the scheduler's
703  * load balancing domains (sched domains) as specified by that partial
704  * partition.
705  *
706  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
707  * for a background explanation of this.
708  *
709  * Does not return errors, on the theory that the callers of this
710  * routine would rather not worry about failures to rebuild sched
711  * domains when operating in the severe memory shortage situations
712  * that could cause allocation failures below.
713  *
714  * Must be called with cpuset_mutex held.
715  *
716  * The three key local variables below are:
717  *    cp - cpuset pointer, used (together with pos_css) to perform a
718  *	   top-down scan of all cpusets. For our purposes, rebuilding
719  *	   the schedulers sched domains, we can ignore !is_sched_load_
720  *	   balance cpusets.
721  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
722  *	   that need to be load balanced, for convenient iterative
723  *	   access by the subsequent code that finds the best partition,
724  *	   i.e the set of domains (subsets) of CPUs such that the
725  *	   cpus_allowed of every cpuset marked is_sched_load_balance
726  *	   is a subset of one of these domains, while there are as
727  *	   many such domains as possible, each as small as possible.
728  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
729  *	   the kernel/sched/core.c routine partition_sched_domains() in a
730  *	   convenient format, that can be easily compared to the prior
731  *	   value to determine what partition elements (sched domains)
732  *	   were changed (added or removed.)
733  *
734  * Finding the best partition (set of domains):
735  *	The triple nested loops below over i, j, k scan over the
736  *	load balanced cpusets (using the array of cpuset pointers in
737  *	csa[]) looking for pairs of cpusets that have overlapping
738  *	cpus_allowed, but which don't have the same 'pn' partition
739  *	number and gives them in the same partition number.  It keeps
740  *	looping on the 'restart' label until it can no longer find
741  *	any such pairs.
742  *
743  *	The union of the cpus_allowed masks from the set of
744  *	all cpusets having the same 'pn' value then form the one
745  *	element of the partition (one sched domain) to be passed to
746  *	partition_sched_domains().
747  */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)748 static int generate_sched_domains(cpumask_var_t **domains,
749 			struct sched_domain_attr **attributes)
750 {
751 	struct cpuset *cp;	/* top-down scan of cpusets */
752 	struct cpuset **csa;	/* array of all cpuset ptrs */
753 	int csn;		/* how many cpuset ptrs in csa so far */
754 	int i, j, k;		/* indices for partition finding loops */
755 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
756 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
757 	int ndoms = 0;		/* number of sched domains in result */
758 	int nslot;		/* next empty doms[] struct cpumask slot */
759 	struct cgroup_subsys_state *pos_css;
760 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
761 
762 	doms = NULL;
763 	dattr = NULL;
764 	csa = NULL;
765 
766 	/* Special case for the 99% of systems with one, full, sched domain */
767 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
768 		ndoms = 1;
769 		doms = alloc_sched_domains(ndoms);
770 		if (!doms)
771 			goto done;
772 
773 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
774 		if (dattr) {
775 			*dattr = SD_ATTR_INIT;
776 			update_domain_attr_tree(dattr, &top_cpuset);
777 		}
778 		cpumask_and(doms[0], top_cpuset.effective_cpus,
779 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
780 
781 		goto done;
782 	}
783 
784 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
785 	if (!csa)
786 		goto done;
787 	csn = 0;
788 
789 	rcu_read_lock();
790 	if (root_load_balance)
791 		csa[csn++] = &top_cpuset;
792 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
793 		if (cp == &top_cpuset)
794 			continue;
795 		/*
796 		 * Continue traversing beyond @cp iff @cp has some CPUs and
797 		 * isn't load balancing.  The former is obvious.  The
798 		 * latter: All child cpusets contain a subset of the
799 		 * parent's cpus, so just skip them, and then we call
800 		 * update_domain_attr_tree() to calc relax_domain_level of
801 		 * the corresponding sched domain.
802 		 *
803 		 * If root is load-balancing, we can skip @cp if it
804 		 * is a subset of the root's effective_cpus.
805 		 */
806 		if (!cpumask_empty(cp->cpus_allowed) &&
807 		    !(is_sched_load_balance(cp) &&
808 		      cpumask_intersects(cp->cpus_allowed,
809 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
810 			continue;
811 
812 		if (root_load_balance &&
813 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
814 			continue;
815 
816 		if (is_sched_load_balance(cp) &&
817 		    !cpumask_empty(cp->effective_cpus))
818 			csa[csn++] = cp;
819 
820 		/* skip @cp's subtree if not a partition root */
821 		if (!is_partition_root(cp))
822 			pos_css = css_rightmost_descendant(pos_css);
823 	}
824 	rcu_read_unlock();
825 
826 	for (i = 0; i < csn; i++)
827 		csa[i]->pn = i;
828 	ndoms = csn;
829 
830 restart:
831 	/* Find the best partition (set of sched domains) */
832 	for (i = 0; i < csn; i++) {
833 		struct cpuset *a = csa[i];
834 		int apn = a->pn;
835 
836 		for (j = 0; j < csn; j++) {
837 			struct cpuset *b = csa[j];
838 			int bpn = b->pn;
839 
840 			if (apn != bpn && cpusets_overlap(a, b)) {
841 				for (k = 0; k < csn; k++) {
842 					struct cpuset *c = csa[k];
843 
844 					if (c->pn == bpn)
845 						c->pn = apn;
846 				}
847 				ndoms--;	/* one less element */
848 				goto restart;
849 			}
850 		}
851 	}
852 
853 	/*
854 	 * Now we know how many domains to create.
855 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
856 	 */
857 	doms = alloc_sched_domains(ndoms);
858 	if (!doms)
859 		goto done;
860 
861 	/*
862 	 * The rest of the code, including the scheduler, can deal with
863 	 * dattr==NULL case. No need to abort if alloc fails.
864 	 */
865 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
866 			      GFP_KERNEL);
867 
868 	for (nslot = 0, i = 0; i < csn; i++) {
869 		struct cpuset *a = csa[i];
870 		struct cpumask *dp;
871 		int apn = a->pn;
872 
873 		if (apn < 0) {
874 			/* Skip completed partitions */
875 			continue;
876 		}
877 
878 		dp = doms[nslot];
879 
880 		if (nslot == ndoms) {
881 			static int warnings = 10;
882 			if (warnings) {
883 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
884 					nslot, ndoms, csn, i, apn);
885 				warnings--;
886 			}
887 			continue;
888 		}
889 
890 		cpumask_clear(dp);
891 		if (dattr)
892 			*(dattr + nslot) = SD_ATTR_INIT;
893 		for (j = i; j < csn; j++) {
894 			struct cpuset *b = csa[j];
895 
896 			if (apn == b->pn) {
897 				cpumask_or(dp, dp, b->effective_cpus);
898 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
899 				if (dattr)
900 					update_domain_attr_tree(dattr + nslot, b);
901 
902 				/* Done with this partition */
903 				b->pn = -1;
904 			}
905 		}
906 		nslot++;
907 	}
908 	BUG_ON(nslot != ndoms);
909 
910 done:
911 	kfree(csa);
912 
913 	/*
914 	 * Fallback to the default domain if kmalloc() failed.
915 	 * See comments in partition_sched_domains().
916 	 */
917 	if (doms == NULL)
918 		ndoms = 1;
919 
920 	*domains    = doms;
921 	*attributes = dattr;
922 	return ndoms;
923 }
924 
update_tasks_root_domain(struct cpuset * cs)925 static void update_tasks_root_domain(struct cpuset *cs)
926 {
927 	struct css_task_iter it;
928 	struct task_struct *task;
929 
930 	css_task_iter_start(&cs->css, 0, &it);
931 
932 	while ((task = css_task_iter_next(&it)))
933 		dl_add_task_root_domain(task);
934 
935 	css_task_iter_end(&it);
936 }
937 
rebuild_root_domains(void)938 static void rebuild_root_domains(void)
939 {
940 	struct cpuset *cs = NULL;
941 	struct cgroup_subsys_state *pos_css;
942 
943 	percpu_rwsem_assert_held(&cpuset_rwsem);
944 	lockdep_assert_cpus_held();
945 	lockdep_assert_held(&sched_domains_mutex);
946 
947 	rcu_read_lock();
948 
949 	/*
950 	 * Clear default root domain DL accounting, it will be computed again
951 	 * if a task belongs to it.
952 	 */
953 	dl_clear_root_domain(&def_root_domain);
954 
955 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
956 
957 		if (cpumask_empty(cs->effective_cpus)) {
958 			pos_css = css_rightmost_descendant(pos_css);
959 			continue;
960 		}
961 
962 		css_get(&cs->css);
963 
964 		rcu_read_unlock();
965 
966 		update_tasks_root_domain(cs);
967 
968 		rcu_read_lock();
969 		css_put(&cs->css);
970 	}
971 	rcu_read_unlock();
972 }
973 
974 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)975 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
976 				    struct sched_domain_attr *dattr_new)
977 {
978 	mutex_lock(&sched_domains_mutex);
979 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
980 	rebuild_root_domains();
981 	mutex_unlock(&sched_domains_mutex);
982 }
983 
984 /*
985  * Rebuild scheduler domains.
986  *
987  * If the flag 'sched_load_balance' of any cpuset with non-empty
988  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
989  * which has that flag enabled, or if any cpuset with a non-empty
990  * 'cpus' is removed, then call this routine to rebuild the
991  * scheduler's dynamic sched domains.
992  *
993  * Call with cpuset_mutex held.  Takes get_online_cpus().
994  */
rebuild_sched_domains_locked(void)995 static void rebuild_sched_domains_locked(void)
996 {
997 	struct cgroup_subsys_state *pos_css;
998 	struct sched_domain_attr *attr;
999 	cpumask_var_t *doms;
1000 	struct cpuset *cs;
1001 	int ndoms;
1002 
1003 	lockdep_assert_cpus_held();
1004 	percpu_rwsem_assert_held(&cpuset_rwsem);
1005 
1006 	/*
1007 	 * If we have raced with CPU hotplug, return early to avoid
1008 	 * passing doms with offlined cpu to partition_sched_domains().
1009 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1010 	 *
1011 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1012 	 * should be the same as the active CPUs, so checking only top_cpuset
1013 	 * is enough to detect racing CPU offlines.
1014 	 */
1015 	if (!top_cpuset.nr_subparts_cpus &&
1016 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1017 		return;
1018 
1019 	/*
1020 	 * With subpartition CPUs, however, the effective CPUs of a partition
1021 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1022 	 * partition root could be offlined, all must be checked.
1023 	 */
1024 	if (top_cpuset.nr_subparts_cpus) {
1025 		rcu_read_lock();
1026 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1027 			if (!is_partition_root(cs)) {
1028 				pos_css = css_rightmost_descendant(pos_css);
1029 				continue;
1030 			}
1031 			if (!cpumask_subset(cs->effective_cpus,
1032 					    cpu_active_mask)) {
1033 				rcu_read_unlock();
1034 				return;
1035 			}
1036 		}
1037 		rcu_read_unlock();
1038 	}
1039 
1040 	/* Generate domain masks and attrs */
1041 	ndoms = generate_sched_domains(&doms, &attr);
1042 
1043 	/* Have scheduler rebuild the domains */
1044 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1045 }
1046 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1047 static void rebuild_sched_domains_locked(void)
1048 {
1049 }
1050 #endif /* CONFIG_SMP */
1051 
rebuild_sched_domains(void)1052 void rebuild_sched_domains(void)
1053 {
1054 	get_online_cpus();
1055 	percpu_down_write(&cpuset_rwsem);
1056 	rebuild_sched_domains_locked();
1057 	percpu_up_write(&cpuset_rwsem);
1058 	put_online_cpus();
1059 }
1060 
1061 /**
1062  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1063  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1064  *
1065  * Iterate through each task of @cs updating its cpus_allowed to the
1066  * effective cpuset's.  As this function is called with cpuset_mutex held,
1067  * cpuset membership stays stable.
1068  */
update_tasks_cpumask(struct cpuset * cs)1069 static void update_tasks_cpumask(struct cpuset *cs)
1070 {
1071 	struct css_task_iter it;
1072 	struct task_struct *task;
1073 	bool top_cs = cs == &top_cpuset;
1074 
1075 	css_task_iter_start(&cs->css, 0, &it);
1076 	while ((task = css_task_iter_next(&it))) {
1077 		/*
1078 		 * Percpu kthreads in top_cpuset are ignored
1079 		 */
1080 		if (top_cs && (task->flags & PF_KTHREAD) &&
1081 		    kthread_is_per_cpu(task))
1082 			continue;
1083 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1084 	}
1085 	css_task_iter_end(&it);
1086 }
1087 
1088 /**
1089  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1090  * @new_cpus: the temp variable for the new effective_cpus mask
1091  * @cs: the cpuset the need to recompute the new effective_cpus mask
1092  * @parent: the parent cpuset
1093  *
1094  * If the parent has subpartition CPUs, include them in the list of
1095  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1096  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1097  * to mask those out.
1098  */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1099 static void compute_effective_cpumask(struct cpumask *new_cpus,
1100 				      struct cpuset *cs, struct cpuset *parent)
1101 {
1102 	if (parent->nr_subparts_cpus) {
1103 		cpumask_or(new_cpus, parent->effective_cpus,
1104 			   parent->subparts_cpus);
1105 		cpumask_and(new_cpus, new_cpus, cs->cpus_requested);
1106 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1107 	} else {
1108 		cpumask_and(new_cpus, cs->cpus_requested,
1109 			    parent->effective_cpus);
1110 	}
1111 }
1112 
1113 /*
1114  * Commands for update_parent_subparts_cpumask
1115  */
1116 enum subparts_cmd {
1117 	partcmd_enable,		/* Enable partition root	 */
1118 	partcmd_disable,	/* Disable partition root	 */
1119 	partcmd_update,		/* Update parent's subparts_cpus */
1120 };
1121 
1122 /**
1123  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1124  * @cpuset:  The cpuset that requests change in partition root state
1125  * @cmd:     Partition root state change command
1126  * @newmask: Optional new cpumask for partcmd_update
1127  * @tmp:     Temporary addmask and delmask
1128  * Return:   0, 1 or an error code
1129  *
1130  * For partcmd_enable, the cpuset is being transformed from a non-partition
1131  * root to a partition root. The cpus_allowed mask of the given cpuset will
1132  * be put into parent's subparts_cpus and taken away from parent's
1133  * effective_cpus. The function will return 0 if all the CPUs listed in
1134  * cpus_allowed can be granted or an error code will be returned.
1135  *
1136  * For partcmd_disable, the cpuset is being transofrmed from a partition
1137  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1138  * parent's subparts_cpus will be taken away from that cpumask and put back
1139  * into parent's effective_cpus. 0 should always be returned.
1140  *
1141  * For partcmd_update, if the optional newmask is specified, the cpu
1142  * list is to be changed from cpus_allowed to newmask. Otherwise,
1143  * cpus_allowed is assumed to remain the same. The cpuset should either
1144  * be a partition root or an invalid partition root. The partition root
1145  * state may change if newmask is NULL and none of the requested CPUs can
1146  * be granted by the parent. The function will return 1 if changes to
1147  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1148  * Error code should only be returned when newmask is non-NULL.
1149  *
1150  * The partcmd_enable and partcmd_disable commands are used by
1151  * update_prstate(). The partcmd_update command is used by
1152  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1153  * newmask set.
1154  *
1155  * The checking is more strict when enabling partition root than the
1156  * other two commands.
1157  *
1158  * Because of the implicit cpu exclusive nature of a partition root,
1159  * cpumask changes that violates the cpu exclusivity rule will not be
1160  * permitted when checked by validate_change(). The validate_change()
1161  * function will also prevent any changes to the cpu list if it is not
1162  * a superset of children's cpu lists.
1163  */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1164 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1165 					  struct cpumask *newmask,
1166 					  struct tmpmasks *tmp)
1167 {
1168 	struct cpuset *parent = parent_cs(cpuset);
1169 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1170 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1171 	int new_prs;
1172 	bool part_error = false;	/* Partition error? */
1173 
1174 	percpu_rwsem_assert_held(&cpuset_rwsem);
1175 
1176 	/*
1177 	 * The parent must be a partition root.
1178 	 * The new cpumask, if present, or the current cpus_allowed must
1179 	 * not be empty.
1180 	 */
1181 	if (!is_partition_root(parent) ||
1182 	   (newmask && cpumask_empty(newmask)) ||
1183 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1184 		return -EINVAL;
1185 
1186 	/*
1187 	 * Enabling/disabling partition root is not allowed if there are
1188 	 * online children.
1189 	 */
1190 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1191 		return -EBUSY;
1192 
1193 	/*
1194 	 * Enabling partition root is not allowed if not all the CPUs
1195 	 * can be granted from parent's effective_cpus or at least one
1196 	 * CPU will be left after that.
1197 	 */
1198 	if ((cmd == partcmd_enable) &&
1199 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1200 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1201 		return -EINVAL;
1202 
1203 	/*
1204 	 * A cpumask update cannot make parent's effective_cpus become empty.
1205 	 */
1206 	adding = deleting = false;
1207 	new_prs = cpuset->partition_root_state;
1208 	if (cmd == partcmd_enable) {
1209 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1210 		adding = true;
1211 	} else if (cmd == partcmd_disable) {
1212 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1213 				       parent->subparts_cpus);
1214 	} else if (newmask) {
1215 		/*
1216 		 * partcmd_update with newmask:
1217 		 *
1218 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1219 		 * addmask = newmask & parent->effective_cpus
1220 		 *		     & ~parent->subparts_cpus
1221 		 */
1222 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1223 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1224 				       parent->subparts_cpus);
1225 
1226 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1227 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1228 					parent->subparts_cpus);
1229 		/*
1230 		 * Return error if the new effective_cpus could become empty.
1231 		 */
1232 		if (adding &&
1233 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1234 			if (!deleting)
1235 				return -EINVAL;
1236 			/*
1237 			 * As some of the CPUs in subparts_cpus might have
1238 			 * been offlined, we need to compute the real delmask
1239 			 * to confirm that.
1240 			 */
1241 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1242 					 cpu_active_mask))
1243 				return -EINVAL;
1244 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1245 		}
1246 	} else {
1247 		/*
1248 		 * partcmd_update w/o newmask:
1249 		 *
1250 		 * addmask = cpus_allowed & parent->effective_cpus
1251 		 *
1252 		 * Note that parent's subparts_cpus may have been
1253 		 * pre-shrunk in case there is a change in the cpu list.
1254 		 * So no deletion is needed.
1255 		 */
1256 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1257 				     parent->effective_cpus);
1258 		part_error = cpumask_equal(tmp->addmask,
1259 					   parent->effective_cpus);
1260 	}
1261 
1262 	if (cmd == partcmd_update) {
1263 		int prev_prs = cpuset->partition_root_state;
1264 
1265 		/*
1266 		 * Check for possible transition between PRS_ENABLED
1267 		 * and PRS_ERROR.
1268 		 */
1269 		switch (cpuset->partition_root_state) {
1270 		case PRS_ENABLED:
1271 			if (part_error)
1272 				new_prs = PRS_ERROR;
1273 			break;
1274 		case PRS_ERROR:
1275 			if (!part_error)
1276 				new_prs = PRS_ENABLED;
1277 			break;
1278 		}
1279 		/*
1280 		 * Set part_error if previously in invalid state.
1281 		 */
1282 		part_error = (prev_prs == PRS_ERROR);
1283 	}
1284 
1285 	if (!part_error && (new_prs == PRS_ERROR))
1286 		return 0;	/* Nothing need to be done */
1287 
1288 	if (new_prs == PRS_ERROR) {
1289 		/*
1290 		 * Remove all its cpus from parent's subparts_cpus.
1291 		 */
1292 		adding = false;
1293 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1294 				       parent->subparts_cpus);
1295 	}
1296 
1297 	if (!adding && !deleting && (new_prs == cpuset->partition_root_state))
1298 		return 0;
1299 
1300 	/*
1301 	 * Change the parent's subparts_cpus.
1302 	 * Newly added CPUs will be removed from effective_cpus and
1303 	 * newly deleted ones will be added back to effective_cpus.
1304 	 */
1305 	spin_lock_irq(&callback_lock);
1306 	if (adding) {
1307 		cpumask_or(parent->subparts_cpus,
1308 			   parent->subparts_cpus, tmp->addmask);
1309 		cpumask_andnot(parent->effective_cpus,
1310 			       parent->effective_cpus, tmp->addmask);
1311 	}
1312 	if (deleting) {
1313 		cpumask_andnot(parent->subparts_cpus,
1314 			       parent->subparts_cpus, tmp->delmask);
1315 		/*
1316 		 * Some of the CPUs in subparts_cpus might have been offlined.
1317 		 */
1318 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1319 		cpumask_or(parent->effective_cpus,
1320 			   parent->effective_cpus, tmp->delmask);
1321 	}
1322 
1323 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1324 
1325 	if (cpuset->partition_root_state != new_prs)
1326 		cpuset->partition_root_state = new_prs;
1327 	spin_unlock_irq(&callback_lock);
1328 
1329 	return cmd == partcmd_update;
1330 }
1331 
1332 /*
1333  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1334  * @cs:  the cpuset to consider
1335  * @tmp: temp variables for calculating effective_cpus & partition setup
1336  *
1337  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1338  * and all its descendants need to be updated.
1339  *
1340  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1341  *
1342  * Called with cpuset_mutex held
1343  */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1344 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1345 {
1346 	struct cpuset *cp;
1347 	struct cgroup_subsys_state *pos_css;
1348 	bool need_rebuild_sched_domains = false;
1349 	int new_prs;
1350 
1351 	rcu_read_lock();
1352 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1353 		struct cpuset *parent = parent_cs(cp);
1354 
1355 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1356 
1357 		/*
1358 		 * If it becomes empty, inherit the effective mask of the
1359 		 * parent, which is guaranteed to have some CPUs.
1360 		 */
1361 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1362 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1363 			if (!cp->use_parent_ecpus) {
1364 				cp->use_parent_ecpus = true;
1365 				parent->child_ecpus_count++;
1366 			}
1367 		} else if (cp->use_parent_ecpus) {
1368 			cp->use_parent_ecpus = false;
1369 			WARN_ON_ONCE(!parent->child_ecpus_count);
1370 			parent->child_ecpus_count--;
1371 		}
1372 
1373 		/*
1374 		 * Skip the whole subtree if the cpumask remains the same
1375 		 * and has no partition root state.
1376 		 */
1377 		if (!cp->partition_root_state &&
1378 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1379 			pos_css = css_rightmost_descendant(pos_css);
1380 			continue;
1381 		}
1382 
1383 		/*
1384 		 * update_parent_subparts_cpumask() should have been called
1385 		 * for cs already in update_cpumask(). We should also call
1386 		 * update_tasks_cpumask() again for tasks in the parent
1387 		 * cpuset if the parent's subparts_cpus changes.
1388 		 */
1389 		new_prs = cp->partition_root_state;
1390 		if ((cp != cs) && new_prs) {
1391 			switch (parent->partition_root_state) {
1392 			case PRS_DISABLED:
1393 				/*
1394 				 * If parent is not a partition root or an
1395 				 * invalid partition root, clear its state
1396 				 * and its CS_CPU_EXCLUSIVE flag.
1397 				 */
1398 				WARN_ON_ONCE(cp->partition_root_state
1399 					     != PRS_ERROR);
1400 				new_prs = PRS_DISABLED;
1401 
1402 				/*
1403 				 * clear_bit() is an atomic operation and
1404 				 * readers aren't interested in the state
1405 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1406 				 * just update the flag without holding
1407 				 * the callback_lock.
1408 				 */
1409 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1410 				break;
1411 
1412 			case PRS_ENABLED:
1413 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1414 					update_tasks_cpumask(parent);
1415 				break;
1416 
1417 			case PRS_ERROR:
1418 				/*
1419 				 * When parent is invalid, it has to be too.
1420 				 */
1421 				new_prs = PRS_ERROR;
1422 				break;
1423 			}
1424 		}
1425 
1426 		if (!css_tryget_online(&cp->css))
1427 			continue;
1428 		rcu_read_unlock();
1429 
1430 		spin_lock_irq(&callback_lock);
1431 
1432 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1433 		if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1434 			cp->nr_subparts_cpus = 0;
1435 			cpumask_clear(cp->subparts_cpus);
1436 		} else if (cp->nr_subparts_cpus) {
1437 			/*
1438 			 * Make sure that effective_cpus & subparts_cpus
1439 			 * are mutually exclusive.
1440 			 *
1441 			 * In the unlikely event that effective_cpus
1442 			 * becomes empty. we clear cp->nr_subparts_cpus and
1443 			 * let its child partition roots to compete for
1444 			 * CPUs again.
1445 			 */
1446 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1447 				       cp->subparts_cpus);
1448 			if (cpumask_empty(cp->effective_cpus)) {
1449 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1450 				cpumask_clear(cp->subparts_cpus);
1451 				cp->nr_subparts_cpus = 0;
1452 			} else if (!cpumask_subset(cp->subparts_cpus,
1453 						   tmp->new_cpus)) {
1454 				cpumask_andnot(cp->subparts_cpus,
1455 					cp->subparts_cpus, tmp->new_cpus);
1456 				cp->nr_subparts_cpus
1457 					= cpumask_weight(cp->subparts_cpus);
1458 			}
1459 		}
1460 
1461 		if (new_prs != cp->partition_root_state)
1462 			cp->partition_root_state = new_prs;
1463 
1464 		spin_unlock_irq(&callback_lock);
1465 
1466 		WARN_ON(!is_in_v2_mode() &&
1467 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1468 
1469 		update_tasks_cpumask(cp);
1470 
1471 		/*
1472 		 * On legacy hierarchy, if the effective cpumask of any non-
1473 		 * empty cpuset is changed, we need to rebuild sched domains.
1474 		 * On default hierarchy, the cpuset needs to be a partition
1475 		 * root as well.
1476 		 */
1477 		if (!cpumask_empty(cp->cpus_allowed) &&
1478 		    is_sched_load_balance(cp) &&
1479 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1480 		    is_partition_root(cp)))
1481 			need_rebuild_sched_domains = true;
1482 
1483 		rcu_read_lock();
1484 		css_put(&cp->css);
1485 	}
1486 	rcu_read_unlock();
1487 
1488 	if (need_rebuild_sched_domains)
1489 		rebuild_sched_domains_locked();
1490 }
1491 
1492 /**
1493  * update_sibling_cpumasks - Update siblings cpumasks
1494  * @parent:  Parent cpuset
1495  * @cs:      Current cpuset
1496  * @tmp:     Temp variables
1497  */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1498 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1499 				    struct tmpmasks *tmp)
1500 {
1501 	struct cpuset *sibling;
1502 	struct cgroup_subsys_state *pos_css;
1503 
1504 	percpu_rwsem_assert_held(&cpuset_rwsem);
1505 
1506 	/*
1507 	 * Check all its siblings and call update_cpumasks_hier()
1508 	 * if their use_parent_ecpus flag is set in order for them
1509 	 * to use the right effective_cpus value.
1510 	 *
1511 	 * The update_cpumasks_hier() function may sleep. So we have to
1512 	 * release the RCU read lock before calling it.
1513 	 */
1514 	rcu_read_lock();
1515 	cpuset_for_each_child(sibling, pos_css, parent) {
1516 		if (sibling == cs)
1517 			continue;
1518 		if (!sibling->use_parent_ecpus)
1519 			continue;
1520 		if (!css_tryget_online(&sibling->css))
1521 			continue;
1522 
1523 		rcu_read_unlock();
1524 		update_cpumasks_hier(sibling, tmp);
1525 		rcu_read_lock();
1526 		css_put(&sibling->css);
1527 	}
1528 	rcu_read_unlock();
1529 }
1530 
1531 /**
1532  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1533  * @cs: the cpuset to consider
1534  * @trialcs: trial cpuset
1535  * @buf: buffer of cpu numbers written to this cpuset
1536  */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1537 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1538 			  const char *buf)
1539 {
1540 	int retval;
1541 	struct tmpmasks tmp;
1542 
1543 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1544 	if (cs == &top_cpuset)
1545 		return -EACCES;
1546 
1547 	/*
1548 	 * An empty cpus_requested is ok only if the cpuset has no tasks.
1549 	 * Since cpulist_parse() fails on an empty mask, we special case
1550 	 * that parsing.  The validate_change() call ensures that cpusets
1551 	 * with tasks have cpus.
1552 	 */
1553 	if (!*buf) {
1554 		cpumask_clear(trialcs->cpus_requested);
1555 	} else {
1556 		retval = cpulist_parse(buf, trialcs->cpus_requested);
1557 		if (retval < 0)
1558 			return retval;
1559 	}
1560 
1561 	if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
1562 		return -EINVAL;
1563 
1564 	cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested,
1565 		    cpu_active_mask);
1566 
1567 	/* Nothing to do if the cpus didn't change */
1568 	if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
1569 		return 0;
1570 
1571 	retval = validate_change(cs, trialcs);
1572 	if (retval < 0)
1573 		return retval;
1574 
1575 #ifdef CONFIG_CPUMASK_OFFSTACK
1576 	/*
1577 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1578 	 * to allocated cpumasks.
1579 	 */
1580 	tmp.addmask  = trialcs->subparts_cpus;
1581 	tmp.delmask  = trialcs->effective_cpus;
1582 	tmp.new_cpus = trialcs->cpus_allowed;
1583 #endif
1584 
1585 	if (cs->partition_root_state) {
1586 		/* Cpumask of a partition root cannot be empty */
1587 		if (cpumask_empty(trialcs->cpus_allowed))
1588 			return -EINVAL;
1589 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1590 					trialcs->cpus_allowed, &tmp) < 0)
1591 			return -EINVAL;
1592 	}
1593 
1594 	spin_lock_irq(&callback_lock);
1595 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1596 	cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1597 
1598 	/*
1599 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1600 	 */
1601 	if (cs->nr_subparts_cpus) {
1602 		cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1603 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1604 	}
1605 	spin_unlock_irq(&callback_lock);
1606 
1607 	update_cpumasks_hier(cs, &tmp);
1608 
1609 	if (cs->partition_root_state) {
1610 		struct cpuset *parent = parent_cs(cs);
1611 
1612 		/*
1613 		 * For partition root, update the cpumasks of sibling
1614 		 * cpusets if they use parent's effective_cpus.
1615 		 */
1616 		if (parent->child_ecpus_count)
1617 			update_sibling_cpumasks(parent, cs, &tmp);
1618 	}
1619 	return 0;
1620 }
1621 
1622 /*
1623  * Migrate memory region from one set of nodes to another.  This is
1624  * performed asynchronously as it can be called from process migration path
1625  * holding locks involved in process management.  All mm migrations are
1626  * performed in the queued order and can be waited for by flushing
1627  * cpuset_migrate_mm_wq.
1628  */
1629 
1630 struct cpuset_migrate_mm_work {
1631 	struct work_struct	work;
1632 	struct mm_struct	*mm;
1633 	nodemask_t		from;
1634 	nodemask_t		to;
1635 };
1636 
cpuset_migrate_mm_workfn(struct work_struct * work)1637 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1638 {
1639 	struct cpuset_migrate_mm_work *mwork =
1640 		container_of(work, struct cpuset_migrate_mm_work, work);
1641 
1642 	/* on a wq worker, no need to worry about %current's mems_allowed */
1643 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1644 	mmput(mwork->mm);
1645 	kfree(mwork);
1646 }
1647 
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1648 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1649 							const nodemask_t *to)
1650 {
1651 	struct cpuset_migrate_mm_work *mwork;
1652 
1653 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1654 	if (mwork) {
1655 		mwork->mm = mm;
1656 		mwork->from = *from;
1657 		mwork->to = *to;
1658 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1659 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1660 	} else {
1661 		mmput(mm);
1662 	}
1663 }
1664 
cpuset_post_attach(void)1665 static void cpuset_post_attach(void)
1666 {
1667 	flush_workqueue(cpuset_migrate_mm_wq);
1668 }
1669 
1670 /*
1671  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1672  * @tsk: the task to change
1673  * @newmems: new nodes that the task will be set
1674  *
1675  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1676  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1677  * parallel, it might temporarily see an empty intersection, which results in
1678  * a seqlock check and retry before OOM or allocation failure.
1679  */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1680 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1681 					nodemask_t *newmems)
1682 {
1683 	task_lock(tsk);
1684 
1685 	local_irq_disable();
1686 	write_seqcount_begin(&tsk->mems_allowed_seq);
1687 
1688 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1689 	mpol_rebind_task(tsk, newmems);
1690 	tsk->mems_allowed = *newmems;
1691 
1692 	write_seqcount_end(&tsk->mems_allowed_seq);
1693 	local_irq_enable();
1694 
1695 	task_unlock(tsk);
1696 }
1697 
1698 static void *cpuset_being_rebound;
1699 
1700 /**
1701  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1702  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1703  *
1704  * Iterate through each task of @cs updating its mems_allowed to the
1705  * effective cpuset's.  As this function is called with cpuset_mutex held,
1706  * cpuset membership stays stable.
1707  */
update_tasks_nodemask(struct cpuset * cs)1708 static void update_tasks_nodemask(struct cpuset *cs)
1709 {
1710 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1711 	struct css_task_iter it;
1712 	struct task_struct *task;
1713 
1714 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1715 
1716 	guarantee_online_mems(cs, &newmems);
1717 
1718 	/*
1719 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1720 	 * take while holding tasklist_lock.  Forks can happen - the
1721 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1722 	 * and rebind their vma mempolicies too.  Because we still hold
1723 	 * the global cpuset_mutex, we know that no other rebind effort
1724 	 * will be contending for the global variable cpuset_being_rebound.
1725 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1726 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1727 	 */
1728 	css_task_iter_start(&cs->css, 0, &it);
1729 	while ((task = css_task_iter_next(&it))) {
1730 		struct mm_struct *mm;
1731 		bool migrate;
1732 
1733 		cpuset_change_task_nodemask(task, &newmems);
1734 
1735 		mm = get_task_mm(task);
1736 		if (!mm)
1737 			continue;
1738 
1739 		migrate = is_memory_migrate(cs);
1740 
1741 		mpol_rebind_mm(mm, &cs->mems_allowed);
1742 		if (migrate)
1743 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1744 		else
1745 			mmput(mm);
1746 	}
1747 	css_task_iter_end(&it);
1748 
1749 	/*
1750 	 * All the tasks' nodemasks have been updated, update
1751 	 * cs->old_mems_allowed.
1752 	 */
1753 	cs->old_mems_allowed = newmems;
1754 
1755 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1756 	cpuset_being_rebound = NULL;
1757 }
1758 
1759 /*
1760  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1761  * @cs: the cpuset to consider
1762  * @new_mems: a temp variable for calculating new effective_mems
1763  *
1764  * When configured nodemask is changed, the effective nodemasks of this cpuset
1765  * and all its descendants need to be updated.
1766  *
1767  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1768  *
1769  * Called with cpuset_mutex held
1770  */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1771 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1772 {
1773 	struct cpuset *cp;
1774 	struct cgroup_subsys_state *pos_css;
1775 
1776 	rcu_read_lock();
1777 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1778 		struct cpuset *parent = parent_cs(cp);
1779 
1780 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1781 
1782 		/*
1783 		 * If it becomes empty, inherit the effective mask of the
1784 		 * parent, which is guaranteed to have some MEMs.
1785 		 */
1786 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1787 			*new_mems = parent->effective_mems;
1788 
1789 		/* Skip the whole subtree if the nodemask remains the same. */
1790 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1791 			pos_css = css_rightmost_descendant(pos_css);
1792 			continue;
1793 		}
1794 
1795 		if (!css_tryget_online(&cp->css))
1796 			continue;
1797 		rcu_read_unlock();
1798 
1799 		spin_lock_irq(&callback_lock);
1800 		cp->effective_mems = *new_mems;
1801 		spin_unlock_irq(&callback_lock);
1802 
1803 		WARN_ON(!is_in_v2_mode() &&
1804 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1805 
1806 		update_tasks_nodemask(cp);
1807 
1808 		rcu_read_lock();
1809 		css_put(&cp->css);
1810 	}
1811 	rcu_read_unlock();
1812 }
1813 
1814 /*
1815  * Handle user request to change the 'mems' memory placement
1816  * of a cpuset.  Needs to validate the request, update the
1817  * cpusets mems_allowed, and for each task in the cpuset,
1818  * update mems_allowed and rebind task's mempolicy and any vma
1819  * mempolicies and if the cpuset is marked 'memory_migrate',
1820  * migrate the tasks pages to the new memory.
1821  *
1822  * Call with cpuset_mutex held. May take callback_lock during call.
1823  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1824  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1825  * their mempolicies to the cpusets new mems_allowed.
1826  */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1827 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1828 			   const char *buf)
1829 {
1830 	int retval;
1831 
1832 	/*
1833 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1834 	 * it's read-only
1835 	 */
1836 	if (cs == &top_cpuset) {
1837 		retval = -EACCES;
1838 		goto done;
1839 	}
1840 
1841 	/*
1842 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1843 	 * Since nodelist_parse() fails on an empty mask, we special case
1844 	 * that parsing.  The validate_change() call ensures that cpusets
1845 	 * with tasks have memory.
1846 	 */
1847 	if (!*buf) {
1848 		nodes_clear(trialcs->mems_allowed);
1849 	} else {
1850 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1851 		if (retval < 0)
1852 			goto done;
1853 
1854 		if (!nodes_subset(trialcs->mems_allowed,
1855 				  top_cpuset.mems_allowed)) {
1856 			retval = -EINVAL;
1857 			goto done;
1858 		}
1859 	}
1860 
1861 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1862 		retval = 0;		/* Too easy - nothing to do */
1863 		goto done;
1864 	}
1865 	retval = validate_change(cs, trialcs);
1866 	if (retval < 0)
1867 		goto done;
1868 
1869 	spin_lock_irq(&callback_lock);
1870 	cs->mems_allowed = trialcs->mems_allowed;
1871 	spin_unlock_irq(&callback_lock);
1872 
1873 	/* use trialcs->mems_allowed as a temp variable */
1874 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1875 done:
1876 	return retval;
1877 }
1878 
current_cpuset_is_being_rebound(void)1879 bool current_cpuset_is_being_rebound(void)
1880 {
1881 	bool ret;
1882 
1883 	rcu_read_lock();
1884 	ret = task_cs(current) == cpuset_being_rebound;
1885 	rcu_read_unlock();
1886 
1887 	return ret;
1888 }
1889 
update_relax_domain_level(struct cpuset * cs,s64 val)1890 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1891 {
1892 #ifdef CONFIG_SMP
1893 	if (val < -1 || val >= sched_domain_level_max)
1894 		return -EINVAL;
1895 #endif
1896 
1897 	if (val != cs->relax_domain_level) {
1898 		cs->relax_domain_level = val;
1899 		if (!cpumask_empty(cs->cpus_allowed) &&
1900 		    is_sched_load_balance(cs))
1901 			rebuild_sched_domains_locked();
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 /**
1908  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1909  * @cs: the cpuset in which each task's spread flags needs to be changed
1910  *
1911  * Iterate through each task of @cs updating its spread flags.  As this
1912  * function is called with cpuset_mutex held, cpuset membership stays
1913  * stable.
1914  */
update_tasks_flags(struct cpuset * cs)1915 static void update_tasks_flags(struct cpuset *cs)
1916 {
1917 	struct css_task_iter it;
1918 	struct task_struct *task;
1919 
1920 	css_task_iter_start(&cs->css, 0, &it);
1921 	while ((task = css_task_iter_next(&it)))
1922 		cpuset_update_task_spread_flag(cs, task);
1923 	css_task_iter_end(&it);
1924 }
1925 
1926 /*
1927  * update_flag - read a 0 or a 1 in a file and update associated flag
1928  * bit:		the bit to update (see cpuset_flagbits_t)
1929  * cs:		the cpuset to update
1930  * turning_on: 	whether the flag is being set or cleared
1931  *
1932  * Call with cpuset_mutex held.
1933  */
1934 
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1935 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1936 		       int turning_on)
1937 {
1938 	struct cpuset *trialcs;
1939 	int balance_flag_changed;
1940 	int spread_flag_changed;
1941 	int err;
1942 
1943 	trialcs = alloc_trial_cpuset(cs);
1944 	if (!trialcs)
1945 		return -ENOMEM;
1946 
1947 	if (turning_on)
1948 		set_bit(bit, &trialcs->flags);
1949 	else
1950 		clear_bit(bit, &trialcs->flags);
1951 
1952 	err = validate_change(cs, trialcs);
1953 	if (err < 0)
1954 		goto out;
1955 
1956 	balance_flag_changed = (is_sched_load_balance(cs) !=
1957 				is_sched_load_balance(trialcs));
1958 
1959 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1960 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1961 
1962 	spin_lock_irq(&callback_lock);
1963 	cs->flags = trialcs->flags;
1964 	spin_unlock_irq(&callback_lock);
1965 
1966 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1967 		rebuild_sched_domains_locked();
1968 
1969 	if (spread_flag_changed)
1970 		update_tasks_flags(cs);
1971 out:
1972 	free_cpuset(trialcs);
1973 	return err;
1974 }
1975 
1976 /*
1977  * update_prstate - update partititon_root_state
1978  * cs: the cpuset to update
1979  * new_prs: new partition root state
1980  *
1981  * Call with cpuset_mutex held.
1982  */
update_prstate(struct cpuset * cs,int new_prs)1983 static int update_prstate(struct cpuset *cs, int new_prs)
1984 {
1985 	int err, old_prs = cs->partition_root_state;
1986 	struct cpuset *parent = parent_cs(cs);
1987 	struct tmpmasks tmpmask;
1988 
1989 	if (old_prs == new_prs)
1990 		return 0;
1991 
1992 	/*
1993 	 * Cannot force a partial or invalid partition root to a full
1994 	 * partition root.
1995 	 */
1996 	if (new_prs && (old_prs == PRS_ERROR))
1997 		return -EINVAL;
1998 
1999 	if (alloc_cpumasks(NULL, &tmpmask))
2000 		return -ENOMEM;
2001 
2002 	err = -EINVAL;
2003 	if (!old_prs) {
2004 		/*
2005 		 * Turning on partition root requires setting the
2006 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2007 		 * cannot be NULL.
2008 		 */
2009 		if (cpumask_empty(cs->cpus_allowed))
2010 			goto out;
2011 
2012 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2013 		if (err)
2014 			goto out;
2015 
2016 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2017 						     NULL, &tmpmask);
2018 		if (err) {
2019 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2020 			goto out;
2021 		}
2022 	} else {
2023 		/*
2024 		 * Turning off partition root will clear the
2025 		 * CS_CPU_EXCLUSIVE bit.
2026 		 */
2027 		if (old_prs == PRS_ERROR) {
2028 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2029 			err = 0;
2030 			goto out;
2031 		}
2032 
2033 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
2034 						     NULL, &tmpmask);
2035 		if (err)
2036 			goto out;
2037 
2038 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2039 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2040 	}
2041 
2042 	update_tasks_cpumask(parent);
2043 
2044 	if (parent->child_ecpus_count)
2045 		update_sibling_cpumasks(parent, cs, &tmpmask);
2046 
2047 	rebuild_sched_domains_locked();
2048 out:
2049 	if (!err) {
2050 		spin_lock_irq(&callback_lock);
2051 		cs->partition_root_state = new_prs;
2052 		spin_unlock_irq(&callback_lock);
2053 	}
2054 
2055 	free_cpumasks(NULL, &tmpmask);
2056 	return err;
2057 }
2058 
2059 /*
2060  * Frequency meter - How fast is some event occurring?
2061  *
2062  * These routines manage a digitally filtered, constant time based,
2063  * event frequency meter.  There are four routines:
2064  *   fmeter_init() - initialize a frequency meter.
2065  *   fmeter_markevent() - called each time the event happens.
2066  *   fmeter_getrate() - returns the recent rate of such events.
2067  *   fmeter_update() - internal routine used to update fmeter.
2068  *
2069  * A common data structure is passed to each of these routines,
2070  * which is used to keep track of the state required to manage the
2071  * frequency meter and its digital filter.
2072  *
2073  * The filter works on the number of events marked per unit time.
2074  * The filter is single-pole low-pass recursive (IIR).  The time unit
2075  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2076  * simulate 3 decimal digits of precision (multiplied by 1000).
2077  *
2078  * With an FM_COEF of 933, and a time base of 1 second, the filter
2079  * has a half-life of 10 seconds, meaning that if the events quit
2080  * happening, then the rate returned from the fmeter_getrate()
2081  * will be cut in half each 10 seconds, until it converges to zero.
2082  *
2083  * It is not worth doing a real infinitely recursive filter.  If more
2084  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2085  * just compute FM_MAXTICKS ticks worth, by which point the level
2086  * will be stable.
2087  *
2088  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2089  * arithmetic overflow in the fmeter_update() routine.
2090  *
2091  * Given the simple 32 bit integer arithmetic used, this meter works
2092  * best for reporting rates between one per millisecond (msec) and
2093  * one per 32 (approx) seconds.  At constant rates faster than one
2094  * per msec it maxes out at values just under 1,000,000.  At constant
2095  * rates between one per msec, and one per second it will stabilize
2096  * to a value N*1000, where N is the rate of events per second.
2097  * At constant rates between one per second and one per 32 seconds,
2098  * it will be choppy, moving up on the seconds that have an event,
2099  * and then decaying until the next event.  At rates slower than
2100  * about one in 32 seconds, it decays all the way back to zero between
2101  * each event.
2102  */
2103 
2104 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2105 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2106 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2107 #define FM_SCALE 1000		/* faux fixed point scale */
2108 
2109 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2110 static void fmeter_init(struct fmeter *fmp)
2111 {
2112 	fmp->cnt = 0;
2113 	fmp->val = 0;
2114 	fmp->time = 0;
2115 	spin_lock_init(&fmp->lock);
2116 }
2117 
2118 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2119 static void fmeter_update(struct fmeter *fmp)
2120 {
2121 	time64_t now;
2122 	u32 ticks;
2123 
2124 	now = ktime_get_seconds();
2125 	ticks = now - fmp->time;
2126 
2127 	if (ticks == 0)
2128 		return;
2129 
2130 	ticks = min(FM_MAXTICKS, ticks);
2131 	while (ticks-- > 0)
2132 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2133 	fmp->time = now;
2134 
2135 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2136 	fmp->cnt = 0;
2137 }
2138 
2139 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2140 static void fmeter_markevent(struct fmeter *fmp)
2141 {
2142 	spin_lock(&fmp->lock);
2143 	fmeter_update(fmp);
2144 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2145 	spin_unlock(&fmp->lock);
2146 }
2147 
2148 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2149 static int fmeter_getrate(struct fmeter *fmp)
2150 {
2151 	int val;
2152 
2153 	spin_lock(&fmp->lock);
2154 	fmeter_update(fmp);
2155 	val = fmp->val;
2156 	spin_unlock(&fmp->lock);
2157 	return val;
2158 }
2159 
2160 static struct cpuset *cpuset_attach_old_cs;
2161 
2162 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2163 static int cpuset_can_attach(struct cgroup_taskset *tset)
2164 {
2165 	struct cgroup_subsys_state *css;
2166 	struct cpuset *cs;
2167 	struct task_struct *task;
2168 	int ret;
2169 
2170 	/* used later by cpuset_attach() */
2171 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2172 	cs = css_cs(css);
2173 
2174 	percpu_down_write(&cpuset_rwsem);
2175 
2176 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2177 	ret = -ENOSPC;
2178 	if (!is_in_v2_mode() &&
2179 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2180 		goto out_unlock;
2181 
2182 	cgroup_taskset_for_each(task, css, tset) {
2183 		ret = task_can_attach(task, cs->effective_cpus);
2184 		if (ret)
2185 			goto out_unlock;
2186 		ret = security_task_setscheduler(task);
2187 		if (ret)
2188 			goto out_unlock;
2189 	}
2190 
2191 	/*
2192 	 * Mark attach is in progress.  This makes validate_change() fail
2193 	 * changes which zero cpus/mems_allowed.
2194 	 */
2195 	cs->attach_in_progress++;
2196 	ret = 0;
2197 out_unlock:
2198 	percpu_up_write(&cpuset_rwsem);
2199 	return ret;
2200 }
2201 
cpuset_cancel_attach(struct cgroup_taskset * tset)2202 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2203 {
2204 	struct cgroup_subsys_state *css;
2205 
2206 	cgroup_taskset_first(tset, &css);
2207 
2208 	percpu_down_write(&cpuset_rwsem);
2209 	css_cs(css)->attach_in_progress--;
2210 	percpu_up_write(&cpuset_rwsem);
2211 }
2212 
2213 /*
2214  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2215  * but we can't allocate it dynamically there.  Define it global and
2216  * allocate from cpuset_init().
2217  */
2218 static cpumask_var_t cpus_attach;
2219 
cpuset_attach(struct cgroup_taskset * tset)2220 static void cpuset_attach(struct cgroup_taskset *tset)
2221 {
2222 	/* static buf protected by cpuset_mutex */
2223 	static nodemask_t cpuset_attach_nodemask_to;
2224 	struct task_struct *task;
2225 	struct task_struct *leader;
2226 	struct cgroup_subsys_state *css;
2227 	struct cpuset *cs;
2228 	struct cpuset *oldcs = cpuset_attach_old_cs;
2229 
2230 	cgroup_taskset_first(tset, &css);
2231 	cs = css_cs(css);
2232 
2233 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2234 	percpu_down_write(&cpuset_rwsem);
2235 
2236 	/* prepare for attach */
2237 	if (cs == &top_cpuset)
2238 		cpumask_copy(cpus_attach, cpu_possible_mask);
2239 	else
2240 		guarantee_online_cpus(cs, cpus_attach);
2241 
2242 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2243 
2244 	cgroup_taskset_for_each(task, css, tset) {
2245 		/*
2246 		 * can_attach beforehand should guarantee that this doesn't
2247 		 * fail.  TODO: have a better way to handle failure here
2248 		 */
2249 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2250 
2251 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2252 		cpuset_update_task_spread_flag(cs, task);
2253 	}
2254 
2255 	/*
2256 	 * Change mm for all threadgroup leaders. This is expensive and may
2257 	 * sleep and should be moved outside migration path proper.
2258 	 */
2259 	cpuset_attach_nodemask_to = cs->effective_mems;
2260 	cgroup_taskset_for_each_leader(leader, css, tset) {
2261 		struct mm_struct *mm = get_task_mm(leader);
2262 
2263 		if (mm) {
2264 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2265 
2266 			/*
2267 			 * old_mems_allowed is the same with mems_allowed
2268 			 * here, except if this task is being moved
2269 			 * automatically due to hotplug.  In that case
2270 			 * @mems_allowed has been updated and is empty, so
2271 			 * @old_mems_allowed is the right nodesets that we
2272 			 * migrate mm from.
2273 			 */
2274 			if (is_memory_migrate(cs))
2275 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2276 						  &cpuset_attach_nodemask_to);
2277 			else
2278 				mmput(mm);
2279 		}
2280 	}
2281 
2282 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2283 
2284 	cs->attach_in_progress--;
2285 	if (!cs->attach_in_progress)
2286 		wake_up(&cpuset_attach_wq);
2287 
2288 	percpu_up_write(&cpuset_rwsem);
2289 }
2290 
2291 /* The various types of files and directories in a cpuset file system */
2292 
2293 typedef enum {
2294 	FILE_MEMORY_MIGRATE,
2295 	FILE_CPULIST,
2296 	FILE_MEMLIST,
2297 	FILE_EFFECTIVE_CPULIST,
2298 	FILE_EFFECTIVE_MEMLIST,
2299 	FILE_SUBPARTS_CPULIST,
2300 	FILE_CPU_EXCLUSIVE,
2301 	FILE_MEM_EXCLUSIVE,
2302 	FILE_MEM_HARDWALL,
2303 	FILE_SCHED_LOAD_BALANCE,
2304 	FILE_PARTITION_ROOT,
2305 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2306 	FILE_MEMORY_PRESSURE_ENABLED,
2307 	FILE_MEMORY_PRESSURE,
2308 	FILE_SPREAD_PAGE,
2309 	FILE_SPREAD_SLAB,
2310 } cpuset_filetype_t;
2311 
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2312 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2313 			    u64 val)
2314 {
2315 	struct cpuset *cs = css_cs(css);
2316 	cpuset_filetype_t type = cft->private;
2317 	int retval = 0;
2318 
2319 	get_online_cpus();
2320 	percpu_down_write(&cpuset_rwsem);
2321 	if (!is_cpuset_online(cs)) {
2322 		retval = -ENODEV;
2323 		goto out_unlock;
2324 	}
2325 
2326 	switch (type) {
2327 	case FILE_CPU_EXCLUSIVE:
2328 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2329 		break;
2330 	case FILE_MEM_EXCLUSIVE:
2331 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2332 		break;
2333 	case FILE_MEM_HARDWALL:
2334 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2335 		break;
2336 	case FILE_SCHED_LOAD_BALANCE:
2337 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2338 		break;
2339 	case FILE_MEMORY_MIGRATE:
2340 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2341 		break;
2342 	case FILE_MEMORY_PRESSURE_ENABLED:
2343 		cpuset_memory_pressure_enabled = !!val;
2344 		break;
2345 	case FILE_SPREAD_PAGE:
2346 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2347 		break;
2348 	case FILE_SPREAD_SLAB:
2349 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2350 		break;
2351 	default:
2352 		retval = -EINVAL;
2353 		break;
2354 	}
2355 out_unlock:
2356 	percpu_up_write(&cpuset_rwsem);
2357 	put_online_cpus();
2358 	return retval;
2359 }
2360 
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2361 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2362 			    s64 val)
2363 {
2364 	struct cpuset *cs = css_cs(css);
2365 	cpuset_filetype_t type = cft->private;
2366 	int retval = -ENODEV;
2367 
2368 	get_online_cpus();
2369 	percpu_down_write(&cpuset_rwsem);
2370 	if (!is_cpuset_online(cs))
2371 		goto out_unlock;
2372 
2373 	switch (type) {
2374 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2375 		retval = update_relax_domain_level(cs, val);
2376 		break;
2377 	default:
2378 		retval = -EINVAL;
2379 		break;
2380 	}
2381 out_unlock:
2382 	percpu_up_write(&cpuset_rwsem);
2383 	put_online_cpus();
2384 	return retval;
2385 }
2386 
2387 /*
2388  * Common handling for a write to a "cpus" or "mems" file.
2389  */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2390 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2391 				    char *buf, size_t nbytes, loff_t off)
2392 {
2393 	struct cpuset *cs = css_cs(of_css(of));
2394 	struct cpuset *trialcs;
2395 	int retval = -ENODEV;
2396 
2397 	buf = strstrip(buf);
2398 
2399 	/*
2400 	 * CPU or memory hotunplug may leave @cs w/o any execution
2401 	 * resources, in which case the hotplug code asynchronously updates
2402 	 * configuration and transfers all tasks to the nearest ancestor
2403 	 * which can execute.
2404 	 *
2405 	 * As writes to "cpus" or "mems" may restore @cs's execution
2406 	 * resources, wait for the previously scheduled operations before
2407 	 * proceeding, so that we don't end up keep removing tasks added
2408 	 * after execution capability is restored.
2409 	 *
2410 	 * cpuset_hotplug_work calls back into cgroup core via
2411 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2412 	 * operation like this one can lead to a deadlock through kernfs
2413 	 * active_ref protection.  Let's break the protection.  Losing the
2414 	 * protection is okay as we check whether @cs is online after
2415 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2416 	 * hierarchies.
2417 	 */
2418 	css_get(&cs->css);
2419 	kernfs_break_active_protection(of->kn);
2420 	flush_work(&cpuset_hotplug_work);
2421 
2422 	get_online_cpus();
2423 	percpu_down_write(&cpuset_rwsem);
2424 	if (!is_cpuset_online(cs))
2425 		goto out_unlock;
2426 
2427 	trialcs = alloc_trial_cpuset(cs);
2428 	if (!trialcs) {
2429 		retval = -ENOMEM;
2430 		goto out_unlock;
2431 	}
2432 
2433 	switch (of_cft(of)->private) {
2434 	case FILE_CPULIST:
2435 		retval = update_cpumask(cs, trialcs, buf);
2436 		break;
2437 	case FILE_MEMLIST:
2438 		retval = update_nodemask(cs, trialcs, buf);
2439 		break;
2440 	default:
2441 		retval = -EINVAL;
2442 		break;
2443 	}
2444 
2445 	free_cpuset(trialcs);
2446 out_unlock:
2447 	percpu_up_write(&cpuset_rwsem);
2448 	put_online_cpus();
2449 	kernfs_unbreak_active_protection(of->kn);
2450 	css_put(&cs->css);
2451 	flush_workqueue(cpuset_migrate_mm_wq);
2452 	return retval ?: nbytes;
2453 }
2454 
2455 /*
2456  * These ascii lists should be read in a single call, by using a user
2457  * buffer large enough to hold the entire map.  If read in smaller
2458  * chunks, there is no guarantee of atomicity.  Since the display format
2459  * used, list of ranges of sequential numbers, is variable length,
2460  * and since these maps can change value dynamically, one could read
2461  * gibberish by doing partial reads while a list was changing.
2462  */
cpuset_common_seq_show(struct seq_file * sf,void * v)2463 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2464 {
2465 	struct cpuset *cs = css_cs(seq_css(sf));
2466 	cpuset_filetype_t type = seq_cft(sf)->private;
2467 	int ret = 0;
2468 
2469 	spin_lock_irq(&callback_lock);
2470 
2471 	switch (type) {
2472 	case FILE_CPULIST:
2473 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
2474 		break;
2475 	case FILE_MEMLIST:
2476 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2477 		break;
2478 	case FILE_EFFECTIVE_CPULIST:
2479 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2480 		break;
2481 	case FILE_EFFECTIVE_MEMLIST:
2482 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2483 		break;
2484 	case FILE_SUBPARTS_CPULIST:
2485 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2486 		break;
2487 	default:
2488 		ret = -EINVAL;
2489 	}
2490 
2491 	spin_unlock_irq(&callback_lock);
2492 	return ret;
2493 }
2494 
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2495 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2496 {
2497 	struct cpuset *cs = css_cs(css);
2498 	cpuset_filetype_t type = cft->private;
2499 	switch (type) {
2500 	case FILE_CPU_EXCLUSIVE:
2501 		return is_cpu_exclusive(cs);
2502 	case FILE_MEM_EXCLUSIVE:
2503 		return is_mem_exclusive(cs);
2504 	case FILE_MEM_HARDWALL:
2505 		return is_mem_hardwall(cs);
2506 	case FILE_SCHED_LOAD_BALANCE:
2507 		return is_sched_load_balance(cs);
2508 	case FILE_MEMORY_MIGRATE:
2509 		return is_memory_migrate(cs);
2510 	case FILE_MEMORY_PRESSURE_ENABLED:
2511 		return cpuset_memory_pressure_enabled;
2512 	case FILE_MEMORY_PRESSURE:
2513 		return fmeter_getrate(&cs->fmeter);
2514 	case FILE_SPREAD_PAGE:
2515 		return is_spread_page(cs);
2516 	case FILE_SPREAD_SLAB:
2517 		return is_spread_slab(cs);
2518 	default:
2519 		BUG();
2520 	}
2521 
2522 	/* Unreachable but makes gcc happy */
2523 	return 0;
2524 }
2525 
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2526 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2527 {
2528 	struct cpuset *cs = css_cs(css);
2529 	cpuset_filetype_t type = cft->private;
2530 	switch (type) {
2531 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2532 		return cs->relax_domain_level;
2533 	default:
2534 		BUG();
2535 	}
2536 
2537 	/* Unrechable but makes gcc happy */
2538 	return 0;
2539 }
2540 
sched_partition_show(struct seq_file * seq,void * v)2541 static int sched_partition_show(struct seq_file *seq, void *v)
2542 {
2543 	struct cpuset *cs = css_cs(seq_css(seq));
2544 
2545 	switch (cs->partition_root_state) {
2546 	case PRS_ENABLED:
2547 		seq_puts(seq, "root\n");
2548 		break;
2549 	case PRS_DISABLED:
2550 		seq_puts(seq, "member\n");
2551 		break;
2552 	case PRS_ERROR:
2553 		seq_puts(seq, "root invalid\n");
2554 		break;
2555 	}
2556 	return 0;
2557 }
2558 
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2559 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2560 				     size_t nbytes, loff_t off)
2561 {
2562 	struct cpuset *cs = css_cs(of_css(of));
2563 	int val;
2564 	int retval = -ENODEV;
2565 
2566 	buf = strstrip(buf);
2567 
2568 	/*
2569 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2570 	 */
2571 	if (!strcmp(buf, "root"))
2572 		val = PRS_ENABLED;
2573 	else if (!strcmp(buf, "member"))
2574 		val = PRS_DISABLED;
2575 	else
2576 		return -EINVAL;
2577 
2578 	css_get(&cs->css);
2579 	get_online_cpus();
2580 	percpu_down_write(&cpuset_rwsem);
2581 	if (!is_cpuset_online(cs))
2582 		goto out_unlock;
2583 
2584 	retval = update_prstate(cs, val);
2585 out_unlock:
2586 	percpu_up_write(&cpuset_rwsem);
2587 	put_online_cpus();
2588 	css_put(&cs->css);
2589 	return retval ?: nbytes;
2590 }
2591 
2592 /*
2593  * for the common functions, 'private' gives the type of file
2594  */
2595 
2596 static struct cftype legacy_files[] = {
2597 	{
2598 		.name = "cpus",
2599 		.seq_show = cpuset_common_seq_show,
2600 		.write = cpuset_write_resmask,
2601 		.max_write_len = (100U + 6 * NR_CPUS),
2602 		.private = FILE_CPULIST,
2603 	},
2604 
2605 	{
2606 		.name = "mems",
2607 		.seq_show = cpuset_common_seq_show,
2608 		.write = cpuset_write_resmask,
2609 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2610 		.private = FILE_MEMLIST,
2611 	},
2612 
2613 	{
2614 		.name = "effective_cpus",
2615 		.seq_show = cpuset_common_seq_show,
2616 		.private = FILE_EFFECTIVE_CPULIST,
2617 	},
2618 
2619 	{
2620 		.name = "effective_mems",
2621 		.seq_show = cpuset_common_seq_show,
2622 		.private = FILE_EFFECTIVE_MEMLIST,
2623 	},
2624 
2625 	{
2626 		.name = "cpu_exclusive",
2627 		.read_u64 = cpuset_read_u64,
2628 		.write_u64 = cpuset_write_u64,
2629 		.private = FILE_CPU_EXCLUSIVE,
2630 	},
2631 
2632 	{
2633 		.name = "mem_exclusive",
2634 		.read_u64 = cpuset_read_u64,
2635 		.write_u64 = cpuset_write_u64,
2636 		.private = FILE_MEM_EXCLUSIVE,
2637 	},
2638 
2639 	{
2640 		.name = "mem_hardwall",
2641 		.read_u64 = cpuset_read_u64,
2642 		.write_u64 = cpuset_write_u64,
2643 		.private = FILE_MEM_HARDWALL,
2644 	},
2645 
2646 	{
2647 		.name = "sched_load_balance",
2648 		.read_u64 = cpuset_read_u64,
2649 		.write_u64 = cpuset_write_u64,
2650 		.private = FILE_SCHED_LOAD_BALANCE,
2651 	},
2652 
2653 	{
2654 		.name = "sched_relax_domain_level",
2655 		.read_s64 = cpuset_read_s64,
2656 		.write_s64 = cpuset_write_s64,
2657 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2658 	},
2659 
2660 	{
2661 		.name = "memory_migrate",
2662 		.read_u64 = cpuset_read_u64,
2663 		.write_u64 = cpuset_write_u64,
2664 		.private = FILE_MEMORY_MIGRATE,
2665 	},
2666 
2667 	{
2668 		.name = "memory_pressure",
2669 		.read_u64 = cpuset_read_u64,
2670 		.private = FILE_MEMORY_PRESSURE,
2671 	},
2672 
2673 	{
2674 		.name = "memory_spread_page",
2675 		.read_u64 = cpuset_read_u64,
2676 		.write_u64 = cpuset_write_u64,
2677 		.private = FILE_SPREAD_PAGE,
2678 	},
2679 
2680 	{
2681 		.name = "memory_spread_slab",
2682 		.read_u64 = cpuset_read_u64,
2683 		.write_u64 = cpuset_write_u64,
2684 		.private = FILE_SPREAD_SLAB,
2685 	},
2686 
2687 	{
2688 		.name = "memory_pressure_enabled",
2689 		.flags = CFTYPE_ONLY_ON_ROOT,
2690 		.read_u64 = cpuset_read_u64,
2691 		.write_u64 = cpuset_write_u64,
2692 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2693 	},
2694 
2695 	{ }	/* terminate */
2696 };
2697 
2698 /*
2699  * This is currently a minimal set for the default hierarchy. It can be
2700  * expanded later on by migrating more features and control files from v1.
2701  */
2702 static struct cftype dfl_files[] = {
2703 	{
2704 		.name = "cpus",
2705 		.seq_show = cpuset_common_seq_show,
2706 		.write = cpuset_write_resmask,
2707 		.max_write_len = (100U + 6 * NR_CPUS),
2708 		.private = FILE_CPULIST,
2709 		.flags = CFTYPE_NOT_ON_ROOT,
2710 	},
2711 
2712 	{
2713 		.name = "mems",
2714 		.seq_show = cpuset_common_seq_show,
2715 		.write = cpuset_write_resmask,
2716 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2717 		.private = FILE_MEMLIST,
2718 		.flags = CFTYPE_NOT_ON_ROOT,
2719 	},
2720 
2721 	{
2722 		.name = "cpus.effective",
2723 		.seq_show = cpuset_common_seq_show,
2724 		.private = FILE_EFFECTIVE_CPULIST,
2725 	},
2726 
2727 	{
2728 		.name = "mems.effective",
2729 		.seq_show = cpuset_common_seq_show,
2730 		.private = FILE_EFFECTIVE_MEMLIST,
2731 	},
2732 
2733 	{
2734 		.name = "cpus.partition",
2735 		.seq_show = sched_partition_show,
2736 		.write = sched_partition_write,
2737 		.private = FILE_PARTITION_ROOT,
2738 		.flags = CFTYPE_NOT_ON_ROOT,
2739 	},
2740 
2741 	{
2742 		.name = "cpus.subpartitions",
2743 		.seq_show = cpuset_common_seq_show,
2744 		.private = FILE_SUBPARTS_CPULIST,
2745 		.flags = CFTYPE_DEBUG,
2746 	},
2747 
2748 	{ }	/* terminate */
2749 };
2750 
2751 
2752 /*
2753  *	cpuset_css_alloc - allocate a cpuset css
2754  *	cgrp:	control group that the new cpuset will be part of
2755  */
2756 
2757 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2758 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2759 {
2760 	struct cpuset *cs;
2761 
2762 	if (!parent_css)
2763 		return &top_cpuset.css;
2764 
2765 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2766 	if (!cs)
2767 		return ERR_PTR(-ENOMEM);
2768 
2769 	if (alloc_cpumasks(cs, NULL)) {
2770 		kfree(cs);
2771 		return ERR_PTR(-ENOMEM);
2772 	}
2773 
2774 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2775 	nodes_clear(cs->mems_allowed);
2776 	nodes_clear(cs->effective_mems);
2777 	fmeter_init(&cs->fmeter);
2778 	cs->relax_domain_level = -1;
2779 
2780 	return &cs->css;
2781 }
2782 
cpuset_css_online(struct cgroup_subsys_state * css)2783 static int cpuset_css_online(struct cgroup_subsys_state *css)
2784 {
2785 	struct cpuset *cs = css_cs(css);
2786 	struct cpuset *parent = parent_cs(cs);
2787 	struct cpuset *tmp_cs;
2788 	struct cgroup_subsys_state *pos_css;
2789 
2790 	if (!parent)
2791 		return 0;
2792 
2793 	get_online_cpus();
2794 	percpu_down_write(&cpuset_rwsem);
2795 
2796 	set_bit(CS_ONLINE, &cs->flags);
2797 	if (is_spread_page(parent))
2798 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2799 	if (is_spread_slab(parent))
2800 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2801 
2802 	cpuset_inc();
2803 
2804 	spin_lock_irq(&callback_lock);
2805 	if (is_in_v2_mode()) {
2806 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2807 		cs->effective_mems = parent->effective_mems;
2808 		cs->use_parent_ecpus = true;
2809 		parent->child_ecpus_count++;
2810 	}
2811 	spin_unlock_irq(&callback_lock);
2812 
2813 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2814 		goto out_unlock;
2815 
2816 	/*
2817 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2818 	 * set.  This flag handling is implemented in cgroup core for
2819 	 * histrical reasons - the flag may be specified during mount.
2820 	 *
2821 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2822 	 * refuse to clone the configuration - thereby refusing the task to
2823 	 * be entered, and as a result refusing the sys_unshare() or
2824 	 * clone() which initiated it.  If this becomes a problem for some
2825 	 * users who wish to allow that scenario, then this could be
2826 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2827 	 * (and likewise for mems) to the new cgroup.
2828 	 */
2829 	rcu_read_lock();
2830 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2831 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2832 			rcu_read_unlock();
2833 			goto out_unlock;
2834 		}
2835 	}
2836 	rcu_read_unlock();
2837 
2838 	spin_lock_irq(&callback_lock);
2839 	cs->mems_allowed = parent->mems_allowed;
2840 	cs->effective_mems = parent->mems_allowed;
2841 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2842 	cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2843 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2844 	spin_unlock_irq(&callback_lock);
2845 out_unlock:
2846 	percpu_up_write(&cpuset_rwsem);
2847 	put_online_cpus();
2848 	return 0;
2849 }
2850 
2851 /*
2852  * If the cpuset being removed has its flag 'sched_load_balance'
2853  * enabled, then simulate turning sched_load_balance off, which
2854  * will call rebuild_sched_domains_locked(). That is not needed
2855  * in the default hierarchy where only changes in partition
2856  * will cause repartitioning.
2857  *
2858  * If the cpuset has the 'sched.partition' flag enabled, simulate
2859  * turning 'sched.partition" off.
2860  */
2861 
cpuset_css_offline(struct cgroup_subsys_state * css)2862 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2863 {
2864 	struct cpuset *cs = css_cs(css);
2865 
2866 	get_online_cpus();
2867 	percpu_down_write(&cpuset_rwsem);
2868 
2869 	if (is_partition_root(cs))
2870 		update_prstate(cs, 0);
2871 
2872 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2873 	    is_sched_load_balance(cs))
2874 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2875 
2876 	if (cs->use_parent_ecpus) {
2877 		struct cpuset *parent = parent_cs(cs);
2878 
2879 		cs->use_parent_ecpus = false;
2880 		parent->child_ecpus_count--;
2881 	}
2882 
2883 	cpuset_dec();
2884 	clear_bit(CS_ONLINE, &cs->flags);
2885 
2886 	percpu_up_write(&cpuset_rwsem);
2887 	put_online_cpus();
2888 }
2889 
cpuset_css_free(struct cgroup_subsys_state * css)2890 static void cpuset_css_free(struct cgroup_subsys_state *css)
2891 {
2892 	struct cpuset *cs = css_cs(css);
2893 
2894 	free_cpuset(cs);
2895 }
2896 
cpuset_bind(struct cgroup_subsys_state * root_css)2897 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2898 {
2899 	percpu_down_write(&cpuset_rwsem);
2900 	spin_lock_irq(&callback_lock);
2901 
2902 	if (is_in_v2_mode()) {
2903 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2904 		top_cpuset.mems_allowed = node_possible_map;
2905 	} else {
2906 		cpumask_copy(top_cpuset.cpus_allowed,
2907 			     top_cpuset.effective_cpus);
2908 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2909 	}
2910 
2911 	spin_unlock_irq(&callback_lock);
2912 	percpu_up_write(&cpuset_rwsem);
2913 }
2914 
2915 /*
2916  * Make sure the new task conform to the current state of its parent,
2917  * which could have been changed by cpuset just after it inherits the
2918  * state from the parent and before it sits on the cgroup's task list.
2919  */
cpuset_fork(struct task_struct * task)2920 static void cpuset_fork(struct task_struct *task)
2921 {
2922 	if (task_css_is_root(task, cpuset_cgrp_id))
2923 		return;
2924 
2925 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2926 	task->mems_allowed = current->mems_allowed;
2927 }
2928 
2929 struct cgroup_subsys cpuset_cgrp_subsys = {
2930 	.css_alloc	= cpuset_css_alloc,
2931 	.css_online	= cpuset_css_online,
2932 	.css_offline	= cpuset_css_offline,
2933 	.css_free	= cpuset_css_free,
2934 	.can_attach	= cpuset_can_attach,
2935 	.cancel_attach	= cpuset_cancel_attach,
2936 	.attach		= cpuset_attach,
2937 	.post_attach	= cpuset_post_attach,
2938 	.bind		= cpuset_bind,
2939 	.fork		= cpuset_fork,
2940 	.legacy_cftypes	= legacy_files,
2941 	.dfl_cftypes	= dfl_files,
2942 	.early_init	= true,
2943 	.threaded	= true,
2944 };
2945 
2946 /**
2947  * cpuset_init - initialize cpusets at system boot
2948  *
2949  * Description: Initialize top_cpuset
2950  **/
2951 
cpuset_init(void)2952 int __init cpuset_init(void)
2953 {
2954 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2955 
2956 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2957 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL));
2958 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2959 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2960 
2961 	cpumask_setall(top_cpuset.cpus_allowed);
2962 	cpumask_setall(top_cpuset.cpus_requested);
2963 	nodes_setall(top_cpuset.mems_allowed);
2964 	cpumask_setall(top_cpuset.effective_cpus);
2965 	nodes_setall(top_cpuset.effective_mems);
2966 
2967 	fmeter_init(&top_cpuset.fmeter);
2968 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2969 	top_cpuset.relax_domain_level = -1;
2970 
2971 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2972 
2973 	return 0;
2974 }
2975 
2976 /*
2977  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2978  * or memory nodes, we need to walk over the cpuset hierarchy,
2979  * removing that CPU or node from all cpusets.  If this removes the
2980  * last CPU or node from a cpuset, then move the tasks in the empty
2981  * cpuset to its next-highest non-empty parent.
2982  */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2983 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2984 {
2985 	struct cpuset *parent;
2986 
2987 	/*
2988 	 * Find its next-highest non-empty parent, (top cpuset
2989 	 * has online cpus, so can't be empty).
2990 	 */
2991 	parent = parent_cs(cs);
2992 	while (cpumask_empty(parent->cpus_allowed) ||
2993 			nodes_empty(parent->mems_allowed))
2994 		parent = parent_cs(parent);
2995 
2996 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2997 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2998 		pr_cont_cgroup_name(cs->css.cgroup);
2999 		pr_cont("\n");
3000 	}
3001 }
3002 
3003 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3004 hotplug_update_tasks_legacy(struct cpuset *cs,
3005 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3006 			    bool cpus_updated, bool mems_updated)
3007 {
3008 	bool is_empty;
3009 
3010 	spin_lock_irq(&callback_lock);
3011 	cpumask_copy(cs->cpus_allowed, new_cpus);
3012 	cpumask_copy(cs->effective_cpus, new_cpus);
3013 	cs->mems_allowed = *new_mems;
3014 	cs->effective_mems = *new_mems;
3015 	spin_unlock_irq(&callback_lock);
3016 
3017 	/*
3018 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3019 	 * as the tasks will be migratecd to an ancestor.
3020 	 */
3021 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3022 		update_tasks_cpumask(cs);
3023 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3024 		update_tasks_nodemask(cs);
3025 
3026 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3027 		   nodes_empty(cs->mems_allowed);
3028 
3029 	percpu_up_write(&cpuset_rwsem);
3030 
3031 	/*
3032 	 * Move tasks to the nearest ancestor with execution resources,
3033 	 * This is full cgroup operation which will also call back into
3034 	 * cpuset. Should be done outside any lock.
3035 	 */
3036 	if (is_empty)
3037 		remove_tasks_in_empty_cpuset(cs);
3038 
3039 	percpu_down_write(&cpuset_rwsem);
3040 }
3041 
3042 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3043 hotplug_update_tasks(struct cpuset *cs,
3044 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3045 		     bool cpus_updated, bool mems_updated)
3046 {
3047 	if (cpumask_empty(new_cpus))
3048 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3049 	if (nodes_empty(*new_mems))
3050 		*new_mems = parent_cs(cs)->effective_mems;
3051 
3052 	spin_lock_irq(&callback_lock);
3053 	cpumask_copy(cs->effective_cpus, new_cpus);
3054 	cs->effective_mems = *new_mems;
3055 	spin_unlock_irq(&callback_lock);
3056 
3057 	if (cpus_updated)
3058 		update_tasks_cpumask(cs);
3059 	if (mems_updated)
3060 		update_tasks_nodemask(cs);
3061 }
3062 
3063 static bool force_rebuild;
3064 
cpuset_force_rebuild(void)3065 void cpuset_force_rebuild(void)
3066 {
3067 	force_rebuild = true;
3068 }
3069 
3070 /**
3071  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3072  * @cs: cpuset in interest
3073  * @tmp: the tmpmasks structure pointer
3074  *
3075  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3076  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3077  * all its tasks are moved to the nearest ancestor with both resources.
3078  */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3079 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3080 {
3081 	static cpumask_t new_cpus;
3082 	static nodemask_t new_mems;
3083 	bool cpus_updated;
3084 	bool mems_updated;
3085 	struct cpuset *parent;
3086 retry:
3087 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3088 
3089 	percpu_down_write(&cpuset_rwsem);
3090 
3091 	/*
3092 	 * We have raced with task attaching. We wait until attaching
3093 	 * is finished, so we won't attach a task to an empty cpuset.
3094 	 */
3095 	if (cs->attach_in_progress) {
3096 		percpu_up_write(&cpuset_rwsem);
3097 		goto retry;
3098 	}
3099 
3100 	parent = parent_cs(cs);
3101 	compute_effective_cpumask(&new_cpus, cs, parent);
3102 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3103 
3104 	if (cs->nr_subparts_cpus)
3105 		/*
3106 		 * Make sure that CPUs allocated to child partitions
3107 		 * do not show up in effective_cpus.
3108 		 */
3109 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3110 
3111 	if (!tmp || !cs->partition_root_state)
3112 		goto update_tasks;
3113 
3114 	/*
3115 	 * In the unlikely event that a partition root has empty
3116 	 * effective_cpus or its parent becomes erroneous, we have to
3117 	 * transition it to the erroneous state.
3118 	 */
3119 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3120 	   (parent->partition_root_state == PRS_ERROR))) {
3121 		if (cs->nr_subparts_cpus) {
3122 			spin_lock_irq(&callback_lock);
3123 			cs->nr_subparts_cpus = 0;
3124 			cpumask_clear(cs->subparts_cpus);
3125 			spin_unlock_irq(&callback_lock);
3126 			compute_effective_cpumask(&new_cpus, cs, parent);
3127 		}
3128 
3129 		/*
3130 		 * If the effective_cpus is empty because the child
3131 		 * partitions take away all the CPUs, we can keep
3132 		 * the current partition and let the child partitions
3133 		 * fight for available CPUs.
3134 		 */
3135 		if ((parent->partition_root_state == PRS_ERROR) ||
3136 		     cpumask_empty(&new_cpus)) {
3137 			update_parent_subparts_cpumask(cs, partcmd_disable,
3138 						       NULL, tmp);
3139 			spin_lock_irq(&callback_lock);
3140 			cs->partition_root_state = PRS_ERROR;
3141 			spin_unlock_irq(&callback_lock);
3142 		}
3143 		cpuset_force_rebuild();
3144 	}
3145 
3146 	/*
3147 	 * On the other hand, an erroneous partition root may be transitioned
3148 	 * back to a regular one or a partition root with no CPU allocated
3149 	 * from the parent may change to erroneous.
3150 	 */
3151 	if (is_partition_root(parent) &&
3152 	   ((cs->partition_root_state == PRS_ERROR) ||
3153 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3154 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3155 		cpuset_force_rebuild();
3156 
3157 update_tasks:
3158 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3159 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3160 
3161 	if (is_in_v2_mode())
3162 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3163 				     cpus_updated, mems_updated);
3164 	else
3165 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3166 					    cpus_updated, mems_updated);
3167 
3168 	percpu_up_write(&cpuset_rwsem);
3169 }
3170 
3171 /**
3172  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3173  *
3174  * This function is called after either CPU or memory configuration has
3175  * changed and updates cpuset accordingly.  The top_cpuset is always
3176  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3177  * order to make cpusets transparent (of no affect) on systems that are
3178  * actively using CPU hotplug but making no active use of cpusets.
3179  *
3180  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3181  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3182  * all descendants.
3183  *
3184  * Note that CPU offlining during suspend is ignored.  We don't modify
3185  * cpusets across suspend/resume cycles at all.
3186  */
cpuset_hotplug_workfn(struct work_struct * work)3187 static void cpuset_hotplug_workfn(struct work_struct *work)
3188 {
3189 	static cpumask_t new_cpus;
3190 	static nodemask_t new_mems;
3191 	bool cpus_updated, mems_updated;
3192 	bool on_dfl = is_in_v2_mode();
3193 	struct tmpmasks tmp, *ptmp = NULL;
3194 
3195 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3196 		ptmp = &tmp;
3197 
3198 	percpu_down_write(&cpuset_rwsem);
3199 
3200 	/* fetch the available cpus/mems and find out which changed how */
3201 	cpumask_copy(&new_cpus, cpu_active_mask);
3202 	new_mems = node_states[N_MEMORY];
3203 
3204 	/*
3205 	 * If subparts_cpus is populated, it is likely that the check below
3206 	 * will produce a false positive on cpus_updated when the cpu list
3207 	 * isn't changed. It is extra work, but it is better to be safe.
3208 	 */
3209 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3210 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3211 
3212 	/*
3213 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3214 	 * we assumed that cpus are updated.
3215 	 */
3216 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3217 		cpus_updated = true;
3218 
3219 	/* synchronize cpus_allowed to cpu_active_mask */
3220 	if (cpus_updated) {
3221 		spin_lock_irq(&callback_lock);
3222 		if (!on_dfl)
3223 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3224 		/*
3225 		 * Make sure that CPUs allocated to child partitions
3226 		 * do not show up in effective_cpus. If no CPU is left,
3227 		 * we clear the subparts_cpus & let the child partitions
3228 		 * fight for the CPUs again.
3229 		 */
3230 		if (top_cpuset.nr_subparts_cpus) {
3231 			if (cpumask_subset(&new_cpus,
3232 					   top_cpuset.subparts_cpus)) {
3233 				top_cpuset.nr_subparts_cpus = 0;
3234 				cpumask_clear(top_cpuset.subparts_cpus);
3235 			} else {
3236 				cpumask_andnot(&new_cpus, &new_cpus,
3237 					       top_cpuset.subparts_cpus);
3238 			}
3239 		}
3240 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3241 		spin_unlock_irq(&callback_lock);
3242 		/* we don't mess with cpumasks of tasks in top_cpuset */
3243 	}
3244 
3245 	/* synchronize mems_allowed to N_MEMORY */
3246 	if (mems_updated) {
3247 		spin_lock_irq(&callback_lock);
3248 		if (!on_dfl)
3249 			top_cpuset.mems_allowed = new_mems;
3250 		top_cpuset.effective_mems = new_mems;
3251 		spin_unlock_irq(&callback_lock);
3252 		update_tasks_nodemask(&top_cpuset);
3253 	}
3254 
3255 	percpu_up_write(&cpuset_rwsem);
3256 
3257 	/* if cpus or mems changed, we need to propagate to descendants */
3258 	if (cpus_updated || mems_updated) {
3259 		struct cpuset *cs;
3260 		struct cgroup_subsys_state *pos_css;
3261 
3262 		rcu_read_lock();
3263 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3264 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3265 				continue;
3266 			rcu_read_unlock();
3267 
3268 			cpuset_hotplug_update_tasks(cs, ptmp);
3269 
3270 			rcu_read_lock();
3271 			css_put(&cs->css);
3272 		}
3273 		rcu_read_unlock();
3274 	}
3275 
3276 	/* rebuild sched domains if cpus_allowed has changed */
3277 	if (cpus_updated || force_rebuild) {
3278 		force_rebuild = false;
3279 		rebuild_sched_domains();
3280 	}
3281 
3282 	free_cpumasks(NULL, ptmp);
3283 }
3284 
cpuset_update_active_cpus(void)3285 void cpuset_update_active_cpus(void)
3286 {
3287 	/*
3288 	 * We're inside cpu hotplug critical region which usually nests
3289 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3290 	 * to a work item to avoid reverse locking order.
3291 	 */
3292 	schedule_work(&cpuset_hotplug_work);
3293 }
3294 
cpuset_wait_for_hotplug(void)3295 void cpuset_wait_for_hotplug(void)
3296 {
3297 	flush_work(&cpuset_hotplug_work);
3298 }
3299 
3300 /*
3301  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3302  * Call this routine anytime after node_states[N_MEMORY] changes.
3303  * See cpuset_update_active_cpus() for CPU hotplug handling.
3304  */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3305 static int cpuset_track_online_nodes(struct notifier_block *self,
3306 				unsigned long action, void *arg)
3307 {
3308 	schedule_work(&cpuset_hotplug_work);
3309 	return NOTIFY_OK;
3310 }
3311 
3312 static struct notifier_block cpuset_track_online_nodes_nb = {
3313 	.notifier_call = cpuset_track_online_nodes,
3314 	.priority = 10,		/* ??! */
3315 };
3316 
3317 /**
3318  * cpuset_init_smp - initialize cpus_allowed
3319  *
3320  * Description: Finish top cpuset after cpu, node maps are initialized
3321  */
cpuset_init_smp(void)3322 void __init cpuset_init_smp(void)
3323 {
3324 	/*
3325 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3326 	 * cpuset_bind() call will be reset to v1 values in another
3327 	 * cpuset_bind() call when v1 cpuset is mounted.
3328 	 */
3329 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3330 
3331 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3332 	top_cpuset.effective_mems = node_states[N_MEMORY];
3333 
3334 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3335 
3336 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3337 	BUG_ON(!cpuset_migrate_mm_wq);
3338 }
3339 
3340 /**
3341  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3342  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3343  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3344  *
3345  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3346  * attached to the specified @tsk.  Guaranteed to return some non-empty
3347  * subset of cpu_online_mask, even if this means going outside the
3348  * tasks cpuset.
3349  **/
3350 
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3351 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3352 {
3353 	unsigned long flags;
3354 
3355 	spin_lock_irqsave(&callback_lock, flags);
3356 	rcu_read_lock();
3357 	guarantee_online_cpus(task_cs(tsk), pmask);
3358 	rcu_read_unlock();
3359 	spin_unlock_irqrestore(&callback_lock, flags);
3360 }
3361 
3362 /**
3363  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3364  * @tsk: pointer to task_struct with which the scheduler is struggling
3365  *
3366  * Description: In the case that the scheduler cannot find an allowed cpu in
3367  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3368  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3369  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3370  * This is the absolute last resort for the scheduler and it is only used if
3371  * _every_ other avenue has been traveled.
3372  **/
3373 
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3374 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3375 {
3376 	rcu_read_lock();
3377 	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3378 		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3379 	rcu_read_unlock();
3380 
3381 	/*
3382 	 * We own tsk->cpus_allowed, nobody can change it under us.
3383 	 *
3384 	 * But we used cs && cs->cpus_allowed lockless and thus can
3385 	 * race with cgroup_attach_task() or update_cpumask() and get
3386 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3387 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3388 	 * which takes task_rq_lock().
3389 	 *
3390 	 * If we are called after it dropped the lock we must see all
3391 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3392 	 * set any mask even if it is not right from task_cs() pov,
3393 	 * the pending set_cpus_allowed_ptr() will fix things.
3394 	 *
3395 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3396 	 * if required.
3397 	 */
3398 }
3399 
cpuset_init_current_mems_allowed(void)3400 void __init cpuset_init_current_mems_allowed(void)
3401 {
3402 	nodes_setall(current->mems_allowed);
3403 }
3404 
3405 /**
3406  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3407  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3408  *
3409  * Description: Returns the nodemask_t mems_allowed of the cpuset
3410  * attached to the specified @tsk.  Guaranteed to return some non-empty
3411  * subset of node_states[N_MEMORY], even if this means going outside the
3412  * tasks cpuset.
3413  **/
3414 
cpuset_mems_allowed(struct task_struct * tsk)3415 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3416 {
3417 	nodemask_t mask;
3418 	unsigned long flags;
3419 
3420 	spin_lock_irqsave(&callback_lock, flags);
3421 	rcu_read_lock();
3422 	guarantee_online_mems(task_cs(tsk), &mask);
3423 	rcu_read_unlock();
3424 	spin_unlock_irqrestore(&callback_lock, flags);
3425 
3426 	return mask;
3427 }
3428 
3429 /**
3430  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3431  * @nodemask: the nodemask to be checked
3432  *
3433  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3434  */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3435 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3436 {
3437 	return nodes_intersects(*nodemask, current->mems_allowed);
3438 }
3439 
3440 /*
3441  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3442  * mem_hardwall ancestor to the specified cpuset.  Call holding
3443  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3444  * (an unusual configuration), then returns the root cpuset.
3445  */
nearest_hardwall_ancestor(struct cpuset * cs)3446 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3447 {
3448 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3449 		cs = parent_cs(cs);
3450 	return cs;
3451 }
3452 
3453 /**
3454  * cpuset_node_allowed - Can we allocate on a memory node?
3455  * @node: is this an allowed node?
3456  * @gfp_mask: memory allocation flags
3457  *
3458  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3459  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3460  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3461  * yes.  If current has access to memory reserves as an oom victim, yes.
3462  * Otherwise, no.
3463  *
3464  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3465  * and do not allow allocations outside the current tasks cpuset
3466  * unless the task has been OOM killed.
3467  * GFP_KERNEL allocations are not so marked, so can escape to the
3468  * nearest enclosing hardwalled ancestor cpuset.
3469  *
3470  * Scanning up parent cpusets requires callback_lock.  The
3471  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3472  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3473  * current tasks mems_allowed came up empty on the first pass over
3474  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3475  * cpuset are short of memory, might require taking the callback_lock.
3476  *
3477  * The first call here from mm/page_alloc:get_page_from_freelist()
3478  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3479  * so no allocation on a node outside the cpuset is allowed (unless
3480  * in interrupt, of course).
3481  *
3482  * The second pass through get_page_from_freelist() doesn't even call
3483  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3484  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3485  * in alloc_flags.  That logic and the checks below have the combined
3486  * affect that:
3487  *	in_interrupt - any node ok (current task context irrelevant)
3488  *	GFP_ATOMIC   - any node ok
3489  *	tsk_is_oom_victim   - any node ok
3490  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3491  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3492  */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3493 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3494 {
3495 	struct cpuset *cs;		/* current cpuset ancestors */
3496 	int allowed;			/* is allocation in zone z allowed? */
3497 	unsigned long flags;
3498 
3499 	if (in_interrupt())
3500 		return true;
3501 	if (node_isset(node, current->mems_allowed))
3502 		return true;
3503 	/*
3504 	 * Allow tasks that have access to memory reserves because they have
3505 	 * been OOM killed to get memory anywhere.
3506 	 */
3507 	if (unlikely(tsk_is_oom_victim(current)))
3508 		return true;
3509 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3510 		return false;
3511 
3512 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3513 		return true;
3514 
3515 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3516 	spin_lock_irqsave(&callback_lock, flags);
3517 
3518 	rcu_read_lock();
3519 	cs = nearest_hardwall_ancestor(task_cs(current));
3520 	allowed = node_isset(node, cs->mems_allowed);
3521 	rcu_read_unlock();
3522 
3523 	spin_unlock_irqrestore(&callback_lock, flags);
3524 	return allowed;
3525 }
3526 
3527 /**
3528  * cpuset_mem_spread_node() - On which node to begin search for a file page
3529  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3530  *
3531  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3532  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3533  * and if the memory allocation used cpuset_mem_spread_node()
3534  * to determine on which node to start looking, as it will for
3535  * certain page cache or slab cache pages such as used for file
3536  * system buffers and inode caches, then instead of starting on the
3537  * local node to look for a free page, rather spread the starting
3538  * node around the tasks mems_allowed nodes.
3539  *
3540  * We don't have to worry about the returned node being offline
3541  * because "it can't happen", and even if it did, it would be ok.
3542  *
3543  * The routines calling guarantee_online_mems() are careful to
3544  * only set nodes in task->mems_allowed that are online.  So it
3545  * should not be possible for the following code to return an
3546  * offline node.  But if it did, that would be ok, as this routine
3547  * is not returning the node where the allocation must be, only
3548  * the node where the search should start.  The zonelist passed to
3549  * __alloc_pages() will include all nodes.  If the slab allocator
3550  * is passed an offline node, it will fall back to the local node.
3551  * See kmem_cache_alloc_node().
3552  */
3553 
cpuset_spread_node(int * rotor)3554 static int cpuset_spread_node(int *rotor)
3555 {
3556 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3557 }
3558 
cpuset_mem_spread_node(void)3559 int cpuset_mem_spread_node(void)
3560 {
3561 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3562 		current->cpuset_mem_spread_rotor =
3563 			node_random(&current->mems_allowed);
3564 
3565 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3566 }
3567 
cpuset_slab_spread_node(void)3568 int cpuset_slab_spread_node(void)
3569 {
3570 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3571 		current->cpuset_slab_spread_rotor =
3572 			node_random(&current->mems_allowed);
3573 
3574 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3575 }
3576 
3577 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3578 
3579 /**
3580  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3581  * @tsk1: pointer to task_struct of some task.
3582  * @tsk2: pointer to task_struct of some other task.
3583  *
3584  * Description: Return true if @tsk1's mems_allowed intersects the
3585  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3586  * one of the task's memory usage might impact the memory available
3587  * to the other.
3588  **/
3589 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3590 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3591 				   const struct task_struct *tsk2)
3592 {
3593 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3594 }
3595 
3596 /**
3597  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3598  *
3599  * Description: Prints current's name, cpuset name, and cached copy of its
3600  * mems_allowed to the kernel log.
3601  */
cpuset_print_current_mems_allowed(void)3602 void cpuset_print_current_mems_allowed(void)
3603 {
3604 	struct cgroup *cgrp;
3605 
3606 	rcu_read_lock();
3607 
3608 	cgrp = task_cs(current)->css.cgroup;
3609 	pr_cont(",cpuset=");
3610 	pr_cont_cgroup_name(cgrp);
3611 	pr_cont(",mems_allowed=%*pbl",
3612 		nodemask_pr_args(&current->mems_allowed));
3613 
3614 	rcu_read_unlock();
3615 }
3616 
3617 /*
3618  * Collection of memory_pressure is suppressed unless
3619  * this flag is enabled by writing "1" to the special
3620  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3621  */
3622 
3623 int cpuset_memory_pressure_enabled __read_mostly;
3624 
3625 /**
3626  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3627  *
3628  * Keep a running average of the rate of synchronous (direct)
3629  * page reclaim efforts initiated by tasks in each cpuset.
3630  *
3631  * This represents the rate at which some task in the cpuset
3632  * ran low on memory on all nodes it was allowed to use, and
3633  * had to enter the kernels page reclaim code in an effort to
3634  * create more free memory by tossing clean pages or swapping
3635  * or writing dirty pages.
3636  *
3637  * Display to user space in the per-cpuset read-only file
3638  * "memory_pressure".  Value displayed is an integer
3639  * representing the recent rate of entry into the synchronous
3640  * (direct) page reclaim by any task attached to the cpuset.
3641  **/
3642 
__cpuset_memory_pressure_bump(void)3643 void __cpuset_memory_pressure_bump(void)
3644 {
3645 	rcu_read_lock();
3646 	fmeter_markevent(&task_cs(current)->fmeter);
3647 	rcu_read_unlock();
3648 }
3649 
3650 #ifdef CONFIG_PROC_PID_CPUSET
3651 /*
3652  * proc_cpuset_show()
3653  *  - Print tasks cpuset path into seq_file.
3654  *  - Used for /proc/<pid>/cpuset.
3655  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3656  *    doesn't really matter if tsk->cpuset changes after we read it,
3657  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3658  *    anyway.
3659  */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3660 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3661 		     struct pid *pid, struct task_struct *tsk)
3662 {
3663 	char *buf;
3664 	struct cgroup_subsys_state *css;
3665 	int retval;
3666 
3667 	retval = -ENOMEM;
3668 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3669 	if (!buf)
3670 		goto out;
3671 
3672 	css = task_get_css(tsk, cpuset_cgrp_id);
3673 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3674 				current->nsproxy->cgroup_ns);
3675 	css_put(css);
3676 	if (retval >= PATH_MAX)
3677 		retval = -ENAMETOOLONG;
3678 	if (retval < 0)
3679 		goto out_free;
3680 	seq_puts(m, buf);
3681 	seq_putc(m, '\n');
3682 	retval = 0;
3683 out_free:
3684 	kfree(buf);
3685 out:
3686 	return retval;
3687 }
3688 #endif /* CONFIG_PROC_PID_CPUSET */
3689 
3690 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3691 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3692 {
3693 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3694 		   nodemask_pr_args(&task->mems_allowed));
3695 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3696 		   nodemask_pr_args(&task->mems_allowed));
3697 }
3698