• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 
17 #ifdef CONFIG_QOS_CTRL
18 #include <linux/sched/qos_ctrl.h>
19 #endif
20 
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/capability.h>
24 #include <linux/completion.h>
25 #include <linux/personality.h>
26 #include <linux/tty.h>
27 #include <linux/iocontext.h>
28 #include <linux/key.h>
29 #include <linux/cpu.h>
30 #include <linux/acct.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/file.h>
33 #include <linux/fdtable.h>
34 #include <linux/freezer.h>
35 #include <linux/binfmts.h>
36 #include <linux/nsproxy.h>
37 #include <linux/pid_namespace.h>
38 #include <linux/ptrace.h>
39 #include <linux/profile.h>
40 #include <linux/mount.h>
41 #include <linux/proc_fs.h>
42 #include <linux/kthread.h>
43 #include <linux/mempolicy.h>
44 #include <linux/taskstats_kern.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroup.h>
47 #include <linux/syscalls.h>
48 #include <linux/signal.h>
49 #include <linux/posix-timers.h>
50 #include <linux/cn_proc.h>
51 #include <linux/mutex.h>
52 #include <linux/futex.h>
53 #include <linux/pipe_fs_i.h>
54 #include <linux/audit.h> /* for audit_free() */
55 #include <linux/resource.h>
56 #include <linux/blkdev.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/tracehook.h>
59 #include <linux/fs_struct.h>
60 #include <linux/init_task.h>
61 #include <linux/perf_event.h>
62 #include <trace/events/sched.h>
63 #include <linux/hw_breakpoint.h>
64 #include <linux/oom.h>
65 #include <linux/writeback.h>
66 #include <linux/shm.h>
67 #include <linux/kcov.h>
68 #include <linux/random.h>
69 #include <linux/rcuwait.h>
70 #include <linux/compat.h>
71 #include <linux/io_uring.h>
72 
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76 
__unhash_process(struct task_struct * p,bool group_dead)77 static void __unhash_process(struct task_struct *p, bool group_dead)
78 {
79 	nr_threads--;
80 	detach_pid(p, PIDTYPE_PID);
81 	if (group_dead) {
82 		detach_pid(p, PIDTYPE_TGID);
83 		detach_pid(p, PIDTYPE_PGID);
84 		detach_pid(p, PIDTYPE_SID);
85 
86 		list_del_rcu(&p->tasks);
87 		list_del_init(&p->sibling);
88 		__this_cpu_dec(process_counts);
89 	}
90 	list_del_rcu(&p->thread_group);
91 	list_del_rcu(&p->thread_node);
92 }
93 
94 /*
95  * This function expects the tasklist_lock write-locked.
96  */
__exit_signal(struct task_struct * tsk)97 static void __exit_signal(struct task_struct *tsk)
98 {
99 	struct signal_struct *sig = tsk->signal;
100 	bool group_dead = thread_group_leader(tsk);
101 	struct sighand_struct *sighand;
102 	struct tty_struct *tty;
103 	u64 utime, stime;
104 
105 	sighand = rcu_dereference_check(tsk->sighand,
106 					lockdep_tasklist_lock_is_held());
107 	spin_lock(&sighand->siglock);
108 
109 #ifdef CONFIG_POSIX_TIMERS
110 	posix_cpu_timers_exit(tsk);
111 	if (group_dead)
112 		posix_cpu_timers_exit_group(tsk);
113 #endif
114 
115 	if (group_dead) {
116 		tty = sig->tty;
117 		sig->tty = NULL;
118 	} else {
119 		/*
120 		 * If there is any task waiting for the group exit
121 		 * then notify it:
122 		 */
123 		if (sig->notify_count > 0 && !--sig->notify_count)
124 			wake_up_process(sig->group_exit_task);
125 
126 		if (tsk == sig->curr_target)
127 			sig->curr_target = next_thread(tsk);
128 	}
129 
130 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
131 			      sizeof(unsigned long long));
132 
133 	/*
134 	 * Accumulate here the counters for all threads as they die. We could
135 	 * skip the group leader because it is the last user of signal_struct,
136 	 * but we want to avoid the race with thread_group_cputime() which can
137 	 * see the empty ->thread_head list.
138 	 */
139 	task_cputime(tsk, &utime, &stime);
140 	write_seqlock(&sig->stats_lock);
141 	sig->utime += utime;
142 	sig->stime += stime;
143 	sig->gtime += task_gtime(tsk);
144 	sig->min_flt += tsk->min_flt;
145 	sig->maj_flt += tsk->maj_flt;
146 	sig->nvcsw += tsk->nvcsw;
147 	sig->nivcsw += tsk->nivcsw;
148 	sig->inblock += task_io_get_inblock(tsk);
149 	sig->oublock += task_io_get_oublock(tsk);
150 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
151 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
152 	sig->nr_threads--;
153 	__unhash_process(tsk, group_dead);
154 	write_sequnlock(&sig->stats_lock);
155 
156 	/*
157 	 * Do this under ->siglock, we can race with another thread
158 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
159 	 */
160 	flush_sigqueue(&tsk->pending);
161 	tsk->sighand = NULL;
162 	spin_unlock(&sighand->siglock);
163 
164 	__cleanup_sighand(sighand);
165 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
166 	if (group_dead) {
167 		flush_sigqueue(&sig->shared_pending);
168 		tty_kref_put(tty);
169 	}
170 }
171 
delayed_put_task_struct(struct rcu_head * rhp)172 static void delayed_put_task_struct(struct rcu_head *rhp)
173 {
174 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
175 
176 	perf_event_delayed_put(tsk);
177 	trace_sched_process_free(tsk);
178 	put_task_struct(tsk);
179 }
180 
put_task_struct_rcu_user(struct task_struct * task)181 void put_task_struct_rcu_user(struct task_struct *task)
182 {
183 	if (refcount_dec_and_test(&task->rcu_users))
184 		call_rcu(&task->rcu, delayed_put_task_struct);
185 }
186 
release_task(struct task_struct * p)187 void release_task(struct task_struct *p)
188 {
189 	struct task_struct *leader;
190 	struct pid *thread_pid;
191 	int zap_leader;
192 repeat:
193 	/* don't need to get the RCU readlock here - the process is dead and
194 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
195 	rcu_read_lock();
196 	atomic_dec(&__task_cred(p)->user->processes);
197 	rcu_read_unlock();
198 
199 	cgroup_release(p);
200 
201 	write_lock_irq(&tasklist_lock);
202 	ptrace_release_task(p);
203 	thread_pid = get_pid(p->thread_pid);
204 	__exit_signal(p);
205 
206 	/*
207 	 * If we are the last non-leader member of the thread
208 	 * group, and the leader is zombie, then notify the
209 	 * group leader's parent process. (if it wants notification.)
210 	 */
211 	zap_leader = 0;
212 	leader = p->group_leader;
213 	if (leader != p && thread_group_empty(leader)
214 			&& leader->exit_state == EXIT_ZOMBIE) {
215 		/*
216 		 * If we were the last child thread and the leader has
217 		 * exited already, and the leader's parent ignores SIGCHLD,
218 		 * then we are the one who should release the leader.
219 		 */
220 		zap_leader = do_notify_parent(leader, leader->exit_signal);
221 		if (zap_leader)
222 			leader->exit_state = EXIT_DEAD;
223 	}
224 
225 	write_unlock_irq(&tasklist_lock);
226 	seccomp_filter_release(p);
227 	proc_flush_pid(thread_pid);
228 	put_pid(thread_pid);
229 	release_thread(p);
230 	put_task_struct_rcu_user(p);
231 
232 	p = leader;
233 	if (unlikely(zap_leader))
234 		goto repeat;
235 }
236 
rcuwait_wake_up(struct rcuwait * w)237 int rcuwait_wake_up(struct rcuwait *w)
238 {
239 	int ret = 0;
240 	struct task_struct *task;
241 
242 	rcu_read_lock();
243 
244 	/*
245 	 * Order condition vs @task, such that everything prior to the load
246 	 * of @task is visible. This is the condition as to why the user called
247 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
248 	 * barrier (A) in rcuwait_wait_event().
249 	 *
250 	 *    WAIT                WAKE
251 	 *    [S] tsk = current	  [S] cond = true
252 	 *        MB (A)	      MB (B)
253 	 *    [L] cond		  [L] tsk
254 	 */
255 	smp_mb(); /* (B) */
256 
257 	task = rcu_dereference(w->task);
258 	if (task)
259 		ret = wake_up_process(task);
260 	rcu_read_unlock();
261 
262 	return ret;
263 }
264 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
265 
266 /*
267  * Determine if a process group is "orphaned", according to the POSIX
268  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
269  * by terminal-generated stop signals.  Newly orphaned process groups are
270  * to receive a SIGHUP and a SIGCONT.
271  *
272  * "I ask you, have you ever known what it is to be an orphan?"
273  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)274 static int will_become_orphaned_pgrp(struct pid *pgrp,
275 					struct task_struct *ignored_task)
276 {
277 	struct task_struct *p;
278 
279 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
280 		if ((p == ignored_task) ||
281 		    (p->exit_state && thread_group_empty(p)) ||
282 		    is_global_init(p->real_parent))
283 			continue;
284 
285 		if (task_pgrp(p->real_parent) != pgrp &&
286 		    task_session(p->real_parent) == task_session(p))
287 			return 0;
288 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
289 
290 	return 1;
291 }
292 
is_current_pgrp_orphaned(void)293 int is_current_pgrp_orphaned(void)
294 {
295 	int retval;
296 
297 	read_lock(&tasklist_lock);
298 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
299 	read_unlock(&tasklist_lock);
300 
301 	return retval;
302 }
303 
has_stopped_jobs(struct pid * pgrp)304 static bool has_stopped_jobs(struct pid *pgrp)
305 {
306 	struct task_struct *p;
307 
308 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
309 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
310 			return true;
311 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
312 
313 	return false;
314 }
315 
316 /*
317  * Check to see if any process groups have become orphaned as
318  * a result of our exiting, and if they have any stopped jobs,
319  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
320  */
321 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)322 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
323 {
324 	struct pid *pgrp = task_pgrp(tsk);
325 	struct task_struct *ignored_task = tsk;
326 
327 	if (!parent)
328 		/* exit: our father is in a different pgrp than
329 		 * we are and we were the only connection outside.
330 		 */
331 		parent = tsk->real_parent;
332 	else
333 		/* reparent: our child is in a different pgrp than
334 		 * we are, and it was the only connection outside.
335 		 */
336 		ignored_task = NULL;
337 
338 	if (task_pgrp(parent) != pgrp &&
339 	    task_session(parent) == task_session(tsk) &&
340 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
341 	    has_stopped_jobs(pgrp)) {
342 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
343 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
344 	}
345 }
346 
347 #ifdef CONFIG_MEMCG
348 /*
349  * A task is exiting.   If it owned this mm, find a new owner for the mm.
350  */
mm_update_next_owner(struct mm_struct * mm)351 void mm_update_next_owner(struct mm_struct *mm)
352 {
353 	struct task_struct *c, *g, *p = current;
354 
355 retry:
356 	/*
357 	 * If the exiting or execing task is not the owner, it's
358 	 * someone else's problem.
359 	 */
360 	if (mm->owner != p)
361 		return;
362 	/*
363 	 * The current owner is exiting/execing and there are no other
364 	 * candidates.  Do not leave the mm pointing to a possibly
365 	 * freed task structure.
366 	 */
367 	if (atomic_read(&mm->mm_users) <= 1) {
368 		WRITE_ONCE(mm->owner, NULL);
369 		return;
370 	}
371 
372 	read_lock(&tasklist_lock);
373 	/*
374 	 * Search in the children
375 	 */
376 	list_for_each_entry(c, &p->children, sibling) {
377 		if (c->mm == mm)
378 			goto assign_new_owner;
379 	}
380 
381 	/*
382 	 * Search in the siblings
383 	 */
384 	list_for_each_entry(c, &p->real_parent->children, sibling) {
385 		if (c->mm == mm)
386 			goto assign_new_owner;
387 	}
388 
389 	/*
390 	 * Search through everything else, we should not get here often.
391 	 */
392 	for_each_process(g) {
393 		if (g->flags & PF_KTHREAD)
394 			continue;
395 		for_each_thread(g, c) {
396 			if (c->mm == mm)
397 				goto assign_new_owner;
398 			if (c->mm)
399 				break;
400 		}
401 	}
402 	read_unlock(&tasklist_lock);
403 	/*
404 	 * We found no owner yet mm_users > 1: this implies that we are
405 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
406 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
407 	 */
408 	WRITE_ONCE(mm->owner, NULL);
409 	return;
410 
411 assign_new_owner:
412 	BUG_ON(c == p);
413 	get_task_struct(c);
414 	/*
415 	 * The task_lock protects c->mm from changing.
416 	 * We always want mm->owner->mm == mm
417 	 */
418 	task_lock(c);
419 	/*
420 	 * Delay read_unlock() till we have the task_lock()
421 	 * to ensure that c does not slip away underneath us
422 	 */
423 	read_unlock(&tasklist_lock);
424 	if (c->mm != mm) {
425 		task_unlock(c);
426 		put_task_struct(c);
427 		goto retry;
428 	}
429 	WRITE_ONCE(mm->owner, c);
430 	task_unlock(c);
431 	put_task_struct(c);
432 }
433 #endif /* CONFIG_MEMCG */
434 
435 /*
436  * Turn us into a lazy TLB process if we
437  * aren't already..
438  */
exit_mm(void)439 static void exit_mm(void)
440 {
441 	struct mm_struct *mm = current->mm;
442 	struct core_state *core_state;
443 
444 	exit_mm_release(current, mm);
445 	if (!mm)
446 		return;
447 	sync_mm_rss(mm);
448 	/*
449 	 * Serialize with any possible pending coredump.
450 	 * We must hold mmap_lock around checking core_state
451 	 * and clearing tsk->mm.  The core-inducing thread
452 	 * will increment ->nr_threads for each thread in the
453 	 * group with ->mm != NULL.
454 	 */
455 	mmap_read_lock(mm);
456 	core_state = mm->core_state;
457 	if (core_state) {
458 		struct core_thread self;
459 
460 		mmap_read_unlock(mm);
461 
462 		self.task = current;
463 		if (self.task->flags & PF_SIGNALED)
464 			self.next = xchg(&core_state->dumper.next, &self);
465 		else
466 			self.task = NULL;
467 		/*
468 		 * Implies mb(), the result of xchg() must be visible
469 		 * to core_state->dumper.
470 		 */
471 		if (atomic_dec_and_test(&core_state->nr_threads))
472 			complete(&core_state->startup);
473 
474 		for (;;) {
475 			set_current_state(TASK_UNINTERRUPTIBLE);
476 			if (!self.task) /* see coredump_finish() */
477 				break;
478 			freezable_schedule();
479 		}
480 		__set_current_state(TASK_RUNNING);
481 		mmap_read_lock(mm);
482 	}
483 	mmgrab(mm);
484 	BUG_ON(mm != current->active_mm);
485 	/* more a memory barrier than a real lock */
486 	task_lock(current);
487 	current->mm = NULL;
488 	mmap_read_unlock(mm);
489 	enter_lazy_tlb(mm, current);
490 	task_unlock(current);
491 	mm_update_next_owner(mm);
492 	mmput(mm);
493 	if (test_thread_flag(TIF_MEMDIE))
494 		exit_oom_victim();
495 }
496 
find_alive_thread(struct task_struct * p)497 static struct task_struct *find_alive_thread(struct task_struct *p)
498 {
499 	struct task_struct *t;
500 
501 	for_each_thread(p, t) {
502 		if (!(t->flags & PF_EXITING))
503 			return t;
504 	}
505 	return NULL;
506 }
507 
find_child_reaper(struct task_struct * father,struct list_head * dead)508 static struct task_struct *find_child_reaper(struct task_struct *father,
509 						struct list_head *dead)
510 	__releases(&tasklist_lock)
511 	__acquires(&tasklist_lock)
512 {
513 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
514 	struct task_struct *reaper = pid_ns->child_reaper;
515 	struct task_struct *p, *n;
516 
517 	if (likely(reaper != father))
518 		return reaper;
519 
520 	reaper = find_alive_thread(father);
521 	if (reaper) {
522 		pid_ns->child_reaper = reaper;
523 		return reaper;
524 	}
525 
526 	write_unlock_irq(&tasklist_lock);
527 
528 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
529 		list_del_init(&p->ptrace_entry);
530 		release_task(p);
531 	}
532 
533 	zap_pid_ns_processes(pid_ns);
534 	write_lock_irq(&tasklist_lock);
535 
536 	return father;
537 }
538 
539 /*
540  * When we die, we re-parent all our children, and try to:
541  * 1. give them to another thread in our thread group, if such a member exists
542  * 2. give it to the first ancestor process which prctl'd itself as a
543  *    child_subreaper for its children (like a service manager)
544  * 3. give it to the init process (PID 1) in our pid namespace
545  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)546 static struct task_struct *find_new_reaper(struct task_struct *father,
547 					   struct task_struct *child_reaper)
548 {
549 	struct task_struct *thread, *reaper;
550 
551 	thread = find_alive_thread(father);
552 	if (thread)
553 		return thread;
554 
555 	if (father->signal->has_child_subreaper) {
556 		unsigned int ns_level = task_pid(father)->level;
557 		/*
558 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
559 		 * We can't check reaper != child_reaper to ensure we do not
560 		 * cross the namespaces, the exiting parent could be injected
561 		 * by setns() + fork().
562 		 * We check pid->level, this is slightly more efficient than
563 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
564 		 */
565 		for (reaper = father->real_parent;
566 		     task_pid(reaper)->level == ns_level;
567 		     reaper = reaper->real_parent) {
568 			if (reaper == &init_task)
569 				break;
570 			if (!reaper->signal->is_child_subreaper)
571 				continue;
572 			thread = find_alive_thread(reaper);
573 			if (thread)
574 				return thread;
575 		}
576 	}
577 
578 	return child_reaper;
579 }
580 
581 /*
582 * Any that need to be release_task'd are put on the @dead list.
583  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)584 static void reparent_leader(struct task_struct *father, struct task_struct *p,
585 				struct list_head *dead)
586 {
587 	if (unlikely(p->exit_state == EXIT_DEAD))
588 		return;
589 
590 	/* We don't want people slaying init. */
591 	p->exit_signal = SIGCHLD;
592 
593 	/* If it has exited notify the new parent about this child's death. */
594 	if (!p->ptrace &&
595 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
596 		if (do_notify_parent(p, p->exit_signal)) {
597 			p->exit_state = EXIT_DEAD;
598 			list_add(&p->ptrace_entry, dead);
599 		}
600 	}
601 
602 	kill_orphaned_pgrp(p, father);
603 }
604 
605 /*
606  * This does two things:
607  *
608  * A.  Make init inherit all the child processes
609  * B.  Check to see if any process groups have become orphaned
610  *	as a result of our exiting, and if they have any stopped
611  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
612  */
forget_original_parent(struct task_struct * father,struct list_head * dead)613 static void forget_original_parent(struct task_struct *father,
614 					struct list_head *dead)
615 {
616 	struct task_struct *p, *t, *reaper;
617 
618 	if (unlikely(!list_empty(&father->ptraced)))
619 		exit_ptrace(father, dead);
620 
621 	/* Can drop and reacquire tasklist_lock */
622 	reaper = find_child_reaper(father, dead);
623 	if (list_empty(&father->children))
624 		return;
625 
626 	reaper = find_new_reaper(father, reaper);
627 	list_for_each_entry(p, &father->children, sibling) {
628 		for_each_thread(p, t) {
629 			RCU_INIT_POINTER(t->real_parent, reaper);
630 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
631 			if (likely(!t->ptrace))
632 				t->parent = t->real_parent;
633 			if (t->pdeath_signal)
634 				group_send_sig_info(t->pdeath_signal,
635 						    SEND_SIG_NOINFO, t,
636 						    PIDTYPE_TGID);
637 		}
638 		/*
639 		 * If this is a threaded reparent there is no need to
640 		 * notify anyone anything has happened.
641 		 */
642 		if (!same_thread_group(reaper, father))
643 			reparent_leader(father, p, dead);
644 	}
645 	list_splice_tail_init(&father->children, &reaper->children);
646 }
647 
648 /*
649  * Send signals to all our closest relatives so that they know
650  * to properly mourn us..
651  */
exit_notify(struct task_struct * tsk,int group_dead)652 static void exit_notify(struct task_struct *tsk, int group_dead)
653 {
654 	bool autoreap;
655 	struct task_struct *p, *n;
656 	LIST_HEAD(dead);
657 
658 	write_lock_irq(&tasklist_lock);
659 	forget_original_parent(tsk, &dead);
660 
661 	if (group_dead)
662 		kill_orphaned_pgrp(tsk->group_leader, NULL);
663 
664 	tsk->exit_state = EXIT_ZOMBIE;
665 	if (unlikely(tsk->ptrace)) {
666 		int sig = thread_group_leader(tsk) &&
667 				thread_group_empty(tsk) &&
668 				!ptrace_reparented(tsk) ?
669 			tsk->exit_signal : SIGCHLD;
670 		autoreap = do_notify_parent(tsk, sig);
671 	} else if (thread_group_leader(tsk)) {
672 		autoreap = thread_group_empty(tsk) &&
673 			do_notify_parent(tsk, tsk->exit_signal);
674 	} else {
675 		autoreap = true;
676 	}
677 
678 	if (autoreap) {
679 		tsk->exit_state = EXIT_DEAD;
680 		list_add(&tsk->ptrace_entry, &dead);
681 	}
682 
683 	/* mt-exec, de_thread() is waiting for group leader */
684 	if (unlikely(tsk->signal->notify_count < 0))
685 		wake_up_process(tsk->signal->group_exit_task);
686 	write_unlock_irq(&tasklist_lock);
687 
688 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
689 		list_del_init(&p->ptrace_entry);
690 		release_task(p);
691 	}
692 }
693 
694 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)695 static void check_stack_usage(void)
696 {
697 	static DEFINE_SPINLOCK(low_water_lock);
698 	static int lowest_to_date = THREAD_SIZE;
699 	unsigned long free;
700 
701 	free = stack_not_used(current);
702 
703 	if (free >= lowest_to_date)
704 		return;
705 
706 	spin_lock(&low_water_lock);
707 	if (free < lowest_to_date) {
708 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
709 			current->comm, task_pid_nr(current), free);
710 		lowest_to_date = free;
711 	}
712 	spin_unlock(&low_water_lock);
713 }
714 #else
check_stack_usage(void)715 static inline void check_stack_usage(void) {}
716 #endif
717 
do_exit(long code)718 void __noreturn do_exit(long code)
719 {
720 	struct task_struct *tsk = current;
721 	int group_dead;
722 
723 	/*
724 	 * We can get here from a kernel oops, sometimes with preemption off.
725 	 * Start by checking for critical errors.
726 	 * Then fix up important state like USER_DS and preemption.
727 	 * Then do everything else.
728 	 */
729 
730 	WARN_ON(blk_needs_flush_plug(tsk));
731 
732 	if (unlikely(in_interrupt()))
733 		panic("Aiee, killing interrupt handler!");
734 	if (unlikely(!tsk->pid))
735 		panic("Attempted to kill the idle task!");
736 
737 	/*
738 	 * If do_exit is called because this processes oopsed, it's possible
739 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
740 	 * continuing. Amongst other possible reasons, this is to prevent
741 	 * mm_release()->clear_child_tid() from writing to a user-controlled
742 	 * kernel address.
743 	 */
744 	force_uaccess_begin();
745 
746 	if (unlikely(in_atomic())) {
747 		pr_info("note: %s[%d] exited with preempt_count %d\n",
748 			current->comm, task_pid_nr(current),
749 			preempt_count());
750 		preempt_count_set(PREEMPT_ENABLED);
751 	}
752 
753 	profile_task_exit(tsk);
754 	kcov_task_exit(tsk);
755 
756 	ptrace_event(PTRACE_EVENT_EXIT, code);
757 
758 	validate_creds_for_do_exit(tsk);
759 
760 	/*
761 	 * We're taking recursive faults here in do_exit. Safest is to just
762 	 * leave this task alone and wait for reboot.
763 	 */
764 	if (unlikely(tsk->flags & PF_EXITING)) {
765 		pr_alert("Fixing recursive fault but reboot is needed!\n");
766 		futex_exit_recursive(tsk);
767 		set_current_state(TASK_UNINTERRUPTIBLE);
768 		schedule();
769 	}
770 
771 	io_uring_files_cancel();
772 	exit_signals(tsk);  /* sets PF_EXITING */
773 	sched_exit(tsk);
774 
775 #ifdef CONFIG_QOS_CTRL
776 	sched_exit_qos_list(tsk);
777 #endif
778 
779 	/* sync mm's RSS info before statistics gathering */
780 	if (tsk->mm)
781 		sync_mm_rss(tsk->mm);
782 	acct_update_integrals(tsk);
783 	group_dead = atomic_dec_and_test(&tsk->signal->live);
784 	if (group_dead) {
785 		/*
786 		 * If the last thread of global init has exited, panic
787 		 * immediately to get a useable coredump.
788 		 */
789 		if (unlikely(is_global_init(tsk)))
790 			panic("Attempted to kill init! exitcode=0x%08x\n",
791 				tsk->signal->group_exit_code ?: (int)code);
792 
793 #ifdef CONFIG_POSIX_TIMERS
794 		hrtimer_cancel(&tsk->signal->real_timer);
795 		exit_itimers(tsk);
796 #endif
797 		if (tsk->mm)
798 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
799 	}
800 	acct_collect(code, group_dead);
801 	if (group_dead)
802 		tty_audit_exit();
803 	audit_free(tsk);
804 
805 	tsk->exit_code = code;
806 	taskstats_exit(tsk, group_dead);
807 
808 	exit_mm();
809 
810 	if (group_dead)
811 		acct_process();
812 	trace_sched_process_exit(tsk);
813 
814 	exit_sem(tsk);
815 	exit_shm(tsk);
816 	exit_files(tsk);
817 	exit_fs(tsk);
818 	if (group_dead)
819 		disassociate_ctty(1);
820 	exit_task_namespaces(tsk);
821 	exit_task_work(tsk);
822 	exit_thread(tsk);
823 
824 	/*
825 	 * Flush inherited counters to the parent - before the parent
826 	 * gets woken up by child-exit notifications.
827 	 *
828 	 * because of cgroup mode, must be called before cgroup_exit()
829 	 */
830 	perf_event_exit_task(tsk);
831 
832 	sched_autogroup_exit_task(tsk);
833 	cgroup_exit(tsk);
834 
835 	/*
836 	 * FIXME: do that only when needed, using sched_exit tracepoint
837 	 */
838 	flush_ptrace_hw_breakpoint(tsk);
839 
840 	exit_tasks_rcu_start();
841 	exit_notify(tsk, group_dead);
842 	proc_exit_connector(tsk);
843 	mpol_put_task_policy(tsk);
844 #ifdef CONFIG_FUTEX
845 	if (unlikely(current->pi_state_cache))
846 		kfree(current->pi_state_cache);
847 #endif
848 	/*
849 	 * Make sure we are holding no locks:
850 	 */
851 	debug_check_no_locks_held();
852 
853 	if (tsk->io_context)
854 		exit_io_context(tsk);
855 
856 	if (tsk->splice_pipe)
857 		free_pipe_info(tsk->splice_pipe);
858 
859 	if (tsk->task_frag.page)
860 		put_page(tsk->task_frag.page);
861 
862 	validate_creds_for_do_exit(tsk);
863 
864 	check_stack_usage();
865 	preempt_disable();
866 	if (tsk->nr_dirtied)
867 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
868 	exit_rcu();
869 	exit_tasks_rcu_finish();
870 
871 	lockdep_free_task(tsk);
872 	do_task_dead();
873 }
874 EXPORT_SYMBOL_GPL(do_exit);
875 
complete_and_exit(struct completion * comp,long code)876 void complete_and_exit(struct completion *comp, long code)
877 {
878 	if (comp)
879 		complete(comp);
880 
881 	do_exit(code);
882 }
883 EXPORT_SYMBOL(complete_and_exit);
884 
SYSCALL_DEFINE1(exit,int,error_code)885 SYSCALL_DEFINE1(exit, int, error_code)
886 {
887 	do_exit((error_code&0xff)<<8);
888 }
889 
890 /*
891  * Take down every thread in the group.  This is called by fatal signals
892  * as well as by sys_exit_group (below).
893  */
894 void
do_group_exit(int exit_code)895 do_group_exit(int exit_code)
896 {
897 	struct signal_struct *sig = current->signal;
898 
899 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
900 
901 	if (signal_group_exit(sig))
902 		exit_code = sig->group_exit_code;
903 	else if (!thread_group_empty(current)) {
904 		struct sighand_struct *const sighand = current->sighand;
905 
906 		spin_lock_irq(&sighand->siglock);
907 		if (signal_group_exit(sig))
908 			/* Another thread got here before we took the lock.  */
909 			exit_code = sig->group_exit_code;
910 		else {
911 			sig->group_exit_code = exit_code;
912 			sig->flags = SIGNAL_GROUP_EXIT;
913 			zap_other_threads(current);
914 		}
915 		spin_unlock_irq(&sighand->siglock);
916 	}
917 
918 	do_exit(exit_code);
919 	/* NOTREACHED */
920 }
921 
922 /*
923  * this kills every thread in the thread group. Note that any externally
924  * wait4()-ing process will get the correct exit code - even if this
925  * thread is not the thread group leader.
926  */
SYSCALL_DEFINE1(exit_group,int,error_code)927 SYSCALL_DEFINE1(exit_group, int, error_code)
928 {
929 	do_group_exit((error_code & 0xff) << 8);
930 	/* NOTREACHED */
931 	return 0;
932 }
933 
934 struct waitid_info {
935 	pid_t pid;
936 	uid_t uid;
937 	int status;
938 	int cause;
939 };
940 
941 struct wait_opts {
942 	enum pid_type		wo_type;
943 	int			wo_flags;
944 	struct pid		*wo_pid;
945 
946 	struct waitid_info	*wo_info;
947 	int			wo_stat;
948 	struct rusage		*wo_rusage;
949 
950 	wait_queue_entry_t		child_wait;
951 	int			notask_error;
952 };
953 
eligible_pid(struct wait_opts * wo,struct task_struct * p)954 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
955 {
956 	return	wo->wo_type == PIDTYPE_MAX ||
957 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
958 }
959 
960 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)961 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
962 {
963 	if (!eligible_pid(wo, p))
964 		return 0;
965 
966 	/*
967 	 * Wait for all children (clone and not) if __WALL is set or
968 	 * if it is traced by us.
969 	 */
970 	if (ptrace || (wo->wo_flags & __WALL))
971 		return 1;
972 
973 	/*
974 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
975 	 * otherwise, wait for non-clone children *only*.
976 	 *
977 	 * Note: a "clone" child here is one that reports to its parent
978 	 * using a signal other than SIGCHLD, or a non-leader thread which
979 	 * we can only see if it is traced by us.
980 	 */
981 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
982 		return 0;
983 
984 	return 1;
985 }
986 
987 /*
988  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
989  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
990  * the lock and this task is uninteresting.  If we return nonzero, we have
991  * released the lock and the system call should return.
992  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)993 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
994 {
995 	int state, status;
996 	pid_t pid = task_pid_vnr(p);
997 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
998 	struct waitid_info *infop;
999 
1000 	if (!likely(wo->wo_flags & WEXITED))
1001 		return 0;
1002 
1003 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1004 		status = p->exit_code;
1005 		get_task_struct(p);
1006 		read_unlock(&tasklist_lock);
1007 		sched_annotate_sleep();
1008 		if (wo->wo_rusage)
1009 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1010 		put_task_struct(p);
1011 		goto out_info;
1012 	}
1013 	/*
1014 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1015 	 */
1016 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1017 		EXIT_TRACE : EXIT_DEAD;
1018 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1019 		return 0;
1020 	/*
1021 	 * We own this thread, nobody else can reap it.
1022 	 */
1023 	read_unlock(&tasklist_lock);
1024 	sched_annotate_sleep();
1025 
1026 	/*
1027 	 * Check thread_group_leader() to exclude the traced sub-threads.
1028 	 */
1029 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1030 		struct signal_struct *sig = p->signal;
1031 		struct signal_struct *psig = current->signal;
1032 		unsigned long maxrss;
1033 		u64 tgutime, tgstime;
1034 
1035 		/*
1036 		 * The resource counters for the group leader are in its
1037 		 * own task_struct.  Those for dead threads in the group
1038 		 * are in its signal_struct, as are those for the child
1039 		 * processes it has previously reaped.  All these
1040 		 * accumulate in the parent's signal_struct c* fields.
1041 		 *
1042 		 * We don't bother to take a lock here to protect these
1043 		 * p->signal fields because the whole thread group is dead
1044 		 * and nobody can change them.
1045 		 *
1046 		 * psig->stats_lock also protects us from our sub-theads
1047 		 * which can reap other children at the same time. Until
1048 		 * we change k_getrusage()-like users to rely on this lock
1049 		 * we have to take ->siglock as well.
1050 		 *
1051 		 * We use thread_group_cputime_adjusted() to get times for
1052 		 * the thread group, which consolidates times for all threads
1053 		 * in the group including the group leader.
1054 		 */
1055 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1056 		spin_lock_irq(&current->sighand->siglock);
1057 		write_seqlock(&psig->stats_lock);
1058 		psig->cutime += tgutime + sig->cutime;
1059 		psig->cstime += tgstime + sig->cstime;
1060 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1061 		psig->cmin_flt +=
1062 			p->min_flt + sig->min_flt + sig->cmin_flt;
1063 		psig->cmaj_flt +=
1064 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1065 		psig->cnvcsw +=
1066 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1067 		psig->cnivcsw +=
1068 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1069 		psig->cinblock +=
1070 			task_io_get_inblock(p) +
1071 			sig->inblock + sig->cinblock;
1072 		psig->coublock +=
1073 			task_io_get_oublock(p) +
1074 			sig->oublock + sig->coublock;
1075 		maxrss = max(sig->maxrss, sig->cmaxrss);
1076 		if (psig->cmaxrss < maxrss)
1077 			psig->cmaxrss = maxrss;
1078 		task_io_accounting_add(&psig->ioac, &p->ioac);
1079 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1080 		write_sequnlock(&psig->stats_lock);
1081 		spin_unlock_irq(&current->sighand->siglock);
1082 	}
1083 
1084 	if (wo->wo_rusage)
1085 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1086 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1087 		? p->signal->group_exit_code : p->exit_code;
1088 	wo->wo_stat = status;
1089 
1090 	if (state == EXIT_TRACE) {
1091 		write_lock_irq(&tasklist_lock);
1092 		/* We dropped tasklist, ptracer could die and untrace */
1093 		ptrace_unlink(p);
1094 
1095 		/* If parent wants a zombie, don't release it now */
1096 		state = EXIT_ZOMBIE;
1097 		if (do_notify_parent(p, p->exit_signal))
1098 			state = EXIT_DEAD;
1099 		p->exit_state = state;
1100 		write_unlock_irq(&tasklist_lock);
1101 	}
1102 	if (state == EXIT_DEAD)
1103 		release_task(p);
1104 
1105 out_info:
1106 	infop = wo->wo_info;
1107 	if (infop) {
1108 		if ((status & 0x7f) == 0) {
1109 			infop->cause = CLD_EXITED;
1110 			infop->status = status >> 8;
1111 		} else {
1112 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1113 			infop->status = status & 0x7f;
1114 		}
1115 		infop->pid = pid;
1116 		infop->uid = uid;
1117 	}
1118 
1119 	return pid;
1120 }
1121 
task_stopped_code(struct task_struct * p,bool ptrace)1122 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1123 {
1124 	if (ptrace) {
1125 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1126 			return &p->exit_code;
1127 	} else {
1128 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1129 			return &p->signal->group_exit_code;
1130 	}
1131 	return NULL;
1132 }
1133 
1134 /**
1135  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1136  * @wo: wait options
1137  * @ptrace: is the wait for ptrace
1138  * @p: task to wait for
1139  *
1140  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1141  *
1142  * CONTEXT:
1143  * read_lock(&tasklist_lock), which is released if return value is
1144  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1145  *
1146  * RETURNS:
1147  * 0 if wait condition didn't exist and search for other wait conditions
1148  * should continue.  Non-zero return, -errno on failure and @p's pid on
1149  * success, implies that tasklist_lock is released and wait condition
1150  * search should terminate.
1151  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1152 static int wait_task_stopped(struct wait_opts *wo,
1153 				int ptrace, struct task_struct *p)
1154 {
1155 	struct waitid_info *infop;
1156 	int exit_code, *p_code, why;
1157 	uid_t uid = 0; /* unneeded, required by compiler */
1158 	pid_t pid;
1159 
1160 	/*
1161 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1162 	 */
1163 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1164 		return 0;
1165 
1166 	if (!task_stopped_code(p, ptrace))
1167 		return 0;
1168 
1169 	exit_code = 0;
1170 	spin_lock_irq(&p->sighand->siglock);
1171 
1172 	p_code = task_stopped_code(p, ptrace);
1173 	if (unlikely(!p_code))
1174 		goto unlock_sig;
1175 
1176 	exit_code = *p_code;
1177 	if (!exit_code)
1178 		goto unlock_sig;
1179 
1180 	if (!unlikely(wo->wo_flags & WNOWAIT))
1181 		*p_code = 0;
1182 
1183 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1184 unlock_sig:
1185 	spin_unlock_irq(&p->sighand->siglock);
1186 	if (!exit_code)
1187 		return 0;
1188 
1189 	/*
1190 	 * Now we are pretty sure this task is interesting.
1191 	 * Make sure it doesn't get reaped out from under us while we
1192 	 * give up the lock and then examine it below.  We don't want to
1193 	 * keep holding onto the tasklist_lock while we call getrusage and
1194 	 * possibly take page faults for user memory.
1195 	 */
1196 	get_task_struct(p);
1197 	pid = task_pid_vnr(p);
1198 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1199 	read_unlock(&tasklist_lock);
1200 	sched_annotate_sleep();
1201 	if (wo->wo_rusage)
1202 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1203 	put_task_struct(p);
1204 
1205 	if (likely(!(wo->wo_flags & WNOWAIT)))
1206 		wo->wo_stat = (exit_code << 8) | 0x7f;
1207 
1208 	infop = wo->wo_info;
1209 	if (infop) {
1210 		infop->cause = why;
1211 		infop->status = exit_code;
1212 		infop->pid = pid;
1213 		infop->uid = uid;
1214 	}
1215 	return pid;
1216 }
1217 
1218 /*
1219  * Handle do_wait work for one task in a live, non-stopped state.
1220  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1221  * the lock and this task is uninteresting.  If we return nonzero, we have
1222  * released the lock and the system call should return.
1223  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1224 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1225 {
1226 	struct waitid_info *infop;
1227 	pid_t pid;
1228 	uid_t uid;
1229 
1230 	if (!unlikely(wo->wo_flags & WCONTINUED))
1231 		return 0;
1232 
1233 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1234 		return 0;
1235 
1236 	spin_lock_irq(&p->sighand->siglock);
1237 	/* Re-check with the lock held.  */
1238 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1239 		spin_unlock_irq(&p->sighand->siglock);
1240 		return 0;
1241 	}
1242 	if (!unlikely(wo->wo_flags & WNOWAIT))
1243 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1244 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1245 	spin_unlock_irq(&p->sighand->siglock);
1246 
1247 	pid = task_pid_vnr(p);
1248 	get_task_struct(p);
1249 	read_unlock(&tasklist_lock);
1250 	sched_annotate_sleep();
1251 	if (wo->wo_rusage)
1252 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1253 	put_task_struct(p);
1254 
1255 	infop = wo->wo_info;
1256 	if (!infop) {
1257 		wo->wo_stat = 0xffff;
1258 	} else {
1259 		infop->cause = CLD_CONTINUED;
1260 		infop->pid = pid;
1261 		infop->uid = uid;
1262 		infop->status = SIGCONT;
1263 	}
1264 	return pid;
1265 }
1266 
1267 /*
1268  * Consider @p for a wait by @parent.
1269  *
1270  * -ECHILD should be in ->notask_error before the first call.
1271  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1272  * Returns zero if the search for a child should continue;
1273  * then ->notask_error is 0 if @p is an eligible child,
1274  * or still -ECHILD.
1275  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1276 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1277 				struct task_struct *p)
1278 {
1279 	/*
1280 	 * We can race with wait_task_zombie() from another thread.
1281 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1282 	 * can't confuse the checks below.
1283 	 */
1284 	int exit_state = READ_ONCE(p->exit_state);
1285 	int ret;
1286 
1287 	if (unlikely(exit_state == EXIT_DEAD))
1288 		return 0;
1289 
1290 	ret = eligible_child(wo, ptrace, p);
1291 	if (!ret)
1292 		return ret;
1293 
1294 	if (unlikely(exit_state == EXIT_TRACE)) {
1295 		/*
1296 		 * ptrace == 0 means we are the natural parent. In this case
1297 		 * we should clear notask_error, debugger will notify us.
1298 		 */
1299 		if (likely(!ptrace))
1300 			wo->notask_error = 0;
1301 		return 0;
1302 	}
1303 
1304 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1305 		/*
1306 		 * If it is traced by its real parent's group, just pretend
1307 		 * the caller is ptrace_do_wait() and reap this child if it
1308 		 * is zombie.
1309 		 *
1310 		 * This also hides group stop state from real parent; otherwise
1311 		 * a single stop can be reported twice as group and ptrace stop.
1312 		 * If a ptracer wants to distinguish these two events for its
1313 		 * own children it should create a separate process which takes
1314 		 * the role of real parent.
1315 		 */
1316 		if (!ptrace_reparented(p))
1317 			ptrace = 1;
1318 	}
1319 
1320 	/* slay zombie? */
1321 	if (exit_state == EXIT_ZOMBIE) {
1322 		/* we don't reap group leaders with subthreads */
1323 		if (!delay_group_leader(p)) {
1324 			/*
1325 			 * A zombie ptracee is only visible to its ptracer.
1326 			 * Notification and reaping will be cascaded to the
1327 			 * real parent when the ptracer detaches.
1328 			 */
1329 			if (unlikely(ptrace) || likely(!p->ptrace))
1330 				return wait_task_zombie(wo, p);
1331 		}
1332 
1333 		/*
1334 		 * Allow access to stopped/continued state via zombie by
1335 		 * falling through.  Clearing of notask_error is complex.
1336 		 *
1337 		 * When !@ptrace:
1338 		 *
1339 		 * If WEXITED is set, notask_error should naturally be
1340 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1341 		 * so, if there are live subthreads, there are events to
1342 		 * wait for.  If all subthreads are dead, it's still safe
1343 		 * to clear - this function will be called again in finite
1344 		 * amount time once all the subthreads are released and
1345 		 * will then return without clearing.
1346 		 *
1347 		 * When @ptrace:
1348 		 *
1349 		 * Stopped state is per-task and thus can't change once the
1350 		 * target task dies.  Only continued and exited can happen.
1351 		 * Clear notask_error if WCONTINUED | WEXITED.
1352 		 */
1353 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1354 			wo->notask_error = 0;
1355 	} else {
1356 		/*
1357 		 * @p is alive and it's gonna stop, continue or exit, so
1358 		 * there always is something to wait for.
1359 		 */
1360 		wo->notask_error = 0;
1361 	}
1362 
1363 	/*
1364 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1365 	 * is used and the two don't interact with each other.
1366 	 */
1367 	ret = wait_task_stopped(wo, ptrace, p);
1368 	if (ret)
1369 		return ret;
1370 
1371 	/*
1372 	 * Wait for continued.  There's only one continued state and the
1373 	 * ptracer can consume it which can confuse the real parent.  Don't
1374 	 * use WCONTINUED from ptracer.  You don't need or want it.
1375 	 */
1376 	return wait_task_continued(wo, p);
1377 }
1378 
1379 /*
1380  * Do the work of do_wait() for one thread in the group, @tsk.
1381  *
1382  * -ECHILD should be in ->notask_error before the first call.
1383  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1384  * Returns zero if the search for a child should continue; then
1385  * ->notask_error is 0 if there were any eligible children,
1386  * or still -ECHILD.
1387  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1388 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1389 {
1390 	struct task_struct *p;
1391 
1392 	list_for_each_entry(p, &tsk->children, sibling) {
1393 		int ret = wait_consider_task(wo, 0, p);
1394 
1395 		if (ret)
1396 			return ret;
1397 	}
1398 
1399 	return 0;
1400 }
1401 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1402 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1403 {
1404 	struct task_struct *p;
1405 
1406 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1407 		int ret = wait_consider_task(wo, 1, p);
1408 
1409 		if (ret)
1410 			return ret;
1411 	}
1412 
1413 	return 0;
1414 }
1415 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1416 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1417 				int sync, void *key)
1418 {
1419 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1420 						child_wait);
1421 	struct task_struct *p = key;
1422 
1423 	if (!eligible_pid(wo, p))
1424 		return 0;
1425 
1426 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1427 		return 0;
1428 
1429 	return default_wake_function(wait, mode, sync, key);
1430 }
1431 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1432 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1433 {
1434 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1435 			   TASK_INTERRUPTIBLE, p);
1436 }
1437 
do_wait(struct wait_opts * wo)1438 static long do_wait(struct wait_opts *wo)
1439 {
1440 	struct task_struct *tsk;
1441 	int retval;
1442 
1443 	trace_sched_process_wait(wo->wo_pid);
1444 
1445 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1446 	wo->child_wait.private = current;
1447 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1448 repeat:
1449 	/*
1450 	 * If there is nothing that can match our criteria, just get out.
1451 	 * We will clear ->notask_error to zero if we see any child that
1452 	 * might later match our criteria, even if we are not able to reap
1453 	 * it yet.
1454 	 */
1455 	wo->notask_error = -ECHILD;
1456 	if ((wo->wo_type < PIDTYPE_MAX) &&
1457 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1458 		goto notask;
1459 
1460 	set_current_state(TASK_INTERRUPTIBLE);
1461 	read_lock(&tasklist_lock);
1462 	tsk = current;
1463 	do {
1464 		retval = do_wait_thread(wo, tsk);
1465 		if (retval)
1466 			goto end;
1467 
1468 		retval = ptrace_do_wait(wo, tsk);
1469 		if (retval)
1470 			goto end;
1471 
1472 		if (wo->wo_flags & __WNOTHREAD)
1473 			break;
1474 	} while_each_thread(current, tsk);
1475 	read_unlock(&tasklist_lock);
1476 
1477 notask:
1478 	retval = wo->notask_error;
1479 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1480 		retval = -ERESTARTSYS;
1481 		if (!signal_pending(current)) {
1482 			schedule();
1483 			goto repeat;
1484 		}
1485 	}
1486 end:
1487 	__set_current_state(TASK_RUNNING);
1488 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1489 	return retval;
1490 }
1491 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1492 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1493 			  int options, struct rusage *ru)
1494 {
1495 	struct wait_opts wo;
1496 	struct pid *pid = NULL;
1497 	enum pid_type type;
1498 	long ret;
1499 	unsigned int f_flags = 0;
1500 
1501 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1502 			__WNOTHREAD|__WCLONE|__WALL))
1503 		return -EINVAL;
1504 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1505 		return -EINVAL;
1506 
1507 	switch (which) {
1508 	case P_ALL:
1509 		type = PIDTYPE_MAX;
1510 		break;
1511 	case P_PID:
1512 		type = PIDTYPE_PID;
1513 		if (upid <= 0)
1514 			return -EINVAL;
1515 
1516 		pid = find_get_pid(upid);
1517 		break;
1518 	case P_PGID:
1519 		type = PIDTYPE_PGID;
1520 		if (upid < 0)
1521 			return -EINVAL;
1522 
1523 		if (upid)
1524 			pid = find_get_pid(upid);
1525 		else
1526 			pid = get_task_pid(current, PIDTYPE_PGID);
1527 		break;
1528 	case P_PIDFD:
1529 		type = PIDTYPE_PID;
1530 		if (upid < 0)
1531 			return -EINVAL;
1532 
1533 		pid = pidfd_get_pid(upid, &f_flags);
1534 		if (IS_ERR(pid))
1535 			return PTR_ERR(pid);
1536 
1537 		break;
1538 	default:
1539 		return -EINVAL;
1540 	}
1541 
1542 	wo.wo_type	= type;
1543 	wo.wo_pid	= pid;
1544 	wo.wo_flags	= options;
1545 	wo.wo_info	= infop;
1546 	wo.wo_rusage	= ru;
1547 	if (f_flags & O_NONBLOCK)
1548 		wo.wo_flags |= WNOHANG;
1549 
1550 	ret = do_wait(&wo);
1551 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1552 		ret = -EAGAIN;
1553 
1554 	put_pid(pid);
1555 	return ret;
1556 }
1557 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1558 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1559 		infop, int, options, struct rusage __user *, ru)
1560 {
1561 	struct rusage r;
1562 	struct waitid_info info = {.status = 0};
1563 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1564 	int signo = 0;
1565 
1566 	if (err > 0) {
1567 		signo = SIGCHLD;
1568 		err = 0;
1569 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1570 			return -EFAULT;
1571 	}
1572 	if (!infop)
1573 		return err;
1574 
1575 	if (!user_write_access_begin(infop, sizeof(*infop)))
1576 		return -EFAULT;
1577 
1578 	unsafe_put_user(signo, &infop->si_signo, Efault);
1579 	unsafe_put_user(0, &infop->si_errno, Efault);
1580 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1581 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1582 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1583 	unsafe_put_user(info.status, &infop->si_status, Efault);
1584 	user_write_access_end();
1585 	return err;
1586 Efault:
1587 	user_write_access_end();
1588 	return -EFAULT;
1589 }
1590 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1591 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1592 		  struct rusage *ru)
1593 {
1594 	struct wait_opts wo;
1595 	struct pid *pid = NULL;
1596 	enum pid_type type;
1597 	long ret;
1598 
1599 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1600 			__WNOTHREAD|__WCLONE|__WALL))
1601 		return -EINVAL;
1602 
1603 	/* -INT_MIN is not defined */
1604 	if (upid == INT_MIN)
1605 		return -ESRCH;
1606 
1607 	if (upid == -1)
1608 		type = PIDTYPE_MAX;
1609 	else if (upid < 0) {
1610 		type = PIDTYPE_PGID;
1611 		pid = find_get_pid(-upid);
1612 	} else if (upid == 0) {
1613 		type = PIDTYPE_PGID;
1614 		pid = get_task_pid(current, PIDTYPE_PGID);
1615 	} else /* upid > 0 */ {
1616 		type = PIDTYPE_PID;
1617 		pid = find_get_pid(upid);
1618 	}
1619 
1620 	wo.wo_type	= type;
1621 	wo.wo_pid	= pid;
1622 	wo.wo_flags	= options | WEXITED;
1623 	wo.wo_info	= NULL;
1624 	wo.wo_stat	= 0;
1625 	wo.wo_rusage	= ru;
1626 	ret = do_wait(&wo);
1627 	put_pid(pid);
1628 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1629 		ret = -EFAULT;
1630 
1631 	return ret;
1632 }
1633 
kernel_wait(pid_t pid,int * stat)1634 int kernel_wait(pid_t pid, int *stat)
1635 {
1636 	struct wait_opts wo = {
1637 		.wo_type	= PIDTYPE_PID,
1638 		.wo_pid		= find_get_pid(pid),
1639 		.wo_flags	= WEXITED,
1640 	};
1641 	int ret;
1642 
1643 	ret = do_wait(&wo);
1644 	if (ret > 0 && wo.wo_stat)
1645 		*stat = wo.wo_stat;
1646 	put_pid(wo.wo_pid);
1647 	return ret;
1648 }
1649 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1650 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1651 		int, options, struct rusage __user *, ru)
1652 {
1653 	struct rusage r;
1654 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1655 
1656 	if (err > 0) {
1657 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1658 			return -EFAULT;
1659 	}
1660 	return err;
1661 }
1662 
1663 #ifdef __ARCH_WANT_SYS_WAITPID
1664 
1665 /*
1666  * sys_waitpid() remains for compatibility. waitpid() should be
1667  * implemented by calling sys_wait4() from libc.a.
1668  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1669 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1670 {
1671 	return kernel_wait4(pid, stat_addr, options, NULL);
1672 }
1673 
1674 #endif
1675 
1676 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1677 COMPAT_SYSCALL_DEFINE4(wait4,
1678 	compat_pid_t, pid,
1679 	compat_uint_t __user *, stat_addr,
1680 	int, options,
1681 	struct compat_rusage __user *, ru)
1682 {
1683 	struct rusage r;
1684 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1685 	if (err > 0) {
1686 		if (ru && put_compat_rusage(&r, ru))
1687 			return -EFAULT;
1688 	}
1689 	return err;
1690 }
1691 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1692 COMPAT_SYSCALL_DEFINE5(waitid,
1693 		int, which, compat_pid_t, pid,
1694 		struct compat_siginfo __user *, infop, int, options,
1695 		struct compat_rusage __user *, uru)
1696 {
1697 	struct rusage ru;
1698 	struct waitid_info info = {.status = 0};
1699 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1700 	int signo = 0;
1701 	if (err > 0) {
1702 		signo = SIGCHLD;
1703 		err = 0;
1704 		if (uru) {
1705 			/* kernel_waitid() overwrites everything in ru */
1706 			if (COMPAT_USE_64BIT_TIME)
1707 				err = copy_to_user(uru, &ru, sizeof(ru));
1708 			else
1709 				err = put_compat_rusage(&ru, uru);
1710 			if (err)
1711 				return -EFAULT;
1712 		}
1713 	}
1714 
1715 	if (!infop)
1716 		return err;
1717 
1718 	if (!user_write_access_begin(infop, sizeof(*infop)))
1719 		return -EFAULT;
1720 
1721 	unsafe_put_user(signo, &infop->si_signo, Efault);
1722 	unsafe_put_user(0, &infop->si_errno, Efault);
1723 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1724 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1725 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1726 	unsafe_put_user(info.status, &infop->si_status, Efault);
1727 	user_write_access_end();
1728 	return err;
1729 Efault:
1730 	user_write_access_end();
1731 	return -EFAULT;
1732 }
1733 #endif
1734 
1735 /**
1736  * thread_group_exited - check that a thread group has exited
1737  * @pid: tgid of thread group to be checked.
1738  *
1739  * Test if the thread group represented by tgid has exited (all
1740  * threads are zombies, dead or completely gone).
1741  *
1742  * Return: true if the thread group has exited. false otherwise.
1743  */
thread_group_exited(struct pid * pid)1744 bool thread_group_exited(struct pid *pid)
1745 {
1746 	struct task_struct *task;
1747 	bool exited;
1748 
1749 	rcu_read_lock();
1750 	task = pid_task(pid, PIDTYPE_PID);
1751 	exited = !task ||
1752 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1753 	rcu_read_unlock();
1754 
1755 	return exited;
1756 }
1757 EXPORT_SYMBOL(thread_group_exited);
1758 
abort(void)1759 __weak void abort(void)
1760 {
1761 	BUG();
1762 
1763 	/* if that doesn't kill us, halt */
1764 	panic("Oops failed to kill thread");
1765 }
1766 EXPORT_SYMBOL(abort);
1767