1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_SEQLOCK_H 3 #define __LINUX_SEQLOCK_H 4 5 /* 6 * seqcount_t / seqlock_t - a reader-writer consistency mechanism with 7 * lockless readers (read-only retry loops), and no writer starvation. 8 * 9 * See Documentation/locking/seqlock.rst 10 * 11 * Copyrights: 12 * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli 13 * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH 14 */ 15 16 #include <linux/compiler.h> 17 #include <linux/kcsan-checks.h> 18 #include <linux/lockdep.h> 19 #include <linux/mutex.h> 20 #include <linux/ww_mutex.h> 21 #include <linux/preempt.h> 22 #include <linux/spinlock.h> 23 24 #include <asm/processor.h> 25 26 /* 27 * The seqlock seqcount_t interface does not prescribe a precise sequence of 28 * read begin/retry/end. For readers, typically there is a call to 29 * read_seqcount_begin() and read_seqcount_retry(), however, there are more 30 * esoteric cases which do not follow this pattern. 31 * 32 * As a consequence, we take the following best-effort approach for raw usage 33 * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, 34 * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as 35 * atomics; if there is a matching read_seqcount_retry() call, no following 36 * memory operations are considered atomic. Usage of the seqlock_t interface 37 * is not affected. 38 */ 39 #define KCSAN_SEQLOCK_REGION_MAX 1000 40 41 /* 42 * Sequence counters (seqcount_t) 43 * 44 * This is the raw counting mechanism, without any writer protection. 45 * 46 * Write side critical sections must be serialized and non-preemptible. 47 * 48 * If readers can be invoked from hardirq or softirq contexts, 49 * interrupts or bottom halves must also be respectively disabled before 50 * entering the write section. 51 * 52 * This mechanism can't be used if the protected data contains pointers, 53 * as the writer can invalidate a pointer that a reader is following. 54 * 55 * If the write serialization mechanism is one of the common kernel 56 * locking primitives, use a sequence counter with associated lock 57 * (seqcount_LOCKNAME_t) instead. 58 * 59 * If it's desired to automatically handle the sequence counter writer 60 * serialization and non-preemptibility requirements, use a sequential 61 * lock (seqlock_t) instead. 62 * 63 * See Documentation/locking/seqlock.rst 64 */ 65 typedef struct seqcount { 66 unsigned sequence; 67 #ifdef CONFIG_DEBUG_LOCK_ALLOC 68 struct lockdep_map dep_map; 69 #endif 70 } seqcount_t; 71 __seqcount_init(seqcount_t * s,const char * name,struct lock_class_key * key)72 static inline void __seqcount_init(seqcount_t *s, const char *name, 73 struct lock_class_key *key) 74 { 75 /* 76 * Make sure we are not reinitializing a held lock: 77 */ 78 lockdep_init_map(&s->dep_map, name, key, 0); 79 s->sequence = 0; 80 } 81 82 #ifdef CONFIG_DEBUG_LOCK_ALLOC 83 84 # define SEQCOUNT_DEP_MAP_INIT(lockname) \ 85 .dep_map = { .name = #lockname } 86 87 /** 88 * seqcount_init() - runtime initializer for seqcount_t 89 * @s: Pointer to the seqcount_t instance 90 */ 91 # define seqcount_init(s) \ 92 do { \ 93 static struct lock_class_key __key; \ 94 __seqcount_init((s), #s, &__key); \ 95 } while (0) 96 seqcount_lockdep_reader_access(const seqcount_t * s)97 static inline void seqcount_lockdep_reader_access(const seqcount_t *s) 98 { 99 seqcount_t *l = (seqcount_t *)s; 100 unsigned long flags; 101 102 local_irq_save(flags); 103 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); 104 seqcount_release(&l->dep_map, _RET_IP_); 105 local_irq_restore(flags); 106 } 107 108 #else 109 # define SEQCOUNT_DEP_MAP_INIT(lockname) 110 # define seqcount_init(s) __seqcount_init(s, NULL, NULL) 111 # define seqcount_lockdep_reader_access(x) 112 #endif 113 114 /** 115 * SEQCNT_ZERO() - static initializer for seqcount_t 116 * @name: Name of the seqcount_t instance 117 */ 118 #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } 119 120 /* 121 * Sequence counters with associated locks (seqcount_LOCKNAME_t) 122 * 123 * A sequence counter which associates the lock used for writer 124 * serialization at initialization time. This enables lockdep to validate 125 * that the write side critical section is properly serialized. 126 * 127 * For associated locks which do not implicitly disable preemption, 128 * preemption protection is enforced in the write side function. 129 * 130 * Lockdep is never used in any for the raw write variants. 131 * 132 * See Documentation/locking/seqlock.rst 133 */ 134 135 /* 136 * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot 137 * disable preemption. It can lead to higher latencies, and the write side 138 * sections will not be able to acquire locks which become sleeping locks 139 * (e.g. spinlock_t). 140 * 141 * To remain preemptible while avoiding a possible livelock caused by the 142 * reader preempting the writer, use a different technique: let the reader 143 * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the 144 * case, acquire then release the associated LOCKNAME writer serialization 145 * lock. This will allow any possibly-preempted writer to make progress 146 * until the end of its writer serialization lock critical section. 147 * 148 * This lock-unlock technique must be implemented for all of PREEMPT_RT 149 * sleeping locks. See Documentation/locking/locktypes.rst 150 */ 151 #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT) 152 #define __SEQ_LOCK(expr) expr 153 #else 154 #define __SEQ_LOCK(expr) 155 #endif 156 157 /* 158 * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated 159 * @seqcount: The real sequence counter 160 * @lock: Pointer to the associated lock 161 * 162 * A plain sequence counter with external writer synchronization by 163 * LOCKNAME @lock. The lock is associated to the sequence counter in the 164 * static initializer or init function. This enables lockdep to validate 165 * that the write side critical section is properly serialized. 166 * 167 * LOCKNAME: raw_spinlock, spinlock, rwlock, mutex, or ww_mutex. 168 */ 169 170 /* 171 * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t 172 * @s: Pointer to the seqcount_LOCKNAME_t instance 173 * @lock: Pointer to the associated lock 174 */ 175 176 #define seqcount_LOCKNAME_init(s, _lock, lockname) \ 177 do { \ 178 seqcount_##lockname##_t *____s = (s); \ 179 seqcount_init(&____s->seqcount); \ 180 __SEQ_LOCK(____s->lock = (_lock)); \ 181 } while (0) 182 183 #define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) 184 #define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) 185 #define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock); 186 #define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex); 187 #define seqcount_ww_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, ww_mutex); 188 189 /* 190 * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers 191 * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t 192 * 193 * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t 194 * @locktype: LOCKNAME canonical C data type 195 * @preemptible: preemptibility of above locktype 196 * @lockmember: argument for lockdep_assert_held() 197 * @lockbase: associated lock release function (prefix only) 198 * @lock_acquire: associated lock acquisition function (full call) 199 */ 200 #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \ 201 typedef struct seqcount_##lockname { \ 202 seqcount_t seqcount; \ 203 __SEQ_LOCK(locktype *lock); \ 204 } seqcount_##lockname##_t; \ 205 \ 206 static __always_inline seqcount_t * \ 207 __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ 208 { \ 209 return &s->seqcount; \ 210 } \ 211 \ 212 static __always_inline unsigned \ 213 __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ 214 { \ 215 unsigned seq = READ_ONCE(s->seqcount.sequence); \ 216 \ 217 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 218 return seq; \ 219 \ 220 if (preemptible && unlikely(seq & 1)) { \ 221 __SEQ_LOCK(lock_acquire); \ 222 __SEQ_LOCK(lockbase##_unlock(s->lock)); \ 223 \ 224 /* \ 225 * Re-read the sequence counter since the (possibly \ 226 * preempted) writer made progress. \ 227 */ \ 228 seq = READ_ONCE(s->seqcount.sequence); \ 229 } \ 230 \ 231 return seq; \ 232 } \ 233 \ 234 static __always_inline bool \ 235 __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ 236 { \ 237 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 238 return preemptible; \ 239 \ 240 /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ 241 return false; \ 242 } \ 243 \ 244 static __always_inline void \ 245 __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ 246 { \ 247 __SEQ_LOCK(lockdep_assert_held(lockmember)); \ 248 } 249 250 /* 251 * __seqprop() for seqcount_t 252 */ 253 __seqprop_ptr(seqcount_t * s)254 static inline seqcount_t *__seqprop_ptr(seqcount_t *s) 255 { 256 return s; 257 } 258 __seqprop_sequence(const seqcount_t * s)259 static inline unsigned __seqprop_sequence(const seqcount_t *s) 260 { 261 return READ_ONCE(s->sequence); 262 } 263 __seqprop_preemptible(const seqcount_t * s)264 static inline bool __seqprop_preemptible(const seqcount_t *s) 265 { 266 return false; 267 } 268 __seqprop_assert(const seqcount_t * s)269 static inline void __seqprop_assert(const seqcount_t *s) 270 { 271 lockdep_assert_preemption_disabled(); 272 } 273 274 #define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) 275 276 SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, s->lock, raw_spin, raw_spin_lock(s->lock)) 277 SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, s->lock, spin, spin_lock(s->lock)) 278 SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, s->lock, read, read_lock(s->lock)) 279 SEQCOUNT_LOCKNAME(mutex, struct mutex, true, s->lock, mutex, mutex_lock(s->lock)) 280 SEQCOUNT_LOCKNAME(ww_mutex, struct ww_mutex, true, &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL)) 281 282 /* 283 * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t 284 * @name: Name of the seqcount_LOCKNAME_t instance 285 * @lock: Pointer to the associated LOCKNAME 286 */ 287 288 #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ 289 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 290 __SEQ_LOCK(.lock = (assoc_lock)) \ 291 } 292 293 #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 294 #define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 295 #define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 296 #define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 297 #define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 298 299 #define __seqprop_case(s, lockname, prop) \ 300 seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s)) 301 302 #define __seqprop(s, prop) _Generic(*(s), \ 303 seqcount_t: __seqprop_##prop((void *)(s)), \ 304 __seqprop_case((s), raw_spinlock, prop), \ 305 __seqprop_case((s), spinlock, prop), \ 306 __seqprop_case((s), rwlock, prop), \ 307 __seqprop_case((s), mutex, prop), \ 308 __seqprop_case((s), ww_mutex, prop)) 309 310 #define __seqcount_ptr(s) __seqprop(s, ptr) 311 #define __seqcount_sequence(s) __seqprop(s, sequence) 312 #define __seqcount_lock_preemptible(s) __seqprop(s, preemptible) 313 #define __seqcount_assert_lock_held(s) __seqprop(s, assert) 314 315 /** 316 * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier 317 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 318 * 319 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() 320 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 321 * provided before actually loading any of the variables that are to be 322 * protected in this critical section. 323 * 324 * Use carefully, only in critical code, and comment how the barrier is 325 * provided. 326 * 327 * Return: count to be passed to read_seqcount_retry() 328 */ 329 #define __read_seqcount_begin(s) \ 330 ({ \ 331 unsigned __seq; \ 332 \ 333 while ((__seq = __seqcount_sequence(s)) & 1) \ 334 cpu_relax(); \ 335 \ 336 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 337 __seq; \ 338 }) 339 340 /** 341 * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep 342 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 343 * 344 * Return: count to be passed to read_seqcount_retry() 345 */ 346 #define raw_read_seqcount_begin(s) \ 347 ({ \ 348 unsigned _seq = __read_seqcount_begin(s); \ 349 \ 350 smp_rmb(); \ 351 _seq; \ 352 }) 353 354 /** 355 * read_seqcount_begin() - begin a seqcount_t read critical section 356 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 357 * 358 * Return: count to be passed to read_seqcount_retry() 359 */ 360 #define read_seqcount_begin(s) \ 361 ({ \ 362 seqcount_lockdep_reader_access(__seqcount_ptr(s)); \ 363 raw_read_seqcount_begin(s); \ 364 }) 365 366 /** 367 * raw_read_seqcount() - read the raw seqcount_t counter value 368 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 369 * 370 * raw_read_seqcount opens a read critical section of the given 371 * seqcount_t, without any lockdep checking, and without checking or 372 * masking the sequence counter LSB. Calling code is responsible for 373 * handling that. 374 * 375 * Return: count to be passed to read_seqcount_retry() 376 */ 377 #define raw_read_seqcount(s) \ 378 ({ \ 379 unsigned __seq = __seqcount_sequence(s); \ 380 \ 381 smp_rmb(); \ 382 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 383 __seq; \ 384 }) 385 386 /** 387 * raw_seqcount_begin() - begin a seqcount_t read critical section w/o 388 * lockdep and w/o counter stabilization 389 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 390 * 391 * raw_seqcount_begin opens a read critical section of the given 392 * seqcount_t. Unlike read_seqcount_begin(), this function will not wait 393 * for the count to stabilize. If a writer is active when it begins, it 394 * will fail the read_seqcount_retry() at the end of the read critical 395 * section instead of stabilizing at the beginning of it. 396 * 397 * Use this only in special kernel hot paths where the read section is 398 * small and has a high probability of success through other external 399 * means. It will save a single branching instruction. 400 * 401 * Return: count to be passed to read_seqcount_retry() 402 */ 403 #define raw_seqcount_begin(s) \ 404 ({ \ 405 /* \ 406 * If the counter is odd, let read_seqcount_retry() fail \ 407 * by decrementing the counter. \ 408 */ \ 409 raw_read_seqcount(s) & ~1; \ 410 }) 411 412 /** 413 * __read_seqcount_retry() - end a seqcount_t read section w/o barrier 414 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 415 * @start: count, from read_seqcount_begin() 416 * 417 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() 418 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 419 * provided before actually loading any of the variables that are to be 420 * protected in this critical section. 421 * 422 * Use carefully, only in critical code, and comment how the barrier is 423 * provided. 424 * 425 * Return: true if a read section retry is required, else false 426 */ 427 #define __read_seqcount_retry(s, start) \ 428 __read_seqcount_t_retry(__seqcount_ptr(s), start) 429 __read_seqcount_t_retry(const seqcount_t * s,unsigned start)430 static inline int __read_seqcount_t_retry(const seqcount_t *s, unsigned start) 431 { 432 kcsan_atomic_next(0); 433 return unlikely(READ_ONCE(s->sequence) != start); 434 } 435 436 /** 437 * read_seqcount_retry() - end a seqcount_t read critical section 438 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 439 * @start: count, from read_seqcount_begin() 440 * 441 * read_seqcount_retry closes the read critical section of given 442 * seqcount_t. If the critical section was invalid, it must be ignored 443 * (and typically retried). 444 * 445 * Return: true if a read section retry is required, else false 446 */ 447 #define read_seqcount_retry(s, start) \ 448 read_seqcount_t_retry(__seqcount_ptr(s), start) 449 read_seqcount_t_retry(const seqcount_t * s,unsigned start)450 static inline int read_seqcount_t_retry(const seqcount_t *s, unsigned start) 451 { 452 smp_rmb(); 453 return __read_seqcount_t_retry(s, start); 454 } 455 456 /** 457 * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep 458 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 459 */ 460 #define raw_write_seqcount_begin(s) \ 461 do { \ 462 if (__seqcount_lock_preemptible(s)) \ 463 preempt_disable(); \ 464 \ 465 raw_write_seqcount_t_begin(__seqcount_ptr(s)); \ 466 } while (0) 467 raw_write_seqcount_t_begin(seqcount_t * s)468 static inline void raw_write_seqcount_t_begin(seqcount_t *s) 469 { 470 kcsan_nestable_atomic_begin(); 471 s->sequence++; 472 smp_wmb(); 473 } 474 475 /** 476 * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep 477 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 478 */ 479 #define raw_write_seqcount_end(s) \ 480 do { \ 481 raw_write_seqcount_t_end(__seqcount_ptr(s)); \ 482 \ 483 if (__seqcount_lock_preemptible(s)) \ 484 preempt_enable(); \ 485 } while (0) 486 raw_write_seqcount_t_end(seqcount_t * s)487 static inline void raw_write_seqcount_t_end(seqcount_t *s) 488 { 489 smp_wmb(); 490 s->sequence++; 491 kcsan_nestable_atomic_end(); 492 } 493 494 /** 495 * write_seqcount_begin_nested() - start a seqcount_t write section with 496 * custom lockdep nesting level 497 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 498 * @subclass: lockdep nesting level 499 * 500 * See Documentation/locking/lockdep-design.rst 501 */ 502 #define write_seqcount_begin_nested(s, subclass) \ 503 do { \ 504 __seqcount_assert_lock_held(s); \ 505 \ 506 if (__seqcount_lock_preemptible(s)) \ 507 preempt_disable(); \ 508 \ 509 write_seqcount_t_begin_nested(__seqcount_ptr(s), subclass); \ 510 } while (0) 511 write_seqcount_t_begin_nested(seqcount_t * s,int subclass)512 static inline void write_seqcount_t_begin_nested(seqcount_t *s, int subclass) 513 { 514 raw_write_seqcount_t_begin(s); 515 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); 516 } 517 518 /** 519 * write_seqcount_begin() - start a seqcount_t write side critical section 520 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 521 * 522 * write_seqcount_begin opens a write side critical section of the given 523 * seqcount_t. 524 * 525 * Context: seqcount_t write side critical sections must be serialized and 526 * non-preemptible. If readers can be invoked from hardirq or softirq 527 * context, interrupts or bottom halves must be respectively disabled. 528 */ 529 #define write_seqcount_begin(s) \ 530 do { \ 531 __seqcount_assert_lock_held(s); \ 532 \ 533 if (__seqcount_lock_preemptible(s)) \ 534 preempt_disable(); \ 535 \ 536 write_seqcount_t_begin(__seqcount_ptr(s)); \ 537 } while (0) 538 write_seqcount_t_begin(seqcount_t * s)539 static inline void write_seqcount_t_begin(seqcount_t *s) 540 { 541 write_seqcount_t_begin_nested(s, 0); 542 } 543 544 /** 545 * write_seqcount_end() - end a seqcount_t write side critical section 546 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 547 * 548 * The write section must've been opened with write_seqcount_begin(). 549 */ 550 #define write_seqcount_end(s) \ 551 do { \ 552 write_seqcount_t_end(__seqcount_ptr(s)); \ 553 \ 554 if (__seqcount_lock_preemptible(s)) \ 555 preempt_enable(); \ 556 } while (0) 557 write_seqcount_t_end(seqcount_t * s)558 static inline void write_seqcount_t_end(seqcount_t *s) 559 { 560 seqcount_release(&s->dep_map, _RET_IP_); 561 raw_write_seqcount_t_end(s); 562 } 563 564 /** 565 * raw_write_seqcount_barrier() - do a seqcount_t write barrier 566 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 567 * 568 * This can be used to provide an ordering guarantee instead of the usual 569 * consistency guarantee. It is one wmb cheaper, because it can collapse 570 * the two back-to-back wmb()s. 571 * 572 * Note that writes surrounding the barrier should be declared atomic (e.g. 573 * via WRITE_ONCE): a) to ensure the writes become visible to other threads 574 * atomically, avoiding compiler optimizations; b) to document which writes are 575 * meant to propagate to the reader critical section. This is necessary because 576 * neither writes before and after the barrier are enclosed in a seq-writer 577 * critical section that would ensure readers are aware of ongoing writes:: 578 * 579 * seqcount_t seq; 580 * bool X = true, Y = false; 581 * 582 * void read(void) 583 * { 584 * bool x, y; 585 * 586 * do { 587 * int s = read_seqcount_begin(&seq); 588 * 589 * x = X; y = Y; 590 * 591 * } while (read_seqcount_retry(&seq, s)); 592 * 593 * BUG_ON(!x && !y); 594 * } 595 * 596 * void write(void) 597 * { 598 * WRITE_ONCE(Y, true); 599 * 600 * raw_write_seqcount_barrier(seq); 601 * 602 * WRITE_ONCE(X, false); 603 * } 604 */ 605 #define raw_write_seqcount_barrier(s) \ 606 raw_write_seqcount_t_barrier(__seqcount_ptr(s)) 607 raw_write_seqcount_t_barrier(seqcount_t * s)608 static inline void raw_write_seqcount_t_barrier(seqcount_t *s) 609 { 610 kcsan_nestable_atomic_begin(); 611 s->sequence++; 612 smp_wmb(); 613 s->sequence++; 614 kcsan_nestable_atomic_end(); 615 } 616 617 /** 618 * write_seqcount_invalidate() - invalidate in-progress seqcount_t read 619 * side operations 620 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 621 * 622 * After write_seqcount_invalidate, no seqcount_t read side operations 623 * will complete successfully and see data older than this. 624 */ 625 #define write_seqcount_invalidate(s) \ 626 write_seqcount_t_invalidate(__seqcount_ptr(s)) 627 write_seqcount_t_invalidate(seqcount_t * s)628 static inline void write_seqcount_t_invalidate(seqcount_t *s) 629 { 630 smp_wmb(); 631 kcsan_nestable_atomic_begin(); 632 s->sequence+=2; 633 kcsan_nestable_atomic_end(); 634 } 635 636 /* 637 * Latch sequence counters (seqcount_latch_t) 638 * 639 * A sequence counter variant where the counter even/odd value is used to 640 * switch between two copies of protected data. This allows the read path, 641 * typically NMIs, to safely interrupt the write side critical section. 642 * 643 * As the write sections are fully preemptible, no special handling for 644 * PREEMPT_RT is needed. 645 */ 646 typedef struct { 647 seqcount_t seqcount; 648 } seqcount_latch_t; 649 650 /** 651 * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t 652 * @seq_name: Name of the seqcount_latch_t instance 653 */ 654 #define SEQCNT_LATCH_ZERO(seq_name) { \ 655 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 656 } 657 658 /** 659 * seqcount_latch_init() - runtime initializer for seqcount_latch_t 660 * @s: Pointer to the seqcount_latch_t instance 661 */ 662 #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) 663 664 /** 665 * raw_read_seqcount_latch() - pick even/odd latch data copy 666 * @s: Pointer to seqcount_latch_t 667 * 668 * See raw_write_seqcount_latch() for details and a full reader/writer 669 * usage example. 670 * 671 * Return: sequence counter raw value. Use the lowest bit as an index for 672 * picking which data copy to read. The full counter must then be checked 673 * with read_seqcount_latch_retry(). 674 */ raw_read_seqcount_latch(const seqcount_latch_t * s)675 static inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) 676 { 677 /* 678 * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). 679 * Due to the dependent load, a full smp_rmb() is not needed. 680 */ 681 return READ_ONCE(s->seqcount.sequence); 682 } 683 684 /** 685 * read_seqcount_latch_retry() - end a seqcount_latch_t read section 686 * @s: Pointer to seqcount_latch_t 687 * @start: count, from raw_read_seqcount_latch() 688 * 689 * Return: true if a read section retry is required, else false 690 */ 691 static inline int read_seqcount_latch_retry(const seqcount_latch_t * s,unsigned start)692 read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) 693 { 694 return read_seqcount_retry(&s->seqcount, start); 695 } 696 697 /** 698 * raw_write_seqcount_latch() - redirect latch readers to even/odd copy 699 * @s: Pointer to seqcount_latch_t 700 * 701 * The latch technique is a multiversion concurrency control method that allows 702 * queries during non-atomic modifications. If you can guarantee queries never 703 * interrupt the modification -- e.g. the concurrency is strictly between CPUs 704 * -- you most likely do not need this. 705 * 706 * Where the traditional RCU/lockless data structures rely on atomic 707 * modifications to ensure queries observe either the old or the new state the 708 * latch allows the same for non-atomic updates. The trade-off is doubling the 709 * cost of storage; we have to maintain two copies of the entire data 710 * structure. 711 * 712 * Very simply put: we first modify one copy and then the other. This ensures 713 * there is always one copy in a stable state, ready to give us an answer. 714 * 715 * The basic form is a data structure like:: 716 * 717 * struct latch_struct { 718 * seqcount_latch_t seq; 719 * struct data_struct data[2]; 720 * }; 721 * 722 * Where a modification, which is assumed to be externally serialized, does the 723 * following:: 724 * 725 * void latch_modify(struct latch_struct *latch, ...) 726 * { 727 * smp_wmb(); // Ensure that the last data[1] update is visible 728 * latch->seq.sequence++; 729 * smp_wmb(); // Ensure that the seqcount update is visible 730 * 731 * modify(latch->data[0], ...); 732 * 733 * smp_wmb(); // Ensure that the data[0] update is visible 734 * latch->seq.sequence++; 735 * smp_wmb(); // Ensure that the seqcount update is visible 736 * 737 * modify(latch->data[1], ...); 738 * } 739 * 740 * The query will have a form like:: 741 * 742 * struct entry *latch_query(struct latch_struct *latch, ...) 743 * { 744 * struct entry *entry; 745 * unsigned seq, idx; 746 * 747 * do { 748 * seq = raw_read_seqcount_latch(&latch->seq); 749 * 750 * idx = seq & 0x01; 751 * entry = data_query(latch->data[idx], ...); 752 * 753 * // This includes needed smp_rmb() 754 * } while (read_seqcount_latch_retry(&latch->seq, seq)); 755 * 756 * return entry; 757 * } 758 * 759 * So during the modification, queries are first redirected to data[1]. Then we 760 * modify data[0]. When that is complete, we redirect queries back to data[0] 761 * and we can modify data[1]. 762 * 763 * NOTE: 764 * 765 * The non-requirement for atomic modifications does _NOT_ include 766 * the publishing of new entries in the case where data is a dynamic 767 * data structure. 768 * 769 * An iteration might start in data[0] and get suspended long enough 770 * to miss an entire modification sequence, once it resumes it might 771 * observe the new entry. 772 * 773 * NOTE2: 774 * 775 * When data is a dynamic data structure; one should use regular RCU 776 * patterns to manage the lifetimes of the objects within. 777 */ raw_write_seqcount_latch(seqcount_latch_t * s)778 static inline void raw_write_seqcount_latch(seqcount_latch_t *s) 779 { 780 smp_wmb(); /* prior stores before incrementing "sequence" */ 781 s->seqcount.sequence++; 782 smp_wmb(); /* increment "sequence" before following stores */ 783 } 784 785 /* 786 * Sequential locks (seqlock_t) 787 * 788 * Sequence counters with an embedded spinlock for writer serialization 789 * and non-preemptibility. 790 * 791 * For more info, see: 792 * - Comments on top of seqcount_t 793 * - Documentation/locking/seqlock.rst 794 */ 795 typedef struct { 796 /* 797 * Make sure that readers don't starve writers on PREEMPT_RT: use 798 * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK(). 799 */ 800 seqcount_spinlock_t seqcount; 801 spinlock_t lock; 802 } seqlock_t; 803 804 #define __SEQLOCK_UNLOCKED(lockname) \ 805 { \ 806 .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ 807 .lock = __SPIN_LOCK_UNLOCKED(lockname) \ 808 } 809 810 /** 811 * seqlock_init() - dynamic initializer for seqlock_t 812 * @sl: Pointer to the seqlock_t instance 813 */ 814 #define seqlock_init(sl) \ 815 do { \ 816 spin_lock_init(&(sl)->lock); \ 817 seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ 818 } while (0) 819 820 /** 821 * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t 822 * @sl: Name of the seqlock_t instance 823 */ 824 #define DEFINE_SEQLOCK(sl) \ 825 seqlock_t sl = __SEQLOCK_UNLOCKED(sl) 826 827 /** 828 * read_seqbegin() - start a seqlock_t read side critical section 829 * @sl: Pointer to seqlock_t 830 * 831 * Return: count, to be passed to read_seqretry() 832 */ read_seqbegin(const seqlock_t * sl)833 static inline unsigned read_seqbegin(const seqlock_t *sl) 834 { 835 unsigned ret = read_seqcount_begin(&sl->seqcount); 836 837 kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ 838 kcsan_flat_atomic_begin(); 839 return ret; 840 } 841 842 /** 843 * read_seqretry() - end a seqlock_t read side section 844 * @sl: Pointer to seqlock_t 845 * @start: count, from read_seqbegin() 846 * 847 * read_seqretry closes the read side critical section of given seqlock_t. 848 * If the critical section was invalid, it must be ignored (and typically 849 * retried). 850 * 851 * Return: true if a read section retry is required, else false 852 */ read_seqretry(const seqlock_t * sl,unsigned start)853 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) 854 { 855 /* 856 * Assume not nested: read_seqretry() may be called multiple times when 857 * completing read critical section. 858 */ 859 kcsan_flat_atomic_end(); 860 861 return read_seqcount_retry(&sl->seqcount, start); 862 } 863 864 /* 865 * For all seqlock_t write side functions, use write_seqcount_*t*_begin() 866 * instead of the generic write_seqcount_begin(). This way, no redundant 867 * lockdep_assert_held() checks are added. 868 */ 869 870 /** 871 * write_seqlock() - start a seqlock_t write side critical section 872 * @sl: Pointer to seqlock_t 873 * 874 * write_seqlock opens a write side critical section for the given 875 * seqlock_t. It also implicitly acquires the spinlock_t embedded inside 876 * that sequential lock. All seqlock_t write side sections are thus 877 * automatically serialized and non-preemptible. 878 * 879 * Context: if the seqlock_t read section, or other write side critical 880 * sections, can be invoked from hardirq or softirq contexts, use the 881 * _irqsave or _bh variants of this function instead. 882 */ write_seqlock(seqlock_t * sl)883 static inline void write_seqlock(seqlock_t *sl) 884 { 885 spin_lock(&sl->lock); 886 write_seqcount_t_begin(&sl->seqcount.seqcount); 887 } 888 889 /** 890 * write_sequnlock() - end a seqlock_t write side critical section 891 * @sl: Pointer to seqlock_t 892 * 893 * write_sequnlock closes the (serialized and non-preemptible) write side 894 * critical section of given seqlock_t. 895 */ write_sequnlock(seqlock_t * sl)896 static inline void write_sequnlock(seqlock_t *sl) 897 { 898 write_seqcount_t_end(&sl->seqcount.seqcount); 899 spin_unlock(&sl->lock); 900 } 901 902 /** 903 * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section 904 * @sl: Pointer to seqlock_t 905 * 906 * _bh variant of write_seqlock(). Use only if the read side section, or 907 * other write side sections, can be invoked from softirq contexts. 908 */ write_seqlock_bh(seqlock_t * sl)909 static inline void write_seqlock_bh(seqlock_t *sl) 910 { 911 spin_lock_bh(&sl->lock); 912 write_seqcount_t_begin(&sl->seqcount.seqcount); 913 } 914 915 /** 916 * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section 917 * @sl: Pointer to seqlock_t 918 * 919 * write_sequnlock_bh closes the serialized, non-preemptible, and 920 * softirqs-disabled, seqlock_t write side critical section opened with 921 * write_seqlock_bh(). 922 */ write_sequnlock_bh(seqlock_t * sl)923 static inline void write_sequnlock_bh(seqlock_t *sl) 924 { 925 write_seqcount_t_end(&sl->seqcount.seqcount); 926 spin_unlock_bh(&sl->lock); 927 } 928 929 /** 930 * write_seqlock_irq() - start a non-interruptible seqlock_t write section 931 * @sl: Pointer to seqlock_t 932 * 933 * _irq variant of write_seqlock(). Use only if the read side section, or 934 * other write sections, can be invoked from hardirq contexts. 935 */ write_seqlock_irq(seqlock_t * sl)936 static inline void write_seqlock_irq(seqlock_t *sl) 937 { 938 spin_lock_irq(&sl->lock); 939 write_seqcount_t_begin(&sl->seqcount.seqcount); 940 } 941 942 /** 943 * write_sequnlock_irq() - end a non-interruptible seqlock_t write section 944 * @sl: Pointer to seqlock_t 945 * 946 * write_sequnlock_irq closes the serialized and non-interruptible 947 * seqlock_t write side section opened with write_seqlock_irq(). 948 */ write_sequnlock_irq(seqlock_t * sl)949 static inline void write_sequnlock_irq(seqlock_t *sl) 950 { 951 write_seqcount_t_end(&sl->seqcount.seqcount); 952 spin_unlock_irq(&sl->lock); 953 } 954 __write_seqlock_irqsave(seqlock_t * sl)955 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) 956 { 957 unsigned long flags; 958 959 spin_lock_irqsave(&sl->lock, flags); 960 write_seqcount_t_begin(&sl->seqcount.seqcount); 961 return flags; 962 } 963 964 /** 965 * write_seqlock_irqsave() - start a non-interruptible seqlock_t write 966 * section 967 * @lock: Pointer to seqlock_t 968 * @flags: Stack-allocated storage for saving caller's local interrupt 969 * state, to be passed to write_sequnlock_irqrestore(). 970 * 971 * _irqsave variant of write_seqlock(). Use it only if the read side 972 * section, or other write sections, can be invoked from hardirq context. 973 */ 974 #define write_seqlock_irqsave(lock, flags) \ 975 do { flags = __write_seqlock_irqsave(lock); } while (0) 976 977 /** 978 * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write 979 * section 980 * @sl: Pointer to seqlock_t 981 * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() 982 * 983 * write_sequnlock_irqrestore closes the serialized and non-interruptible 984 * seqlock_t write section previously opened with write_seqlock_irqsave(). 985 */ 986 static inline void write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)987 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) 988 { 989 write_seqcount_t_end(&sl->seqcount.seqcount); 990 spin_unlock_irqrestore(&sl->lock, flags); 991 } 992 993 /** 994 * read_seqlock_excl() - begin a seqlock_t locking reader section 995 * @sl: Pointer to seqlock_t 996 * 997 * read_seqlock_excl opens a seqlock_t locking reader critical section. A 998 * locking reader exclusively locks out *both* other writers *and* other 999 * locking readers, but it does not update the embedded sequence number. 1000 * 1001 * Locking readers act like a normal spin_lock()/spin_unlock(). 1002 * 1003 * Context: if the seqlock_t write section, *or other read sections*, can 1004 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1005 * variant of this function instead. 1006 * 1007 * The opened read section must be closed with read_sequnlock_excl(). 1008 */ read_seqlock_excl(seqlock_t * sl)1009 static inline void read_seqlock_excl(seqlock_t *sl) 1010 { 1011 spin_lock(&sl->lock); 1012 } 1013 1014 /** 1015 * read_sequnlock_excl() - end a seqlock_t locking reader critical section 1016 * @sl: Pointer to seqlock_t 1017 */ read_sequnlock_excl(seqlock_t * sl)1018 static inline void read_sequnlock_excl(seqlock_t *sl) 1019 { 1020 spin_unlock(&sl->lock); 1021 } 1022 1023 /** 1024 * read_seqlock_excl_bh() - start a seqlock_t locking reader section with 1025 * softirqs disabled 1026 * @sl: Pointer to seqlock_t 1027 * 1028 * _bh variant of read_seqlock_excl(). Use this variant only if the 1029 * seqlock_t write side section, *or other read sections*, can be invoked 1030 * from softirq contexts. 1031 */ read_seqlock_excl_bh(seqlock_t * sl)1032 static inline void read_seqlock_excl_bh(seqlock_t *sl) 1033 { 1034 spin_lock_bh(&sl->lock); 1035 } 1036 1037 /** 1038 * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking 1039 * reader section 1040 * @sl: Pointer to seqlock_t 1041 */ read_sequnlock_excl_bh(seqlock_t * sl)1042 static inline void read_sequnlock_excl_bh(seqlock_t *sl) 1043 { 1044 spin_unlock_bh(&sl->lock); 1045 } 1046 1047 /** 1048 * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking 1049 * reader section 1050 * @sl: Pointer to seqlock_t 1051 * 1052 * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t 1053 * write side section, *or other read sections*, can be invoked from a 1054 * hardirq context. 1055 */ read_seqlock_excl_irq(seqlock_t * sl)1056 static inline void read_seqlock_excl_irq(seqlock_t *sl) 1057 { 1058 spin_lock_irq(&sl->lock); 1059 } 1060 1061 /** 1062 * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t 1063 * locking reader section 1064 * @sl: Pointer to seqlock_t 1065 */ read_sequnlock_excl_irq(seqlock_t * sl)1066 static inline void read_sequnlock_excl_irq(seqlock_t *sl) 1067 { 1068 spin_unlock_irq(&sl->lock); 1069 } 1070 __read_seqlock_excl_irqsave(seqlock_t * sl)1071 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) 1072 { 1073 unsigned long flags; 1074 1075 spin_lock_irqsave(&sl->lock, flags); 1076 return flags; 1077 } 1078 1079 /** 1080 * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t 1081 * locking reader section 1082 * @lock: Pointer to seqlock_t 1083 * @flags: Stack-allocated storage for saving caller's local interrupt 1084 * state, to be passed to read_sequnlock_excl_irqrestore(). 1085 * 1086 * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t 1087 * write side section, *or other read sections*, can be invoked from a 1088 * hardirq context. 1089 */ 1090 #define read_seqlock_excl_irqsave(lock, flags) \ 1091 do { flags = __read_seqlock_excl_irqsave(lock); } while (0) 1092 1093 /** 1094 * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t 1095 * locking reader section 1096 * @sl: Pointer to seqlock_t 1097 * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() 1098 */ 1099 static inline void read_sequnlock_excl_irqrestore(seqlock_t * sl,unsigned long flags)1100 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) 1101 { 1102 spin_unlock_irqrestore(&sl->lock, flags); 1103 } 1104 1105 /** 1106 * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader 1107 * @lock: Pointer to seqlock_t 1108 * @seq : Marker and return parameter. If the passed value is even, the 1109 * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). 1110 * If the passed value is odd, the reader will become a *locking* reader 1111 * as in read_seqlock_excl(). In the first call to this function, the 1112 * caller *must* initialize and pass an even value to @seq; this way, a 1113 * lockless read can be optimistically tried first. 1114 * 1115 * read_seqbegin_or_lock is an API designed to optimistically try a normal 1116 * lockless seqlock_t read section first. If an odd counter is found, the 1117 * lockless read trial has failed, and the next read iteration transforms 1118 * itself into a full seqlock_t locking reader. 1119 * 1120 * This is typically used to avoid seqlock_t lockless readers starvation 1121 * (too much retry loops) in the case of a sharp spike in write side 1122 * activity. 1123 * 1124 * Context: if the seqlock_t write section, *or other read sections*, can 1125 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1126 * variant of this function instead. 1127 * 1128 * Check Documentation/locking/seqlock.rst for template example code. 1129 * 1130 * Return: the encountered sequence counter value, through the @seq 1131 * parameter, which is overloaded as a return parameter. This returned 1132 * value must be checked with need_seqretry(). If the read section need to 1133 * be retried, this returned value must also be passed as the @seq 1134 * parameter of the next read_seqbegin_or_lock() iteration. 1135 */ read_seqbegin_or_lock(seqlock_t * lock,int * seq)1136 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) 1137 { 1138 if (!(*seq & 1)) /* Even */ 1139 *seq = read_seqbegin(lock); 1140 else /* Odd */ 1141 read_seqlock_excl(lock); 1142 } 1143 1144 /** 1145 * need_seqretry() - validate seqlock_t "locking or lockless" read section 1146 * @lock: Pointer to seqlock_t 1147 * @seq: sequence count, from read_seqbegin_or_lock() 1148 * 1149 * Return: true if a read section retry is required, false otherwise 1150 */ need_seqretry(seqlock_t * lock,int seq)1151 static inline int need_seqretry(seqlock_t *lock, int seq) 1152 { 1153 return !(seq & 1) && read_seqretry(lock, seq); 1154 } 1155 1156 /** 1157 * done_seqretry() - end seqlock_t "locking or lockless" reader section 1158 * @lock: Pointer to seqlock_t 1159 * @seq: count, from read_seqbegin_or_lock() 1160 * 1161 * done_seqretry finishes the seqlock_t read side critical section started 1162 * with read_seqbegin_or_lock() and validated by need_seqretry(). 1163 */ done_seqretry(seqlock_t * lock,int seq)1164 static inline void done_seqretry(seqlock_t *lock, int seq) 1165 { 1166 if (seq & 1) 1167 read_sequnlock_excl(lock); 1168 } 1169 1170 /** 1171 * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or 1172 * a non-interruptible locking reader 1173 * @lock: Pointer to seqlock_t 1174 * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). 1175 * 1176 * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if 1177 * the seqlock_t write section, *or other read sections*, can be invoked 1178 * from hardirq context. 1179 * 1180 * Note: Interrupts will be disabled only for "locking reader" mode. 1181 * 1182 * Return: 1183 * 1184 * 1. The saved local interrupts state in case of a locking reader, to 1185 * be passed to done_seqretry_irqrestore(). 1186 * 1187 * 2. The encountered sequence counter value, returned through @seq 1188 * overloaded as a return parameter. Check read_seqbegin_or_lock(). 1189 */ 1190 static inline unsigned long read_seqbegin_or_lock_irqsave(seqlock_t * lock,int * seq)1191 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) 1192 { 1193 unsigned long flags = 0; 1194 1195 if (!(*seq & 1)) /* Even */ 1196 *seq = read_seqbegin(lock); 1197 else /* Odd */ 1198 read_seqlock_excl_irqsave(lock, flags); 1199 1200 return flags; 1201 } 1202 1203 /** 1204 * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a 1205 * non-interruptible locking reader section 1206 * @lock: Pointer to seqlock_t 1207 * @seq: Count, from read_seqbegin_or_lock_irqsave() 1208 * @flags: Caller's saved local interrupt state in case of a locking 1209 * reader, also from read_seqbegin_or_lock_irqsave() 1210 * 1211 * This is the _irqrestore variant of done_seqretry(). The read section 1212 * must've been opened with read_seqbegin_or_lock_irqsave(), and validated 1213 * by need_seqretry(). 1214 */ 1215 static inline void done_seqretry_irqrestore(seqlock_t * lock,int seq,unsigned long flags)1216 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) 1217 { 1218 if (seq & 1) 1219 read_sequnlock_excl_irqrestore(lock, flags); 1220 } 1221 #endif /* __LINUX_SEQLOCK_H */ 1222