1 //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the SparseSet class derived from the version described in 10 // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters 11 // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993. 12 // 13 // A sparse set holds a small number of objects identified by integer keys from 14 // a moderately sized universe. The sparse set uses more memory than other 15 // containers in order to provide faster operations. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #ifndef LLVM_ADT_SPARSESET_H 20 #define LLVM_ADT_SPARSESET_H 21 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Support/Allocator.h" 25 #include <cassert> 26 #include <cstdint> 27 #include <cstdlib> 28 #include <limits> 29 #include <utility> 30 31 namespace llvm { 32 33 /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can 34 /// be uniquely converted to a small integer less than the set's universe. This 35 /// class allows the set to hold values that differ from the set's key type as 36 /// long as an index can still be derived from the value. SparseSet never 37 /// directly compares ValueT, only their indices, so it can map keys to 38 /// arbitrary values. SparseSetValTraits computes the index from the value 39 /// object. To compute the index from a key, SparseSet uses a separate 40 /// KeyFunctorT template argument. 41 /// 42 /// A simple type declaration, SparseSet<Type>, handles these cases: 43 /// - unsigned key, identity index, identity value 44 /// - unsigned key, identity index, fat value providing getSparseSetIndex() 45 /// 46 /// The type declaration SparseSet<Type, UnaryFunction> handles: 47 /// - unsigned key, remapped index, identity value (virtual registers) 48 /// - pointer key, pointer-derived index, identity value (node+ID) 49 /// - pointer key, pointer-derived index, fat value with getSparseSetIndex() 50 /// 51 /// Only other, unexpected cases require specializing SparseSetValTraits. 52 /// 53 /// For best results, ValueT should not require a destructor. 54 /// 55 template<typename ValueT> 56 struct SparseSetValTraits { getValIndexSparseSetValTraits57 static unsigned getValIndex(const ValueT &Val) { 58 return Val.getSparseSetIndex(); 59 } 60 }; 61 62 /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The 63 /// generic implementation handles ValueT classes which either provide 64 /// getSparseSetIndex() or specialize SparseSetValTraits<>. 65 /// 66 template<typename KeyT, typename ValueT, typename KeyFunctorT> 67 struct SparseSetValFunctor { operatorSparseSetValFunctor68 unsigned operator()(const ValueT &Val) const { 69 return SparseSetValTraits<ValueT>::getValIndex(Val); 70 } 71 }; 72 73 /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of 74 /// identity key/value sets. 75 template<typename KeyT, typename KeyFunctorT> 76 struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { 77 unsigned operator()(const KeyT &Key) const { 78 return KeyFunctorT()(Key); 79 } 80 }; 81 82 /// SparseSet - Fast set implmentation for objects that can be identified by 83 /// small unsigned keys. 84 /// 85 /// SparseSet allocates memory proportional to the size of the key universe, so 86 /// it is not recommended for building composite data structures. It is useful 87 /// for algorithms that require a single set with fast operations. 88 /// 89 /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast 90 /// clear() and iteration as fast as a vector. The find(), insert(), and 91 /// erase() operations are all constant time, and typically faster than a hash 92 /// table. The iteration order doesn't depend on numerical key values, it only 93 /// depends on the order of insert() and erase() operations. When no elements 94 /// have been erased, the iteration order is the insertion order. 95 /// 96 /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but 97 /// offers constant-time clear() and size() operations as well as fast 98 /// iteration independent on the size of the universe. 99 /// 100 /// SparseSet contains a dense vector holding all the objects and a sparse 101 /// array holding indexes into the dense vector. Most of the memory is used by 102 /// the sparse array which is the size of the key universe. The SparseT 103 /// template parameter provides a space/speed tradeoff for sets holding many 104 /// elements. 105 /// 106 /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse 107 /// array uses 4 x Universe bytes. 108 /// 109 /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache 110 /// lines, but the sparse array is 4x smaller. N is the number of elements in 111 /// the set. 112 /// 113 /// For sets that may grow to thousands of elements, SparseT should be set to 114 /// uint16_t or uint32_t. 115 /// 116 /// @tparam ValueT The type of objects in the set. 117 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. 118 /// @tparam SparseT An unsigned integer type. See above. 119 /// 120 template<typename ValueT, 121 typename KeyFunctorT = identity<unsigned>, 122 typename SparseT = uint8_t> 123 class SparseSet { 124 static_assert(std::numeric_limits<SparseT>::is_integer && 125 !std::numeric_limits<SparseT>::is_signed, 126 "SparseT must be an unsigned integer type"); 127 128 using KeyT = typename KeyFunctorT::argument_type; 129 using DenseT = SmallVector<ValueT, 8>; 130 using size_type = unsigned; 131 DenseT Dense; 132 SparseT *Sparse = nullptr; 133 unsigned Universe = 0; 134 KeyFunctorT KeyIndexOf; 135 SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; 136 137 public: 138 using value_type = ValueT; 139 using reference = ValueT &; 140 using const_reference = const ValueT &; 141 using pointer = ValueT *; 142 using const_pointer = const ValueT *; 143 144 SparseSet() = default; 145 SparseSet(const SparseSet &) = delete; 146 SparseSet &operator=(const SparseSet &) = delete; 147 ~SparseSet() { free(Sparse); } 148 149 /// setUniverse - Set the universe size which determines the largest key the 150 /// set can hold. The universe must be sized before any elements can be 151 /// added. 152 /// 153 /// @param U Universe size. All object keys must be less than U. 154 /// 155 void setUniverse(unsigned U) { 156 // It's not hard to resize the universe on a non-empty set, but it doesn't 157 // seem like a likely use case, so we can add that code when we need it. 158 assert(empty() && "Can only resize universe on an empty map"); 159 // Hysteresis prevents needless reallocations. 160 if (U >= Universe/4 && U <= Universe) 161 return; 162 free(Sparse); 163 // The Sparse array doesn't actually need to be initialized, so malloc 164 // would be enough here, but that will cause tools like valgrind to 165 // complain about branching on uninitialized data. 166 Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); 167 Universe = U; 168 } 169 170 // Import trivial vector stuff from DenseT. 171 using iterator = typename DenseT::iterator; 172 using const_iterator = typename DenseT::const_iterator; 173 174 const_iterator begin() const { return Dense.begin(); } 175 const_iterator end() const { return Dense.end(); } 176 iterator begin() { return Dense.begin(); } 177 iterator end() { return Dense.end(); } 178 179 /// empty - Returns true if the set is empty. 180 /// 181 /// This is not the same as BitVector::empty(). 182 /// 183 bool empty() const { return Dense.empty(); } 184 185 /// size - Returns the number of elements in the set. 186 /// 187 /// This is not the same as BitVector::size() which returns the size of the 188 /// universe. 189 /// 190 size_type size() const { return Dense.size(); } 191 192 /// clear - Clears the set. This is a very fast constant time operation. 193 /// 194 void clear() { 195 // Sparse does not need to be cleared, see find(). 196 Dense.clear(); 197 } 198 199 /// findIndex - Find an element by its index. 200 /// 201 /// @param Idx A valid index to find. 202 /// @returns An iterator to the element identified by key, or end(). 203 /// 204 iterator findIndex(unsigned Idx) { 205 assert(Idx < Universe && "Key out of range"); 206 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; 207 for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { 208 const unsigned FoundIdx = ValIndexOf(Dense[i]); 209 assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?"); 210 if (Idx == FoundIdx) 211 return begin() + i; 212 // Stride is 0 when SparseT >= unsigned. We don't need to loop. 213 if (!Stride) 214 break; 215 } 216 return end(); 217 } 218 219 /// find - Find an element by its key. 220 /// 221 /// @param Key A valid key to find. 222 /// @returns An iterator to the element identified by key, or end(). 223 /// 224 iterator find(const KeyT &Key) { 225 return findIndex(KeyIndexOf(Key)); 226 } 227 228 const_iterator find(const KeyT &Key) const { 229 return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); 230 } 231 232 /// count - Returns 1 if this set contains an element identified by Key, 233 /// 0 otherwise. 234 /// 235 size_type count(const KeyT &Key) const { 236 return find(Key) == end() ? 0 : 1; 237 } 238 239 /// insert - Attempts to insert a new element. 240 /// 241 /// If Val is successfully inserted, return (I, true), where I is an iterator 242 /// pointing to the newly inserted element. 243 /// 244 /// If the set already contains an element with the same key as Val, return 245 /// (I, false), where I is an iterator pointing to the existing element. 246 /// 247 /// Insertion invalidates all iterators. 248 /// 249 std::pair<iterator, bool> insert(const ValueT &Val) { 250 unsigned Idx = ValIndexOf(Val); 251 iterator I = findIndex(Idx); 252 if (I != end()) 253 return std::make_pair(I, false); 254 Sparse[Idx] = size(); 255 Dense.push_back(Val); 256 return std::make_pair(end() - 1, true); 257 } 258 259 /// array subscript - If an element already exists with this key, return it. 260 /// Otherwise, automatically construct a new value from Key, insert it, 261 /// and return the newly inserted element. 262 ValueT &operator[](const KeyT &Key) { 263 return *insert(ValueT(Key)).first; 264 } 265 266 ValueT pop_back_val() { 267 // Sparse does not need to be cleared, see find(). 268 return Dense.pop_back_val(); 269 } 270 271 /// erase - Erases an existing element identified by a valid iterator. 272 /// 273 /// This invalidates all iterators, but erase() returns an iterator pointing 274 /// to the next element. This makes it possible to erase selected elements 275 /// while iterating over the set: 276 /// 277 /// for (SparseSet::iterator I = Set.begin(); I != Set.end();) 278 /// if (test(*I)) 279 /// I = Set.erase(I); 280 /// else 281 /// ++I; 282 /// 283 /// Note that end() changes when elements are erased, unlike std::list. 284 /// 285 iterator erase(iterator I) { 286 assert(unsigned(I - begin()) < size() && "Invalid iterator"); 287 if (I != end() - 1) { 288 *I = Dense.back(); 289 unsigned BackIdx = ValIndexOf(Dense.back()); 290 assert(BackIdx < Universe && "Invalid key in set. Did object mutate?"); 291 Sparse[BackIdx] = I - begin(); 292 } 293 // This depends on SmallVector::pop_back() not invalidating iterators. 294 // std::vector::pop_back() doesn't give that guarantee. 295 Dense.pop_back(); 296 return I; 297 } 298 299 /// erase - Erases an element identified by Key, if it exists. 300 /// 301 /// @param Key The key identifying the element to erase. 302 /// @returns True when an element was erased, false if no element was found. 303 /// 304 bool erase(const KeyT &Key) { 305 iterator I = find(Key); 306 if (I == end()) 307 return false; 308 erase(I); 309 return true; 310 } 311 }; 312 313 } // end namespace llvm 314 315 #endif // LLVM_ADT_SPARSESET_H 316