• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1.. _logging-cookbook:
2
3================
4Logging Cookbook
5================
6
7:Author: Vinay Sajip <vinay_sajip at red-dove dot com>
8
9This page contains a number of recipes related to logging, which have been found
10useful in the past.
11
12.. currentmodule:: logging
13
14Using logging in multiple modules
15---------------------------------
16
17Multiple calls to ``logging.getLogger('someLogger')`` return a reference to the
18same logger object.  This is true not only within the same module, but also
19across modules as long as it is in the same Python interpreter process.  It is
20true for references to the same object; additionally, application code can
21define and configure a parent logger in one module and create (but not
22configure) a child logger in a separate module, and all logger calls to the
23child will pass up to the parent.  Here is a main module::
24
25    import logging
26    import auxiliary_module
27
28    # create logger with 'spam_application'
29    logger = logging.getLogger('spam_application')
30    logger.setLevel(logging.DEBUG)
31    # create file handler which logs even debug messages
32    fh = logging.FileHandler('spam.log')
33    fh.setLevel(logging.DEBUG)
34    # create console handler with a higher log level
35    ch = logging.StreamHandler()
36    ch.setLevel(logging.ERROR)
37    # create formatter and add it to the handlers
38    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
39    fh.setFormatter(formatter)
40    ch.setFormatter(formatter)
41    # add the handlers to the logger
42    logger.addHandler(fh)
43    logger.addHandler(ch)
44
45    logger.info('creating an instance of auxiliary_module.Auxiliary')
46    a = auxiliary_module.Auxiliary()
47    logger.info('created an instance of auxiliary_module.Auxiliary')
48    logger.info('calling auxiliary_module.Auxiliary.do_something')
49    a.do_something()
50    logger.info('finished auxiliary_module.Auxiliary.do_something')
51    logger.info('calling auxiliary_module.some_function()')
52    auxiliary_module.some_function()
53    logger.info('done with auxiliary_module.some_function()')
54
55Here is the auxiliary module::
56
57    import logging
58
59    # create logger
60    module_logger = logging.getLogger('spam_application.auxiliary')
61
62    class Auxiliary:
63        def __init__(self):
64            self.logger = logging.getLogger('spam_application.auxiliary.Auxiliary')
65            self.logger.info('creating an instance of Auxiliary')
66
67        def do_something(self):
68            self.logger.info('doing something')
69            a = 1 + 1
70            self.logger.info('done doing something')
71
72    def some_function():
73        module_logger.info('received a call to "some_function"')
74
75The output looks like this:
76
77.. code-block:: none
78
79    2005-03-23 23:47:11,663 - spam_application - INFO -
80       creating an instance of auxiliary_module.Auxiliary
81    2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO -
82       creating an instance of Auxiliary
83    2005-03-23 23:47:11,665 - spam_application - INFO -
84       created an instance of auxiliary_module.Auxiliary
85    2005-03-23 23:47:11,668 - spam_application - INFO -
86       calling auxiliary_module.Auxiliary.do_something
87    2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO -
88       doing something
89    2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO -
90       done doing something
91    2005-03-23 23:47:11,670 - spam_application - INFO -
92       finished auxiliary_module.Auxiliary.do_something
93    2005-03-23 23:47:11,671 - spam_application - INFO -
94       calling auxiliary_module.some_function()
95    2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO -
96       received a call to 'some_function'
97    2005-03-23 23:47:11,673 - spam_application - INFO -
98       done with auxiliary_module.some_function()
99
100Logging from multiple threads
101-----------------------------
102
103Logging from multiple threads requires no special effort. The following example
104shows logging from the main (initial) thread and another thread::
105
106    import logging
107    import threading
108    import time
109
110    def worker(arg):
111        while not arg['stop']:
112            logging.debug('Hi from myfunc')
113            time.sleep(0.5)
114
115    def main():
116        logging.basicConfig(level=logging.DEBUG, format='%(relativeCreated)6d %(threadName)s %(message)s')
117        info = {'stop': False}
118        thread = threading.Thread(target=worker, args=(info,))
119        thread.start()
120        while True:
121            try:
122                logging.debug('Hello from main')
123                time.sleep(0.75)
124            except KeyboardInterrupt:
125                info['stop'] = True
126                break
127        thread.join()
128
129    if __name__ == '__main__':
130        main()
131
132When run, the script should print something like the following:
133
134.. code-block:: none
135
136     0 Thread-1 Hi from myfunc
137     3 MainThread Hello from main
138   505 Thread-1 Hi from myfunc
139   755 MainThread Hello from main
140  1007 Thread-1 Hi from myfunc
141  1507 MainThread Hello from main
142  1508 Thread-1 Hi from myfunc
143  2010 Thread-1 Hi from myfunc
144  2258 MainThread Hello from main
145  2512 Thread-1 Hi from myfunc
146  3009 MainThread Hello from main
147  3013 Thread-1 Hi from myfunc
148  3515 Thread-1 Hi from myfunc
149  3761 MainThread Hello from main
150  4017 Thread-1 Hi from myfunc
151  4513 MainThread Hello from main
152  4518 Thread-1 Hi from myfunc
153
154This shows the logging output interspersed as one might expect. This approach
155works for more threads than shown here, of course.
156
157Multiple handlers and formatters
158--------------------------------
159
160Loggers are plain Python objects.  The :meth:`~Logger.addHandler` method has no
161minimum or maximum quota for the number of handlers you may add.  Sometimes it
162will be beneficial for an application to log all messages of all severities to a
163text file while simultaneously logging errors or above to the console.  To set
164this up, simply configure the appropriate handlers.  The logging calls in the
165application code will remain unchanged.  Here is a slight modification to the
166previous simple module-based configuration example::
167
168    import logging
169
170    logger = logging.getLogger('simple_example')
171    logger.setLevel(logging.DEBUG)
172    # create file handler which logs even debug messages
173    fh = logging.FileHandler('spam.log')
174    fh.setLevel(logging.DEBUG)
175    # create console handler with a higher log level
176    ch = logging.StreamHandler()
177    ch.setLevel(logging.ERROR)
178    # create formatter and add it to the handlers
179    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
180    ch.setFormatter(formatter)
181    fh.setFormatter(formatter)
182    # add the handlers to logger
183    logger.addHandler(ch)
184    logger.addHandler(fh)
185
186    # 'application' code
187    logger.debug('debug message')
188    logger.info('info message')
189    logger.warning('warn message')
190    logger.error('error message')
191    logger.critical('critical message')
192
193Notice that the 'application' code does not care about multiple handlers.  All
194that changed was the addition and configuration of a new handler named *fh*.
195
196The ability to create new handlers with higher- or lower-severity filters can be
197very helpful when writing and testing an application.  Instead of using many
198``print`` statements for debugging, use ``logger.debug``: Unlike the print
199statements, which you will have to delete or comment out later, the logger.debug
200statements can remain intact in the source code and remain dormant until you
201need them again.  At that time, the only change that needs to happen is to
202modify the severity level of the logger and/or handler to debug.
203
204.. _multiple-destinations:
205
206Logging to multiple destinations
207--------------------------------
208
209Let's say you want to log to console and file with different message formats and
210in differing circumstances. Say you want to log messages with levels of DEBUG
211and higher to file, and those messages at level INFO and higher to the console.
212Let's also assume that the file should contain timestamps, but the console
213messages should not. Here's how you can achieve this::
214
215   import logging
216
217   # set up logging to file - see previous section for more details
218   logging.basicConfig(level=logging.DEBUG,
219                       format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
220                       datefmt='%m-%d %H:%M',
221                       filename='/temp/myapp.log',
222                       filemode='w')
223   # define a Handler which writes INFO messages or higher to the sys.stderr
224   console = logging.StreamHandler()
225   console.setLevel(logging.INFO)
226   # set a format which is simpler for console use
227   formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
228   # tell the handler to use this format
229   console.setFormatter(formatter)
230   # add the handler to the root logger
231   logging.getLogger('').addHandler(console)
232
233   # Now, we can log to the root logger, or any other logger. First the root...
234   logging.info('Jackdaws love my big sphinx of quartz.')
235
236   # Now, define a couple of other loggers which might represent areas in your
237   # application:
238
239   logger1 = logging.getLogger('myapp.area1')
240   logger2 = logging.getLogger('myapp.area2')
241
242   logger1.debug('Quick zephyrs blow, vexing daft Jim.')
243   logger1.info('How quickly daft jumping zebras vex.')
244   logger2.warning('Jail zesty vixen who grabbed pay from quack.')
245   logger2.error('The five boxing wizards jump quickly.')
246
247When you run this, on the console you will see
248
249.. code-block:: none
250
251   root        : INFO     Jackdaws love my big sphinx of quartz.
252   myapp.area1 : INFO     How quickly daft jumping zebras vex.
253   myapp.area2 : WARNING  Jail zesty vixen who grabbed pay from quack.
254   myapp.area2 : ERROR    The five boxing wizards jump quickly.
255
256and in the file you will see something like
257
258.. code-block:: none
259
260   10-22 22:19 root         INFO     Jackdaws love my big sphinx of quartz.
261   10-22 22:19 myapp.area1  DEBUG    Quick zephyrs blow, vexing daft Jim.
262   10-22 22:19 myapp.area1  INFO     How quickly daft jumping zebras vex.
263   10-22 22:19 myapp.area2  WARNING  Jail zesty vixen who grabbed pay from quack.
264   10-22 22:19 myapp.area2  ERROR    The five boxing wizards jump quickly.
265
266As you can see, the DEBUG message only shows up in the file. The other messages
267are sent to both destinations.
268
269This example uses console and file handlers, but you can use any number and
270combination of handlers you choose.
271
272
273Configuration server example
274----------------------------
275
276Here is an example of a module using the logging configuration server::
277
278    import logging
279    import logging.config
280    import time
281    import os
282
283    # read initial config file
284    logging.config.fileConfig('logging.conf')
285
286    # create and start listener on port 9999
287    t = logging.config.listen(9999)
288    t.start()
289
290    logger = logging.getLogger('simpleExample')
291
292    try:
293        # loop through logging calls to see the difference
294        # new configurations make, until Ctrl+C is pressed
295        while True:
296            logger.debug('debug message')
297            logger.info('info message')
298            logger.warning('warn message')
299            logger.error('error message')
300            logger.critical('critical message')
301            time.sleep(5)
302    except KeyboardInterrupt:
303        # cleanup
304        logging.config.stopListening()
305        t.join()
306
307And here is a script that takes a filename and sends that file to the server,
308properly preceded with the binary-encoded length, as the new logging
309configuration::
310
311    #!/usr/bin/env python
312    import socket, sys, struct
313
314    with open(sys.argv[1], 'rb') as f:
315        data_to_send = f.read()
316
317    HOST = 'localhost'
318    PORT = 9999
319    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
320    print('connecting...')
321    s.connect((HOST, PORT))
322    print('sending config...')
323    s.send(struct.pack('>L', len(data_to_send)))
324    s.send(data_to_send)
325    s.close()
326    print('complete')
327
328
329Dealing with handlers that block
330--------------------------------
331
332.. currentmodule:: logging.handlers
333
334Sometimes you have to get your logging handlers to do their work without
335blocking the thread you're logging from. This is common in web applications,
336though of course it also occurs in other scenarios.
337
338A common culprit which demonstrates sluggish behaviour is the
339:class:`SMTPHandler`: sending emails can take a long time, for a
340number of reasons outside the developer's control (for example, a poorly
341performing mail or network infrastructure). But almost any network-based
342handler can block: Even a :class:`SocketHandler` operation may do a
343DNS query under the hood which is too slow (and this query can be deep in the
344socket library code, below the Python layer, and outside your control).
345
346One solution is to use a two-part approach. For the first part, attach only a
347:class:`QueueHandler` to those loggers which are accessed from
348performance-critical threads. They simply write to their queue, which can be
349sized to a large enough capacity or initialized with no upper bound to their
350size. The write to the queue will typically be accepted quickly, though you
351will probably need to catch the :exc:`queue.Full` exception as a precaution
352in your code. If you are a library developer who has performance-critical
353threads in their code, be sure to document this (together with a suggestion to
354attach only ``QueueHandlers`` to your loggers) for the benefit of other
355developers who will use your code.
356
357The second part of the solution is :class:`QueueListener`, which has been
358designed as the counterpart to :class:`QueueHandler`.  A
359:class:`QueueListener` is very simple: it's passed a queue and some handlers,
360and it fires up an internal thread which listens to its queue for LogRecords
361sent from ``QueueHandlers`` (or any other source of ``LogRecords``, for that
362matter). The ``LogRecords`` are removed from the queue and passed to the
363handlers for processing.
364
365The advantage of having a separate :class:`QueueListener` class is that you
366can use the same instance to service multiple ``QueueHandlers``. This is more
367resource-friendly than, say, having threaded versions of the existing handler
368classes, which would eat up one thread per handler for no particular benefit.
369
370An example of using these two classes follows (imports omitted)::
371
372    que = queue.Queue(-1)  # no limit on size
373    queue_handler = QueueHandler(que)
374    handler = logging.StreamHandler()
375    listener = QueueListener(que, handler)
376    root = logging.getLogger()
377    root.addHandler(queue_handler)
378    formatter = logging.Formatter('%(threadName)s: %(message)s')
379    handler.setFormatter(formatter)
380    listener.start()
381    # The log output will display the thread which generated
382    # the event (the main thread) rather than the internal
383    # thread which monitors the internal queue. This is what
384    # you want to happen.
385    root.warning('Look out!')
386    listener.stop()
387
388which, when run, will produce:
389
390.. code-block:: none
391
392    MainThread: Look out!
393
394.. versionchanged:: 3.5
395   Prior to Python 3.5, the :class:`QueueListener` always passed every message
396   received from the queue to every handler it was initialized with. (This was
397   because it was assumed that level filtering was all done on the other side,
398   where the queue is filled.) From 3.5 onwards, this behaviour can be changed
399   by passing a keyword argument ``respect_handler_level=True`` to the
400   listener's constructor. When this is done, the listener compares the level
401   of each message with the handler's level, and only passes a message to a
402   handler if it's appropriate to do so.
403
404.. _network-logging:
405
406Sending and receiving logging events across a network
407-----------------------------------------------------
408
409Let's say you want to send logging events across a network, and handle them at
410the receiving end. A simple way of doing this is attaching a
411:class:`SocketHandler` instance to the root logger at the sending end::
412
413   import logging, logging.handlers
414
415   rootLogger = logging.getLogger('')
416   rootLogger.setLevel(logging.DEBUG)
417   socketHandler = logging.handlers.SocketHandler('localhost',
418                       logging.handlers.DEFAULT_TCP_LOGGING_PORT)
419   # don't bother with a formatter, since a socket handler sends the event as
420   # an unformatted pickle
421   rootLogger.addHandler(socketHandler)
422
423   # Now, we can log to the root logger, or any other logger. First the root...
424   logging.info('Jackdaws love my big sphinx of quartz.')
425
426   # Now, define a couple of other loggers which might represent areas in your
427   # application:
428
429   logger1 = logging.getLogger('myapp.area1')
430   logger2 = logging.getLogger('myapp.area2')
431
432   logger1.debug('Quick zephyrs blow, vexing daft Jim.')
433   logger1.info('How quickly daft jumping zebras vex.')
434   logger2.warning('Jail zesty vixen who grabbed pay from quack.')
435   logger2.error('The five boxing wizards jump quickly.')
436
437At the receiving end, you can set up a receiver using the :mod:`socketserver`
438module. Here is a basic working example::
439
440   import pickle
441   import logging
442   import logging.handlers
443   import socketserver
444   import struct
445
446
447   class LogRecordStreamHandler(socketserver.StreamRequestHandler):
448       """Handler for a streaming logging request.
449
450       This basically logs the record using whatever logging policy is
451       configured locally.
452       """
453
454       def handle(self):
455           """
456           Handle multiple requests - each expected to be a 4-byte length,
457           followed by the LogRecord in pickle format. Logs the record
458           according to whatever policy is configured locally.
459           """
460           while True:
461               chunk = self.connection.recv(4)
462               if len(chunk) < 4:
463                   break
464               slen = struct.unpack('>L', chunk)[0]
465               chunk = self.connection.recv(slen)
466               while len(chunk) < slen:
467                   chunk = chunk + self.connection.recv(slen - len(chunk))
468               obj = self.unPickle(chunk)
469               record = logging.makeLogRecord(obj)
470               self.handleLogRecord(record)
471
472       def unPickle(self, data):
473           return pickle.loads(data)
474
475       def handleLogRecord(self, record):
476           # if a name is specified, we use the named logger rather than the one
477           # implied by the record.
478           if self.server.logname is not None:
479               name = self.server.logname
480           else:
481               name = record.name
482           logger = logging.getLogger(name)
483           # N.B. EVERY record gets logged. This is because Logger.handle
484           # is normally called AFTER logger-level filtering. If you want
485           # to do filtering, do it at the client end to save wasting
486           # cycles and network bandwidth!
487           logger.handle(record)
488
489   class LogRecordSocketReceiver(socketserver.ThreadingTCPServer):
490       """
491       Simple TCP socket-based logging receiver suitable for testing.
492       """
493
494       allow_reuse_address = True
495
496       def __init__(self, host='localhost',
497                    port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,
498                    handler=LogRecordStreamHandler):
499           socketserver.ThreadingTCPServer.__init__(self, (host, port), handler)
500           self.abort = 0
501           self.timeout = 1
502           self.logname = None
503
504       def serve_until_stopped(self):
505           import select
506           abort = 0
507           while not abort:
508               rd, wr, ex = select.select([self.socket.fileno()],
509                                          [], [],
510                                          self.timeout)
511               if rd:
512                   self.handle_request()
513               abort = self.abort
514
515   def main():
516       logging.basicConfig(
517           format='%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s')
518       tcpserver = LogRecordSocketReceiver()
519       print('About to start TCP server...')
520       tcpserver.serve_until_stopped()
521
522   if __name__ == '__main__':
523       main()
524
525First run the server, and then the client. On the client side, nothing is
526printed on the console; on the server side, you should see something like:
527
528.. code-block:: none
529
530   About to start TCP server...
531      59 root            INFO     Jackdaws love my big sphinx of quartz.
532      59 myapp.area1     DEBUG    Quick zephyrs blow, vexing daft Jim.
533      69 myapp.area1     INFO     How quickly daft jumping zebras vex.
534      69 myapp.area2     WARNING  Jail zesty vixen who grabbed pay from quack.
535      69 myapp.area2     ERROR    The five boxing wizards jump quickly.
536
537Note that there are some security issues with pickle in some scenarios. If
538these affect you, you can use an alternative serialization scheme by overriding
539the :meth:`~handlers.SocketHandler.makePickle` method and implementing your
540alternative there, as well as adapting the above script to use your alternative
541serialization.
542
543
544Running a logging socket listener in production
545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
546
547To run a logging listener in production, you may need to use a process-management tool
548such as `Supervisor <http://supervisord.org/>`_. `Here
549<https://gist.github.com/vsajip/4b227eeec43817465ca835ca66f75e2b>`_ is a Gist which
550provides the bare-bones files to run the above functionality using Supervisor: you
551will need to change the `/path/to/` parts in the Gist to reflect the actual paths you
552want to use.
553
554
555.. _context-info:
556
557Adding contextual information to your logging output
558----------------------------------------------------
559
560Sometimes you want logging output to contain contextual information in
561addition to the parameters passed to the logging call. For example, in a
562networked application, it may be desirable to log client-specific information
563in the log (e.g. remote client's username, or IP address). Although you could
564use the *extra* parameter to achieve this, it's not always convenient to pass
565the information in this way. While it might be tempting to create
566:class:`Logger` instances on a per-connection basis, this is not a good idea
567because these instances are not garbage collected. While this is not a problem
568in practice, when the number of :class:`Logger` instances is dependent on the
569level of granularity you want to use in logging an application, it could
570be hard to manage if the number of :class:`Logger` instances becomes
571effectively unbounded.
572
573
574Using LoggerAdapters to impart contextual information
575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
576
577An easy way in which you can pass contextual information to be output along
578with logging event information is to use the :class:`LoggerAdapter` class.
579This class is designed to look like a :class:`Logger`, so that you can call
580:meth:`debug`, :meth:`info`, :meth:`warning`, :meth:`error`,
581:meth:`exception`, :meth:`critical` and :meth:`log`. These methods have the
582same signatures as their counterparts in :class:`Logger`, so you can use the
583two types of instances interchangeably.
584
585When you create an instance of :class:`LoggerAdapter`, you pass it a
586:class:`Logger` instance and a dict-like object which contains your contextual
587information. When you call one of the logging methods on an instance of
588:class:`LoggerAdapter`, it delegates the call to the underlying instance of
589:class:`Logger` passed to its constructor, and arranges to pass the contextual
590information in the delegated call. Here's a snippet from the code of
591:class:`LoggerAdapter`::
592
593    def debug(self, msg, /, *args, **kwargs):
594        """
595        Delegate a debug call to the underlying logger, after adding
596        contextual information from this adapter instance.
597        """
598        msg, kwargs = self.process(msg, kwargs)
599        self.logger.debug(msg, *args, **kwargs)
600
601The :meth:`~LoggerAdapter.process` method of :class:`LoggerAdapter` is where the
602contextual information is added to the logging output. It's passed the message
603and keyword arguments of the logging call, and it passes back (potentially)
604modified versions of these to use in the call to the underlying logger. The
605default implementation of this method leaves the message alone, but inserts
606an 'extra' key in the keyword argument whose value is the dict-like object
607passed to the constructor. Of course, if you had passed an 'extra' keyword
608argument in the call to the adapter, it will be silently overwritten.
609
610The advantage of using 'extra' is that the values in the dict-like object are
611merged into the :class:`LogRecord` instance's __dict__, allowing you to use
612customized strings with your :class:`Formatter` instances which know about
613the keys of the dict-like object. If you need a different method, e.g. if you
614want to prepend or append the contextual information to the message string,
615you just need to subclass :class:`LoggerAdapter` and override
616:meth:`~LoggerAdapter.process` to do what you need. Here is a simple example::
617
618    class CustomAdapter(logging.LoggerAdapter):
619        """
620        This example adapter expects the passed in dict-like object to have a
621        'connid' key, whose value in brackets is prepended to the log message.
622        """
623        def process(self, msg, kwargs):
624            return '[%s] %s' % (self.extra['connid'], msg), kwargs
625
626which you can use like this::
627
628    logger = logging.getLogger(__name__)
629    adapter = CustomAdapter(logger, {'connid': some_conn_id})
630
631Then any events that you log to the adapter will have the value of
632``some_conn_id`` prepended to the log messages.
633
634Using objects other than dicts to pass contextual information
635~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
636
637You don't need to pass an actual dict to a :class:`LoggerAdapter` - you could
638pass an instance of a class which implements ``__getitem__`` and ``__iter__`` so
639that it looks like a dict to logging. This would be useful if you want to
640generate values dynamically (whereas the values in a dict would be constant).
641
642
643.. _filters-contextual:
644
645Using Filters to impart contextual information
646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
647
648You can also add contextual information to log output using a user-defined
649:class:`Filter`. ``Filter`` instances are allowed to modify the ``LogRecords``
650passed to them, including adding additional attributes which can then be output
651using a suitable format string, or if needed a custom :class:`Formatter`.
652
653For example in a web application, the request being processed (or at least,
654the interesting parts of it) can be stored in a threadlocal
655(:class:`threading.local`) variable, and then accessed from a ``Filter`` to
656add, say, information from the request - say, the remote IP address and remote
657user's username - to the ``LogRecord``, using the attribute names 'ip' and
658'user' as in the ``LoggerAdapter`` example above. In that case, the same format
659string can be used to get similar output to that shown above. Here's an example
660script::
661
662    import logging
663    from random import choice
664
665    class ContextFilter(logging.Filter):
666        """
667        This is a filter which injects contextual information into the log.
668
669        Rather than use actual contextual information, we just use random
670        data in this demo.
671        """
672
673        USERS = ['jim', 'fred', 'sheila']
674        IPS = ['123.231.231.123', '127.0.0.1', '192.168.0.1']
675
676        def filter(self, record):
677
678            record.ip = choice(ContextFilter.IPS)
679            record.user = choice(ContextFilter.USERS)
680            return True
681
682    if __name__ == '__main__':
683        levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL)
684        logging.basicConfig(level=logging.DEBUG,
685                            format='%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s')
686        a1 = logging.getLogger('a.b.c')
687        a2 = logging.getLogger('d.e.f')
688
689        f = ContextFilter()
690        a1.addFilter(f)
691        a2.addFilter(f)
692        a1.debug('A debug message')
693        a1.info('An info message with %s', 'some parameters')
694        for x in range(10):
695            lvl = choice(levels)
696            lvlname = logging.getLevelName(lvl)
697            a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters')
698
699which, when run, produces something like:
700
701.. code-block:: none
702
703    2010-09-06 22:38:15,292 a.b.c DEBUG    IP: 123.231.231.123 User: fred     A debug message
704    2010-09-06 22:38:15,300 a.b.c INFO     IP: 192.168.0.1     User: sheila   An info message with some parameters
705    2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1       User: sheila   A message at CRITICAL level with 2 parameters
706    2010-09-06 22:38:15,300 d.e.f ERROR    IP: 127.0.0.1       User: jim      A message at ERROR level with 2 parameters
707    2010-09-06 22:38:15,300 d.e.f DEBUG    IP: 127.0.0.1       User: sheila   A message at DEBUG level with 2 parameters
708    2010-09-06 22:38:15,300 d.e.f ERROR    IP: 123.231.231.123 User: fred     A message at ERROR level with 2 parameters
709    2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1     User: jim      A message at CRITICAL level with 2 parameters
710    2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1       User: sheila   A message at CRITICAL level with 2 parameters
711    2010-09-06 22:38:15,300 d.e.f DEBUG    IP: 192.168.0.1     User: jim      A message at DEBUG level with 2 parameters
712    2010-09-06 22:38:15,301 d.e.f ERROR    IP: 127.0.0.1       User: sheila   A message at ERROR level with 2 parameters
713    2010-09-06 22:38:15,301 d.e.f DEBUG    IP: 123.231.231.123 User: fred     A message at DEBUG level with 2 parameters
714    2010-09-06 22:38:15,301 d.e.f INFO     IP: 123.231.231.123 User: fred     A message at INFO level with 2 parameters
715
716
717.. _multiple-processes:
718
719Logging to a single file from multiple processes
720------------------------------------------------
721
722Although logging is thread-safe, and logging to a single file from multiple
723threads in a single process *is* supported, logging to a single file from
724*multiple processes* is *not* supported, because there is no standard way to
725serialize access to a single file across multiple processes in Python. If you
726need to log to a single file from multiple processes, one way of doing this is
727to have all the processes log to a :class:`~handlers.SocketHandler`, and have a
728separate process which implements a socket server which reads from the socket
729and logs to file. (If you prefer, you can dedicate one thread in one of the
730existing processes to perform this function.)
731:ref:`This section <network-logging>` documents this approach in more detail and
732includes a working socket receiver which can be used as a starting point for you
733to adapt in your own applications.
734
735You could also write your own handler which uses the :class:`~multiprocessing.Lock`
736class from the :mod:`multiprocessing` module to serialize access to the
737file from your processes. The existing :class:`FileHandler` and subclasses do
738not make use of :mod:`multiprocessing` at present, though they may do so in the
739future. Note that at present, the :mod:`multiprocessing` module does not provide
740working lock functionality on all platforms (see
741https://bugs.python.org/issue3770).
742
743.. currentmodule:: logging.handlers
744
745Alternatively, you can use a ``Queue`` and a :class:`QueueHandler` to send
746all logging events to one of the processes in your multi-process application.
747The following example script demonstrates how you can do this; in the example
748a separate listener process listens for events sent by other processes and logs
749them according to its own logging configuration. Although the example only
750demonstrates one way of doing it (for example, you may want to use a listener
751thread rather than a separate listener process -- the implementation would be
752analogous) it does allow for completely different logging configurations for
753the listener and the other processes in your application, and can be used as
754the basis for code meeting your own specific requirements::
755
756    # You'll need these imports in your own code
757    import logging
758    import logging.handlers
759    import multiprocessing
760
761    # Next two import lines for this demo only
762    from random import choice, random
763    import time
764
765    #
766    # Because you'll want to define the logging configurations for listener and workers, the
767    # listener and worker process functions take a configurer parameter which is a callable
768    # for configuring logging for that process. These functions are also passed the queue,
769    # which they use for communication.
770    #
771    # In practice, you can configure the listener however you want, but note that in this
772    # simple example, the listener does not apply level or filter logic to received records.
773    # In practice, you would probably want to do this logic in the worker processes, to avoid
774    # sending events which would be filtered out between processes.
775    #
776    # The size of the rotated files is made small so you can see the results easily.
777    def listener_configurer():
778        root = logging.getLogger()
779        h = logging.handlers.RotatingFileHandler('mptest.log', 'a', 300, 10)
780        f = logging.Formatter('%(asctime)s %(processName)-10s %(name)s %(levelname)-8s %(message)s')
781        h.setFormatter(f)
782        root.addHandler(h)
783
784    # This is the listener process top-level loop: wait for logging events
785    # (LogRecords)on the queue and handle them, quit when you get a None for a
786    # LogRecord.
787    def listener_process(queue, configurer):
788        configurer()
789        while True:
790            try:
791                record = queue.get()
792                if record is None:  # We send this as a sentinel to tell the listener to quit.
793                    break
794                logger = logging.getLogger(record.name)
795                logger.handle(record)  # No level or filter logic applied - just do it!
796            except Exception:
797                import sys, traceback
798                print('Whoops! Problem:', file=sys.stderr)
799                traceback.print_exc(file=sys.stderr)
800
801    # Arrays used for random selections in this demo
802
803    LEVELS = [logging.DEBUG, logging.INFO, logging.WARNING,
804              logging.ERROR, logging.CRITICAL]
805
806    LOGGERS = ['a.b.c', 'd.e.f']
807
808    MESSAGES = [
809        'Random message #1',
810        'Random message #2',
811        'Random message #3',
812    ]
813
814    # The worker configuration is done at the start of the worker process run.
815    # Note that on Windows you can't rely on fork semantics, so each process
816    # will run the logging configuration code when it starts.
817    def worker_configurer(queue):
818        h = logging.handlers.QueueHandler(queue)  # Just the one handler needed
819        root = logging.getLogger()
820        root.addHandler(h)
821        # send all messages, for demo; no other level or filter logic applied.
822        root.setLevel(logging.DEBUG)
823
824    # This is the worker process top-level loop, which just logs ten events with
825    # random intervening delays before terminating.
826    # The print messages are just so you know it's doing something!
827    def worker_process(queue, configurer):
828        configurer(queue)
829        name = multiprocessing.current_process().name
830        print('Worker started: %s' % name)
831        for i in range(10):
832            time.sleep(random())
833            logger = logging.getLogger(choice(LOGGERS))
834            level = choice(LEVELS)
835            message = choice(MESSAGES)
836            logger.log(level, message)
837        print('Worker finished: %s' % name)
838
839    # Here's where the demo gets orchestrated. Create the queue, create and start
840    # the listener, create ten workers and start them, wait for them to finish,
841    # then send a None to the queue to tell the listener to finish.
842    def main():
843        queue = multiprocessing.Queue(-1)
844        listener = multiprocessing.Process(target=listener_process,
845                                           args=(queue, listener_configurer))
846        listener.start()
847        workers = []
848        for i in range(10):
849            worker = multiprocessing.Process(target=worker_process,
850                                             args=(queue, worker_configurer))
851            workers.append(worker)
852            worker.start()
853        for w in workers:
854            w.join()
855        queue.put_nowait(None)
856        listener.join()
857
858    if __name__ == '__main__':
859        main()
860
861A variant of the above script keeps the logging in the main process, in a
862separate thread::
863
864    import logging
865    import logging.config
866    import logging.handlers
867    from multiprocessing import Process, Queue
868    import random
869    import threading
870    import time
871
872    def logger_thread(q):
873        while True:
874            record = q.get()
875            if record is None:
876                break
877            logger = logging.getLogger(record.name)
878            logger.handle(record)
879
880
881    def worker_process(q):
882        qh = logging.handlers.QueueHandler(q)
883        root = logging.getLogger()
884        root.setLevel(logging.DEBUG)
885        root.addHandler(qh)
886        levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
887                  logging.CRITICAL]
888        loggers = ['foo', 'foo.bar', 'foo.bar.baz',
889                   'spam', 'spam.ham', 'spam.ham.eggs']
890        for i in range(100):
891            lvl = random.choice(levels)
892            logger = logging.getLogger(random.choice(loggers))
893            logger.log(lvl, 'Message no. %d', i)
894
895    if __name__ == '__main__':
896        q = Queue()
897        d = {
898            'version': 1,
899            'formatters': {
900                'detailed': {
901                    'class': 'logging.Formatter',
902                    'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
903                }
904            },
905            'handlers': {
906                'console': {
907                    'class': 'logging.StreamHandler',
908                    'level': 'INFO',
909                },
910                'file': {
911                    'class': 'logging.FileHandler',
912                    'filename': 'mplog.log',
913                    'mode': 'w',
914                    'formatter': 'detailed',
915                },
916                'foofile': {
917                    'class': 'logging.FileHandler',
918                    'filename': 'mplog-foo.log',
919                    'mode': 'w',
920                    'formatter': 'detailed',
921                },
922                'errors': {
923                    'class': 'logging.FileHandler',
924                    'filename': 'mplog-errors.log',
925                    'mode': 'w',
926                    'level': 'ERROR',
927                    'formatter': 'detailed',
928                },
929            },
930            'loggers': {
931                'foo': {
932                    'handlers': ['foofile']
933                }
934            },
935            'root': {
936                'level': 'DEBUG',
937                'handlers': ['console', 'file', 'errors']
938            },
939        }
940        workers = []
941        for i in range(5):
942            wp = Process(target=worker_process, name='worker %d' % (i + 1), args=(q,))
943            workers.append(wp)
944            wp.start()
945        logging.config.dictConfig(d)
946        lp = threading.Thread(target=logger_thread, args=(q,))
947        lp.start()
948        # At this point, the main process could do some useful work of its own
949        # Once it's done that, it can wait for the workers to terminate...
950        for wp in workers:
951            wp.join()
952        # And now tell the logging thread to finish up, too
953        q.put(None)
954        lp.join()
955
956This variant shows how you can e.g. apply configuration for particular loggers
957- e.g. the ``foo`` logger has a special handler which stores all events in the
958``foo`` subsystem in a file ``mplog-foo.log``. This will be used by the logging
959machinery in the main process (even though the logging events are generated in
960the worker processes) to direct the messages to the appropriate destinations.
961
962Using concurrent.futures.ProcessPoolExecutor
963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
964
965If you want to use :class:`concurrent.futures.ProcessPoolExecutor` to start
966your worker processes, you need to create the queue slightly differently.
967Instead of
968
969.. code-block:: python
970
971   queue = multiprocessing.Queue(-1)
972
973you should use
974
975.. code-block:: python
976
977   queue = multiprocessing.Manager().Queue(-1)  # also works with the examples above
978
979and you can then replace the worker creation from this::
980
981    workers = []
982    for i in range(10):
983        worker = multiprocessing.Process(target=worker_process,
984                                         args=(queue, worker_configurer))
985        workers.append(worker)
986        worker.start()
987    for w in workers:
988        w.join()
989
990to this (remembering to first import :mod:`concurrent.futures`)::
991
992    with concurrent.futures.ProcessPoolExecutor(max_workers=10) as executor:
993        for i in range(10):
994            executor.submit(worker_process, queue, worker_configurer)
995
996Deploying Web applications using Gunicorn and uWSGI
997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
998
999When deploying Web applications using `Gunicorn <https://gunicorn.org/>`_ or `uWSGI
1000<https://uwsgi-docs.readthedocs.io/en/latest/>`_ (or similar), multiple worker
1001processes are created to handle client requests. In such environments, avoid creating
1002file-based handlers directly in your web application. Instead, use a
1003:class:`SocketHandler` to log from the web application to a listener in a separate
1004process. This can be set up using a process management tool such as Supervisor - see
1005`Running a logging socket listener in production`_ for more details.
1006
1007
1008Using file rotation
1009-------------------
1010
1011.. sectionauthor:: Doug Hellmann, Vinay Sajip (changes)
1012.. (see <https://pymotw.com/3/logging/>)
1013
1014Sometimes you want to let a log file grow to a certain size, then open a new
1015file and log to that. You may want to keep a certain number of these files, and
1016when that many files have been created, rotate the files so that the number of
1017files and the size of the files both remain bounded. For this usage pattern, the
1018logging package provides a :class:`~handlers.RotatingFileHandler`::
1019
1020   import glob
1021   import logging
1022   import logging.handlers
1023
1024   LOG_FILENAME = 'logging_rotatingfile_example.out'
1025
1026   # Set up a specific logger with our desired output level
1027   my_logger = logging.getLogger('MyLogger')
1028   my_logger.setLevel(logging.DEBUG)
1029
1030   # Add the log message handler to the logger
1031   handler = logging.handlers.RotatingFileHandler(
1032                 LOG_FILENAME, maxBytes=20, backupCount=5)
1033
1034   my_logger.addHandler(handler)
1035
1036   # Log some messages
1037   for i in range(20):
1038       my_logger.debug('i = %d' % i)
1039
1040   # See what files are created
1041   logfiles = glob.glob('%s*' % LOG_FILENAME)
1042
1043   for filename in logfiles:
1044       print(filename)
1045
1046The result should be 6 separate files, each with part of the log history for the
1047application:
1048
1049.. code-block:: none
1050
1051   logging_rotatingfile_example.out
1052   logging_rotatingfile_example.out.1
1053   logging_rotatingfile_example.out.2
1054   logging_rotatingfile_example.out.3
1055   logging_rotatingfile_example.out.4
1056   logging_rotatingfile_example.out.5
1057
1058The most current file is always :file:`logging_rotatingfile_example.out`,
1059and each time it reaches the size limit it is renamed with the suffix
1060``.1``. Each of the existing backup files is renamed to increment the suffix
1061(``.1`` becomes ``.2``, etc.)  and the ``.6`` file is erased.
1062
1063Obviously this example sets the log length much too small as an extreme
1064example.  You would want to set *maxBytes* to an appropriate value.
1065
1066.. _format-styles:
1067
1068Use of alternative formatting styles
1069------------------------------------
1070
1071When logging was added to the Python standard library, the only way of
1072formatting messages with variable content was to use the %-formatting
1073method. Since then, Python has gained two new formatting approaches:
1074:class:`string.Template` (added in Python 2.4) and :meth:`str.format`
1075(added in Python 2.6).
1076
1077Logging (as of 3.2) provides improved support for these two additional
1078formatting styles. The :class:`Formatter` class been enhanced to take an
1079additional, optional keyword parameter named ``style``. This defaults to
1080``'%'``, but other possible values are ``'{'`` and ``'$'``, which correspond
1081to the other two formatting styles. Backwards compatibility is maintained by
1082default (as you would expect), but by explicitly specifying a style parameter,
1083you get the ability to specify format strings which work with
1084:meth:`str.format` or :class:`string.Template`. Here's an example console
1085session to show the possibilities:
1086
1087.. code-block:: pycon
1088
1089    >>> import logging
1090    >>> root = logging.getLogger()
1091    >>> root.setLevel(logging.DEBUG)
1092    >>> handler = logging.StreamHandler()
1093    >>> bf = logging.Formatter('{asctime} {name} {levelname:8s} {message}',
1094    ...                        style='{')
1095    >>> handler.setFormatter(bf)
1096    >>> root.addHandler(handler)
1097    >>> logger = logging.getLogger('foo.bar')
1098    >>> logger.debug('This is a DEBUG message')
1099    2010-10-28 15:11:55,341 foo.bar DEBUG    This is a DEBUG message
1100    >>> logger.critical('This is a CRITICAL message')
1101    2010-10-28 15:12:11,526 foo.bar CRITICAL This is a CRITICAL message
1102    >>> df = logging.Formatter('$asctime $name ${levelname} $message',
1103    ...                        style='$')
1104    >>> handler.setFormatter(df)
1105    >>> logger.debug('This is a DEBUG message')
1106    2010-10-28 15:13:06,924 foo.bar DEBUG This is a DEBUG message
1107    >>> logger.critical('This is a CRITICAL message')
1108    2010-10-28 15:13:11,494 foo.bar CRITICAL This is a CRITICAL message
1109    >>>
1110
1111Note that the formatting of logging messages for final output to logs is
1112completely independent of how an individual logging message is constructed.
1113That can still use %-formatting, as shown here::
1114
1115    >>> logger.error('This is an%s %s %s', 'other,', 'ERROR,', 'message')
1116    2010-10-28 15:19:29,833 foo.bar ERROR This is another, ERROR, message
1117    >>>
1118
1119Logging calls (``logger.debug()``, ``logger.info()`` etc.) only take
1120positional parameters for the actual logging message itself, with keyword
1121parameters used only for determining options for how to handle the actual
1122logging call (e.g. the ``exc_info`` keyword parameter to indicate that
1123traceback information should be logged, or the ``extra`` keyword parameter
1124to indicate additional contextual information to be added to the log). So
1125you cannot directly make logging calls using :meth:`str.format` or
1126:class:`string.Template` syntax, because internally the logging package
1127uses %-formatting to merge the format string and the variable arguments.
1128There would be no changing this while preserving backward compatibility, since
1129all logging calls which are out there in existing code will be using %-format
1130strings.
1131
1132There is, however, a way that you can use {}- and $- formatting to construct
1133your individual log messages. Recall that for a message you can use an
1134arbitrary object as a message format string, and that the logging package will
1135call ``str()`` on that object to get the actual format string. Consider the
1136following two classes::
1137
1138    class BraceMessage:
1139        def __init__(self, fmt, /, *args, **kwargs):
1140            self.fmt = fmt
1141            self.args = args
1142            self.kwargs = kwargs
1143
1144        def __str__(self):
1145            return self.fmt.format(*self.args, **self.kwargs)
1146
1147    class DollarMessage:
1148        def __init__(self, fmt, /, **kwargs):
1149            self.fmt = fmt
1150            self.kwargs = kwargs
1151
1152        def __str__(self):
1153            from string import Template
1154            return Template(self.fmt).substitute(**self.kwargs)
1155
1156Either of these can be used in place of a format string, to allow {}- or
1157$-formatting to be used to build the actual "message" part which appears in the
1158formatted log output in place of "%(message)s" or "{message}" or "$message".
1159It's a little unwieldy to use the class names whenever you want to log
1160something, but it's quite palatable if you use an alias such as __ (double
1161underscore --- not to be confused with _, the single underscore used as a
1162synonym/alias for :func:`gettext.gettext` or its brethren).
1163
1164The above classes are not included in Python, though they're easy enough to
1165copy and paste into your own code. They can be used as follows (assuming that
1166they're declared in a module called ``wherever``):
1167
1168.. code-block:: pycon
1169
1170    >>> from wherever import BraceMessage as __
1171    >>> print(__('Message with {0} {name}', 2, name='placeholders'))
1172    Message with 2 placeholders
1173    >>> class Point: pass
1174    ...
1175    >>> p = Point()
1176    >>> p.x = 0.5
1177    >>> p.y = 0.5
1178    >>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})',
1179    ...       point=p))
1180    Message with coordinates: (0.50, 0.50)
1181    >>> from wherever import DollarMessage as __
1182    >>> print(__('Message with $num $what', num=2, what='placeholders'))
1183    Message with 2 placeholders
1184    >>>
1185
1186While the above examples use ``print()`` to show how the formatting works, you
1187would of course use ``logger.debug()`` or similar to actually log using this
1188approach.
1189
1190One thing to note is that you pay no significant performance penalty with this
1191approach: the actual formatting happens not when you make the logging call, but
1192when (and if) the logged message is actually about to be output to a log by a
1193handler. So the only slightly unusual thing which might trip you up is that the
1194parentheses go around the format string and the arguments, not just the format
1195string. That's because the __ notation is just syntax sugar for a constructor
1196call to one of the XXXMessage classes.
1197
1198If you prefer, you can use a :class:`LoggerAdapter` to achieve a similar effect
1199to the above, as in the following example::
1200
1201    import logging
1202
1203    class Message:
1204        def __init__(self, fmt, args):
1205            self.fmt = fmt
1206            self.args = args
1207
1208        def __str__(self):
1209            return self.fmt.format(*self.args)
1210
1211    class StyleAdapter(logging.LoggerAdapter):
1212        def __init__(self, logger, extra=None):
1213            super().__init__(logger, extra or {})
1214
1215        def log(self, level, msg, /, *args, **kwargs):
1216            if self.isEnabledFor(level):
1217                msg, kwargs = self.process(msg, kwargs)
1218                self.logger._log(level, Message(msg, args), (), **kwargs)
1219
1220    logger = StyleAdapter(logging.getLogger(__name__))
1221
1222    def main():
1223        logger.debug('Hello, {}', 'world!')
1224
1225    if __name__ == '__main__':
1226        logging.basicConfig(level=logging.DEBUG)
1227        main()
1228
1229The above script should log the message ``Hello, world!`` when run with
1230Python 3.2 or later.
1231
1232
1233.. currentmodule:: logging
1234
1235.. _custom-logrecord:
1236
1237Customizing ``LogRecord``
1238-------------------------
1239
1240Every logging event is represented by a :class:`LogRecord` instance.
1241When an event is logged and not filtered out by a logger's level, a
1242:class:`LogRecord` is created, populated with information about the event and
1243then passed to the handlers for that logger (and its ancestors, up to and
1244including the logger where further propagation up the hierarchy is disabled).
1245Before Python 3.2, there were only two places where this creation was done:
1246
1247* :meth:`Logger.makeRecord`, which is called in the normal process of
1248  logging an event. This invoked :class:`LogRecord` directly to create an
1249  instance.
1250* :func:`makeLogRecord`, which is called with a dictionary containing
1251  attributes to be added to the LogRecord. This is typically invoked when a
1252  suitable dictionary has been received over the network (e.g. in pickle form
1253  via a :class:`~handlers.SocketHandler`, or in JSON form via an
1254  :class:`~handlers.HTTPHandler`).
1255
1256This has usually meant that if you need to do anything special with a
1257:class:`LogRecord`, you've had to do one of the following.
1258
1259* Create your own :class:`Logger` subclass, which overrides
1260  :meth:`Logger.makeRecord`, and set it using :func:`~logging.setLoggerClass`
1261  before any loggers that you care about are instantiated.
1262* Add a :class:`Filter` to a logger or handler, which does the
1263  necessary special manipulation you need when its
1264  :meth:`~Filter.filter` method is called.
1265
1266The first approach would be a little unwieldy in the scenario where (say)
1267several different libraries wanted to do different things. Each would attempt
1268to set its own :class:`Logger` subclass, and the one which did this last would
1269win.
1270
1271The second approach works reasonably well for many cases, but does not allow
1272you to e.g. use a specialized subclass of :class:`LogRecord`. Library
1273developers can set a suitable filter on their loggers, but they would have to
1274remember to do this every time they introduced a new logger (which they would
1275do simply by adding new packages or modules and doing ::
1276
1277   logger = logging.getLogger(__name__)
1278
1279at module level). It's probably one too many things to think about. Developers
1280could also add the filter to a :class:`~logging.NullHandler` attached to their
1281top-level logger, but this would not be invoked if an application developer
1282attached a handler to a lower-level library logger --- so output from that
1283handler would not reflect the intentions of the library developer.
1284
1285In Python 3.2 and later, :class:`~logging.LogRecord` creation is done through a
1286factory, which you can specify. The factory is just a callable you can set with
1287:func:`~logging.setLogRecordFactory`, and interrogate with
1288:func:`~logging.getLogRecordFactory`. The factory is invoked with the same
1289signature as the :class:`~logging.LogRecord` constructor, as :class:`LogRecord`
1290is the default setting for the factory.
1291
1292This approach allows a custom factory to control all aspects of LogRecord
1293creation. For example, you could return a subclass, or just add some additional
1294attributes to the record once created, using a pattern similar to this::
1295
1296    old_factory = logging.getLogRecordFactory()
1297
1298    def record_factory(*args, **kwargs):
1299        record = old_factory(*args, **kwargs)
1300        record.custom_attribute = 0xdecafbad
1301        return record
1302
1303    logging.setLogRecordFactory(record_factory)
1304
1305This pattern allows different libraries to chain factories together, and as
1306long as they don't overwrite each other's attributes or unintentionally
1307overwrite the attributes provided as standard, there should be no surprises.
1308However, it should be borne in mind that each link in the chain adds run-time
1309overhead to all logging operations, and the technique should only be used when
1310the use of a :class:`Filter` does not provide the desired result.
1311
1312
1313.. _zeromq-handlers:
1314
1315Subclassing QueueHandler - a ZeroMQ example
1316-------------------------------------------
1317
1318You can use a :class:`QueueHandler` subclass to send messages to other kinds
1319of queues, for example a ZeroMQ 'publish' socket. In the example below,the
1320socket is created separately and passed to the handler (as its 'queue')::
1321
1322    import zmq   # using pyzmq, the Python binding for ZeroMQ
1323    import json  # for serializing records portably
1324
1325    ctx = zmq.Context()
1326    sock = zmq.Socket(ctx, zmq.PUB)  # or zmq.PUSH, or other suitable value
1327    sock.bind('tcp://*:5556')        # or wherever
1328
1329    class ZeroMQSocketHandler(QueueHandler):
1330        def enqueue(self, record):
1331            self.queue.send_json(record.__dict__)
1332
1333
1334    handler = ZeroMQSocketHandler(sock)
1335
1336
1337Of course there are other ways of organizing this, for example passing in the
1338data needed by the handler to create the socket::
1339
1340    class ZeroMQSocketHandler(QueueHandler):
1341        def __init__(self, uri, socktype=zmq.PUB, ctx=None):
1342            self.ctx = ctx or zmq.Context()
1343            socket = zmq.Socket(self.ctx, socktype)
1344            socket.bind(uri)
1345            super().__init__(socket)
1346
1347        def enqueue(self, record):
1348            self.queue.send_json(record.__dict__)
1349
1350        def close(self):
1351            self.queue.close()
1352
1353
1354Subclassing QueueListener - a ZeroMQ example
1355--------------------------------------------
1356
1357You can also subclass :class:`QueueListener` to get messages from other kinds
1358of queues, for example a ZeroMQ 'subscribe' socket. Here's an example::
1359
1360    class ZeroMQSocketListener(QueueListener):
1361        def __init__(self, uri, /, *handlers, **kwargs):
1362            self.ctx = kwargs.get('ctx') or zmq.Context()
1363            socket = zmq.Socket(self.ctx, zmq.SUB)
1364            socket.setsockopt_string(zmq.SUBSCRIBE, '')  # subscribe to everything
1365            socket.connect(uri)
1366            super().__init__(socket, *handlers, **kwargs)
1367
1368        def dequeue(self):
1369            msg = self.queue.recv_json()
1370            return logging.makeLogRecord(msg)
1371
1372
1373.. seealso::
1374
1375   Module :mod:`logging`
1376      API reference for the logging module.
1377
1378   Module :mod:`logging.config`
1379      Configuration API for the logging module.
1380
1381   Module :mod:`logging.handlers`
1382      Useful handlers included with the logging module.
1383
1384   :ref:`A basic logging tutorial <logging-basic-tutorial>`
1385
1386   :ref:`A more advanced logging tutorial <logging-advanced-tutorial>`
1387
1388
1389An example dictionary-based configuration
1390-----------------------------------------
1391
1392Below is an example of a logging configuration dictionary - it's taken from
1393the `documentation on the Django project <https://docs.djangoproject.com/en/stable/topics/logging/#configuring-logging>`_.
1394This dictionary is passed to :func:`~config.dictConfig` to put the configuration into effect::
1395
1396    LOGGING = {
1397        'version': 1,
1398        'disable_existing_loggers': True,
1399        'formatters': {
1400            'verbose': {
1401                'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s'
1402            },
1403            'simple': {
1404                'format': '%(levelname)s %(message)s'
1405            },
1406        },
1407        'filters': {
1408            'special': {
1409                '()': 'project.logging.SpecialFilter',
1410                'foo': 'bar',
1411            }
1412        },
1413        'handlers': {
1414            'null': {
1415                'level':'DEBUG',
1416                'class':'django.utils.log.NullHandler',
1417            },
1418            'console':{
1419                'level':'DEBUG',
1420                'class':'logging.StreamHandler',
1421                'formatter': 'simple'
1422            },
1423            'mail_admins': {
1424                'level': 'ERROR',
1425                'class': 'django.utils.log.AdminEmailHandler',
1426                'filters': ['special']
1427            }
1428        },
1429        'loggers': {
1430            'django': {
1431                'handlers':['null'],
1432                'propagate': True,
1433                'level':'INFO',
1434            },
1435            'django.request': {
1436                'handlers': ['mail_admins'],
1437                'level': 'ERROR',
1438                'propagate': False,
1439            },
1440            'myproject.custom': {
1441                'handlers': ['console', 'mail_admins'],
1442                'level': 'INFO',
1443                'filters': ['special']
1444            }
1445        }
1446    }
1447
1448For more information about this configuration, you can see the `relevant
1449section <https://docs.djangoproject.com/en/stable/topics/logging/#configuring-logging>`_
1450of the Django documentation.
1451
1452.. _cookbook-rotator-namer:
1453
1454Using a rotator and namer to customize log rotation processing
1455--------------------------------------------------------------
1456
1457An example of how you can define a namer and rotator is given in the following
1458snippet, which shows zlib-based compression of the log file::
1459
1460    def namer(name):
1461        return name + ".gz"
1462
1463    def rotator(source, dest):
1464        with open(source, "rb") as sf:
1465            data = sf.read()
1466            compressed = zlib.compress(data, 9)
1467            with open(dest, "wb") as df:
1468                df.write(compressed)
1469        os.remove(source)
1470
1471    rh = logging.handlers.RotatingFileHandler(...)
1472    rh.rotator = rotator
1473    rh.namer = namer
1474
1475These are not "true" .gz files, as they are bare compressed data, with no
1476"container" such as you’d find in an actual gzip file. This snippet is just
1477for illustration purposes.
1478
1479A more elaborate multiprocessing example
1480----------------------------------------
1481
1482The following working example shows how logging can be used with multiprocessing
1483using configuration files. The configurations are fairly simple, but serve to
1484illustrate how more complex ones could be implemented in a real multiprocessing
1485scenario.
1486
1487In the example, the main process spawns a listener process and some worker
1488processes. Each of the main process, the listener and the workers have three
1489separate configurations (the workers all share the same configuration). We can
1490see logging in the main process, how the workers log to a QueueHandler and how
1491the listener implements a QueueListener and a more complex logging
1492configuration, and arranges to dispatch events received via the queue to the
1493handlers specified in the configuration. Note that these configurations are
1494purely illustrative, but you should be able to adapt this example to your own
1495scenario.
1496
1497Here's the script - the docstrings and the comments hopefully explain how it
1498works::
1499
1500    import logging
1501    import logging.config
1502    import logging.handlers
1503    from multiprocessing import Process, Queue, Event, current_process
1504    import os
1505    import random
1506    import time
1507
1508    class MyHandler:
1509        """
1510        A simple handler for logging events. It runs in the listener process and
1511        dispatches events to loggers based on the name in the received record,
1512        which then get dispatched, by the logging system, to the handlers
1513        configured for those loggers.
1514        """
1515
1516        def handle(self, record):
1517            if record.name == "root":
1518                logger = logging.getLogger()
1519            else:
1520                logger = logging.getLogger(record.name)
1521
1522            if logger.isEnabledFor(record.levelno):
1523                # The process name is transformed just to show that it's the listener
1524                # doing the logging to files and console
1525                record.processName = '%s (for %s)' % (current_process().name, record.processName)
1526                logger.handle(record)
1527
1528    def listener_process(q, stop_event, config):
1529        """
1530        This could be done in the main process, but is just done in a separate
1531        process for illustrative purposes.
1532
1533        This initialises logging according to the specified configuration,
1534        starts the listener and waits for the main process to signal completion
1535        via the event. The listener is then stopped, and the process exits.
1536        """
1537        logging.config.dictConfig(config)
1538        listener = logging.handlers.QueueListener(q, MyHandler())
1539        listener.start()
1540        if os.name == 'posix':
1541            # On POSIX, the setup logger will have been configured in the
1542            # parent process, but should have been disabled following the
1543            # dictConfig call.
1544            # On Windows, since fork isn't used, the setup logger won't
1545            # exist in the child, so it would be created and the message
1546            # would appear - hence the "if posix" clause.
1547            logger = logging.getLogger('setup')
1548            logger.critical('Should not appear, because of disabled logger ...')
1549        stop_event.wait()
1550        listener.stop()
1551
1552    def worker_process(config):
1553        """
1554        A number of these are spawned for the purpose of illustration. In
1555        practice, they could be a heterogeneous bunch of processes rather than
1556        ones which are identical to each other.
1557
1558        This initialises logging according to the specified configuration,
1559        and logs a hundred messages with random levels to randomly selected
1560        loggers.
1561
1562        A small sleep is added to allow other processes a chance to run. This
1563        is not strictly needed, but it mixes the output from the different
1564        processes a bit more than if it's left out.
1565        """
1566        logging.config.dictConfig(config)
1567        levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
1568                  logging.CRITICAL]
1569        loggers = ['foo', 'foo.bar', 'foo.bar.baz',
1570                   'spam', 'spam.ham', 'spam.ham.eggs']
1571        if os.name == 'posix':
1572            # On POSIX, the setup logger will have been configured in the
1573            # parent process, but should have been disabled following the
1574            # dictConfig call.
1575            # On Windows, since fork isn't used, the setup logger won't
1576            # exist in the child, so it would be created and the message
1577            # would appear - hence the "if posix" clause.
1578            logger = logging.getLogger('setup')
1579            logger.critical('Should not appear, because of disabled logger ...')
1580        for i in range(100):
1581            lvl = random.choice(levels)
1582            logger = logging.getLogger(random.choice(loggers))
1583            logger.log(lvl, 'Message no. %d', i)
1584            time.sleep(0.01)
1585
1586    def main():
1587        q = Queue()
1588        # The main process gets a simple configuration which prints to the console.
1589        config_initial = {
1590            'version': 1,
1591            'handlers': {
1592                'console': {
1593                    'class': 'logging.StreamHandler',
1594                    'level': 'INFO'
1595                }
1596            },
1597            'root': {
1598                'handlers': ['console'],
1599                'level': 'DEBUG'
1600            }
1601        }
1602        # The worker process configuration is just a QueueHandler attached to the
1603        # root logger, which allows all messages to be sent to the queue.
1604        # We disable existing loggers to disable the "setup" logger used in the
1605        # parent process. This is needed on POSIX because the logger will
1606        # be there in the child following a fork().
1607        config_worker = {
1608            'version': 1,
1609            'disable_existing_loggers': True,
1610            'handlers': {
1611                'queue': {
1612                    'class': 'logging.handlers.QueueHandler',
1613                    'queue': q
1614                }
1615            },
1616            'root': {
1617                'handlers': ['queue'],
1618                'level': 'DEBUG'
1619            }
1620        }
1621        # The listener process configuration shows that the full flexibility of
1622        # logging configuration is available to dispatch events to handlers however
1623        # you want.
1624        # We disable existing loggers to disable the "setup" logger used in the
1625        # parent process. This is needed on POSIX because the logger will
1626        # be there in the child following a fork().
1627        config_listener = {
1628            'version': 1,
1629            'disable_existing_loggers': True,
1630            'formatters': {
1631                'detailed': {
1632                    'class': 'logging.Formatter',
1633                    'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
1634                },
1635                'simple': {
1636                    'class': 'logging.Formatter',
1637                    'format': '%(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
1638                }
1639            },
1640            'handlers': {
1641                'console': {
1642                    'class': 'logging.StreamHandler',
1643                    'formatter': 'simple',
1644                    'level': 'INFO'
1645                },
1646                'file': {
1647                    'class': 'logging.FileHandler',
1648                    'filename': 'mplog.log',
1649                    'mode': 'w',
1650                    'formatter': 'detailed'
1651                },
1652                'foofile': {
1653                    'class': 'logging.FileHandler',
1654                    'filename': 'mplog-foo.log',
1655                    'mode': 'w',
1656                    'formatter': 'detailed'
1657                },
1658                'errors': {
1659                    'class': 'logging.FileHandler',
1660                    'filename': 'mplog-errors.log',
1661                    'mode': 'w',
1662                    'formatter': 'detailed',
1663                    'level': 'ERROR'
1664                }
1665            },
1666            'loggers': {
1667                'foo': {
1668                    'handlers': ['foofile']
1669                }
1670            },
1671            'root': {
1672                'handlers': ['console', 'file', 'errors'],
1673                'level': 'DEBUG'
1674            }
1675        }
1676        # Log some initial events, just to show that logging in the parent works
1677        # normally.
1678        logging.config.dictConfig(config_initial)
1679        logger = logging.getLogger('setup')
1680        logger.info('About to create workers ...')
1681        workers = []
1682        for i in range(5):
1683            wp = Process(target=worker_process, name='worker %d' % (i + 1),
1684                         args=(config_worker,))
1685            workers.append(wp)
1686            wp.start()
1687            logger.info('Started worker: %s', wp.name)
1688        logger.info('About to create listener ...')
1689        stop_event = Event()
1690        lp = Process(target=listener_process, name='listener',
1691                     args=(q, stop_event, config_listener))
1692        lp.start()
1693        logger.info('Started listener')
1694        # We now hang around for the workers to finish their work.
1695        for wp in workers:
1696            wp.join()
1697        # Workers all done, listening can now stop.
1698        # Logging in the parent still works normally.
1699        logger.info('Telling listener to stop ...')
1700        stop_event.set()
1701        lp.join()
1702        logger.info('All done.')
1703
1704    if __name__ == '__main__':
1705        main()
1706
1707
1708Inserting a BOM into messages sent to a SysLogHandler
1709-----------------------------------------------------
1710
1711:rfc:`5424` requires that a
1712Unicode message be sent to a syslog daemon as a set of bytes which have the
1713following structure: an optional pure-ASCII component, followed by a UTF-8 Byte
1714Order Mark (BOM), followed by Unicode encoded using UTF-8. (See the
1715:rfc:`relevant section of the specification <5424#section-6>`.)
1716
1717In Python 3.1, code was added to
1718:class:`~logging.handlers.SysLogHandler` to insert a BOM into the message, but
1719unfortunately, it was implemented incorrectly, with the BOM appearing at the
1720beginning of the message and hence not allowing any pure-ASCII component to
1721appear before it.
1722
1723As this behaviour is broken, the incorrect BOM insertion code is being removed
1724from Python 3.2.4 and later. However, it is not being replaced, and if you
1725want to produce :rfc:`5424`-compliant messages which include a BOM, an optional
1726pure-ASCII sequence before it and arbitrary Unicode after it, encoded using
1727UTF-8, then you need to do the following:
1728
1729#. Attach a :class:`~logging.Formatter` instance to your
1730   :class:`~logging.handlers.SysLogHandler` instance, with a format string
1731   such as::
1732
1733      'ASCII section\ufeffUnicode section'
1734
1735   The Unicode code point U+FEFF, when encoded using UTF-8, will be
1736   encoded as a UTF-8 BOM -- the byte-string ``b'\xef\xbb\xbf'``.
1737
1738#. Replace the ASCII section with whatever placeholders you like, but make sure
1739   that the data that appears in there after substitution is always ASCII (that
1740   way, it will remain unchanged after UTF-8 encoding).
1741
1742#. Replace the Unicode section with whatever placeholders you like; if the data
1743   which appears there after substitution contains characters outside the ASCII
1744   range, that's fine -- it will be encoded using UTF-8.
1745
1746The formatted message *will* be encoded using UTF-8 encoding by
1747``SysLogHandler``. If you follow the above rules, you should be able to produce
1748:rfc:`5424`-compliant messages. If you don't, logging may not complain, but your
1749messages will not be RFC 5424-compliant, and your syslog daemon may complain.
1750
1751
1752Implementing structured logging
1753-------------------------------
1754
1755Although most logging messages are intended for reading by humans, and thus not
1756readily machine-parseable, there might be circumstances where you want to output
1757messages in a structured format which *is* capable of being parsed by a program
1758(without needing complex regular expressions to parse the log message). This is
1759straightforward to achieve using the logging package. There are a number of
1760ways in which this could be achieved, but the following is a simple approach
1761which uses JSON to serialise the event in a machine-parseable manner::
1762
1763    import json
1764    import logging
1765
1766    class StructuredMessage:
1767        def __init__(self, message, /, **kwargs):
1768            self.message = message
1769            self.kwargs = kwargs
1770
1771        def __str__(self):
1772            return '%s >>> %s' % (self.message, json.dumps(self.kwargs))
1773
1774    _ = StructuredMessage   # optional, to improve readability
1775
1776    logging.basicConfig(level=logging.INFO, format='%(message)s')
1777    logging.info(_('message 1', foo='bar', bar='baz', num=123, fnum=123.456))
1778
1779If the above script is run, it prints:
1780
1781.. code-block:: none
1782
1783    message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"}
1784
1785Note that the order of items might be different according to the version of
1786Python used.
1787
1788If you need more specialised processing, you can use a custom JSON encoder,
1789as in the following complete example::
1790
1791    from __future__ import unicode_literals
1792
1793    import json
1794    import logging
1795
1796    # This next bit is to ensure the script runs unchanged on 2.x and 3.x
1797    try:
1798        unicode
1799    except NameError:
1800        unicode = str
1801
1802    class Encoder(json.JSONEncoder):
1803        def default(self, o):
1804            if isinstance(o, set):
1805                return tuple(o)
1806            elif isinstance(o, unicode):
1807                return o.encode('unicode_escape').decode('ascii')
1808            return super().default(o)
1809
1810    class StructuredMessage:
1811        def __init__(self, message, /, **kwargs):
1812            self.message = message
1813            self.kwargs = kwargs
1814
1815        def __str__(self):
1816            s = Encoder().encode(self.kwargs)
1817            return '%s >>> %s' % (self.message, s)
1818
1819    _ = StructuredMessage   # optional, to improve readability
1820
1821    def main():
1822        logging.basicConfig(level=logging.INFO, format='%(message)s')
1823        logging.info(_('message 1', set_value={1, 2, 3}, snowman='\u2603'))
1824
1825    if __name__ == '__main__':
1826        main()
1827
1828When the above script is run, it prints:
1829
1830.. code-block:: none
1831
1832    message 1 >>> {"snowman": "\u2603", "set_value": [1, 2, 3]}
1833
1834Note that the order of items might be different according to the version of
1835Python used.
1836
1837
1838.. _custom-handlers:
1839
1840.. currentmodule:: logging.config
1841
1842Customizing handlers with :func:`dictConfig`
1843--------------------------------------------
1844
1845There are times when you want to customize logging handlers in particular ways,
1846and if you use :func:`dictConfig` you may be able to do this without
1847subclassing. As an example, consider that you may want to set the ownership of a
1848log file. On POSIX, this is easily done using :func:`shutil.chown`, but the file
1849handlers in the stdlib don't offer built-in support. You can customize handler
1850creation using a plain function such as::
1851
1852    def owned_file_handler(filename, mode='a', encoding=None, owner=None):
1853        if owner:
1854            if not os.path.exists(filename):
1855                open(filename, 'a').close()
1856            shutil.chown(filename, *owner)
1857        return logging.FileHandler(filename, mode, encoding)
1858
1859You can then specify, in a logging configuration passed to :func:`dictConfig`,
1860that a logging handler be created by calling this function::
1861
1862    LOGGING = {
1863        'version': 1,
1864        'disable_existing_loggers': False,
1865        'formatters': {
1866            'default': {
1867                'format': '%(asctime)s %(levelname)s %(name)s %(message)s'
1868            },
1869        },
1870        'handlers': {
1871            'file':{
1872                # The values below are popped from this dictionary and
1873                # used to create the handler, set the handler's level and
1874                # its formatter.
1875                '()': owned_file_handler,
1876                'level':'DEBUG',
1877                'formatter': 'default',
1878                # The values below are passed to the handler creator callable
1879                # as keyword arguments.
1880                'owner': ['pulse', 'pulse'],
1881                'filename': 'chowntest.log',
1882                'mode': 'w',
1883                'encoding': 'utf-8',
1884            },
1885        },
1886        'root': {
1887            'handlers': ['file'],
1888            'level': 'DEBUG',
1889        },
1890    }
1891
1892In this example I am setting the ownership using the ``pulse`` user and group,
1893just for the purposes of illustration. Putting it together into a working
1894script, ``chowntest.py``::
1895
1896    import logging, logging.config, os, shutil
1897
1898    def owned_file_handler(filename, mode='a', encoding=None, owner=None):
1899        if owner:
1900            if not os.path.exists(filename):
1901                open(filename, 'a').close()
1902            shutil.chown(filename, *owner)
1903        return logging.FileHandler(filename, mode, encoding)
1904
1905    LOGGING = {
1906        'version': 1,
1907        'disable_existing_loggers': False,
1908        'formatters': {
1909            'default': {
1910                'format': '%(asctime)s %(levelname)s %(name)s %(message)s'
1911            },
1912        },
1913        'handlers': {
1914            'file':{
1915                # The values below are popped from this dictionary and
1916                # used to create the handler, set the handler's level and
1917                # its formatter.
1918                '()': owned_file_handler,
1919                'level':'DEBUG',
1920                'formatter': 'default',
1921                # The values below are passed to the handler creator callable
1922                # as keyword arguments.
1923                'owner': ['pulse', 'pulse'],
1924                'filename': 'chowntest.log',
1925                'mode': 'w',
1926                'encoding': 'utf-8',
1927            },
1928        },
1929        'root': {
1930            'handlers': ['file'],
1931            'level': 'DEBUG',
1932        },
1933    }
1934
1935    logging.config.dictConfig(LOGGING)
1936    logger = logging.getLogger('mylogger')
1937    logger.debug('A debug message')
1938
1939To run this, you will probably need to run as ``root``:
1940
1941.. code-block:: shell-session
1942
1943    $ sudo python3.3 chowntest.py
1944    $ cat chowntest.log
1945    2013-11-05 09:34:51,128 DEBUG mylogger A debug message
1946    $ ls -l chowntest.log
1947    -rw-r--r-- 1 pulse pulse 55 2013-11-05 09:34 chowntest.log
1948
1949Note that this example uses Python 3.3 because that's where :func:`shutil.chown`
1950makes an appearance. This approach should work with any Python version that
1951supports :func:`dictConfig` - namely, Python 2.7, 3.2 or later. With pre-3.3
1952versions, you would need to implement the actual ownership change using e.g.
1953:func:`os.chown`.
1954
1955In practice, the handler-creating function may be in a utility module somewhere
1956in your project. Instead of the line in the configuration::
1957
1958    '()': owned_file_handler,
1959
1960you could use e.g.::
1961
1962    '()': 'ext://project.util.owned_file_handler',
1963
1964where ``project.util`` can be replaced with the actual name of the package
1965where the function resides. In the above working script, using
1966``'ext://__main__.owned_file_handler'`` should work. Here, the actual callable
1967is resolved by :func:`dictConfig` from the ``ext://`` specification.
1968
1969This example hopefully also points the way to how you could implement other
1970types of file change - e.g. setting specific POSIX permission bits - in the
1971same way, using :func:`os.chmod`.
1972
1973Of course, the approach could also be extended to types of handler other than a
1974:class:`~logging.FileHandler` - for example, one of the rotating file handlers,
1975or a different type of handler altogether.
1976
1977
1978.. currentmodule:: logging
1979
1980.. _formatting-styles:
1981
1982Using particular formatting styles throughout your application
1983--------------------------------------------------------------
1984
1985In Python 3.2, the :class:`~logging.Formatter` gained a ``style`` keyword
1986parameter which, while defaulting to ``%`` for backward compatibility, allowed
1987the specification of ``{`` or ``$`` to support the formatting approaches
1988supported by :meth:`str.format` and :class:`string.Template`. Note that this
1989governs the formatting of logging messages for final output to logs, and is
1990completely orthogonal to how an individual logging message is constructed.
1991
1992Logging calls (:meth:`~Logger.debug`, :meth:`~Logger.info` etc.) only take
1993positional parameters for the actual logging message itself, with keyword
1994parameters used only for determining options for how to handle the logging call
1995(e.g. the ``exc_info`` keyword parameter to indicate that traceback information
1996should be logged, or the ``extra`` keyword parameter to indicate additional
1997contextual information to be added to the log). So you cannot directly make
1998logging calls using :meth:`str.format` or :class:`string.Template` syntax,
1999because internally the logging package uses %-formatting to merge the format
2000string and the variable arguments. There would no changing this while preserving
2001backward compatibility, since all logging calls which are out there in existing
2002code will be using %-format strings.
2003
2004There have been suggestions to associate format styles with specific loggers,
2005but that approach also runs into backward compatibility problems because any
2006existing code could be using a given logger name and using %-formatting.
2007
2008For logging to work interoperably between any third-party libraries and your
2009code, decisions about formatting need to be made at the level of the
2010individual logging call. This opens up a couple of ways in which alternative
2011formatting styles can be accommodated.
2012
2013
2014Using LogRecord factories
2015^^^^^^^^^^^^^^^^^^^^^^^^^
2016
2017In Python 3.2, along with the :class:`~logging.Formatter` changes mentioned
2018above, the logging package gained the ability to allow users to set their own
2019:class:`LogRecord` subclasses, using the :func:`setLogRecordFactory` function.
2020You can use this to set your own subclass of :class:`LogRecord`, which does the
2021Right Thing by overriding the :meth:`~LogRecord.getMessage` method. The base
2022class implementation of this method is where the ``msg % args`` formatting
2023happens, and where you can substitute your alternate formatting; however, you
2024should be careful to support all formatting styles and allow %-formatting as
2025the default, to ensure interoperability with other code. Care should also be
2026taken to call ``str(self.msg)``, just as the base implementation does.
2027
2028Refer to the reference documentation on :func:`setLogRecordFactory` and
2029:class:`LogRecord` for more information.
2030
2031
2032Using custom message objects
2033^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2034
2035There is another, perhaps simpler way that you can use {}- and $- formatting to
2036construct your individual log messages. You may recall (from
2037:ref:`arbitrary-object-messages`) that when logging you can use an arbitrary
2038object as a message format string, and that the logging package will call
2039:func:`str` on that object to get the actual format string. Consider the
2040following two classes::
2041
2042    class BraceMessage:
2043        def __init__(self, fmt, /, *args, **kwargs):
2044            self.fmt = fmt
2045            self.args = args
2046            self.kwargs = kwargs
2047
2048        def __str__(self):
2049            return self.fmt.format(*self.args, **self.kwargs)
2050
2051    class DollarMessage:
2052        def __init__(self, fmt, /, **kwargs):
2053            self.fmt = fmt
2054            self.kwargs = kwargs
2055
2056        def __str__(self):
2057            from string import Template
2058            return Template(self.fmt).substitute(**self.kwargs)
2059
2060Either of these can be used in place of a format string, to allow {}- or
2061$-formatting to be used to build the actual "message" part which appears in the
2062formatted log output in place of “%(message)s” or “{message}” or “$message”.
2063If you find it a little unwieldy to use the class names whenever you want to log
2064something, you can make it more palatable if you use an alias such as ``M`` or
2065``_`` for the message (or perhaps ``__``, if you are using ``_`` for
2066localization).
2067
2068Examples of this approach are given below. Firstly, formatting with
2069:meth:`str.format`::
2070
2071    >>> __ = BraceMessage
2072    >>> print(__('Message with {0} {1}', 2, 'placeholders'))
2073    Message with 2 placeholders
2074    >>> class Point: pass
2075    ...
2076    >>> p = Point()
2077    >>> p.x = 0.5
2078    >>> p.y = 0.5
2079    >>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})', point=p))
2080    Message with coordinates: (0.50, 0.50)
2081
2082Secondly, formatting with :class:`string.Template`::
2083
2084    >>> __ = DollarMessage
2085    >>> print(__('Message with $num $what', num=2, what='placeholders'))
2086    Message with 2 placeholders
2087    >>>
2088
2089One thing to note is that you pay no significant performance penalty with this
2090approach: the actual formatting happens not when you make the logging call, but
2091when (and if) the logged message is actually about to be output to a log by a
2092handler. So the only slightly unusual thing which might trip you up is that the
2093parentheses go around the format string and the arguments, not just the format
2094string. That’s because the __ notation is just syntax sugar for a constructor
2095call to one of the ``XXXMessage`` classes shown above.
2096
2097
2098.. _filters-dictconfig:
2099
2100.. currentmodule:: logging.config
2101
2102Configuring filters with :func:`dictConfig`
2103-------------------------------------------
2104
2105You *can* configure filters using :func:`~logging.config.dictConfig`, though it
2106might not be obvious at first glance how to do it (hence this recipe). Since
2107:class:`~logging.Filter` is the only filter class included in the standard
2108library, and it is unlikely to cater to many requirements (it's only there as a
2109base class), you will typically need to define your own :class:`~logging.Filter`
2110subclass with an overridden :meth:`~logging.Filter.filter` method. To do this,
2111specify the ``()`` key in the configuration dictionary for the filter,
2112specifying a callable which will be used to create the filter (a class is the
2113most obvious, but you can provide any callable which returns a
2114:class:`~logging.Filter` instance). Here is a complete example::
2115
2116    import logging
2117    import logging.config
2118    import sys
2119
2120    class MyFilter(logging.Filter):
2121        def __init__(self, param=None):
2122            self.param = param
2123
2124        def filter(self, record):
2125            if self.param is None:
2126                allow = True
2127            else:
2128                allow = self.param not in record.msg
2129            if allow:
2130                record.msg = 'changed: ' + record.msg
2131            return allow
2132
2133    LOGGING = {
2134        'version': 1,
2135        'filters': {
2136            'myfilter': {
2137                '()': MyFilter,
2138                'param': 'noshow',
2139            }
2140        },
2141        'handlers': {
2142            'console': {
2143                'class': 'logging.StreamHandler',
2144                'filters': ['myfilter']
2145            }
2146        },
2147        'root': {
2148            'level': 'DEBUG',
2149            'handlers': ['console']
2150        },
2151    }
2152
2153    if __name__ == '__main__':
2154        logging.config.dictConfig(LOGGING)
2155        logging.debug('hello')
2156        logging.debug('hello - noshow')
2157
2158This example shows how you can pass configuration data to the callable which
2159constructs the instance, in the form of keyword parameters. When run, the above
2160script will print:
2161
2162.. code-block:: none
2163
2164    changed: hello
2165
2166which shows that the filter is working as configured.
2167
2168A couple of extra points to note:
2169
2170* If you can't refer to the callable directly in the configuration (e.g. if it
2171  lives in a different module, and you can't import it directly where the
2172  configuration dictionary is), you can use the form ``ext://...`` as described
2173  in :ref:`logging-config-dict-externalobj`. For example, you could have used
2174  the text ``'ext://__main__.MyFilter'`` instead of ``MyFilter`` in the above
2175  example.
2176
2177* As well as for filters, this technique can also be used to configure custom
2178  handlers and formatters. See :ref:`logging-config-dict-userdef` for more
2179  information on how logging supports using user-defined objects in its
2180  configuration, and see the other cookbook recipe :ref:`custom-handlers` above.
2181
2182
2183.. _custom-format-exception:
2184
2185Customized exception formatting
2186-------------------------------
2187
2188There might be times when you want to do customized exception formatting - for
2189argument's sake, let's say you want exactly one line per logged event, even
2190when exception information is present. You can do this with a custom formatter
2191class, as shown in the following example::
2192
2193    import logging
2194
2195    class OneLineExceptionFormatter(logging.Formatter):
2196        def formatException(self, exc_info):
2197            """
2198            Format an exception so that it prints on a single line.
2199            """
2200            result = super().formatException(exc_info)
2201            return repr(result)  # or format into one line however you want to
2202
2203        def format(self, record):
2204            s = super().format(record)
2205            if record.exc_text:
2206                s = s.replace('\n', '') + '|'
2207            return s
2208
2209    def configure_logging():
2210        fh = logging.FileHandler('output.txt', 'w')
2211        f = OneLineExceptionFormatter('%(asctime)s|%(levelname)s|%(message)s|',
2212                                      '%d/%m/%Y %H:%M:%S')
2213        fh.setFormatter(f)
2214        root = logging.getLogger()
2215        root.setLevel(logging.DEBUG)
2216        root.addHandler(fh)
2217
2218    def main():
2219        configure_logging()
2220        logging.info('Sample message')
2221        try:
2222            x = 1 / 0
2223        except ZeroDivisionError as e:
2224            logging.exception('ZeroDivisionError: %s', e)
2225
2226    if __name__ == '__main__':
2227        main()
2228
2229When run, this produces a file with exactly two lines:
2230
2231.. code-block:: none
2232
2233    28/01/2015 07:21:23|INFO|Sample message|
2234    28/01/2015 07:21:23|ERROR|ZeroDivisionError: integer division or modulo by zero|'Traceback (most recent call last):\n  File "logtest7.py", line 30, in main\n    x = 1 / 0\nZeroDivisionError: integer division or modulo by zero'|
2235
2236While the above treatment is simplistic, it points the way to how exception
2237information can be formatted to your liking. The :mod:`traceback` module may be
2238helpful for more specialized needs.
2239
2240.. _spoken-messages:
2241
2242Speaking logging messages
2243-------------------------
2244
2245There might be situations when it is desirable to have logging messages rendered
2246in an audible rather than a visible format. This is easy to do if you have
2247text-to-speech (TTS) functionality available in your system, even if it doesn't have
2248a Python binding. Most TTS systems have a command line program you can run, and
2249this can be invoked from a handler using :mod:`subprocess`. It's assumed here
2250that TTS command line programs won't expect to interact with users or take a
2251long time to complete, and that the frequency of logged messages will be not so
2252high as to swamp the user with messages, and that it's acceptable to have the
2253messages spoken one at a time rather than concurrently, The example implementation
2254below waits for one message to be spoken before the next is processed, and this
2255might cause other handlers to be kept waiting. Here is a short example showing
2256the approach, which assumes that the ``espeak`` TTS package is available::
2257
2258    import logging
2259    import subprocess
2260    import sys
2261
2262    class TTSHandler(logging.Handler):
2263        def emit(self, record):
2264            msg = self.format(record)
2265            # Speak slowly in a female English voice
2266            cmd = ['espeak', '-s150', '-ven+f3', msg]
2267            p = subprocess.Popen(cmd, stdout=subprocess.PIPE,
2268                                 stderr=subprocess.STDOUT)
2269            # wait for the program to finish
2270            p.communicate()
2271
2272    def configure_logging():
2273        h = TTSHandler()
2274        root = logging.getLogger()
2275        root.addHandler(h)
2276        # the default formatter just returns the message
2277        root.setLevel(logging.DEBUG)
2278
2279    def main():
2280        logging.info('Hello')
2281        logging.debug('Goodbye')
2282
2283    if __name__ == '__main__':
2284        configure_logging()
2285        sys.exit(main())
2286
2287When run, this script should say "Hello" and then "Goodbye" in a female voice.
2288
2289The above approach can, of course, be adapted to other TTS systems and even
2290other systems altogether which can process messages via external programs run
2291from a command line.
2292
2293
2294.. _buffered-logging:
2295
2296Buffering logging messages and outputting them conditionally
2297------------------------------------------------------------
2298
2299There might be situations where you want to log messages in a temporary area
2300and only output them if a certain condition occurs. For example, you may want to
2301start logging debug events in a function, and if the function completes without
2302errors, you don't want to clutter the log with the collected debug information,
2303but if there is an error, you want all the debug information to be output as well
2304as the error.
2305
2306Here is an example which shows how you could do this using a decorator for your
2307functions where you want logging to behave this way. It makes use of the
2308:class:`logging.handlers.MemoryHandler`, which allows buffering of logged events
2309until some condition occurs, at which point the buffered events are ``flushed``
2310- passed to another handler (the ``target`` handler) for processing. By default,
2311the ``MemoryHandler`` flushed when its buffer gets filled up or an event whose
2312level is greater than or equal to a specified threshold is seen. You can use this
2313recipe with a more specialised subclass of ``MemoryHandler`` if you want custom
2314flushing behavior.
2315
2316The example script has a simple function, ``foo``, which just cycles through
2317all the logging levels, writing to ``sys.stderr`` to say what level it's about
2318to log at, and then actually logging a message at that level. You can pass a
2319parameter to ``foo`` which, if true, will log at ERROR and CRITICAL levels -
2320otherwise, it only logs at DEBUG, INFO and WARNING levels.
2321
2322The script just arranges to decorate ``foo`` with a decorator which will do the
2323conditional logging that's required. The decorator takes a logger as a parameter
2324and attaches a memory handler for the duration of the call to the decorated
2325function. The decorator can be additionally parameterised using a target handler,
2326a level at which flushing should occur, and a capacity for the buffer (number of
2327records buffered). These default to a :class:`~logging.StreamHandler` which
2328writes to ``sys.stderr``, ``logging.ERROR`` and ``100`` respectively.
2329
2330Here's the script::
2331
2332    import logging
2333    from logging.handlers import MemoryHandler
2334    import sys
2335
2336    logger = logging.getLogger(__name__)
2337    logger.addHandler(logging.NullHandler())
2338
2339    def log_if_errors(logger, target_handler=None, flush_level=None, capacity=None):
2340        if target_handler is None:
2341            target_handler = logging.StreamHandler()
2342        if flush_level is None:
2343            flush_level = logging.ERROR
2344        if capacity is None:
2345            capacity = 100
2346        handler = MemoryHandler(capacity, flushLevel=flush_level, target=target_handler)
2347
2348        def decorator(fn):
2349            def wrapper(*args, **kwargs):
2350                logger.addHandler(handler)
2351                try:
2352                    return fn(*args, **kwargs)
2353                except Exception:
2354                    logger.exception('call failed')
2355                    raise
2356                finally:
2357                    super(MemoryHandler, handler).flush()
2358                    logger.removeHandler(handler)
2359            return wrapper
2360
2361        return decorator
2362
2363    def write_line(s):
2364        sys.stderr.write('%s\n' % s)
2365
2366    def foo(fail=False):
2367        write_line('about to log at DEBUG ...')
2368        logger.debug('Actually logged at DEBUG')
2369        write_line('about to log at INFO ...')
2370        logger.info('Actually logged at INFO')
2371        write_line('about to log at WARNING ...')
2372        logger.warning('Actually logged at WARNING')
2373        if fail:
2374            write_line('about to log at ERROR ...')
2375            logger.error('Actually logged at ERROR')
2376            write_line('about to log at CRITICAL ...')
2377            logger.critical('Actually logged at CRITICAL')
2378        return fail
2379
2380    decorated_foo = log_if_errors(logger)(foo)
2381
2382    if __name__ == '__main__':
2383        logger.setLevel(logging.DEBUG)
2384        write_line('Calling undecorated foo with False')
2385        assert not foo(False)
2386        write_line('Calling undecorated foo with True')
2387        assert foo(True)
2388        write_line('Calling decorated foo with False')
2389        assert not decorated_foo(False)
2390        write_line('Calling decorated foo with True')
2391        assert decorated_foo(True)
2392
2393When this script is run, the following output should be observed:
2394
2395.. code-block:: none
2396
2397    Calling undecorated foo with False
2398    about to log at DEBUG ...
2399    about to log at INFO ...
2400    about to log at WARNING ...
2401    Calling undecorated foo with True
2402    about to log at DEBUG ...
2403    about to log at INFO ...
2404    about to log at WARNING ...
2405    about to log at ERROR ...
2406    about to log at CRITICAL ...
2407    Calling decorated foo with False
2408    about to log at DEBUG ...
2409    about to log at INFO ...
2410    about to log at WARNING ...
2411    Calling decorated foo with True
2412    about to log at DEBUG ...
2413    about to log at INFO ...
2414    about to log at WARNING ...
2415    about to log at ERROR ...
2416    Actually logged at DEBUG
2417    Actually logged at INFO
2418    Actually logged at WARNING
2419    Actually logged at ERROR
2420    about to log at CRITICAL ...
2421    Actually logged at CRITICAL
2422
2423As you can see, actual logging output only occurs when an event is logged whose
2424severity is ERROR or greater, but in that case, any previous events at lower
2425severities are also logged.
2426
2427You can of course use the conventional means of decoration::
2428
2429    @log_if_errors(logger)
2430    def foo(fail=False):
2431        ...
2432
2433
2434.. _utc-formatting:
2435
2436Formatting times using UTC (GMT) via configuration
2437--------------------------------------------------
2438
2439Sometimes you want to format times using UTC, which can be done using a class
2440such as `UTCFormatter`, shown below::
2441
2442    import logging
2443    import time
2444
2445    class UTCFormatter(logging.Formatter):
2446        converter = time.gmtime
2447
2448and you can then use the ``UTCFormatter`` in your code instead of
2449:class:`~logging.Formatter`. If you want to do that via configuration, you can
2450use the :func:`~logging.config.dictConfig` API with an approach illustrated by
2451the following complete example::
2452
2453    import logging
2454    import logging.config
2455    import time
2456
2457    class UTCFormatter(logging.Formatter):
2458        converter = time.gmtime
2459
2460    LOGGING = {
2461        'version': 1,
2462        'disable_existing_loggers': False,
2463        'formatters': {
2464            'utc': {
2465                '()': UTCFormatter,
2466                'format': '%(asctime)s %(message)s',
2467            },
2468            'local': {
2469                'format': '%(asctime)s %(message)s',
2470            }
2471        },
2472        'handlers': {
2473            'console1': {
2474                'class': 'logging.StreamHandler',
2475                'formatter': 'utc',
2476            },
2477            'console2': {
2478                'class': 'logging.StreamHandler',
2479                'formatter': 'local',
2480            },
2481        },
2482        'root': {
2483            'handlers': ['console1', 'console2'],
2484       }
2485    }
2486
2487    if __name__ == '__main__':
2488        logging.config.dictConfig(LOGGING)
2489        logging.warning('The local time is %s', time.asctime())
2490
2491When this script is run, it should print something like:
2492
2493.. code-block:: none
2494
2495    2015-10-17 12:53:29,501 The local time is Sat Oct 17 13:53:29 2015
2496    2015-10-17 13:53:29,501 The local time is Sat Oct 17 13:53:29 2015
2497
2498showing how the time is formatted both as local time and UTC, one for each
2499handler.
2500
2501
2502.. _context-manager:
2503
2504Using a context manager for selective logging
2505---------------------------------------------
2506
2507There are times when it would be useful to temporarily change the logging
2508configuration and revert it back after doing something. For this, a context
2509manager is the most obvious way of saving and restoring the logging context.
2510Here is a simple example of such a context manager, which allows you to
2511optionally change the logging level and add a logging handler purely in the
2512scope of the context manager::
2513
2514    import logging
2515    import sys
2516
2517    class LoggingContext:
2518        def __init__(self, logger, level=None, handler=None, close=True):
2519            self.logger = logger
2520            self.level = level
2521            self.handler = handler
2522            self.close = close
2523
2524        def __enter__(self):
2525            if self.level is not None:
2526                self.old_level = self.logger.level
2527                self.logger.setLevel(self.level)
2528            if self.handler:
2529                self.logger.addHandler(self.handler)
2530
2531        def __exit__(self, et, ev, tb):
2532            if self.level is not None:
2533                self.logger.setLevel(self.old_level)
2534            if self.handler:
2535                self.logger.removeHandler(self.handler)
2536            if self.handler and self.close:
2537                self.handler.close()
2538            # implicit return of None => don't swallow exceptions
2539
2540If you specify a level value, the logger's level is set to that value in the
2541scope of the with block covered by the context manager. If you specify a
2542handler, it is added to the logger on entry to the block and removed on exit
2543from the block. You can also ask the manager to close the handler for you on
2544block exit - you could do this if you don't need the handler any more.
2545
2546To illustrate how it works, we can add the following block of code to the
2547above::
2548
2549    if __name__ == '__main__':
2550        logger = logging.getLogger('foo')
2551        logger.addHandler(logging.StreamHandler())
2552        logger.setLevel(logging.INFO)
2553        logger.info('1. This should appear just once on stderr.')
2554        logger.debug('2. This should not appear.')
2555        with LoggingContext(logger, level=logging.DEBUG):
2556            logger.debug('3. This should appear once on stderr.')
2557        logger.debug('4. This should not appear.')
2558        h = logging.StreamHandler(sys.stdout)
2559        with LoggingContext(logger, level=logging.DEBUG, handler=h, close=True):
2560            logger.debug('5. This should appear twice - once on stderr and once on stdout.')
2561        logger.info('6. This should appear just once on stderr.')
2562        logger.debug('7. This should not appear.')
2563
2564We initially set the logger's level to ``INFO``, so message #1 appears and
2565message #2 doesn't. We then change the level to ``DEBUG`` temporarily in the
2566following ``with`` block, and so message #3 appears. After the block exits, the
2567logger's level is restored to ``INFO`` and so message #4 doesn't appear. In the
2568next ``with`` block, we set the level to ``DEBUG`` again but also add a handler
2569writing to ``sys.stdout``. Thus, message #5 appears twice on the console (once
2570via ``stderr`` and once via ``stdout``). After the ``with`` statement's
2571completion, the status is as it was before so message #6 appears (like message
2572#1) whereas message #7 doesn't (just like message #2).
2573
2574If we run the resulting script, the result is as follows:
2575
2576.. code-block:: shell-session
2577
2578    $ python logctx.py
2579    1. This should appear just once on stderr.
2580    3. This should appear once on stderr.
2581    5. This should appear twice - once on stderr and once on stdout.
2582    5. This should appear twice - once on stderr and once on stdout.
2583    6. This should appear just once on stderr.
2584
2585If we run it again, but pipe ``stderr`` to ``/dev/null``, we see the following,
2586which is the only message written to ``stdout``:
2587
2588.. code-block:: shell-session
2589
2590    $ python logctx.py 2>/dev/null
2591    5. This should appear twice - once on stderr and once on stdout.
2592
2593Once again, but piping ``stdout`` to ``/dev/null``, we get:
2594
2595.. code-block:: shell-session
2596
2597    $ python logctx.py >/dev/null
2598    1. This should appear just once on stderr.
2599    3. This should appear once on stderr.
2600    5. This should appear twice - once on stderr and once on stdout.
2601    6. This should appear just once on stderr.
2602
2603In this case, the message #5 printed to ``stdout`` doesn't appear, as expected.
2604
2605Of course, the approach described here can be generalised, for example to attach
2606logging filters temporarily. Note that the above code works in Python 2 as well
2607as Python 3.
2608
2609
2610.. _starter-template:
2611
2612A CLI application starter template
2613----------------------------------
2614
2615Here's an example which shows how you can:
2616
2617* Use a logging level based on command-line arguments
2618* Dispatch to multiple subcommands in separate files, all logging at the same
2619  level in a consistent way
2620* Make use of simple, minimal configuration
2621
2622Suppose we have a command-line application whose job is to stop, start or
2623restart some services. This could be organised for the purposes of illustration
2624as a file ``app.py`` that is the main script for the application, with individual
2625commands implemented in ``start.py``, ``stop.py`` and ``restart.py``. Suppose
2626further that we want to control the verbosity of the application via a
2627command-line argument, defaulting to ``logging.INFO``. Here's one way that
2628``app.py`` could be written::
2629
2630    import argparse
2631    import importlib
2632    import logging
2633    import os
2634    import sys
2635
2636    def main(args=None):
2637        scriptname = os.path.basename(__file__)
2638        parser = argparse.ArgumentParser(scriptname)
2639        levels = ('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL')
2640        parser.add_argument('--log-level', default='INFO', choices=levels)
2641        subparsers = parser.add_subparsers(dest='command',
2642                                           help='Available commands:')
2643        start_cmd = subparsers.add_parser('start', help='Start a service')
2644        start_cmd.add_argument('name', metavar='NAME',
2645                               help='Name of service to start')
2646        stop_cmd = subparsers.add_parser('stop',
2647                                         help='Stop one or more services')
2648        stop_cmd.add_argument('names', metavar='NAME', nargs='+',
2649                              help='Name of service to stop')
2650        restart_cmd = subparsers.add_parser('restart',
2651                                            help='Restart one or more services')
2652        restart_cmd.add_argument('names', metavar='NAME', nargs='+',
2653                                 help='Name of service to restart')
2654        options = parser.parse_args()
2655        # the code to dispatch commands could all be in this file. For the purposes
2656        # of illustration only, we implement each command in a separate module.
2657        try:
2658            mod = importlib.import_module(options.command)
2659            cmd = getattr(mod, 'command')
2660        except (ImportError, AttributeError):
2661            print('Unable to find the code for command \'%s\'' % options.command)
2662            return 1
2663        # Could get fancy here and load configuration from file or dictionary
2664        logging.basicConfig(level=options.log_level,
2665                            format='%(levelname)s %(name)s %(message)s')
2666        cmd(options)
2667
2668    if __name__ == '__main__':
2669        sys.exit(main())
2670
2671And the ``start``, ``stop`` and ``restart`` commands can be implemented in
2672separate modules, like so for starting::
2673
2674    # start.py
2675    import logging
2676
2677    logger = logging.getLogger(__name__)
2678
2679    def command(options):
2680        logger.debug('About to start %s', options.name)
2681        # actually do the command processing here ...
2682        logger.info('Started the \'%s\' service.', options.name)
2683
2684and thus for stopping::
2685
2686    # stop.py
2687    import logging
2688
2689    logger = logging.getLogger(__name__)
2690
2691    def command(options):
2692        n = len(options.names)
2693        if n == 1:
2694            plural = ''
2695            services = '\'%s\'' % options.names[0]
2696        else:
2697            plural = 's'
2698            services = ', '.join('\'%s\'' % name for name in options.names)
2699            i = services.rfind(', ')
2700            services = services[:i] + ' and ' + services[i + 2:]
2701        logger.debug('About to stop %s', services)
2702        # actually do the command processing here ...
2703        logger.info('Stopped the %s service%s.', services, plural)
2704
2705and similarly for restarting::
2706
2707    # restart.py
2708    import logging
2709
2710    logger = logging.getLogger(__name__)
2711
2712    def command(options):
2713        n = len(options.names)
2714        if n == 1:
2715            plural = ''
2716            services = '\'%s\'' % options.names[0]
2717        else:
2718            plural = 's'
2719            services = ', '.join('\'%s\'' % name for name in options.names)
2720            i = services.rfind(', ')
2721            services = services[:i] + ' and ' + services[i + 2:]
2722        logger.debug('About to restart %s', services)
2723        # actually do the command processing here ...
2724        logger.info('Restarted the %s service%s.', services, plural)
2725
2726If we run this application with the default log level, we get output like this:
2727
2728.. code-block:: shell-session
2729
2730    $ python app.py start foo
2731    INFO start Started the 'foo' service.
2732
2733    $ python app.py stop foo bar
2734    INFO stop Stopped the 'foo' and 'bar' services.
2735
2736    $ python app.py restart foo bar baz
2737    INFO restart Restarted the 'foo', 'bar' and 'baz' services.
2738
2739The first word is the logging level, and the second word is the module or
2740package name of the place where the event was logged.
2741
2742If we change the logging level, then we can change the information sent to the
2743log. For example, if we want more information:
2744
2745.. code-block:: shell-session
2746
2747    $ python app.py --log-level DEBUG start foo
2748    DEBUG start About to start foo
2749    INFO start Started the 'foo' service.
2750
2751    $ python app.py --log-level DEBUG stop foo bar
2752    DEBUG stop About to stop 'foo' and 'bar'
2753    INFO stop Stopped the 'foo' and 'bar' services.
2754
2755    $ python app.py --log-level DEBUG restart foo bar baz
2756    DEBUG restart About to restart 'foo', 'bar' and 'baz'
2757    INFO restart Restarted the 'foo', 'bar' and 'baz' services.
2758
2759And if we want less:
2760
2761.. code-block:: shell-session
2762
2763    $ python app.py --log-level WARNING start foo
2764    $ python app.py --log-level WARNING stop foo bar
2765    $ python app.py --log-level WARNING restart foo bar baz
2766
2767In this case, the commands don't print anything to the console, since nothing
2768at ``WARNING`` level or above is logged by them.
2769
2770.. _qt-gui:
2771
2772A Qt GUI for logging
2773--------------------
2774
2775A question that comes up from time to time is about how to log to a GUI
2776application. The `Qt <https://www.qt.io/>`_ framework is a popular
2777cross-platform UI framework with Python bindings using `PySide2
2778<https://pypi.org/project/PySide2/>`_ or `PyQt5
2779<https://pypi.org/project/PyQt5/>`_ libraries.
2780
2781The following example shows how to log to a Qt GUI. This introduces a simple
2782``QtHandler`` class which takes a callable, which should be a slot in the main
2783thread that does GUI updates. A worker thread is also created to show how you
2784can log to the GUI from both the UI itself (via a button for manual logging)
2785as well as a worker thread doing work in the background (here, just logging
2786messages at random levels with random short delays in between).
2787
2788The worker thread is implemented using Qt's ``QThread`` class rather than the
2789:mod:`threading` module, as there are circumstances where one has to use
2790``QThread``, which offers better integration with other ``Qt`` components.
2791
2792The code should work with recent releases of either ``PySide2`` or ``PyQt5``.
2793You should be able to adapt the approach to earlier versions of Qt. Please
2794refer to the comments in the code snippet for more detailed information.
2795
2796.. code-block:: python3
2797
2798    import datetime
2799    import logging
2800    import random
2801    import sys
2802    import time
2803
2804    # Deal with minor differences between PySide2 and PyQt5
2805    try:
2806        from PySide2 import QtCore, QtGui, QtWidgets
2807        Signal = QtCore.Signal
2808        Slot = QtCore.Slot
2809    except ImportError:
2810        from PyQt5 import QtCore, QtGui, QtWidgets
2811        Signal = QtCore.pyqtSignal
2812        Slot = QtCore.pyqtSlot
2813
2814
2815    logger = logging.getLogger(__name__)
2816
2817
2818    #
2819    # Signals need to be contained in a QObject or subclass in order to be correctly
2820    # initialized.
2821    #
2822    class Signaller(QtCore.QObject):
2823        signal = Signal(str, logging.LogRecord)
2824
2825    #
2826    # Output to a Qt GUI is only supposed to happen on the main thread. So, this
2827    # handler is designed to take a slot function which is set up to run in the main
2828    # thread. In this example, the function takes a string argument which is a
2829    # formatted log message, and the log record which generated it. The formatted
2830    # string is just a convenience - you could format a string for output any way
2831    # you like in the slot function itself.
2832    #
2833    # You specify the slot function to do whatever GUI updates you want. The handler
2834    # doesn't know or care about specific UI elements.
2835    #
2836    class QtHandler(logging.Handler):
2837        def __init__(self, slotfunc, *args, **kwargs):
2838            super().__init__(*args, **kwargs)
2839            self.signaller = Signaller()
2840            self.signaller.signal.connect(slotfunc)
2841
2842        def emit(self, record):
2843            s = self.format(record)
2844            self.signaller.signal.emit(s, record)
2845
2846    #
2847    # This example uses QThreads, which means that the threads at the Python level
2848    # are named something like "Dummy-1". The function below gets the Qt name of the
2849    # current thread.
2850    #
2851    def ctname():
2852        return QtCore.QThread.currentThread().objectName()
2853
2854
2855    #
2856    # Used to generate random levels for logging.
2857    #
2858    LEVELS = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
2859              logging.CRITICAL)
2860
2861    #
2862    # This worker class represents work that is done in a thread separate to the
2863    # main thread. The way the thread is kicked off to do work is via a button press
2864    # that connects to a slot in the worker.
2865    #
2866    # Because the default threadName value in the LogRecord isn't much use, we add
2867    # a qThreadName which contains the QThread name as computed above, and pass that
2868    # value in an "extra" dictionary which is used to update the LogRecord with the
2869    # QThread name.
2870    #
2871    # This example worker just outputs messages sequentially, interspersed with
2872    # random delays of the order of a few seconds.
2873    #
2874    class Worker(QtCore.QObject):
2875        @Slot()
2876        def start(self):
2877            extra = {'qThreadName': ctname() }
2878            logger.debug('Started work', extra=extra)
2879            i = 1
2880            # Let the thread run until interrupted. This allows reasonably clean
2881            # thread termination.
2882            while not QtCore.QThread.currentThread().isInterruptionRequested():
2883                delay = 0.5 + random.random() * 2
2884                time.sleep(delay)
2885                level = random.choice(LEVELS)
2886                logger.log(level, 'Message after delay of %3.1f: %d', delay, i, extra=extra)
2887                i += 1
2888
2889    #
2890    # Implement a simple UI for this cookbook example. This contains:
2891    #
2892    # * A read-only text edit window which holds formatted log messages
2893    # * A button to start work and log stuff in a separate thread
2894    # * A button to log something from the main thread
2895    # * A button to clear the log window
2896    #
2897    class Window(QtWidgets.QWidget):
2898
2899        COLORS = {
2900            logging.DEBUG: 'black',
2901            logging.INFO: 'blue',
2902            logging.WARNING: 'orange',
2903            logging.ERROR: 'red',
2904            logging.CRITICAL: 'purple',
2905        }
2906
2907        def __init__(self, app):
2908            super().__init__()
2909            self.app = app
2910            self.textedit = te = QtWidgets.QPlainTextEdit(self)
2911            # Set whatever the default monospace font is for the platform
2912            f = QtGui.QFont('nosuchfont')
2913            f.setStyleHint(f.Monospace)
2914            te.setFont(f)
2915            te.setReadOnly(True)
2916            PB = QtWidgets.QPushButton
2917            self.work_button = PB('Start background work', self)
2918            self.log_button = PB('Log a message at a random level', self)
2919            self.clear_button = PB('Clear log window', self)
2920            self.handler = h = QtHandler(self.update_status)
2921            # Remember to use qThreadName rather than threadName in the format string.
2922            fs = '%(asctime)s %(qThreadName)-12s %(levelname)-8s %(message)s'
2923            formatter = logging.Formatter(fs)
2924            h.setFormatter(formatter)
2925            logger.addHandler(h)
2926            # Set up to terminate the QThread when we exit
2927            app.aboutToQuit.connect(self.force_quit)
2928
2929            # Lay out all the widgets
2930            layout = QtWidgets.QVBoxLayout(self)
2931            layout.addWidget(te)
2932            layout.addWidget(self.work_button)
2933            layout.addWidget(self.log_button)
2934            layout.addWidget(self.clear_button)
2935            self.setFixedSize(900, 400)
2936
2937            # Connect the non-worker slots and signals
2938            self.log_button.clicked.connect(self.manual_update)
2939            self.clear_button.clicked.connect(self.clear_display)
2940
2941            # Start a new worker thread and connect the slots for the worker
2942            self.start_thread()
2943            self.work_button.clicked.connect(self.worker.start)
2944            # Once started, the button should be disabled
2945            self.work_button.clicked.connect(lambda : self.work_button.setEnabled(False))
2946
2947        def start_thread(self):
2948            self.worker = Worker()
2949            self.worker_thread = QtCore.QThread()
2950            self.worker.setObjectName('Worker')
2951            self.worker_thread.setObjectName('WorkerThread')  # for qThreadName
2952            self.worker.moveToThread(self.worker_thread)
2953            # This will start an event loop in the worker thread
2954            self.worker_thread.start()
2955
2956        def kill_thread(self):
2957            # Just tell the worker to stop, then tell it to quit and wait for that
2958            # to happen
2959            self.worker_thread.requestInterruption()
2960            if self.worker_thread.isRunning():
2961                self.worker_thread.quit()
2962                self.worker_thread.wait()
2963            else:
2964                print('worker has already exited.')
2965
2966        def force_quit(self):
2967            # For use when the window is closed
2968            if self.worker_thread.isRunning():
2969                self.kill_thread()
2970
2971        # The functions below update the UI and run in the main thread because
2972        # that's where the slots are set up
2973
2974        @Slot(str, logging.LogRecord)
2975        def update_status(self, status, record):
2976            color = self.COLORS.get(record.levelno, 'black')
2977            s = '<pre><font color="%s">%s</font></pre>' % (color, status)
2978            self.textedit.appendHtml(s)
2979
2980        @Slot()
2981        def manual_update(self):
2982            # This function uses the formatted message passed in, but also uses
2983            # information from the record to format the message in an appropriate
2984            # color according to its severity (level).
2985            level = random.choice(LEVELS)
2986            extra = {'qThreadName': ctname() }
2987            logger.log(level, 'Manually logged!', extra=extra)
2988
2989        @Slot()
2990        def clear_display(self):
2991            self.textedit.clear()
2992
2993
2994    def main():
2995        QtCore.QThread.currentThread().setObjectName('MainThread')
2996        logging.getLogger().setLevel(logging.DEBUG)
2997        app = QtWidgets.QApplication(sys.argv)
2998        example = Window(app)
2999        example.show()
3000        sys.exit(app.exec_())
3001
3002    if __name__=='__main__':
3003        main()
3004
3005
3006.. patterns-to-avoid:
3007
3008Patterns to avoid
3009-----------------
3010
3011Although the preceding sections have described ways of doing things you might
3012need to do or deal with, it is worth mentioning some usage patterns which are
3013*unhelpful*, and which should therefore be avoided in most cases. The following
3014sections are in no particular order.
3015
3016
3017Opening the same log file multiple times
3018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3019
3020On Windows, you will generally not be able to open the same file multiple times
3021as this will lead to a "file is in use by another process" error. However, on
3022POSIX platforms you'll not get any errors if you open the same file multiple
3023times. This could be done accidentally, for example by:
3024
3025* Adding a file handler more than once which references the same file (e.g. by
3026  a copy/paste/forget-to-change error).
3027
3028* Opening two files that look different, as they have different names, but are
3029  the same because one is a symbolic link to the other.
3030
3031* Forking a process, following which both parent and child have a reference to
3032  the same file. This might be through use of the :mod:`multiprocessing` module,
3033  for example.
3034
3035Opening a file multiple times might *appear* to work most of the time, but can
3036lead to a number of problems in practice:
3037
3038* Logging output can be garbled because multiple threads or processes try to
3039  write to the same file. Although logging guards against concurrent use of the
3040  same handler instance by multiple threads, there is no such protection if
3041  concurrent writes are attempted by two different threads using two different
3042  handler instances which happen to point to the same file.
3043
3044* An attempt to delete a file (e.g. during file rotation) silently fails,
3045  because there is another reference pointing to it. This can lead to confusion
3046  and wasted debugging time - log entries end up in unexpected places, or are
3047  lost altogether.
3048
3049Use the techniques outlined in :ref:`multiple-processes` to circumvent such
3050issues.
3051
3052Using loggers as attributes in a class or passing them as parameters
3053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3054
3055While there might be unusual cases where you'll need to do this, in general
3056there is no point because loggers are singletons. Code can always access a
3057given logger instance by name using ``logging.getLogger(name)``, so passing
3058instances around and holding them as instance attributes is pointless. Note
3059that in other languages such as Java and C#, loggers are often static class
3060attributes. However, this pattern doesn't make sense in Python, where the
3061module (and not the class) is the unit of software decomposition.
3062
3063
3064Adding handlers other than :class:`NullHandler` to a logger in a library
3065^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3066
3067Configuring logging by adding handlers, formatters and filters is the
3068responsibility of the application developer, not the library developer. If you
3069are maintaining a library, ensure that you don't add handlers to any of your
3070loggers other than a :class:`~logging.NullHandler` instance.
3071
3072
3073Creating a lot of loggers
3074^^^^^^^^^^^^^^^^^^^^^^^^^
3075
3076Loggers are singletons that are never freed during a script execution, and so
3077creating lots of loggers will use up memory which can't then be freed. Rather
3078than create a logger per e.g. file processed or network connection made, use
3079the :ref:`existing mechanisms <context-info>` for passing contextual
3080information into your logs and restrict the loggers created to those describing
3081areas within your application (generally modules, but occasionally slightly
3082more fine-grained than that).
3083