1 /*
2 *
3 * Programmable Interrupt Controller functions for the Freescale MPC52xx.
4 *
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 * Copyright (C) 2006 bplan GmbH
7 * Copyright (C) 2004 Sylvain Munaut <tnt@246tNt.com>
8 * Copyright (C) 2003 Montavista Software, Inc
9 *
10 * Based on the code from the 2.4 kernel by
11 * Dale Farnsworth <dfarnsworth@mvista.com> and Kent Borg.
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 *
17 */
18
19 /*
20 * This is the device driver for the MPC5200 interrupt controller.
21 *
22 * hardware overview
23 * -----------------
24 * The MPC5200 interrupt controller groups the all interrupt sources into
25 * three groups called 'critical', 'main', and 'peripheral'. The critical
26 * group has 3 irqs, External IRQ0, slice timer 0 irq, and wake from deep
27 * sleep. Main group include the other 3 external IRQs, slice timer 1, RTC,
28 * gpios, and the general purpose timers. Peripheral group contains the
29 * remaining irq sources from all of the on-chip peripherals (PSCs, Ethernet,
30 * USB, DMA, etc).
31 *
32 * virqs
33 * -----
34 * The Linux IRQ subsystem requires that each irq source be assigned a
35 * system wide unique IRQ number starting at 1 (0 means no irq). Since
36 * systems can have multiple interrupt controllers, the virtual IRQ (virq)
37 * infrastructure lets each interrupt controller to define a local set
38 * of IRQ numbers and the virq infrastructure maps those numbers into
39 * a unique range of the global IRQ# space.
40 *
41 * To define a range of virq numbers for this controller, this driver first
42 * assigns a number to each of the irq groups (called the level 1 or L1
43 * value). Within each group individual irq sources are also assigned a
44 * number, as defined by the MPC5200 user guide, and refers to it as the
45 * level 2 or L2 value. The virq number is determined by shifting up the
46 * L1 value by MPC52xx_IRQ_L1_OFFSET and ORing it with the L2 value.
47 *
48 * For example, the TMR0 interrupt is irq 9 in the main group. The
49 * virq for TMR0 is calculated by ((1 << MPC52xx_IRQ_L1_OFFSET) | 9).
50 *
51 * The observant reader will also notice that this driver defines a 4th
52 * interrupt group called 'bestcomm'. The bestcomm group isn't physically
53 * part of the MPC5200 interrupt controller, but it is used here to assign
54 * a separate virq number for each bestcomm task (since any of the 16
55 * bestcomm tasks can cause the bestcomm interrupt to be raised). When a
56 * bestcomm interrupt occurs (peripheral group, irq 0) this driver determines
57 * which task needs servicing and returns the irq number for that task. This
58 * allows drivers which use bestcomm to define their own interrupt handlers.
59 *
60 * irq_chip structures
61 * -------------------
62 * For actually manipulating IRQs (masking, enabling, clearing, etc) this
63 * driver defines four separate 'irq_chip' structures, one for the main
64 * group, one for the peripherals group, one for the bestcomm group and one
65 * for external interrupts. The irq_chip structures provide the hooks needed
66 * to manipulate each IRQ source, and since each group is has a separate set
67 * of registers for controlling the irq, it makes sense to divide up the
68 * hooks along those lines.
69 *
70 * You'll notice that there is not an irq_chip for the critical group and
71 * you'll also notice that there is an irq_chip defined for external
72 * interrupts even though there is no external interrupt group. The reason
73 * for this is that the four external interrupts are all managed with the same
74 * register even though one of the external IRQs is in the critical group and
75 * the other three are in the main group. For this reason it makes sense for
76 * the 4 external irqs to be managed using a separate set of hooks. The
77 * reason there is no crit irq_chip is that of the 3 irqs in the critical
78 * group, only external interrupt is actually support at this time by this
79 * driver and since external interrupt is the only one used, it can just
80 * be directed to make use of the external irq irq_chip.
81 *
82 * device tree bindings
83 * --------------------
84 * The device tree bindings for this controller reflect the two level
85 * organization of irqs in the device. #interrupt-cells = <3> where the
86 * first cell is the group number [0..3], the second cell is the irq
87 * number in the group, and the third cell is the sense type (level/edge).
88 * For reference, the following is a list of the interrupt property values
89 * associated with external interrupt sources on the MPC5200 (just because
90 * it is non-obvious to determine what the interrupts property should be
91 * when reading the mpc5200 manual and it is a frequently asked question).
92 *
93 * External interrupts:
94 * <0 0 n> external irq0, n is sense (n=0: level high,
95 * <1 1 n> external irq1, n is sense n=1: edge rising,
96 * <1 2 n> external irq2, n is sense n=2: edge falling,
97 * <1 3 n> external irq3, n is sense n=3: level low)
98 */
99 #undef DEBUG
100
101 #include <linux/interrupt.h>
102 #include <linux/irq.h>
103 #include <linux/of.h>
104 #include <asm/io.h>
105 #include <asm/prom.h>
106 #include <asm/mpc52xx.h>
107
108 /* HW IRQ mapping */
109 #define MPC52xx_IRQ_L1_CRIT (0)
110 #define MPC52xx_IRQ_L1_MAIN (1)
111 #define MPC52xx_IRQ_L1_PERP (2)
112 #define MPC52xx_IRQ_L1_SDMA (3)
113
114 #define MPC52xx_IRQ_L1_OFFSET (6)
115 #define MPC52xx_IRQ_L1_MASK (0x00c0)
116 #define MPC52xx_IRQ_L2_MASK (0x003f)
117
118 #define MPC52xx_IRQ_HIGHTESTHWIRQ (0xd0)
119
120
121 /* MPC5200 device tree match tables */
122 static const struct of_device_id mpc52xx_pic_ids[] __initconst = {
123 { .compatible = "fsl,mpc5200-pic", },
124 { .compatible = "mpc5200-pic", },
125 {}
126 };
127 static const struct of_device_id mpc52xx_sdma_ids[] __initconst = {
128 { .compatible = "fsl,mpc5200-bestcomm", },
129 { .compatible = "mpc5200-bestcomm", },
130 {}
131 };
132
133 static struct mpc52xx_intr __iomem *intr;
134 static struct mpc52xx_sdma __iomem *sdma;
135 static struct irq_domain *mpc52xx_irqhost = NULL;
136
137 static unsigned char mpc52xx_map_senses[4] = {
138 IRQ_TYPE_LEVEL_HIGH,
139 IRQ_TYPE_EDGE_RISING,
140 IRQ_TYPE_EDGE_FALLING,
141 IRQ_TYPE_LEVEL_LOW,
142 };
143
144 /* Utility functions */
io_be_setbit(u32 __iomem * addr,int bitno)145 static inline void io_be_setbit(u32 __iomem *addr, int bitno)
146 {
147 out_be32(addr, in_be32(addr) | (1 << bitno));
148 }
149
io_be_clrbit(u32 __iomem * addr,int bitno)150 static inline void io_be_clrbit(u32 __iomem *addr, int bitno)
151 {
152 out_be32(addr, in_be32(addr) & ~(1 << bitno));
153 }
154
155 /*
156 * IRQ[0-3] interrupt irq_chip
157 */
mpc52xx_extirq_mask(struct irq_data * d)158 static void mpc52xx_extirq_mask(struct irq_data *d)
159 {
160 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
161 io_be_clrbit(&intr->ctrl, 11 - l2irq);
162 }
163
mpc52xx_extirq_unmask(struct irq_data * d)164 static void mpc52xx_extirq_unmask(struct irq_data *d)
165 {
166 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
167 io_be_setbit(&intr->ctrl, 11 - l2irq);
168 }
169
mpc52xx_extirq_ack(struct irq_data * d)170 static void mpc52xx_extirq_ack(struct irq_data *d)
171 {
172 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
173 io_be_setbit(&intr->ctrl, 27-l2irq);
174 }
175
mpc52xx_extirq_set_type(struct irq_data * d,unsigned int flow_type)176 static int mpc52xx_extirq_set_type(struct irq_data *d, unsigned int flow_type)
177 {
178 u32 ctrl_reg, type;
179 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
180 void *handler = handle_level_irq;
181
182 pr_debug("%s: irq=%x. l2=%d flow_type=%d\n", __func__,
183 (int) irqd_to_hwirq(d), l2irq, flow_type);
184
185 switch (flow_type) {
186 case IRQF_TRIGGER_HIGH: type = 0; break;
187 case IRQF_TRIGGER_RISING: type = 1; handler = handle_edge_irq; break;
188 case IRQF_TRIGGER_FALLING: type = 2; handler = handle_edge_irq; break;
189 case IRQF_TRIGGER_LOW: type = 3; break;
190 default:
191 type = 0;
192 }
193
194 ctrl_reg = in_be32(&intr->ctrl);
195 ctrl_reg &= ~(0x3 << (22 - (l2irq * 2)));
196 ctrl_reg |= (type << (22 - (l2irq * 2)));
197 out_be32(&intr->ctrl, ctrl_reg);
198
199 irq_set_handler_locked(d, handler);
200
201 return 0;
202 }
203
204 static struct irq_chip mpc52xx_extirq_irqchip = {
205 .name = "MPC52xx External",
206 .irq_mask = mpc52xx_extirq_mask,
207 .irq_unmask = mpc52xx_extirq_unmask,
208 .irq_ack = mpc52xx_extirq_ack,
209 .irq_set_type = mpc52xx_extirq_set_type,
210 };
211
212 /*
213 * Main interrupt irq_chip
214 */
mpc52xx_null_set_type(struct irq_data * d,unsigned int flow_type)215 static int mpc52xx_null_set_type(struct irq_data *d, unsigned int flow_type)
216 {
217 return 0; /* Do nothing so that the sense mask will get updated */
218 }
219
mpc52xx_main_mask(struct irq_data * d)220 static void mpc52xx_main_mask(struct irq_data *d)
221 {
222 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
223 io_be_setbit(&intr->main_mask, 16 - l2irq);
224 }
225
mpc52xx_main_unmask(struct irq_data * d)226 static void mpc52xx_main_unmask(struct irq_data *d)
227 {
228 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
229 io_be_clrbit(&intr->main_mask, 16 - l2irq);
230 }
231
232 static struct irq_chip mpc52xx_main_irqchip = {
233 .name = "MPC52xx Main",
234 .irq_mask = mpc52xx_main_mask,
235 .irq_mask_ack = mpc52xx_main_mask,
236 .irq_unmask = mpc52xx_main_unmask,
237 .irq_set_type = mpc52xx_null_set_type,
238 };
239
240 /*
241 * Peripherals interrupt irq_chip
242 */
mpc52xx_periph_mask(struct irq_data * d)243 static void mpc52xx_periph_mask(struct irq_data *d)
244 {
245 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
246 io_be_setbit(&intr->per_mask, 31 - l2irq);
247 }
248
mpc52xx_periph_unmask(struct irq_data * d)249 static void mpc52xx_periph_unmask(struct irq_data *d)
250 {
251 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
252 io_be_clrbit(&intr->per_mask, 31 - l2irq);
253 }
254
255 static struct irq_chip mpc52xx_periph_irqchip = {
256 .name = "MPC52xx Peripherals",
257 .irq_mask = mpc52xx_periph_mask,
258 .irq_mask_ack = mpc52xx_periph_mask,
259 .irq_unmask = mpc52xx_periph_unmask,
260 .irq_set_type = mpc52xx_null_set_type,
261 };
262
263 /*
264 * SDMA interrupt irq_chip
265 */
mpc52xx_sdma_mask(struct irq_data * d)266 static void mpc52xx_sdma_mask(struct irq_data *d)
267 {
268 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
269 io_be_setbit(&sdma->IntMask, l2irq);
270 }
271
mpc52xx_sdma_unmask(struct irq_data * d)272 static void mpc52xx_sdma_unmask(struct irq_data *d)
273 {
274 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
275 io_be_clrbit(&sdma->IntMask, l2irq);
276 }
277
mpc52xx_sdma_ack(struct irq_data * d)278 static void mpc52xx_sdma_ack(struct irq_data *d)
279 {
280 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
281 out_be32(&sdma->IntPend, 1 << l2irq);
282 }
283
284 static struct irq_chip mpc52xx_sdma_irqchip = {
285 .name = "MPC52xx SDMA",
286 .irq_mask = mpc52xx_sdma_mask,
287 .irq_unmask = mpc52xx_sdma_unmask,
288 .irq_ack = mpc52xx_sdma_ack,
289 .irq_set_type = mpc52xx_null_set_type,
290 };
291
292 /**
293 * mpc52xx_is_extirq - Returns true if hwirq number is for an external IRQ
294 */
mpc52xx_is_extirq(int l1,int l2)295 static int mpc52xx_is_extirq(int l1, int l2)
296 {
297 return ((l1 == 0) && (l2 == 0)) ||
298 ((l1 == 1) && (l2 >= 1) && (l2 <= 3));
299 }
300
301 /**
302 * mpc52xx_irqhost_xlate - translate virq# from device tree interrupts property
303 */
mpc52xx_irqhost_xlate(struct irq_domain * h,struct device_node * ct,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_flags)304 static int mpc52xx_irqhost_xlate(struct irq_domain *h, struct device_node *ct,
305 const u32 *intspec, unsigned int intsize,
306 irq_hw_number_t *out_hwirq,
307 unsigned int *out_flags)
308 {
309 int intrvect_l1;
310 int intrvect_l2;
311 int intrvect_type;
312 int intrvect_linux;
313
314 if (intsize != 3)
315 return -1;
316
317 intrvect_l1 = (int)intspec[0];
318 intrvect_l2 = (int)intspec[1];
319 intrvect_type = (int)intspec[2] & 0x3;
320
321 intrvect_linux = (intrvect_l1 << MPC52xx_IRQ_L1_OFFSET) &
322 MPC52xx_IRQ_L1_MASK;
323 intrvect_linux |= intrvect_l2 & MPC52xx_IRQ_L2_MASK;
324
325 *out_hwirq = intrvect_linux;
326 *out_flags = IRQ_TYPE_LEVEL_LOW;
327 if (mpc52xx_is_extirq(intrvect_l1, intrvect_l2))
328 *out_flags = mpc52xx_map_senses[intrvect_type];
329
330 pr_debug("return %x, l1=%d, l2=%d\n", intrvect_linux, intrvect_l1,
331 intrvect_l2);
332 return 0;
333 }
334
335 /**
336 * mpc52xx_irqhost_map - Hook to map from virq to an irq_chip structure
337 */
mpc52xx_irqhost_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t irq)338 static int mpc52xx_irqhost_map(struct irq_domain *h, unsigned int virq,
339 irq_hw_number_t irq)
340 {
341 int l1irq;
342 int l2irq;
343 struct irq_chip *irqchip;
344 void *hndlr;
345 int type;
346 u32 reg;
347
348 l1irq = (irq & MPC52xx_IRQ_L1_MASK) >> MPC52xx_IRQ_L1_OFFSET;
349 l2irq = irq & MPC52xx_IRQ_L2_MASK;
350
351 /*
352 * External IRQs are handled differently by the hardware so they are
353 * handled by a dedicated irq_chip structure.
354 */
355 if (mpc52xx_is_extirq(l1irq, l2irq)) {
356 reg = in_be32(&intr->ctrl);
357 type = mpc52xx_map_senses[(reg >> (22 - l2irq * 2)) & 0x3];
358 if ((type == IRQ_TYPE_EDGE_FALLING) ||
359 (type == IRQ_TYPE_EDGE_RISING))
360 hndlr = handle_edge_irq;
361 else
362 hndlr = handle_level_irq;
363
364 irq_set_chip_and_handler(virq, &mpc52xx_extirq_irqchip, hndlr);
365 pr_debug("%s: External IRQ%i virq=%x, hw=%x. type=%x\n",
366 __func__, l2irq, virq, (int)irq, type);
367 return 0;
368 }
369
370 /* It is an internal SOC irq. Choose the correct irq_chip */
371 switch (l1irq) {
372 case MPC52xx_IRQ_L1_MAIN: irqchip = &mpc52xx_main_irqchip; break;
373 case MPC52xx_IRQ_L1_PERP: irqchip = &mpc52xx_periph_irqchip; break;
374 case MPC52xx_IRQ_L1_SDMA: irqchip = &mpc52xx_sdma_irqchip; break;
375 case MPC52xx_IRQ_L1_CRIT:
376 pr_warn("%s: Critical IRQ #%d is unsupported! Nopping it.\n",
377 __func__, l2irq);
378 irq_set_chip(virq, &no_irq_chip);
379 return 0;
380 }
381
382 irq_set_chip_and_handler(virq, irqchip, handle_level_irq);
383 pr_debug("%s: virq=%x, l1=%i, l2=%i\n", __func__, virq, l1irq, l2irq);
384
385 return 0;
386 }
387
388 static const struct irq_domain_ops mpc52xx_irqhost_ops = {
389 .xlate = mpc52xx_irqhost_xlate,
390 .map = mpc52xx_irqhost_map,
391 };
392
393 /**
394 * mpc52xx_init_irq - Initialize and register with the virq subsystem
395 *
396 * Hook for setting up IRQs on an mpc5200 system. A pointer to this function
397 * is to be put into the machine definition structure.
398 *
399 * This function searches the device tree for an MPC5200 interrupt controller,
400 * initializes it, and registers it with the virq subsystem.
401 */
mpc52xx_init_irq(void)402 void __init mpc52xx_init_irq(void)
403 {
404 u32 intr_ctrl;
405 struct device_node *picnode;
406 struct device_node *np;
407
408 /* Remap the necessary zones */
409 picnode = of_find_matching_node(NULL, mpc52xx_pic_ids);
410 intr = of_iomap(picnode, 0);
411 if (!intr)
412 panic(__FILE__ ": find_and_map failed on 'mpc5200-pic'. "
413 "Check node !");
414
415 np = of_find_matching_node(NULL, mpc52xx_sdma_ids);
416 sdma = of_iomap(np, 0);
417 of_node_put(np);
418 if (!sdma)
419 panic(__FILE__ ": find_and_map failed on 'mpc5200-bestcomm'. "
420 "Check node !");
421
422 pr_debug("MPC5200 IRQ controller mapped to 0x%p\n", intr);
423
424 /* Disable all interrupt sources. */
425 out_be32(&sdma->IntPend, 0xffffffff); /* 1 means clear pending */
426 out_be32(&sdma->IntMask, 0xffffffff); /* 1 means disabled */
427 out_be32(&intr->per_mask, 0x7ffffc00); /* 1 means disabled */
428 out_be32(&intr->main_mask, 0x00010fff); /* 1 means disabled */
429 intr_ctrl = in_be32(&intr->ctrl);
430 intr_ctrl &= 0x00ff0000; /* Keeps IRQ[0-3] config */
431 intr_ctrl |= 0x0f000000 | /* clear IRQ 0-3 */
432 0x00001000 | /* MEE master external enable */
433 0x00000000 | /* 0 means disable IRQ 0-3 */
434 0x00000001; /* CEb route critical normally */
435 out_be32(&intr->ctrl, intr_ctrl);
436
437 /* Zero a bunch of the priority settings. */
438 out_be32(&intr->per_pri1, 0);
439 out_be32(&intr->per_pri2, 0);
440 out_be32(&intr->per_pri3, 0);
441 out_be32(&intr->main_pri1, 0);
442 out_be32(&intr->main_pri2, 0);
443
444 /*
445 * As last step, add an irq host to translate the real
446 * hw irq information provided by the ofw to linux virq
447 */
448 mpc52xx_irqhost = irq_domain_add_linear(picnode,
449 MPC52xx_IRQ_HIGHTESTHWIRQ,
450 &mpc52xx_irqhost_ops, NULL);
451
452 if (!mpc52xx_irqhost)
453 panic(__FILE__ ": Cannot allocate the IRQ host\n");
454
455 irq_set_default_host(mpc52xx_irqhost);
456
457 pr_info("MPC52xx PIC is up and running!\n");
458 }
459
460 /**
461 * mpc52xx_get_irq - Get pending interrupt number hook function
462 *
463 * Called by the interrupt handler to determine what IRQ handler needs to be
464 * executed.
465 *
466 * Status of pending interrupts is determined by reading the encoded status
467 * register. The encoded status register has three fields; one for each of the
468 * types of interrupts defined by the controller - 'critical', 'main' and
469 * 'peripheral'. This function reads the status register and returns the IRQ
470 * number associated with the highest priority pending interrupt. 'Critical'
471 * interrupts have the highest priority, followed by 'main' interrupts, and
472 * then 'peripheral'.
473 *
474 * The mpc5200 interrupt controller can be configured to boost the priority
475 * of individual 'peripheral' interrupts. If this is the case then a special
476 * value will appear in either the crit or main fields indicating a high
477 * or medium priority peripheral irq has occurred.
478 *
479 * This function checks each of the 3 irq request fields and returns the
480 * first pending interrupt that it finds.
481 *
482 * This function also identifies a 4th type of interrupt; 'bestcomm'. Each
483 * bestcomm DMA task can raise the bestcomm peripheral interrupt. When this
484 * occurs at task-specific IRQ# is decoded so that each task can have its
485 * own IRQ handler.
486 */
mpc52xx_get_irq(void)487 unsigned int mpc52xx_get_irq(void)
488 {
489 u32 status;
490 int irq;
491
492 status = in_be32(&intr->enc_status);
493 if (status & 0x00000400) { /* critical */
494 irq = (status >> 8) & 0x3;
495 if (irq == 2) /* high priority peripheral */
496 goto peripheral;
497 irq |= (MPC52xx_IRQ_L1_CRIT << MPC52xx_IRQ_L1_OFFSET);
498 } else if (status & 0x00200000) { /* main */
499 irq = (status >> 16) & 0x1f;
500 if (irq == 4) /* low priority peripheral */
501 goto peripheral;
502 irq |= (MPC52xx_IRQ_L1_MAIN << MPC52xx_IRQ_L1_OFFSET);
503 } else if (status & 0x20000000) { /* peripheral */
504 peripheral:
505 irq = (status >> 24) & 0x1f;
506 if (irq == 0) { /* bestcomm */
507 status = in_be32(&sdma->IntPend);
508 irq = ffs(status) - 1;
509 irq |= (MPC52xx_IRQ_L1_SDMA << MPC52xx_IRQ_L1_OFFSET);
510 } else {
511 irq |= (MPC52xx_IRQ_L1_PERP << MPC52xx_IRQ_L1_OFFSET);
512 }
513 } else {
514 return 0;
515 }
516
517 return irq_linear_revmap(mpc52xx_irqhost, irq);
518 }
519