1 /*
2 * PSA crypto layer on top of Mbed TLS crypto
3 */
4 /*
5 * Copyright The Mbed TLS Contributors
6 * SPDX-License-Identifier: Apache-2.0
7 *
8 * Licensed under the Apache License, Version 2.0 (the "License"); you may
9 * not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
11 *
12 * http://www.apache.org/licenses/LICENSE-2.0
13 *
14 * Unless required by applicable law or agreed to in writing, software
15 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
16 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 * See the License for the specific language governing permissions and
18 * limitations under the License.
19 */
20
21 #include "common.h"
22
23 #if defined(MBEDTLS_PSA_CRYPTO_C)
24
25 #if defined(MBEDTLS_PSA_CRYPTO_CONFIG)
26 #include "check_crypto_config.h"
27 #endif
28
29 #include "psa/crypto.h"
30
31 #include "psa_crypto_cipher.h"
32 #include "psa_crypto_core.h"
33 #include "psa_crypto_invasive.h"
34 #include "psa_crypto_driver_wrappers.h"
35 #include "psa_crypto_ecp.h"
36 #include "psa_crypto_hash.h"
37 #include "psa_crypto_mac.h"
38 #include "psa_crypto_rsa.h"
39 #include "psa_crypto_ecp.h"
40 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
41 #include "psa_crypto_se.h"
42 #endif
43 #include "psa_crypto_slot_management.h"
44 /* Include internal declarations that are useful for implementing persistently
45 * stored keys. */
46 #include "psa_crypto_storage.h"
47
48 #include "psa_crypto_random_impl.h"
49
50 #include <assert.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include "mbedtls/platform.h"
54 #if !defined(MBEDTLS_PLATFORM_C)
55 #define mbedtls_calloc calloc
56 #define mbedtls_free free
57 #endif
58
59 #include "mbedtls/aes.h"
60 #include "mbedtls/asn1.h"
61 #include "mbedtls/asn1write.h"
62 #include "mbedtls/bignum.h"
63 #include "mbedtls/camellia.h"
64 #include "mbedtls/chacha20.h"
65 #include "mbedtls/chachapoly.h"
66 #include "mbedtls/cipher.h"
67 #include "mbedtls/ccm.h"
68 #include "mbedtls/cmac.h"
69 #include "mbedtls/des.h"
70 #include "mbedtls/ecdh.h"
71 #include "mbedtls/ecp.h"
72 #include "mbedtls/entropy.h"
73 #include "mbedtls/error.h"
74 #include "mbedtls/gcm.h"
75 #include "mbedtls/md5.h"
76 #include "mbedtls/md.h"
77 #include "md_wrap.h"
78 #include "mbedtls/pk.h"
79 #include "pk_wrap.h"
80 #include "mbedtls/platform_util.h"
81 #include "mbedtls/error.h"
82 #include "mbedtls/ripemd160.h"
83 #include "mbedtls/rsa.h"
84 #include "mbedtls/sha1.h"
85 #include "mbedtls/sha256.h"
86 #include "mbedtls/sha512.h"
87
88 #define ARRAY_LENGTH( array ) ( sizeof( array ) / sizeof( *( array ) ) )
89
90 /****************************************************************/
91 /* Global data, support functions and library management */
92 /****************************************************************/
93
key_type_is_raw_bytes(psa_key_type_t type)94 static int key_type_is_raw_bytes( psa_key_type_t type )
95 {
96 return( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) );
97 }
98
99 /* Values for psa_global_data_t::rng_state */
100 #define RNG_NOT_INITIALIZED 0
101 #define RNG_INITIALIZED 1
102 #define RNG_SEEDED 2
103
104 typedef struct
105 {
106 unsigned initialized : 1;
107 unsigned rng_state : 2;
108 mbedtls_psa_random_context_t rng;
109 } psa_global_data_t;
110
111 static psa_global_data_t global_data;
112
113 #if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
114 mbedtls_psa_drbg_context_t *const mbedtls_psa_random_state =
115 &global_data.rng.drbg;
116 #endif
117
118 #define GUARD_MODULE_INITIALIZED \
119 if( global_data.initialized == 0 ) \
120 return( PSA_ERROR_BAD_STATE );
121
mbedtls_to_psa_error(int ret)122 psa_status_t mbedtls_to_psa_error( int ret )
123 {
124 /* Mbed TLS error codes can combine a high-level error code and a
125 * low-level error code. The low-level error usually reflects the
126 * root cause better, so dispatch on that preferably. */
127 int low_level_ret = - ( -ret & 0x007f );
128 switch( low_level_ret != 0 ? low_level_ret : ret )
129 {
130 case 0:
131 return( PSA_SUCCESS );
132
133 case MBEDTLS_ERR_AES_INVALID_KEY_LENGTH:
134 case MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH:
135 return( PSA_ERROR_NOT_SUPPORTED );
136 case MBEDTLS_ERR_ASN1_OUT_OF_DATA:
137 case MBEDTLS_ERR_ASN1_UNEXPECTED_TAG:
138 case MBEDTLS_ERR_ASN1_INVALID_LENGTH:
139 case MBEDTLS_ERR_ASN1_LENGTH_MISMATCH:
140 case MBEDTLS_ERR_ASN1_INVALID_DATA:
141 return( PSA_ERROR_INVALID_ARGUMENT );
142 case MBEDTLS_ERR_ASN1_ALLOC_FAILED:
143 return( PSA_ERROR_INSUFFICIENT_MEMORY );
144 case MBEDTLS_ERR_ASN1_BUF_TOO_SMALL:
145 return( PSA_ERROR_BUFFER_TOO_SMALL );
146
147 #if defined(MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA)
148 case MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA:
149 #endif
150 case MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH:
151 return( PSA_ERROR_NOT_SUPPORTED );
152
153 case MBEDTLS_ERR_CCM_BAD_INPUT:
154 return( PSA_ERROR_INVALID_ARGUMENT );
155 case MBEDTLS_ERR_CCM_AUTH_FAILED:
156 return( PSA_ERROR_INVALID_SIGNATURE );
157
158 case MBEDTLS_ERR_CHACHA20_BAD_INPUT_DATA:
159 return( PSA_ERROR_INVALID_ARGUMENT );
160
161 case MBEDTLS_ERR_CHACHAPOLY_BAD_STATE:
162 return( PSA_ERROR_BAD_STATE );
163 case MBEDTLS_ERR_CHACHAPOLY_AUTH_FAILED:
164 return( PSA_ERROR_INVALID_SIGNATURE );
165
166 case MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE:
167 return( PSA_ERROR_NOT_SUPPORTED );
168 case MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA:
169 return( PSA_ERROR_INVALID_ARGUMENT );
170 case MBEDTLS_ERR_CIPHER_ALLOC_FAILED:
171 return( PSA_ERROR_INSUFFICIENT_MEMORY );
172 case MBEDTLS_ERR_CIPHER_INVALID_PADDING:
173 return( PSA_ERROR_INVALID_PADDING );
174 case MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED:
175 return( PSA_ERROR_INVALID_ARGUMENT );
176 case MBEDTLS_ERR_CIPHER_AUTH_FAILED:
177 return( PSA_ERROR_INVALID_SIGNATURE );
178 case MBEDTLS_ERR_CIPHER_INVALID_CONTEXT:
179 return( PSA_ERROR_CORRUPTION_DETECTED );
180
181 #if !( defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) || \
182 defined(MBEDTLS_PSA_HMAC_DRBG_MD_TYPE) )
183 /* Only check CTR_DRBG error codes if underlying mbedtls_xxx
184 * functions are passed a CTR_DRBG instance. */
185 case MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED:
186 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
187 case MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG:
188 case MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG:
189 return( PSA_ERROR_NOT_SUPPORTED );
190 case MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR:
191 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
192 #endif
193
194 case MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH:
195 return( PSA_ERROR_NOT_SUPPORTED );
196
197 case MBEDTLS_ERR_ENTROPY_NO_SOURCES_DEFINED:
198 case MBEDTLS_ERR_ENTROPY_NO_STRONG_SOURCE:
199 case MBEDTLS_ERR_ENTROPY_SOURCE_FAILED:
200 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
201
202 case MBEDTLS_ERR_GCM_AUTH_FAILED:
203 return( PSA_ERROR_INVALID_SIGNATURE );
204 case MBEDTLS_ERR_GCM_BUFFER_TOO_SMALL:
205 return( PSA_ERROR_BUFFER_TOO_SMALL );
206 case MBEDTLS_ERR_GCM_BAD_INPUT:
207 return( PSA_ERROR_INVALID_ARGUMENT );
208
209 #if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) && \
210 defined(MBEDTLS_PSA_HMAC_DRBG_MD_TYPE)
211 /* Only check HMAC_DRBG error codes if underlying mbedtls_xxx
212 * functions are passed a HMAC_DRBG instance. */
213 case MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED:
214 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
215 case MBEDTLS_ERR_HMAC_DRBG_REQUEST_TOO_BIG:
216 case MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG:
217 return( PSA_ERROR_NOT_SUPPORTED );
218 case MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR:
219 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
220 #endif
221
222 case MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE:
223 return( PSA_ERROR_NOT_SUPPORTED );
224 case MBEDTLS_ERR_MD_BAD_INPUT_DATA:
225 return( PSA_ERROR_INVALID_ARGUMENT );
226 case MBEDTLS_ERR_MD_ALLOC_FAILED:
227 return( PSA_ERROR_INSUFFICIENT_MEMORY );
228 case MBEDTLS_ERR_MD_FILE_IO_ERROR:
229 return( PSA_ERROR_STORAGE_FAILURE );
230
231 case MBEDTLS_ERR_MPI_FILE_IO_ERROR:
232 return( PSA_ERROR_STORAGE_FAILURE );
233 case MBEDTLS_ERR_MPI_BAD_INPUT_DATA:
234 return( PSA_ERROR_INVALID_ARGUMENT );
235 case MBEDTLS_ERR_MPI_INVALID_CHARACTER:
236 return( PSA_ERROR_INVALID_ARGUMENT );
237 case MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL:
238 return( PSA_ERROR_BUFFER_TOO_SMALL );
239 case MBEDTLS_ERR_MPI_NEGATIVE_VALUE:
240 return( PSA_ERROR_INVALID_ARGUMENT );
241 case MBEDTLS_ERR_MPI_DIVISION_BY_ZERO:
242 return( PSA_ERROR_INVALID_ARGUMENT );
243 case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
244 return( PSA_ERROR_INVALID_ARGUMENT );
245 case MBEDTLS_ERR_MPI_ALLOC_FAILED:
246 return( PSA_ERROR_INSUFFICIENT_MEMORY );
247
248 case MBEDTLS_ERR_PK_ALLOC_FAILED:
249 return( PSA_ERROR_INSUFFICIENT_MEMORY );
250 case MBEDTLS_ERR_PK_TYPE_MISMATCH:
251 case MBEDTLS_ERR_PK_BAD_INPUT_DATA:
252 return( PSA_ERROR_INVALID_ARGUMENT );
253 case MBEDTLS_ERR_PK_FILE_IO_ERROR:
254 return( PSA_ERROR_STORAGE_FAILURE );
255 case MBEDTLS_ERR_PK_KEY_INVALID_VERSION:
256 case MBEDTLS_ERR_PK_KEY_INVALID_FORMAT:
257 return( PSA_ERROR_INVALID_ARGUMENT );
258 case MBEDTLS_ERR_PK_UNKNOWN_PK_ALG:
259 return( PSA_ERROR_NOT_SUPPORTED );
260 case MBEDTLS_ERR_PK_PASSWORD_REQUIRED:
261 case MBEDTLS_ERR_PK_PASSWORD_MISMATCH:
262 return( PSA_ERROR_NOT_PERMITTED );
263 case MBEDTLS_ERR_PK_INVALID_PUBKEY:
264 return( PSA_ERROR_INVALID_ARGUMENT );
265 case MBEDTLS_ERR_PK_INVALID_ALG:
266 case MBEDTLS_ERR_PK_UNKNOWN_NAMED_CURVE:
267 case MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE:
268 return( PSA_ERROR_NOT_SUPPORTED );
269 case MBEDTLS_ERR_PK_SIG_LEN_MISMATCH:
270 return( PSA_ERROR_INVALID_SIGNATURE );
271 case MBEDTLS_ERR_PK_BUFFER_TOO_SMALL:
272 return( PSA_ERROR_BUFFER_TOO_SMALL );
273
274 case MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED:
275 return( PSA_ERROR_HARDWARE_FAILURE );
276 case MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED:
277 return( PSA_ERROR_NOT_SUPPORTED );
278
279 case MBEDTLS_ERR_RSA_BAD_INPUT_DATA:
280 return( PSA_ERROR_INVALID_ARGUMENT );
281 case MBEDTLS_ERR_RSA_INVALID_PADDING:
282 return( PSA_ERROR_INVALID_PADDING );
283 case MBEDTLS_ERR_RSA_KEY_GEN_FAILED:
284 return( PSA_ERROR_HARDWARE_FAILURE );
285 case MBEDTLS_ERR_RSA_KEY_CHECK_FAILED:
286 return( PSA_ERROR_INVALID_ARGUMENT );
287 case MBEDTLS_ERR_RSA_PUBLIC_FAILED:
288 case MBEDTLS_ERR_RSA_PRIVATE_FAILED:
289 return( PSA_ERROR_CORRUPTION_DETECTED );
290 case MBEDTLS_ERR_RSA_VERIFY_FAILED:
291 return( PSA_ERROR_INVALID_SIGNATURE );
292 case MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE:
293 return( PSA_ERROR_BUFFER_TOO_SMALL );
294 case MBEDTLS_ERR_RSA_RNG_FAILED:
295 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
296
297 case MBEDTLS_ERR_ECP_BAD_INPUT_DATA:
298 case MBEDTLS_ERR_ECP_INVALID_KEY:
299 return( PSA_ERROR_INVALID_ARGUMENT );
300 case MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL:
301 return( PSA_ERROR_BUFFER_TOO_SMALL );
302 case MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE:
303 return( PSA_ERROR_NOT_SUPPORTED );
304 case MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH:
305 case MBEDTLS_ERR_ECP_VERIFY_FAILED:
306 return( PSA_ERROR_INVALID_SIGNATURE );
307 case MBEDTLS_ERR_ECP_ALLOC_FAILED:
308 return( PSA_ERROR_INSUFFICIENT_MEMORY );
309 case MBEDTLS_ERR_ECP_RANDOM_FAILED:
310 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
311
312 case MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED:
313 return( PSA_ERROR_CORRUPTION_DETECTED );
314
315 default:
316 return( PSA_ERROR_GENERIC_ERROR );
317 }
318 }
319
320
321
322
323 /****************************************************************/
324 /* Key management */
325 /****************************************************************/
326
327 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
328 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) || \
329 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
330 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) || \
331 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
mbedtls_ecc_group_of_psa(psa_ecc_family_t curve,size_t bits,int bits_is_sloppy)332 mbedtls_ecp_group_id mbedtls_ecc_group_of_psa( psa_ecc_family_t curve,
333 size_t bits,
334 int bits_is_sloppy )
335 {
336 switch( curve )
337 {
338 case PSA_ECC_FAMILY_SECP_R1:
339 switch( bits )
340 {
341 #if defined(PSA_WANT_ECC_SECP_R1_192)
342 case 192:
343 return( MBEDTLS_ECP_DP_SECP192R1 );
344 #endif
345 #if defined(PSA_WANT_ECC_SECP_R1_224)
346 case 224:
347 return( MBEDTLS_ECP_DP_SECP224R1 );
348 #endif
349 #if defined(PSA_WANT_ECC_SECP_R1_256)
350 case 256:
351 return( MBEDTLS_ECP_DP_SECP256R1 );
352 #endif
353 #if defined(PSA_WANT_ECC_SECP_R1_384)
354 case 384:
355 return( MBEDTLS_ECP_DP_SECP384R1 );
356 #endif
357 #if defined(PSA_WANT_ECC_SECP_R1_521)
358 case 521:
359 return( MBEDTLS_ECP_DP_SECP521R1 );
360 case 528:
361 if( bits_is_sloppy )
362 return( MBEDTLS_ECP_DP_SECP521R1 );
363 break;
364 #endif
365 }
366 break;
367
368 case PSA_ECC_FAMILY_BRAINPOOL_P_R1:
369 switch( bits )
370 {
371 #if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_256)
372 case 256:
373 return( MBEDTLS_ECP_DP_BP256R1 );
374 #endif
375 #if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_384)
376 case 384:
377 return( MBEDTLS_ECP_DP_BP384R1 );
378 #endif
379 #if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_512)
380 case 512:
381 return( MBEDTLS_ECP_DP_BP512R1 );
382 #endif
383 }
384 break;
385
386 case PSA_ECC_FAMILY_MONTGOMERY:
387 switch( bits )
388 {
389 #if defined(PSA_WANT_ECC_MONTGOMERY_255)
390 case 255:
391 return( MBEDTLS_ECP_DP_CURVE25519 );
392 case 256:
393 if( bits_is_sloppy )
394 return( MBEDTLS_ECP_DP_CURVE25519 );
395 break;
396 #endif
397 #if defined(PSA_WANT_ECC_MONTGOMERY_448)
398 case 448:
399 return( MBEDTLS_ECP_DP_CURVE448 );
400 #endif
401 }
402 break;
403
404 case PSA_ECC_FAMILY_SECP_K1:
405 switch( bits )
406 {
407 #if defined(PSA_WANT_ECC_SECP_K1_192)
408 case 192:
409 return( MBEDTLS_ECP_DP_SECP192K1 );
410 #endif
411 #if defined(PSA_WANT_ECC_SECP_K1_224)
412 case 224:
413 return( MBEDTLS_ECP_DP_SECP224K1 );
414 #endif
415 #if defined(PSA_WANT_ECC_SECP_K1_256)
416 case 256:
417 return( MBEDTLS_ECP_DP_SECP256K1 );
418 #endif
419 }
420 break;
421 }
422
423 (void) bits_is_sloppy;
424 return( MBEDTLS_ECP_DP_NONE );
425 }
426 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
427 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) ||
428 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
429 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) ||
430 defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH) */
431
psa_validate_unstructured_key_bit_size(psa_key_type_t type,size_t bits)432 psa_status_t psa_validate_unstructured_key_bit_size( psa_key_type_t type,
433 size_t bits )
434 {
435 /* Check that the bit size is acceptable for the key type */
436 switch( type )
437 {
438 case PSA_KEY_TYPE_RAW_DATA:
439 case PSA_KEY_TYPE_HMAC:
440 case PSA_KEY_TYPE_DERIVE:
441 break;
442 #if defined(PSA_WANT_KEY_TYPE_AES)
443 case PSA_KEY_TYPE_AES:
444 if( bits != 128 && bits != 192 && bits != 256 )
445 return( PSA_ERROR_INVALID_ARGUMENT );
446 break;
447 #endif
448 #if defined(PSA_WANT_KEY_TYPE_ARIA)
449 case PSA_KEY_TYPE_ARIA:
450 if( bits != 128 && bits != 192 && bits != 256 )
451 return( PSA_ERROR_INVALID_ARGUMENT );
452 break;
453 #endif
454 #if defined(PSA_WANT_KEY_TYPE_CAMELLIA)
455 case PSA_KEY_TYPE_CAMELLIA:
456 if( bits != 128 && bits != 192 && bits != 256 )
457 return( PSA_ERROR_INVALID_ARGUMENT );
458 break;
459 #endif
460 #if defined(PSA_WANT_KEY_TYPE_DES)
461 case PSA_KEY_TYPE_DES:
462 if( bits != 64 && bits != 128 && bits != 192 )
463 return( PSA_ERROR_INVALID_ARGUMENT );
464 break;
465 #endif
466 #if defined(PSA_WANT_KEY_TYPE_CHACHA20)
467 case PSA_KEY_TYPE_CHACHA20:
468 if( bits != 256 )
469 return( PSA_ERROR_INVALID_ARGUMENT );
470 break;
471 #endif
472 default:
473 return( PSA_ERROR_NOT_SUPPORTED );
474 }
475 if( bits % 8 != 0 )
476 return( PSA_ERROR_INVALID_ARGUMENT );
477
478 return( PSA_SUCCESS );
479 }
480
481 /** Check whether a given key type is valid for use with a given MAC algorithm
482 *
483 * Upon successful return of this function, the behavior of #PSA_MAC_LENGTH
484 * when called with the validated \p algorithm and \p key_type is well-defined.
485 *
486 * \param[in] algorithm The specific MAC algorithm (can be wildcard).
487 * \param[in] key_type The key type of the key to be used with the
488 * \p algorithm.
489 *
490 * \retval #PSA_SUCCESS
491 * The \p key_type is valid for use with the \p algorithm
492 * \retval #PSA_ERROR_INVALID_ARGUMENT
493 * The \p key_type is not valid for use with the \p algorithm
494 */
psa_mac_key_can_do(psa_algorithm_t algorithm,psa_key_type_t key_type)495 MBEDTLS_STATIC_TESTABLE psa_status_t psa_mac_key_can_do(
496 psa_algorithm_t algorithm,
497 psa_key_type_t key_type )
498 {
499 if( PSA_ALG_IS_HMAC( algorithm ) )
500 {
501 if( key_type == PSA_KEY_TYPE_HMAC )
502 return( PSA_SUCCESS );
503 }
504
505 if( PSA_ALG_IS_BLOCK_CIPHER_MAC( algorithm ) )
506 {
507 /* Check that we're calling PSA_BLOCK_CIPHER_BLOCK_LENGTH with a cipher
508 * key. */
509 if( ( key_type & PSA_KEY_TYPE_CATEGORY_MASK ) ==
510 PSA_KEY_TYPE_CATEGORY_SYMMETRIC )
511 {
512 /* PSA_BLOCK_CIPHER_BLOCK_LENGTH returns 1 for stream ciphers and
513 * the block length (larger than 1) for block ciphers. */
514 if( PSA_BLOCK_CIPHER_BLOCK_LENGTH( key_type ) > 1 )
515 return( PSA_SUCCESS );
516 }
517 }
518
519 return( PSA_ERROR_INVALID_ARGUMENT );
520 }
521
psa_allocate_buffer_to_slot(psa_key_slot_t * slot,size_t buffer_length)522 psa_status_t psa_allocate_buffer_to_slot( psa_key_slot_t *slot,
523 size_t buffer_length )
524 {
525 if( slot->key.data != NULL )
526 return( PSA_ERROR_ALREADY_EXISTS );
527
528 slot->key.data = mbedtls_calloc( 1, buffer_length );
529 if( slot->key.data == NULL )
530 return( PSA_ERROR_INSUFFICIENT_MEMORY );
531
532 slot->key.bytes = buffer_length;
533 return( PSA_SUCCESS );
534 }
535
psa_copy_key_material_into_slot(psa_key_slot_t * slot,const uint8_t * data,size_t data_length)536 psa_status_t psa_copy_key_material_into_slot( psa_key_slot_t *slot,
537 const uint8_t* data,
538 size_t data_length )
539 {
540 psa_status_t status = psa_allocate_buffer_to_slot( slot,
541 data_length );
542 if( status != PSA_SUCCESS )
543 return( status );
544
545 memcpy( slot->key.data, data, data_length );
546 return( PSA_SUCCESS );
547 }
548
psa_import_key_into_slot(const psa_key_attributes_t * attributes,const uint8_t * data,size_t data_length,uint8_t * key_buffer,size_t key_buffer_size,size_t * key_buffer_length,size_t * bits)549 psa_status_t psa_import_key_into_slot(
550 const psa_key_attributes_t *attributes,
551 const uint8_t *data, size_t data_length,
552 uint8_t *key_buffer, size_t key_buffer_size,
553 size_t *key_buffer_length, size_t *bits )
554 {
555 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
556 psa_key_type_t type = attributes->core.type;
557
558 /* zero-length keys are never supported. */
559 if( data_length == 0 )
560 return( PSA_ERROR_NOT_SUPPORTED );
561
562 if( key_type_is_raw_bytes( type ) )
563 {
564 *bits = PSA_BYTES_TO_BITS( data_length );
565
566 status = psa_validate_unstructured_key_bit_size( attributes->core.type,
567 *bits );
568 if( status != PSA_SUCCESS )
569 return( status );
570
571 /* Copy the key material. */
572 memcpy( key_buffer, data, data_length );
573 *key_buffer_length = data_length;
574 (void)key_buffer_size;
575
576 return( PSA_SUCCESS );
577 }
578 else if( PSA_KEY_TYPE_IS_ASYMMETRIC( type ) )
579 {
580 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
581 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY)
582 if( PSA_KEY_TYPE_IS_ECC( type ) )
583 {
584 return( mbedtls_psa_ecp_import_key( attributes,
585 data, data_length,
586 key_buffer, key_buffer_size,
587 key_buffer_length,
588 bits ) );
589 }
590 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
591 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) */
592 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
593 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
594 if( PSA_KEY_TYPE_IS_RSA( type ) )
595 {
596 return( mbedtls_psa_rsa_import_key( attributes,
597 data, data_length,
598 key_buffer, key_buffer_size,
599 key_buffer_length,
600 bits ) );
601 }
602 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
603 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
604 }
605
606 return( PSA_ERROR_NOT_SUPPORTED );
607 }
608
609 /** Calculate the intersection of two algorithm usage policies.
610 *
611 * Return 0 (which allows no operation) on incompatibility.
612 */
psa_key_policy_algorithm_intersection(psa_key_type_t key_type,psa_algorithm_t alg1,psa_algorithm_t alg2)613 static psa_algorithm_t psa_key_policy_algorithm_intersection(
614 psa_key_type_t key_type,
615 psa_algorithm_t alg1,
616 psa_algorithm_t alg2 )
617 {
618 /* Common case: both sides actually specify the same policy. */
619 if( alg1 == alg2 )
620 return( alg1 );
621 /* If the policies are from the same hash-and-sign family, check
622 * if one is a wildcard. If so the other has the specific algorithm. */
623 if( PSA_ALG_IS_SIGN_HASH( alg1 ) &&
624 PSA_ALG_IS_SIGN_HASH( alg2 ) &&
625 ( alg1 & ~PSA_ALG_HASH_MASK ) == ( alg2 & ~PSA_ALG_HASH_MASK ) )
626 {
627 if( PSA_ALG_SIGN_GET_HASH( alg1 ) == PSA_ALG_ANY_HASH )
628 return( alg2 );
629 if( PSA_ALG_SIGN_GET_HASH( alg2 ) == PSA_ALG_ANY_HASH )
630 return( alg1 );
631 }
632 /* If the policies are from the same AEAD family, check whether
633 * one of them is a minimum-tag-length wildcard. Calculate the most
634 * restrictive tag length. */
635 if( PSA_ALG_IS_AEAD( alg1 ) && PSA_ALG_IS_AEAD( alg2 ) &&
636 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG( alg1, 0 ) ==
637 PSA_ALG_AEAD_WITH_SHORTENED_TAG( alg2, 0 ) ) )
638 {
639 size_t alg1_len = PSA_ALG_AEAD_GET_TAG_LENGTH( alg1 );
640 size_t alg2_len = PSA_ALG_AEAD_GET_TAG_LENGTH( alg2 );
641 size_t restricted_len = alg1_len > alg2_len ? alg1_len : alg2_len;
642
643 /* If both are wildcards, return most restrictive wildcard */
644 if( ( ( alg1 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
645 ( ( alg2 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) )
646 {
647 return( PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(
648 alg1, restricted_len ) );
649 }
650 /* If only one is a wildcard, return specific algorithm if compatible. */
651 if( ( ( alg1 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
652 ( alg1_len <= alg2_len ) )
653 {
654 return( alg2 );
655 }
656 if( ( ( alg2 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
657 ( alg2_len <= alg1_len ) )
658 {
659 return( alg1 );
660 }
661 }
662 /* If the policies are from the same MAC family, check whether one
663 * of them is a minimum-MAC-length policy. Calculate the most
664 * restrictive tag length. */
665 if( PSA_ALG_IS_MAC( alg1 ) && PSA_ALG_IS_MAC( alg2 ) &&
666 ( PSA_ALG_FULL_LENGTH_MAC( alg1 ) ==
667 PSA_ALG_FULL_LENGTH_MAC( alg2 ) ) )
668 {
669 /* Validate the combination of key type and algorithm. Since the base
670 * algorithm of alg1 and alg2 are the same, we only need this once. */
671 if( PSA_SUCCESS != psa_mac_key_can_do( alg1, key_type ) )
672 return( 0 );
673
674 /* Get the (exact or at-least) output lengths for both sides of the
675 * requested intersection. None of the currently supported algorithms
676 * have an output length dependent on the actual key size, so setting it
677 * to a bogus value of 0 is currently OK.
678 *
679 * Note that for at-least-this-length wildcard algorithms, the output
680 * length is set to the shortest allowed length, which allows us to
681 * calculate the most restrictive tag length for the intersection. */
682 size_t alg1_len = PSA_MAC_LENGTH( key_type, 0, alg1 );
683 size_t alg2_len = PSA_MAC_LENGTH( key_type, 0, alg2 );
684 size_t restricted_len = alg1_len > alg2_len ? alg1_len : alg2_len;
685
686 /* If both are wildcards, return most restrictive wildcard */
687 if( ( ( alg1 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) &&
688 ( ( alg2 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) )
689 {
690 return( PSA_ALG_AT_LEAST_THIS_LENGTH_MAC( alg1, restricted_len ) );
691 }
692
693 /* If only one is an at-least-this-length policy, the intersection would
694 * be the other (fixed-length) policy as long as said fixed length is
695 * equal to or larger than the shortest allowed length. */
696 if( ( alg1 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 )
697 {
698 return( ( alg1_len <= alg2_len ) ? alg2 : 0 );
699 }
700 if( ( alg2 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 )
701 {
702 return( ( alg2_len <= alg1_len ) ? alg1 : 0 );
703 }
704
705 /* If none of them are wildcards, check whether they define the same tag
706 * length. This is still possible here when one is default-length and
707 * the other specific-length. Ensure to always return the
708 * specific-length version for the intersection. */
709 if( alg1_len == alg2_len )
710 return( PSA_ALG_TRUNCATED_MAC( alg1, alg1_len ) );
711 }
712 /* If the policies are incompatible, allow nothing. */
713 return( 0 );
714 }
715
psa_key_algorithm_permits(psa_key_type_t key_type,psa_algorithm_t policy_alg,psa_algorithm_t requested_alg)716 static int psa_key_algorithm_permits( psa_key_type_t key_type,
717 psa_algorithm_t policy_alg,
718 psa_algorithm_t requested_alg )
719 {
720 /* Common case: the policy only allows requested_alg. */
721 if( requested_alg == policy_alg )
722 return( 1 );
723 /* If policy_alg is a hash-and-sign with a wildcard for the hash,
724 * and requested_alg is the same hash-and-sign family with any hash,
725 * then requested_alg is compliant with policy_alg. */
726 if( PSA_ALG_IS_SIGN_HASH( requested_alg ) &&
727 PSA_ALG_SIGN_GET_HASH( policy_alg ) == PSA_ALG_ANY_HASH )
728 {
729 return( ( policy_alg & ~PSA_ALG_HASH_MASK ) ==
730 ( requested_alg & ~PSA_ALG_HASH_MASK ) );
731 }
732 /* If policy_alg is a wildcard AEAD algorithm of the same base as
733 * the requested algorithm, check the requested tag length to be
734 * equal-length or longer than the wildcard-specified length. */
735 if( PSA_ALG_IS_AEAD( policy_alg ) &&
736 PSA_ALG_IS_AEAD( requested_alg ) &&
737 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG( policy_alg, 0 ) ==
738 PSA_ALG_AEAD_WITH_SHORTENED_TAG( requested_alg, 0 ) ) &&
739 ( ( policy_alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) != 0 ) )
740 {
741 return( PSA_ALG_AEAD_GET_TAG_LENGTH( policy_alg ) <=
742 PSA_ALG_AEAD_GET_TAG_LENGTH( requested_alg ) );
743 }
744 /* If policy_alg is a MAC algorithm of the same base as the requested
745 * algorithm, check whether their MAC lengths are compatible. */
746 if( PSA_ALG_IS_MAC( policy_alg ) &&
747 PSA_ALG_IS_MAC( requested_alg ) &&
748 ( PSA_ALG_FULL_LENGTH_MAC( policy_alg ) ==
749 PSA_ALG_FULL_LENGTH_MAC( requested_alg ) ) )
750 {
751 /* Validate the combination of key type and algorithm. Since the policy
752 * and requested algorithms are the same, we only need this once. */
753 if( PSA_SUCCESS != psa_mac_key_can_do( policy_alg, key_type ) )
754 return( 0 );
755
756 /* Get both the requested output length for the algorithm which is to be
757 * verified, and the default output length for the base algorithm.
758 * Note that none of the currently supported algorithms have an output
759 * length dependent on actual key size, so setting it to a bogus value
760 * of 0 is currently OK. */
761 size_t requested_output_length = PSA_MAC_LENGTH(
762 key_type, 0, requested_alg );
763 size_t default_output_length = PSA_MAC_LENGTH(
764 key_type, 0,
765 PSA_ALG_FULL_LENGTH_MAC( requested_alg ) );
766
767 /* If the policy is default-length, only allow an algorithm with
768 * a declared exact-length matching the default. */
769 if( PSA_MAC_TRUNCATED_LENGTH( policy_alg ) == 0 )
770 return( requested_output_length == default_output_length );
771
772 /* If the requested algorithm is default-length, allow it if the policy
773 * length exactly matches the default length. */
774 if( PSA_MAC_TRUNCATED_LENGTH( requested_alg ) == 0 &&
775 PSA_MAC_TRUNCATED_LENGTH( policy_alg ) == default_output_length )
776 {
777 return( 1 );
778 }
779
780 /* If policy_alg is an at-least-this-length wildcard MAC algorithm,
781 * check for the requested MAC length to be equal to or longer than the
782 * minimum allowed length. */
783 if( ( policy_alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) != 0 )
784 {
785 return( PSA_MAC_TRUNCATED_LENGTH( policy_alg ) <=
786 requested_output_length );
787 }
788 }
789 /* If policy_alg is a generic key agreement operation, then using it for
790 * a key derivation with that key agreement should also be allowed. This
791 * behaviour is expected to be defined in a future specification version. */
792 if( PSA_ALG_IS_RAW_KEY_AGREEMENT( policy_alg ) &&
793 PSA_ALG_IS_KEY_AGREEMENT( requested_alg ) )
794 {
795 return( PSA_ALG_KEY_AGREEMENT_GET_BASE( requested_alg ) ==
796 policy_alg );
797 }
798 /* If it isn't explicitly permitted, it's forbidden. */
799 return( 0 );
800 }
801
802 /** Test whether a policy permits an algorithm.
803 *
804 * The caller must test usage flags separately.
805 *
806 * \note This function requires providing the key type for which the policy is
807 * being validated, since some algorithm policy definitions (e.g. MAC)
808 * have different properties depending on what kind of cipher it is
809 * combined with.
810 *
811 * \retval PSA_SUCCESS When \p alg is a specific algorithm
812 * allowed by the \p policy.
813 * \retval PSA_ERROR_INVALID_ARGUMENT When \p alg is not a specific algorithm
814 * \retval PSA_ERROR_NOT_PERMITTED When \p alg is a specific algorithm, but
815 * the \p policy does not allow it.
816 */
psa_key_policy_permits(const psa_key_policy_t * policy,psa_key_type_t key_type,psa_algorithm_t alg)817 static psa_status_t psa_key_policy_permits( const psa_key_policy_t *policy,
818 psa_key_type_t key_type,
819 psa_algorithm_t alg )
820 {
821 /* '0' is not a valid algorithm */
822 if( alg == 0 )
823 return( PSA_ERROR_INVALID_ARGUMENT );
824
825 /* A requested algorithm cannot be a wildcard. */
826 if( PSA_ALG_IS_WILDCARD( alg ) )
827 return( PSA_ERROR_INVALID_ARGUMENT );
828
829 if( psa_key_algorithm_permits( key_type, policy->alg, alg ) ||
830 psa_key_algorithm_permits( key_type, policy->alg2, alg ) )
831 return( PSA_SUCCESS );
832 else
833 return( PSA_ERROR_NOT_PERMITTED );
834 }
835
836 /** Restrict a key policy based on a constraint.
837 *
838 * \note This function requires providing the key type for which the policy is
839 * being restricted, since some algorithm policy definitions (e.g. MAC)
840 * have different properties depending on what kind of cipher it is
841 * combined with.
842 *
843 * \param[in] key_type The key type for which to restrict the policy
844 * \param[in,out] policy The policy to restrict.
845 * \param[in] constraint The policy constraint to apply.
846 *
847 * \retval #PSA_SUCCESS
848 * \c *policy contains the intersection of the original value of
849 * \c *policy and \c *constraint.
850 * \retval #PSA_ERROR_INVALID_ARGUMENT
851 * \c key_type, \c *policy and \c *constraint are incompatible.
852 * \c *policy is unchanged.
853 */
psa_restrict_key_policy(psa_key_type_t key_type,psa_key_policy_t * policy,const psa_key_policy_t * constraint)854 static psa_status_t psa_restrict_key_policy(
855 psa_key_type_t key_type,
856 psa_key_policy_t *policy,
857 const psa_key_policy_t *constraint )
858 {
859 psa_algorithm_t intersection_alg =
860 psa_key_policy_algorithm_intersection( key_type, policy->alg,
861 constraint->alg );
862 psa_algorithm_t intersection_alg2 =
863 psa_key_policy_algorithm_intersection( key_type, policy->alg2,
864 constraint->alg2 );
865 if( intersection_alg == 0 && policy->alg != 0 && constraint->alg != 0 )
866 return( PSA_ERROR_INVALID_ARGUMENT );
867 if( intersection_alg2 == 0 && policy->alg2 != 0 && constraint->alg2 != 0 )
868 return( PSA_ERROR_INVALID_ARGUMENT );
869 policy->usage &= constraint->usage;
870 policy->alg = intersection_alg;
871 policy->alg2 = intersection_alg2;
872 return( PSA_SUCCESS );
873 }
874
875 /** Get the description of a key given its identifier and policy constraints
876 * and lock it.
877 *
878 * The key must have allow all the usage flags set in \p usage. If \p alg is
879 * nonzero, the key must allow operations with this algorithm. If \p alg is
880 * zero, the algorithm is not checked.
881 *
882 * In case of a persistent key, the function loads the description of the key
883 * into a key slot if not already done.
884 *
885 * On success, the returned key slot is locked. It is the responsibility of
886 * the caller to unlock the key slot when it does not access it anymore.
887 */
psa_get_and_lock_key_slot_with_policy(mbedtls_svc_key_id_t key,psa_key_slot_t ** p_slot,psa_key_usage_t usage,psa_algorithm_t alg)888 static psa_status_t psa_get_and_lock_key_slot_with_policy(
889 mbedtls_svc_key_id_t key,
890 psa_key_slot_t **p_slot,
891 psa_key_usage_t usage,
892 psa_algorithm_t alg )
893 {
894 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
895 psa_key_slot_t *slot;
896
897 status = psa_get_and_lock_key_slot( key, p_slot );
898 if( status != PSA_SUCCESS )
899 return( status );
900 slot = *p_slot;
901
902 /* Enforce that usage policy for the key slot contains all the flags
903 * required by the usage parameter. There is one exception: public
904 * keys can always be exported, so we treat public key objects as
905 * if they had the export flag. */
906 if( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->attr.type ) )
907 usage &= ~PSA_KEY_USAGE_EXPORT;
908
909 if( ( slot->attr.policy.usage & usage ) != usage )
910 {
911 status = PSA_ERROR_NOT_PERMITTED;
912 goto error;
913 }
914
915 /* Enforce that the usage policy permits the requested algortihm. */
916 if( alg != 0 )
917 {
918 status = psa_key_policy_permits( &slot->attr.policy,
919 slot->attr.type,
920 alg );
921 if( status != PSA_SUCCESS )
922 goto error;
923 }
924
925 return( PSA_SUCCESS );
926
927 error:
928 *p_slot = NULL;
929 psa_unlock_key_slot( slot );
930
931 return( status );
932 }
933
934 /** Get a key slot containing a transparent key and lock it.
935 *
936 * A transparent key is a key for which the key material is directly
937 * available, as opposed to a key in a secure element and/or to be used
938 * by a secure element.
939 *
940 * This is a temporary function that may be used instead of
941 * psa_get_and_lock_key_slot_with_policy() when there is no opaque key support
942 * for a cryptographic operation.
943 *
944 * On success, the returned key slot is locked. It is the responsibility of the
945 * caller to unlock the key slot when it does not access it anymore.
946 */
psa_get_and_lock_transparent_key_slot_with_policy(mbedtls_svc_key_id_t key,psa_key_slot_t ** p_slot,psa_key_usage_t usage,psa_algorithm_t alg)947 static psa_status_t psa_get_and_lock_transparent_key_slot_with_policy(
948 mbedtls_svc_key_id_t key,
949 psa_key_slot_t **p_slot,
950 psa_key_usage_t usage,
951 psa_algorithm_t alg )
952 {
953 psa_status_t status = psa_get_and_lock_key_slot_with_policy( key, p_slot,
954 usage, alg );
955 if( status != PSA_SUCCESS )
956 return( status );
957
958 if( psa_key_lifetime_is_external( (*p_slot)->attr.lifetime ) )
959 {
960 psa_unlock_key_slot( *p_slot );
961 *p_slot = NULL;
962 return( PSA_ERROR_NOT_SUPPORTED );
963 }
964
965 return( PSA_SUCCESS );
966 }
967
psa_remove_key_data_from_memory(psa_key_slot_t * slot)968 psa_status_t psa_remove_key_data_from_memory( psa_key_slot_t *slot )
969 {
970 /* Data pointer will always be either a valid pointer or NULL in an
971 * initialized slot, so we can just free it. */
972 if( slot->key.data != NULL )
973 mbedtls_platform_zeroize( slot->key.data, slot->key.bytes);
974
975 mbedtls_free( slot->key.data );
976 slot->key.data = NULL;
977 slot->key.bytes = 0;
978
979 return( PSA_SUCCESS );
980 }
981
982 /** Completely wipe a slot in memory, including its policy.
983 * Persistent storage is not affected. */
psa_wipe_key_slot(psa_key_slot_t * slot)984 psa_status_t psa_wipe_key_slot( psa_key_slot_t *slot )
985 {
986 psa_status_t status = psa_remove_key_data_from_memory( slot );
987
988 /*
989 * As the return error code may not be handled in case of multiple errors,
990 * do our best to report an unexpected lock counter. Assert with
991 * MBEDTLS_TEST_HOOK_TEST_ASSERT that the lock counter is equal to one:
992 * if the MBEDTLS_TEST_HOOKS configuration option is enabled and the
993 * function is called as part of the execution of a test suite, the
994 * execution of the test suite is stopped in error if the assertion fails.
995 */
996 if( slot->lock_count != 1 )
997 {
998 MBEDTLS_TEST_HOOK_TEST_ASSERT( slot->lock_count == 1 );
999 status = PSA_ERROR_CORRUPTION_DETECTED;
1000 }
1001
1002 /* Multipart operations may still be using the key. This is safe
1003 * because all multipart operation objects are independent from
1004 * the key slot: if they need to access the key after the setup
1005 * phase, they have a copy of the key. Note that this means that
1006 * key material can linger until all operations are completed. */
1007 /* At this point, key material and other type-specific content has
1008 * been wiped. Clear remaining metadata. We can call memset and not
1009 * zeroize because the metadata is not particularly sensitive. */
1010 memset( slot, 0, sizeof( *slot ) );
1011 return( status );
1012 }
1013
psa_destroy_key(mbedtls_svc_key_id_t key)1014 psa_status_t psa_destroy_key( mbedtls_svc_key_id_t key )
1015 {
1016 psa_key_slot_t *slot;
1017 psa_status_t status; /* status of the last operation */
1018 psa_status_t overall_status = PSA_SUCCESS;
1019 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1020 psa_se_drv_table_entry_t *driver;
1021 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1022
1023 if( mbedtls_svc_key_id_is_null( key ) )
1024 return( PSA_SUCCESS );
1025
1026 /*
1027 * Get the description of the key in a key slot. In case of a persistent
1028 * key, this will load the key description from persistent memory if not
1029 * done yet. We cannot avoid this loading as without it we don't know if
1030 * the key is operated by an SE or not and this information is needed by
1031 * the current implementation.
1032 */
1033 status = psa_get_and_lock_key_slot( key, &slot );
1034 if( status != PSA_SUCCESS )
1035 return( status );
1036
1037 /*
1038 * If the key slot containing the key description is under access by the
1039 * library (apart from the present access), the key cannot be destroyed
1040 * yet. For the time being, just return in error. Eventually (to be
1041 * implemented), the key should be destroyed when all accesses have
1042 * stopped.
1043 */
1044 if( slot->lock_count > 1 )
1045 {
1046 psa_unlock_key_slot( slot );
1047 return( PSA_ERROR_GENERIC_ERROR );
1048 }
1049
1050 if( PSA_KEY_LIFETIME_IS_READ_ONLY( slot->attr.lifetime ) )
1051 {
1052 /* Refuse the destruction of a read-only key (which may or may not work
1053 * if we attempt it, depending on whether the key is merely read-only
1054 * by policy or actually physically read-only).
1055 * Just do the best we can, which is to wipe the copy in memory
1056 * (done in this function's cleanup code). */
1057 overall_status = PSA_ERROR_NOT_PERMITTED;
1058 goto exit;
1059 }
1060
1061 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1062 driver = psa_get_se_driver_entry( slot->attr.lifetime );
1063 if( driver != NULL )
1064 {
1065 /* For a key in a secure element, we need to do three things:
1066 * remove the key file in internal storage, destroy the
1067 * key inside the secure element, and update the driver's
1068 * persistent data. Start a transaction that will encompass these
1069 * three actions. */
1070 psa_crypto_prepare_transaction( PSA_CRYPTO_TRANSACTION_DESTROY_KEY );
1071 psa_crypto_transaction.key.lifetime = slot->attr.lifetime;
1072 psa_crypto_transaction.key.slot = psa_key_slot_get_slot_number( slot );
1073 psa_crypto_transaction.key.id = slot->attr.id;
1074 status = psa_crypto_save_transaction( );
1075 if( status != PSA_SUCCESS )
1076 {
1077 (void) psa_crypto_stop_transaction( );
1078 /* We should still try to destroy the key in the secure
1079 * element and the key metadata in storage. This is especially
1080 * important if the error is that the storage is full.
1081 * But how to do it exactly without risking an inconsistent
1082 * state after a reset?
1083 * https://github.com/ARMmbed/mbed-crypto/issues/215
1084 */
1085 overall_status = status;
1086 goto exit;
1087 }
1088
1089 status = psa_destroy_se_key( driver,
1090 psa_key_slot_get_slot_number( slot ) );
1091 if( overall_status == PSA_SUCCESS )
1092 overall_status = status;
1093 }
1094 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1095
1096 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
1097 if( ! PSA_KEY_LIFETIME_IS_VOLATILE( slot->attr.lifetime ) )
1098 {
1099 status = psa_destroy_persistent_key( slot->attr.id );
1100 if( overall_status == PSA_SUCCESS )
1101 overall_status = status;
1102
1103 /* TODO: other slots may have a copy of the same key. We should
1104 * invalidate them.
1105 * https://github.com/ARMmbed/mbed-crypto/issues/214
1106 */
1107 }
1108 #endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
1109
1110 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1111 if( driver != NULL )
1112 {
1113 status = psa_save_se_persistent_data( driver );
1114 if( overall_status == PSA_SUCCESS )
1115 overall_status = status;
1116 status = psa_crypto_stop_transaction( );
1117 if( overall_status == PSA_SUCCESS )
1118 overall_status = status;
1119 }
1120 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1121
1122 exit:
1123 status = psa_wipe_key_slot( slot );
1124 /* Prioritize CORRUPTION_DETECTED from wiping over a storage error */
1125 if( status != PSA_SUCCESS )
1126 overall_status = status;
1127 return( overall_status );
1128 }
1129
1130 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1131 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
psa_get_rsa_public_exponent(const mbedtls_rsa_context * rsa,psa_key_attributes_t * attributes)1132 static psa_status_t psa_get_rsa_public_exponent(
1133 const mbedtls_rsa_context *rsa,
1134 psa_key_attributes_t *attributes )
1135 {
1136 mbedtls_mpi mpi;
1137 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1138 uint8_t *buffer = NULL;
1139 size_t buflen;
1140 mbedtls_mpi_init( &mpi );
1141
1142 ret = mbedtls_rsa_export( rsa, NULL, NULL, NULL, NULL, &mpi );
1143 if( ret != 0 )
1144 goto exit;
1145 if( mbedtls_mpi_cmp_int( &mpi, 65537 ) == 0 )
1146 {
1147 /* It's the default value, which is reported as an empty string,
1148 * so there's nothing to do. */
1149 goto exit;
1150 }
1151
1152 buflen = mbedtls_mpi_size( &mpi );
1153 buffer = mbedtls_calloc( 1, buflen );
1154 if( buffer == NULL )
1155 {
1156 ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
1157 goto exit;
1158 }
1159 ret = mbedtls_mpi_write_binary( &mpi, buffer, buflen );
1160 if( ret != 0 )
1161 goto exit;
1162 attributes->domain_parameters = buffer;
1163 attributes->domain_parameters_size = buflen;
1164
1165 exit:
1166 mbedtls_mpi_free( &mpi );
1167 if( ret != 0 )
1168 mbedtls_free( buffer );
1169 return( mbedtls_to_psa_error( ret ) );
1170 }
1171 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1172 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1173
1174 /** Retrieve all the publicly-accessible attributes of a key.
1175 */
psa_get_key_attributes(mbedtls_svc_key_id_t key,psa_key_attributes_t * attributes)1176 psa_status_t psa_get_key_attributes( mbedtls_svc_key_id_t key,
1177 psa_key_attributes_t *attributes )
1178 {
1179 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1180 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
1181 psa_key_slot_t *slot;
1182
1183 psa_reset_key_attributes( attributes );
1184
1185 status = psa_get_and_lock_key_slot_with_policy( key, &slot, 0, 0 );
1186 if( status != PSA_SUCCESS )
1187 return( status );
1188
1189 attributes->core = slot->attr;
1190 attributes->core.flags &= ( MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY |
1191 MBEDTLS_PSA_KA_MASK_DUAL_USE );
1192
1193 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1194 if( psa_get_se_driver_entry( slot->attr.lifetime ) != NULL )
1195 psa_set_key_slot_number( attributes,
1196 psa_key_slot_get_slot_number( slot ) );
1197 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1198
1199 switch( slot->attr.type )
1200 {
1201 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1202 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
1203 case PSA_KEY_TYPE_RSA_KEY_PAIR:
1204 case PSA_KEY_TYPE_RSA_PUBLIC_KEY:
1205 /* TODO: reporting the public exponent for opaque keys
1206 * is not yet implemented.
1207 * https://github.com/ARMmbed/mbed-crypto/issues/216
1208 */
1209 if( ! psa_key_lifetime_is_external( slot->attr.lifetime ) )
1210 {
1211 mbedtls_rsa_context *rsa = NULL;
1212
1213 status = mbedtls_psa_rsa_load_representation(
1214 slot->attr.type,
1215 slot->key.data,
1216 slot->key.bytes,
1217 &rsa );
1218 if( status != PSA_SUCCESS )
1219 break;
1220
1221 status = psa_get_rsa_public_exponent( rsa,
1222 attributes );
1223 mbedtls_rsa_free( rsa );
1224 mbedtls_free( rsa );
1225 }
1226 break;
1227 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1228 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1229 default:
1230 /* Nothing else to do. */
1231 break;
1232 }
1233
1234 if( status != PSA_SUCCESS )
1235 psa_reset_key_attributes( attributes );
1236
1237 unlock_status = psa_unlock_key_slot( slot );
1238
1239 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
1240 }
1241
1242 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
psa_get_key_slot_number(const psa_key_attributes_t * attributes,psa_key_slot_number_t * slot_number)1243 psa_status_t psa_get_key_slot_number(
1244 const psa_key_attributes_t *attributes,
1245 psa_key_slot_number_t *slot_number )
1246 {
1247 if( attributes->core.flags & MBEDTLS_PSA_KA_FLAG_HAS_SLOT_NUMBER )
1248 {
1249 *slot_number = attributes->slot_number;
1250 return( PSA_SUCCESS );
1251 }
1252 else
1253 return( PSA_ERROR_INVALID_ARGUMENT );
1254 }
1255 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1256
psa_export_key_buffer_internal(const uint8_t * key_buffer,size_t key_buffer_size,uint8_t * data,size_t data_size,size_t * data_length)1257 static psa_status_t psa_export_key_buffer_internal( const uint8_t *key_buffer,
1258 size_t key_buffer_size,
1259 uint8_t *data,
1260 size_t data_size,
1261 size_t *data_length )
1262 {
1263 if( key_buffer_size > data_size )
1264 return( PSA_ERROR_BUFFER_TOO_SMALL );
1265 memcpy( data, key_buffer, key_buffer_size );
1266 memset( data + key_buffer_size, 0,
1267 data_size - key_buffer_size );
1268 *data_length = key_buffer_size;
1269 return( PSA_SUCCESS );
1270 }
1271
psa_export_key_internal(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,uint8_t * data,size_t data_size,size_t * data_length)1272 psa_status_t psa_export_key_internal(
1273 const psa_key_attributes_t *attributes,
1274 const uint8_t *key_buffer, size_t key_buffer_size,
1275 uint8_t *data, size_t data_size, size_t *data_length )
1276 {
1277 psa_key_type_t type = attributes->core.type;
1278
1279 if( key_type_is_raw_bytes( type ) ||
1280 PSA_KEY_TYPE_IS_RSA( type ) ||
1281 PSA_KEY_TYPE_IS_ECC( type ) )
1282 {
1283 return( psa_export_key_buffer_internal(
1284 key_buffer, key_buffer_size,
1285 data, data_size, data_length ) );
1286 }
1287 else
1288 {
1289 /* This shouldn't happen in the reference implementation, but
1290 it is valid for a special-purpose implementation to omit
1291 support for exporting certain key types. */
1292 return( PSA_ERROR_NOT_SUPPORTED );
1293 }
1294 }
1295
psa_export_key(mbedtls_svc_key_id_t key,uint8_t * data,size_t data_size,size_t * data_length)1296 psa_status_t psa_export_key( mbedtls_svc_key_id_t key,
1297 uint8_t *data,
1298 size_t data_size,
1299 size_t *data_length )
1300 {
1301 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1302 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
1303 psa_key_slot_t *slot;
1304
1305 /* Reject a zero-length output buffer now, since this can never be a
1306 * valid key representation. This way we know that data must be a valid
1307 * pointer and we can do things like memset(data, ..., data_size). */
1308 if( data_size == 0 )
1309 return( PSA_ERROR_BUFFER_TOO_SMALL );
1310
1311 /* Set the key to empty now, so that even when there are errors, we always
1312 * set data_length to a value between 0 and data_size. On error, setting
1313 * the key to empty is a good choice because an empty key representation is
1314 * unlikely to be accepted anywhere. */
1315 *data_length = 0;
1316
1317 /* Export requires the EXPORT flag. There is an exception for public keys,
1318 * which don't require any flag, but
1319 * psa_get_and_lock_key_slot_with_policy() takes care of this.
1320 */
1321 status = psa_get_and_lock_key_slot_with_policy( key, &slot,
1322 PSA_KEY_USAGE_EXPORT, 0 );
1323 if( status != PSA_SUCCESS )
1324 return( status );
1325
1326 psa_key_attributes_t attributes = {
1327 .core = slot->attr
1328 };
1329 status = psa_driver_wrapper_export_key( &attributes,
1330 slot->key.data, slot->key.bytes,
1331 data, data_size, data_length );
1332
1333 unlock_status = psa_unlock_key_slot( slot );
1334
1335 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
1336 }
1337
psa_export_public_key_internal(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,uint8_t * data,size_t data_size,size_t * data_length)1338 psa_status_t psa_export_public_key_internal(
1339 const psa_key_attributes_t *attributes,
1340 const uint8_t *key_buffer,
1341 size_t key_buffer_size,
1342 uint8_t *data,
1343 size_t data_size,
1344 size_t *data_length )
1345 {
1346 psa_key_type_t type = attributes->core.type;
1347
1348 if( PSA_KEY_TYPE_IS_RSA( type ) || PSA_KEY_TYPE_IS_ECC( type ) )
1349 {
1350 if( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) )
1351 {
1352 /* Exporting public -> public */
1353 return( psa_export_key_buffer_internal(
1354 key_buffer, key_buffer_size,
1355 data, data_size, data_length ) );
1356 }
1357
1358 if( PSA_KEY_TYPE_IS_RSA( type ) )
1359 {
1360 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1361 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
1362 return( mbedtls_psa_rsa_export_public_key( attributes,
1363 key_buffer,
1364 key_buffer_size,
1365 data,
1366 data_size,
1367 data_length ) );
1368 #else
1369 /* We don't know how to convert a private RSA key to public. */
1370 return( PSA_ERROR_NOT_SUPPORTED );
1371 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1372 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1373 }
1374 else
1375 {
1376 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) || \
1377 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY)
1378 return( mbedtls_psa_ecp_export_public_key( attributes,
1379 key_buffer,
1380 key_buffer_size,
1381 data,
1382 data_size,
1383 data_length ) );
1384 #else
1385 /* We don't know how to convert a private ECC key to public */
1386 return( PSA_ERROR_NOT_SUPPORTED );
1387 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) ||
1388 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) */
1389 }
1390 }
1391 else
1392 {
1393 /* This shouldn't happen in the reference implementation, but
1394 it is valid for a special-purpose implementation to omit
1395 support for exporting certain key types. */
1396 return( PSA_ERROR_NOT_SUPPORTED );
1397 }
1398 }
1399
psa_export_public_key(mbedtls_svc_key_id_t key,uint8_t * data,size_t data_size,size_t * data_length)1400 psa_status_t psa_export_public_key( mbedtls_svc_key_id_t key,
1401 uint8_t *data,
1402 size_t data_size,
1403 size_t *data_length )
1404 {
1405 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
1406 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
1407 psa_key_slot_t *slot;
1408 psa_key_attributes_t attributes;
1409
1410 /* Reject a zero-length output buffer now, since this can never be a
1411 * valid key representation. This way we know that data must be a valid
1412 * pointer and we can do things like memset(data, ..., data_size). */
1413 if( data_size == 0 )
1414 return( PSA_ERROR_BUFFER_TOO_SMALL );
1415
1416 /* Set the key to empty now, so that even when there are errors, we always
1417 * set data_length to a value between 0 and data_size. On error, setting
1418 * the key to empty is a good choice because an empty key representation is
1419 * unlikely to be accepted anywhere. */
1420 *data_length = 0;
1421
1422 /* Exporting a public key doesn't require a usage flag. */
1423 status = psa_get_and_lock_key_slot_with_policy( key, &slot, 0, 0 );
1424 if( status != PSA_SUCCESS )
1425 return( status );
1426
1427 if( ! PSA_KEY_TYPE_IS_ASYMMETRIC( slot->attr.type ) )
1428 {
1429 status = PSA_ERROR_INVALID_ARGUMENT;
1430 goto exit;
1431 }
1432
1433 attributes.core = slot->attr;
1434 status = psa_driver_wrapper_export_public_key(
1435 &attributes, slot->key.data, slot->key.bytes,
1436 data, data_size, data_length );
1437
1438 exit:
1439 unlock_status = psa_unlock_key_slot( slot );
1440
1441 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
1442 }
1443
1444 #if defined(static_assert)
1445 static_assert( ( MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY & MBEDTLS_PSA_KA_MASK_DUAL_USE ) == 0,
1446 "One or more key attribute flag is listed as both external-only and dual-use" );
1447 static_assert( ( PSA_KA_MASK_INTERNAL_ONLY & MBEDTLS_PSA_KA_MASK_DUAL_USE ) == 0,
1448 "One or more key attribute flag is listed as both internal-only and dual-use" );
1449 static_assert( ( PSA_KA_MASK_INTERNAL_ONLY & MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY ) == 0,
1450 "One or more key attribute flag is listed as both internal-only and external-only" );
1451 #endif
1452
1453 /** Validate that a key policy is internally well-formed.
1454 *
1455 * This function only rejects invalid policies. It does not validate the
1456 * consistency of the policy with respect to other attributes of the key
1457 * such as the key type.
1458 */
psa_validate_key_policy(const psa_key_policy_t * policy)1459 static psa_status_t psa_validate_key_policy( const psa_key_policy_t *policy )
1460 {
1461 if( ( policy->usage & ~( PSA_KEY_USAGE_EXPORT |
1462 PSA_KEY_USAGE_COPY |
1463 PSA_KEY_USAGE_ENCRYPT |
1464 PSA_KEY_USAGE_DECRYPT |
1465 PSA_KEY_USAGE_SIGN_MESSAGE |
1466 PSA_KEY_USAGE_VERIFY_MESSAGE |
1467 PSA_KEY_USAGE_SIGN_HASH |
1468 PSA_KEY_USAGE_VERIFY_HASH |
1469 PSA_KEY_USAGE_VERIFY_DERIVATION |
1470 PSA_KEY_USAGE_DERIVE ) ) != 0 )
1471 return( PSA_ERROR_INVALID_ARGUMENT );
1472
1473 return( PSA_SUCCESS );
1474 }
1475
1476 /** Validate the internal consistency of key attributes.
1477 *
1478 * This function only rejects invalid attribute values. If does not
1479 * validate the consistency of the attributes with any key data that may
1480 * be involved in the creation of the key.
1481 *
1482 * Call this function early in the key creation process.
1483 *
1484 * \param[in] attributes Key attributes for the new key.
1485 * \param[out] p_drv On any return, the driver for the key, if any.
1486 * NULL for a transparent key.
1487 *
1488 */
psa_validate_key_attributes(const psa_key_attributes_t * attributes,psa_se_drv_table_entry_t ** p_drv)1489 static psa_status_t psa_validate_key_attributes(
1490 const psa_key_attributes_t *attributes,
1491 psa_se_drv_table_entry_t **p_drv )
1492 {
1493 psa_status_t status = PSA_ERROR_INVALID_ARGUMENT;
1494 psa_key_lifetime_t lifetime = psa_get_key_lifetime( attributes );
1495 mbedtls_svc_key_id_t key = psa_get_key_id( attributes );
1496
1497 status = psa_validate_key_location( lifetime, p_drv );
1498 if( status != PSA_SUCCESS )
1499 return( status );
1500
1501 status = psa_validate_key_persistence( lifetime );
1502 if( status != PSA_SUCCESS )
1503 return( status );
1504
1505 if ( PSA_KEY_LIFETIME_IS_VOLATILE( lifetime ) )
1506 {
1507 if( MBEDTLS_SVC_KEY_ID_GET_KEY_ID( key ) != 0 )
1508 return( PSA_ERROR_INVALID_ARGUMENT );
1509 }
1510 else
1511 {
1512 if( !psa_is_valid_key_id( psa_get_key_id( attributes ), 0 ) )
1513 return( PSA_ERROR_INVALID_ARGUMENT );
1514 }
1515
1516 status = psa_validate_key_policy( &attributes->core.policy );
1517 if( status != PSA_SUCCESS )
1518 return( status );
1519
1520 /* Refuse to create overly large keys.
1521 * Note that this doesn't trigger on import if the attributes don't
1522 * explicitly specify a size (so psa_get_key_bits returns 0), so
1523 * psa_import_key() needs its own checks. */
1524 if( psa_get_key_bits( attributes ) > PSA_MAX_KEY_BITS )
1525 return( PSA_ERROR_NOT_SUPPORTED );
1526
1527 /* Reject invalid flags. These should not be reachable through the API. */
1528 if( attributes->core.flags & ~ ( MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY |
1529 MBEDTLS_PSA_KA_MASK_DUAL_USE ) )
1530 return( PSA_ERROR_INVALID_ARGUMENT );
1531
1532 return( PSA_SUCCESS );
1533 }
1534
1535 /** Prepare a key slot to receive key material.
1536 *
1537 * This function allocates a key slot and sets its metadata.
1538 *
1539 * If this function fails, call psa_fail_key_creation().
1540 *
1541 * This function is intended to be used as follows:
1542 * -# Call psa_start_key_creation() to allocate a key slot, prepare
1543 * it with the specified attributes, and in case of a volatile key assign it
1544 * a volatile key identifier.
1545 * -# Populate the slot with the key material.
1546 * -# Call psa_finish_key_creation() to finalize the creation of the slot.
1547 * In case of failure at any step, stop the sequence and call
1548 * psa_fail_key_creation().
1549 *
1550 * On success, the key slot is locked. It is the responsibility of the caller
1551 * to unlock the key slot when it does not access it anymore.
1552 *
1553 * \param method An identification of the calling function.
1554 * \param[in] attributes Key attributes for the new key.
1555 * \param[out] p_slot On success, a pointer to the prepared slot.
1556 * \param[out] p_drv On any return, the driver for the key, if any.
1557 * NULL for a transparent key.
1558 *
1559 * \retval #PSA_SUCCESS
1560 * The key slot is ready to receive key material.
1561 * \return If this function fails, the key slot is an invalid state.
1562 * You must call psa_fail_key_creation() to wipe and free the slot.
1563 */
psa_start_key_creation(psa_key_creation_method_t method,const psa_key_attributes_t * attributes,psa_key_slot_t ** p_slot,psa_se_drv_table_entry_t ** p_drv)1564 static psa_status_t psa_start_key_creation(
1565 psa_key_creation_method_t method,
1566 const psa_key_attributes_t *attributes,
1567 psa_key_slot_t **p_slot,
1568 psa_se_drv_table_entry_t **p_drv )
1569 {
1570 psa_status_t status;
1571 psa_key_id_t volatile_key_id;
1572 psa_key_slot_t *slot;
1573
1574 (void) method;
1575 *p_drv = NULL;
1576
1577 status = psa_validate_key_attributes( attributes, p_drv );
1578 if( status != PSA_SUCCESS )
1579 return( status );
1580
1581 status = psa_get_empty_key_slot( &volatile_key_id, p_slot );
1582 if( status != PSA_SUCCESS )
1583 return( status );
1584 slot = *p_slot;
1585
1586 /* We're storing the declared bit-size of the key. It's up to each
1587 * creation mechanism to verify that this information is correct.
1588 * It's automatically correct for mechanisms that use the bit-size as
1589 * an input (generate, device) but not for those where the bit-size
1590 * is optional (import, copy). In case of a volatile key, assign it the
1591 * volatile key identifier associated to the slot returned to contain its
1592 * definition. */
1593
1594 slot->attr = attributes->core;
1595 if( PSA_KEY_LIFETIME_IS_VOLATILE( slot->attr.lifetime ) )
1596 {
1597 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
1598 slot->attr.id = volatile_key_id;
1599 #else
1600 slot->attr.id.key_id = volatile_key_id;
1601 #endif
1602 }
1603
1604 /* Erase external-only flags from the internal copy. To access
1605 * external-only flags, query `attributes`. Thanks to the check
1606 * in psa_validate_key_attributes(), this leaves the dual-use
1607 * flags and any internal flag that psa_get_empty_key_slot()
1608 * may have set. */
1609 slot->attr.flags &= ~MBEDTLS_PSA_KA_MASK_EXTERNAL_ONLY;
1610
1611 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1612 /* For a key in a secure element, we need to do three things
1613 * when creating or registering a persistent key:
1614 * create the key file in internal storage, create the
1615 * key inside the secure element, and update the driver's
1616 * persistent data. This is done by starting a transaction that will
1617 * encompass these three actions.
1618 * For registering a volatile key, we just need to find an appropriate
1619 * slot number inside the SE. Since the key is designated volatile, creating
1620 * a transaction is not required. */
1621 /* The first thing to do is to find a slot number for the new key.
1622 * We save the slot number in persistent storage as part of the
1623 * transaction data. It will be needed to recover if the power
1624 * fails during the key creation process, to clean up on the secure
1625 * element side after restarting. Obtaining a slot number from the
1626 * secure element driver updates its persistent state, but we do not yet
1627 * save the driver's persistent state, so that if the power fails,
1628 * we can roll back to a state where the key doesn't exist. */
1629 if( *p_drv != NULL )
1630 {
1631 psa_key_slot_number_t slot_number;
1632 status = psa_find_se_slot_for_key( attributes, method, *p_drv,
1633 &slot_number );
1634 if( status != PSA_SUCCESS )
1635 return( status );
1636
1637 if( ! PSA_KEY_LIFETIME_IS_VOLATILE( attributes->core.lifetime ) )
1638 {
1639 psa_crypto_prepare_transaction( PSA_CRYPTO_TRANSACTION_CREATE_KEY );
1640 psa_crypto_transaction.key.lifetime = slot->attr.lifetime;
1641 psa_crypto_transaction.key.slot = slot_number;
1642 psa_crypto_transaction.key.id = slot->attr.id;
1643 status = psa_crypto_save_transaction( );
1644 if( status != PSA_SUCCESS )
1645 {
1646 (void) psa_crypto_stop_transaction( );
1647 return( status );
1648 }
1649 }
1650
1651 status = psa_copy_key_material_into_slot(
1652 slot, (uint8_t *)( &slot_number ), sizeof( slot_number ) );
1653 }
1654
1655 if( *p_drv == NULL && method == PSA_KEY_CREATION_REGISTER )
1656 {
1657 /* Key registration only makes sense with a secure element. */
1658 return( PSA_ERROR_INVALID_ARGUMENT );
1659 }
1660 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1661
1662 return( PSA_SUCCESS );
1663 }
1664
1665 /** Finalize the creation of a key once its key material has been set.
1666 *
1667 * This entails writing the key to persistent storage.
1668 *
1669 * If this function fails, call psa_fail_key_creation().
1670 * See the documentation of psa_start_key_creation() for the intended use
1671 * of this function.
1672 *
1673 * If the finalization succeeds, the function unlocks the key slot (it was
1674 * locked by psa_start_key_creation()) and the key slot cannot be accessed
1675 * anymore as part of the key creation process.
1676 *
1677 * \param[in,out] slot Pointer to the slot with key material.
1678 * \param[in] driver The secure element driver for the key,
1679 * or NULL for a transparent key.
1680 * \param[out] key On success, identifier of the key. Note that the
1681 * key identifier is also stored in the key slot.
1682 *
1683 * \retval #PSA_SUCCESS
1684 * The key was successfully created.
1685 * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
1686 * \retval #PSA_ERROR_INSUFFICIENT_STORAGE
1687 * \retval #PSA_ERROR_ALREADY_EXISTS
1688 * \retval #PSA_ERROR_DATA_INVALID
1689 * \retval #PSA_ERROR_DATA_CORRUPT
1690 * \retval #PSA_ERROR_STORAGE_FAILURE
1691 *
1692 * \return If this function fails, the key slot is an invalid state.
1693 * You must call psa_fail_key_creation() to wipe and free the slot.
1694 */
psa_finish_key_creation(psa_key_slot_t * slot,psa_se_drv_table_entry_t * driver,mbedtls_svc_key_id_t * key)1695 static psa_status_t psa_finish_key_creation(
1696 psa_key_slot_t *slot,
1697 psa_se_drv_table_entry_t *driver,
1698 mbedtls_svc_key_id_t *key)
1699 {
1700 psa_status_t status = PSA_SUCCESS;
1701 (void) slot;
1702 (void) driver;
1703
1704 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
1705 if( ! PSA_KEY_LIFETIME_IS_VOLATILE( slot->attr.lifetime ) )
1706 {
1707 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1708 if( driver != NULL )
1709 {
1710 psa_se_key_data_storage_t data;
1711 psa_key_slot_number_t slot_number =
1712 psa_key_slot_get_slot_number( slot ) ;
1713
1714 #if defined(static_assert)
1715 static_assert( sizeof( slot_number ) ==
1716 sizeof( data.slot_number ),
1717 "Slot number size does not match psa_se_key_data_storage_t" );
1718 #endif
1719 memcpy( &data.slot_number, &slot_number, sizeof( slot_number ) );
1720 status = psa_save_persistent_key( &slot->attr,
1721 (uint8_t*) &data,
1722 sizeof( data ) );
1723 }
1724 else
1725 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1726 {
1727 /* Key material is saved in export representation in the slot, so
1728 * just pass the slot buffer for storage. */
1729 status = psa_save_persistent_key( &slot->attr,
1730 slot->key.data,
1731 slot->key.bytes );
1732 }
1733 }
1734 #endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
1735
1736 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1737 /* Finish the transaction for a key creation. This does not
1738 * happen when registering an existing key. Detect this case
1739 * by checking whether a transaction is in progress (actual
1740 * creation of a persistent key in a secure element requires a transaction,
1741 * but registration or volatile key creation doesn't use one). */
1742 if( driver != NULL &&
1743 psa_crypto_transaction.unknown.type == PSA_CRYPTO_TRANSACTION_CREATE_KEY )
1744 {
1745 status = psa_save_se_persistent_data( driver );
1746 if( status != PSA_SUCCESS )
1747 {
1748 psa_destroy_persistent_key( slot->attr.id );
1749 return( status );
1750 }
1751 status = psa_crypto_stop_transaction( );
1752 }
1753 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1754
1755 if( status == PSA_SUCCESS )
1756 {
1757 *key = slot->attr.id;
1758 status = psa_unlock_key_slot( slot );
1759 if( status != PSA_SUCCESS )
1760 *key = MBEDTLS_SVC_KEY_ID_INIT;
1761 }
1762
1763 return( status );
1764 }
1765
1766 /** Abort the creation of a key.
1767 *
1768 * You may call this function after calling psa_start_key_creation(),
1769 * or after psa_finish_key_creation() fails. In other circumstances, this
1770 * function may not clean up persistent storage.
1771 * See the documentation of psa_start_key_creation() for the intended use
1772 * of this function.
1773 *
1774 * \param[in,out] slot Pointer to the slot with key material.
1775 * \param[in] driver The secure element driver for the key,
1776 * or NULL for a transparent key.
1777 */
psa_fail_key_creation(psa_key_slot_t * slot,psa_se_drv_table_entry_t * driver)1778 static void psa_fail_key_creation( psa_key_slot_t *slot,
1779 psa_se_drv_table_entry_t *driver )
1780 {
1781 (void) driver;
1782
1783 if( slot == NULL )
1784 return;
1785
1786 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
1787 /* TODO: If the key has already been created in the secure
1788 * element, and the failure happened later (when saving metadata
1789 * to internal storage), we need to destroy the key in the secure
1790 * element.
1791 * https://github.com/ARMmbed/mbed-crypto/issues/217
1792 */
1793
1794 /* Abort the ongoing transaction if any (there may not be one if
1795 * the creation process failed before starting one, or if the
1796 * key creation is a registration of a key in a secure element).
1797 * Earlier functions must already have done what it takes to undo any
1798 * partial creation. All that's left is to update the transaction data
1799 * itself. */
1800 (void) psa_crypto_stop_transaction( );
1801 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1802
1803 psa_wipe_key_slot( slot );
1804 }
1805
1806 /** Validate optional attributes during key creation.
1807 *
1808 * Some key attributes are optional during key creation. If they are
1809 * specified in the attributes structure, check that they are consistent
1810 * with the data in the slot.
1811 *
1812 * This function should be called near the end of key creation, after
1813 * the slot in memory is fully populated but before saving persistent data.
1814 */
psa_validate_optional_attributes(const psa_key_slot_t * slot,const psa_key_attributes_t * attributes)1815 static psa_status_t psa_validate_optional_attributes(
1816 const psa_key_slot_t *slot,
1817 const psa_key_attributes_t *attributes )
1818 {
1819 if( attributes->core.type != 0 )
1820 {
1821 if( attributes->core.type != slot->attr.type )
1822 return( PSA_ERROR_INVALID_ARGUMENT );
1823 }
1824
1825 if( attributes->domain_parameters_size != 0 )
1826 {
1827 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) || \
1828 defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
1829 if( PSA_KEY_TYPE_IS_RSA( slot->attr.type ) )
1830 {
1831 mbedtls_rsa_context *rsa = NULL;
1832 mbedtls_mpi actual, required;
1833 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1834
1835 psa_status_t status = mbedtls_psa_rsa_load_representation(
1836 slot->attr.type,
1837 slot->key.data,
1838 slot->key.bytes,
1839 &rsa );
1840 if( status != PSA_SUCCESS )
1841 return( status );
1842
1843 mbedtls_mpi_init( &actual );
1844 mbedtls_mpi_init( &required );
1845 ret = mbedtls_rsa_export( rsa,
1846 NULL, NULL, NULL, NULL, &actual );
1847 mbedtls_rsa_free( rsa );
1848 mbedtls_free( rsa );
1849 if( ret != 0 )
1850 goto rsa_exit;
1851 ret = mbedtls_mpi_read_binary( &required,
1852 attributes->domain_parameters,
1853 attributes->domain_parameters_size );
1854 if( ret != 0 )
1855 goto rsa_exit;
1856 if( mbedtls_mpi_cmp_mpi( &actual, &required ) != 0 )
1857 ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1858 rsa_exit:
1859 mbedtls_mpi_free( &actual );
1860 mbedtls_mpi_free( &required );
1861 if( ret != 0)
1862 return( mbedtls_to_psa_error( ret ) );
1863 }
1864 else
1865 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) ||
1866 * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
1867 {
1868 return( PSA_ERROR_INVALID_ARGUMENT );
1869 }
1870 }
1871
1872 if( attributes->core.bits != 0 )
1873 {
1874 if( attributes->core.bits != slot->attr.bits )
1875 return( PSA_ERROR_INVALID_ARGUMENT );
1876 }
1877
1878 return( PSA_SUCCESS );
1879 }
1880
psa_import_key(const psa_key_attributes_t * attributes,const uint8_t * data,size_t data_length,mbedtls_svc_key_id_t * key)1881 psa_status_t psa_import_key( const psa_key_attributes_t *attributes,
1882 const uint8_t *data,
1883 size_t data_length,
1884 mbedtls_svc_key_id_t *key )
1885 {
1886 psa_status_t status;
1887 psa_key_slot_t *slot = NULL;
1888 psa_se_drv_table_entry_t *driver = NULL;
1889 size_t bits;
1890 size_t storage_size = data_length;
1891
1892 *key = MBEDTLS_SVC_KEY_ID_INIT;
1893
1894 /* Reject zero-length symmetric keys (including raw data key objects).
1895 * This also rejects any key which might be encoded as an empty string,
1896 * which is never valid. */
1897 if( data_length == 0 )
1898 return( PSA_ERROR_INVALID_ARGUMENT );
1899
1900 /* Ensure that the bytes-to-bits conversion cannot overflow. */
1901 if( data_length > SIZE_MAX / 8 )
1902 return( PSA_ERROR_NOT_SUPPORTED );
1903
1904 status = psa_start_key_creation( PSA_KEY_CREATION_IMPORT, attributes,
1905 &slot, &driver );
1906 if( status != PSA_SUCCESS )
1907 goto exit;
1908
1909 /* In the case of a transparent key or an opaque key stored in local
1910 * storage ( thus not in the case of importing a key in a secure element
1911 * with storage ( MBEDTLS_PSA_CRYPTO_SE_C ) ),we have to allocate a
1912 * buffer to hold the imported key material. */
1913 if( slot->key.data == NULL )
1914 {
1915 if( psa_key_lifetime_is_external( attributes->core.lifetime ) )
1916 {
1917 status = psa_driver_wrapper_get_key_buffer_size_from_key_data(
1918 attributes, data, data_length, &storage_size );
1919 if( status != PSA_SUCCESS )
1920 goto exit;
1921 }
1922 status = psa_allocate_buffer_to_slot( slot, storage_size );
1923 if( status != PSA_SUCCESS )
1924 goto exit;
1925 }
1926
1927 bits = slot->attr.bits;
1928 status = psa_driver_wrapper_import_key( attributes,
1929 data, data_length,
1930 slot->key.data,
1931 slot->key.bytes,
1932 &slot->key.bytes, &bits );
1933 if( status != PSA_SUCCESS )
1934 goto exit;
1935
1936 if( slot->attr.bits == 0 )
1937 slot->attr.bits = (psa_key_bits_t) bits;
1938 else if( bits != slot->attr.bits )
1939 {
1940 status = PSA_ERROR_INVALID_ARGUMENT;
1941 goto exit;
1942 }
1943
1944 /* Enforce a size limit, and in particular ensure that the bit
1945 * size fits in its representation type.*/
1946 if( bits > PSA_MAX_KEY_BITS )
1947 {
1948 status = PSA_ERROR_NOT_SUPPORTED;
1949 goto exit;
1950 }
1951 status = psa_validate_optional_attributes( slot, attributes );
1952 if( status != PSA_SUCCESS )
1953 goto exit;
1954
1955 status = psa_finish_key_creation( slot, driver, key );
1956 exit:
1957 if( status != PSA_SUCCESS )
1958 psa_fail_key_creation( slot, driver );
1959
1960 return( status );
1961 }
1962
1963 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
mbedtls_psa_register_se_key(const psa_key_attributes_t * attributes)1964 psa_status_t mbedtls_psa_register_se_key(
1965 const psa_key_attributes_t *attributes )
1966 {
1967 psa_status_t status;
1968 psa_key_slot_t *slot = NULL;
1969 psa_se_drv_table_entry_t *driver = NULL;
1970 mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
1971
1972 /* Leaving attributes unspecified is not currently supported.
1973 * It could make sense to query the key type and size from the
1974 * secure element, but not all secure elements support this
1975 * and the driver HAL doesn't currently support it. */
1976 if( psa_get_key_type( attributes ) == PSA_KEY_TYPE_NONE )
1977 return( PSA_ERROR_NOT_SUPPORTED );
1978 if( psa_get_key_bits( attributes ) == 0 )
1979 return( PSA_ERROR_NOT_SUPPORTED );
1980
1981 status = psa_start_key_creation( PSA_KEY_CREATION_REGISTER, attributes,
1982 &slot, &driver );
1983 if( status != PSA_SUCCESS )
1984 goto exit;
1985
1986 status = psa_finish_key_creation( slot, driver, &key );
1987
1988 exit:
1989 if( status != PSA_SUCCESS )
1990 psa_fail_key_creation( slot, driver );
1991
1992 /* Registration doesn't keep the key in RAM. */
1993 psa_close_key( key );
1994 return( status );
1995 }
1996 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
1997
psa_copy_key(mbedtls_svc_key_id_t source_key,const psa_key_attributes_t * specified_attributes,mbedtls_svc_key_id_t * target_key)1998 psa_status_t psa_copy_key( mbedtls_svc_key_id_t source_key,
1999 const psa_key_attributes_t *specified_attributes,
2000 mbedtls_svc_key_id_t *target_key )
2001 {
2002 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2003 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2004 psa_key_slot_t *source_slot = NULL;
2005 psa_key_slot_t *target_slot = NULL;
2006 psa_key_attributes_t actual_attributes = *specified_attributes;
2007 psa_se_drv_table_entry_t *driver = NULL;
2008 size_t storage_size = 0;
2009
2010 *target_key = MBEDTLS_SVC_KEY_ID_INIT;
2011
2012 status = psa_get_and_lock_key_slot_with_policy(
2013 source_key, &source_slot, PSA_KEY_USAGE_COPY, 0 );
2014 if( status != PSA_SUCCESS )
2015 goto exit;
2016
2017 status = psa_validate_optional_attributes( source_slot,
2018 specified_attributes );
2019 if( status != PSA_SUCCESS )
2020 goto exit;
2021
2022 /* The target key type and number of bits have been validated by
2023 * psa_validate_optional_attributes() to be either equal to zero or
2024 * equal to the ones of the source key. So it is safe to inherit
2025 * them from the source key now."
2026 * */
2027 actual_attributes.core.bits = source_slot->attr.bits;
2028 actual_attributes.core.type = source_slot->attr.type;
2029
2030
2031 status = psa_restrict_key_policy( source_slot->attr.type,
2032 &actual_attributes.core.policy,
2033 &source_slot->attr.policy );
2034 if( status != PSA_SUCCESS )
2035 goto exit;
2036
2037 status = psa_start_key_creation( PSA_KEY_CREATION_COPY, &actual_attributes,
2038 &target_slot, &driver );
2039 if( status != PSA_SUCCESS )
2040 goto exit;
2041 if( PSA_KEY_LIFETIME_GET_LOCATION( target_slot->attr.lifetime ) !=
2042 PSA_KEY_LIFETIME_GET_LOCATION( source_slot->attr.lifetime ) )
2043 {
2044 /*
2045 * If the source and target keys are stored in different locations,
2046 * the source key would need to be exported as plaintext and re-imported
2047 * in the other location. This has security implications which have not
2048 * been fully mapped. For now, this can be achieved through
2049 * appropriate API invocations from the application, if needed.
2050 * */
2051 status = PSA_ERROR_NOT_SUPPORTED;
2052 goto exit;
2053 }
2054 /*
2055 * When the source and target keys are within the same location,
2056 * - For transparent keys it is a blind copy without any driver invocation,
2057 * - For opaque keys this translates to an invocation of the drivers'
2058 * copy_key entry point through the dispatch layer.
2059 * */
2060 if( psa_key_lifetime_is_external( actual_attributes.core.lifetime ) )
2061 {
2062 status = psa_driver_wrapper_get_key_buffer_size( &actual_attributes,
2063 &storage_size );
2064 if( status != PSA_SUCCESS )
2065 goto exit;
2066
2067 status = psa_allocate_buffer_to_slot( target_slot, storage_size );
2068 if( status != PSA_SUCCESS )
2069 goto exit;
2070
2071 status = psa_driver_wrapper_copy_key( &actual_attributes,
2072 source_slot->key.data,
2073 source_slot->key.bytes,
2074 target_slot->key.data,
2075 target_slot->key.bytes,
2076 &target_slot->key.bytes );
2077 if( status != PSA_SUCCESS )
2078 goto exit;
2079 }
2080 else
2081 {
2082 status = psa_copy_key_material_into_slot( target_slot,
2083 source_slot->key.data,
2084 source_slot->key.bytes );
2085 if( status != PSA_SUCCESS )
2086 goto exit;
2087 }
2088 status = psa_finish_key_creation( target_slot, driver, target_key );
2089 exit:
2090 if( status != PSA_SUCCESS )
2091 psa_fail_key_creation( target_slot, driver );
2092
2093 unlock_status = psa_unlock_key_slot( source_slot );
2094
2095 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2096 }
2097
2098
2099
2100 /****************************************************************/
2101 /* Message digests */
2102 /****************************************************************/
2103
psa_hash_abort(psa_hash_operation_t * operation)2104 psa_status_t psa_hash_abort( psa_hash_operation_t *operation )
2105 {
2106 /* Aborting a non-active operation is allowed */
2107 if( operation->id == 0 )
2108 return( PSA_SUCCESS );
2109
2110 psa_status_t status = psa_driver_wrapper_hash_abort( operation );
2111 operation->id = 0;
2112
2113 return( status );
2114 }
2115
psa_hash_setup(psa_hash_operation_t * operation,psa_algorithm_t alg)2116 psa_status_t psa_hash_setup( psa_hash_operation_t *operation,
2117 psa_algorithm_t alg )
2118 {
2119 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2120
2121 /* A context must be freshly initialized before it can be set up. */
2122 if( operation->id != 0 )
2123 {
2124 status = PSA_ERROR_BAD_STATE;
2125 goto exit;
2126 }
2127
2128 if( !PSA_ALG_IS_HASH( alg ) )
2129 {
2130 status = PSA_ERROR_INVALID_ARGUMENT;
2131 goto exit;
2132 }
2133
2134 /* Ensure all of the context is zeroized, since PSA_HASH_OPERATION_INIT only
2135 * directly zeroes the int-sized dummy member of the context union. */
2136 memset( &operation->ctx, 0, sizeof( operation->ctx ) );
2137
2138 status = psa_driver_wrapper_hash_setup( operation, alg );
2139
2140 exit:
2141 if( status != PSA_SUCCESS )
2142 psa_hash_abort( operation );
2143
2144 return status;
2145 }
2146
psa_hash_update(psa_hash_operation_t * operation,const uint8_t * input,size_t input_length)2147 psa_status_t psa_hash_update( psa_hash_operation_t *operation,
2148 const uint8_t *input,
2149 size_t input_length )
2150 {
2151 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2152
2153 if( operation->id == 0 )
2154 {
2155 status = PSA_ERROR_BAD_STATE;
2156 goto exit;
2157 }
2158
2159 /* Don't require hash implementations to behave correctly on a
2160 * zero-length input, which may have an invalid pointer. */
2161 if( input_length == 0 )
2162 return( PSA_SUCCESS );
2163
2164 status = psa_driver_wrapper_hash_update( operation, input, input_length );
2165
2166 exit:
2167 if( status != PSA_SUCCESS )
2168 psa_hash_abort( operation );
2169
2170 return( status );
2171 }
2172
psa_hash_finish(psa_hash_operation_t * operation,uint8_t * hash,size_t hash_size,size_t * hash_length)2173 psa_status_t psa_hash_finish( psa_hash_operation_t *operation,
2174 uint8_t *hash,
2175 size_t hash_size,
2176 size_t *hash_length )
2177 {
2178 *hash_length = 0;
2179 if( operation->id == 0 )
2180 return( PSA_ERROR_BAD_STATE );
2181
2182 psa_status_t status = psa_driver_wrapper_hash_finish(
2183 operation, hash, hash_size, hash_length );
2184 psa_hash_abort( operation );
2185 return( status );
2186 }
2187
psa_hash_verify(psa_hash_operation_t * operation,const uint8_t * hash,size_t hash_length)2188 psa_status_t psa_hash_verify( psa_hash_operation_t *operation,
2189 const uint8_t *hash,
2190 size_t hash_length )
2191 {
2192 uint8_t actual_hash[PSA_HASH_MAX_SIZE];
2193 size_t actual_hash_length;
2194 psa_status_t status = psa_hash_finish(
2195 operation,
2196 actual_hash, sizeof( actual_hash ),
2197 &actual_hash_length );
2198
2199 if( status != PSA_SUCCESS )
2200 goto exit;
2201
2202 if( actual_hash_length != hash_length )
2203 {
2204 status = PSA_ERROR_INVALID_SIGNATURE;
2205 goto exit;
2206 }
2207
2208 if( mbedtls_psa_safer_memcmp( hash, actual_hash, actual_hash_length ) != 0 )
2209 status = PSA_ERROR_INVALID_SIGNATURE;
2210
2211 exit:
2212 mbedtls_platform_zeroize( actual_hash, sizeof( actual_hash ) );
2213 if( status != PSA_SUCCESS )
2214 psa_hash_abort(operation);
2215
2216 return( status );
2217 }
2218
psa_hash_compute(psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * hash,size_t hash_size,size_t * hash_length)2219 psa_status_t psa_hash_compute( psa_algorithm_t alg,
2220 const uint8_t *input, size_t input_length,
2221 uint8_t *hash, size_t hash_size,
2222 size_t *hash_length )
2223 {
2224 *hash_length = 0;
2225 if( !PSA_ALG_IS_HASH( alg ) )
2226 return( PSA_ERROR_INVALID_ARGUMENT );
2227
2228 return( psa_driver_wrapper_hash_compute( alg, input, input_length,
2229 hash, hash_size, hash_length ) );
2230 }
2231
psa_hash_compare(psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * hash,size_t hash_length)2232 psa_status_t psa_hash_compare( psa_algorithm_t alg,
2233 const uint8_t *input, size_t input_length,
2234 const uint8_t *hash, size_t hash_length )
2235 {
2236 uint8_t actual_hash[PSA_HASH_MAX_SIZE];
2237 size_t actual_hash_length;
2238
2239 if( !PSA_ALG_IS_HASH( alg ) )
2240 return( PSA_ERROR_INVALID_ARGUMENT );
2241
2242 psa_status_t status = psa_driver_wrapper_hash_compute(
2243 alg, input, input_length,
2244 actual_hash, sizeof(actual_hash),
2245 &actual_hash_length );
2246 if( status != PSA_SUCCESS )
2247 goto exit;
2248 if( actual_hash_length != hash_length )
2249 {
2250 status = PSA_ERROR_INVALID_SIGNATURE;
2251 goto exit;
2252 }
2253 if( mbedtls_psa_safer_memcmp( hash, actual_hash, actual_hash_length ) != 0 )
2254 status = PSA_ERROR_INVALID_SIGNATURE;
2255
2256 exit:
2257 mbedtls_platform_zeroize( actual_hash, sizeof( actual_hash ) );
2258 return( status );
2259 }
2260
psa_hash_clone(const psa_hash_operation_t * source_operation,psa_hash_operation_t * target_operation)2261 psa_status_t psa_hash_clone( const psa_hash_operation_t *source_operation,
2262 psa_hash_operation_t *target_operation )
2263 {
2264 if( source_operation->id == 0 ||
2265 target_operation->id != 0 )
2266 {
2267 return( PSA_ERROR_BAD_STATE );
2268 }
2269
2270 psa_status_t status = psa_driver_wrapper_hash_clone( source_operation,
2271 target_operation );
2272 if( status != PSA_SUCCESS )
2273 psa_hash_abort( target_operation );
2274
2275 return( status );
2276 }
2277
2278
2279 /****************************************************************/
2280 /* MAC */
2281 /****************************************************************/
2282
psa_mac_abort(psa_mac_operation_t * operation)2283 psa_status_t psa_mac_abort( psa_mac_operation_t *operation )
2284 {
2285 /* Aborting a non-active operation is allowed */
2286 if( operation->id == 0 )
2287 return( PSA_SUCCESS );
2288
2289 psa_status_t status = psa_driver_wrapper_mac_abort( operation );
2290 operation->mac_size = 0;
2291 operation->is_sign = 0;
2292 operation->id = 0;
2293
2294 return( status );
2295 }
2296
psa_mac_finalize_alg_and_key_validation(psa_algorithm_t alg,const psa_key_attributes_t * attributes,uint8_t * mac_size)2297 static psa_status_t psa_mac_finalize_alg_and_key_validation(
2298 psa_algorithm_t alg,
2299 const psa_key_attributes_t *attributes,
2300 uint8_t *mac_size )
2301 {
2302 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2303 psa_key_type_t key_type = psa_get_key_type( attributes );
2304 size_t key_bits = psa_get_key_bits( attributes );
2305
2306 if( ! PSA_ALG_IS_MAC( alg ) )
2307 return( PSA_ERROR_INVALID_ARGUMENT );
2308
2309 /* Validate the combination of key type and algorithm */
2310 status = psa_mac_key_can_do( alg, key_type );
2311 if( status != PSA_SUCCESS )
2312 return( status );
2313
2314 /* Get the output length for the algorithm and key combination */
2315 *mac_size = PSA_MAC_LENGTH( key_type, key_bits, alg );
2316
2317 if( *mac_size < 4 )
2318 {
2319 /* A very short MAC is too short for security since it can be
2320 * brute-forced. Ancient protocols with 32-bit MACs do exist,
2321 * so we make this our minimum, even though 32 bits is still
2322 * too small for security. */
2323 return( PSA_ERROR_NOT_SUPPORTED );
2324 }
2325
2326 if( *mac_size > PSA_MAC_LENGTH( key_type, key_bits,
2327 PSA_ALG_FULL_LENGTH_MAC( alg ) ) )
2328 {
2329 /* It's impossible to "truncate" to a larger length than the full length
2330 * of the algorithm. */
2331 return( PSA_ERROR_INVALID_ARGUMENT );
2332 }
2333
2334 return( PSA_SUCCESS );
2335 }
2336
psa_mac_setup(psa_mac_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg,int is_sign)2337 static psa_status_t psa_mac_setup( psa_mac_operation_t *operation,
2338 mbedtls_svc_key_id_t key,
2339 psa_algorithm_t alg,
2340 int is_sign )
2341 {
2342 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2343 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2344 psa_key_slot_t *slot = NULL;
2345 psa_key_attributes_t attributes;
2346
2347 /* A context must be freshly initialized before it can be set up. */
2348 if( operation->id != 0 )
2349 {
2350 status = PSA_ERROR_BAD_STATE;
2351 goto exit;
2352 }
2353
2354 status = psa_get_and_lock_key_slot_with_policy(
2355 key,
2356 &slot,
2357 is_sign ? PSA_KEY_USAGE_SIGN_MESSAGE : PSA_KEY_USAGE_VERIFY_MESSAGE,
2358 alg );
2359 if( status != PSA_SUCCESS )
2360 goto exit;
2361
2362 attributes.core = slot->attr;
2363 status = psa_mac_finalize_alg_and_key_validation( alg, &attributes,
2364 &operation->mac_size );
2365 if( status != PSA_SUCCESS )
2366 goto exit;
2367
2368 operation->is_sign = is_sign;
2369 /* Dispatch the MAC setup call with validated input */
2370 if( is_sign )
2371 {
2372 status = psa_driver_wrapper_mac_sign_setup( operation,
2373 &attributes,
2374 slot->key.data,
2375 slot->key.bytes,
2376 alg );
2377 }
2378 else
2379 {
2380 status = psa_driver_wrapper_mac_verify_setup( operation,
2381 &attributes,
2382 slot->key.data,
2383 slot->key.bytes,
2384 alg );
2385 }
2386
2387 exit:
2388 if( status != PSA_SUCCESS )
2389 psa_mac_abort( operation );
2390
2391 unlock_status = psa_unlock_key_slot( slot );
2392
2393 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2394 }
2395
psa_mac_sign_setup(psa_mac_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)2396 psa_status_t psa_mac_sign_setup( psa_mac_operation_t *operation,
2397 mbedtls_svc_key_id_t key,
2398 psa_algorithm_t alg )
2399 {
2400 return( psa_mac_setup( operation, key, alg, 1 ) );
2401 }
2402
psa_mac_verify_setup(psa_mac_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)2403 psa_status_t psa_mac_verify_setup( psa_mac_operation_t *operation,
2404 mbedtls_svc_key_id_t key,
2405 psa_algorithm_t alg )
2406 {
2407 return( psa_mac_setup( operation, key, alg, 0 ) );
2408 }
2409
psa_mac_update(psa_mac_operation_t * operation,const uint8_t * input,size_t input_length)2410 psa_status_t psa_mac_update( psa_mac_operation_t *operation,
2411 const uint8_t *input,
2412 size_t input_length )
2413 {
2414 if( operation->id == 0 )
2415 return( PSA_ERROR_BAD_STATE );
2416
2417 /* Don't require hash implementations to behave correctly on a
2418 * zero-length input, which may have an invalid pointer. */
2419 if( input_length == 0 )
2420 return( PSA_SUCCESS );
2421
2422 psa_status_t status = psa_driver_wrapper_mac_update( operation,
2423 input, input_length );
2424 if( status != PSA_SUCCESS )
2425 psa_mac_abort( operation );
2426
2427 return( status );
2428 }
2429
psa_mac_sign_finish(psa_mac_operation_t * operation,uint8_t * mac,size_t mac_size,size_t * mac_length)2430 psa_status_t psa_mac_sign_finish( psa_mac_operation_t *operation,
2431 uint8_t *mac,
2432 size_t mac_size,
2433 size_t *mac_length )
2434 {
2435 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2436 psa_status_t abort_status = PSA_ERROR_CORRUPTION_DETECTED;
2437
2438 if( operation->id == 0 )
2439 {
2440 status = PSA_ERROR_BAD_STATE;
2441 goto exit;
2442 }
2443
2444 if( ! operation->is_sign )
2445 {
2446 status = PSA_ERROR_BAD_STATE;
2447 goto exit;
2448 }
2449
2450 /* Sanity check. This will guarantee that mac_size != 0 (and so mac != NULL)
2451 * once all the error checks are done. */
2452 if( operation->mac_size == 0 )
2453 {
2454 status = PSA_ERROR_BAD_STATE;
2455 goto exit;
2456 }
2457
2458 if( mac_size < operation->mac_size )
2459 {
2460 status = PSA_ERROR_BUFFER_TOO_SMALL;
2461 goto exit;
2462 }
2463
2464 status = psa_driver_wrapper_mac_sign_finish( operation,
2465 mac, operation->mac_size,
2466 mac_length );
2467
2468 exit:
2469 /* In case of success, set the potential excess room in the output buffer
2470 * to an invalid value, to avoid potentially leaking a longer MAC.
2471 * In case of error, set the output length and content to a safe default,
2472 * such that in case the caller misses an error check, the output would be
2473 * an unachievable MAC.
2474 */
2475 if( status != PSA_SUCCESS )
2476 {
2477 *mac_length = mac_size;
2478 operation->mac_size = 0;
2479 }
2480
2481 if( mac_size > operation->mac_size )
2482 memset( &mac[operation->mac_size], '!',
2483 mac_size - operation->mac_size );
2484
2485 abort_status = psa_mac_abort( operation );
2486
2487 return( status == PSA_SUCCESS ? abort_status : status );
2488 }
2489
psa_mac_verify_finish(psa_mac_operation_t * operation,const uint8_t * mac,size_t mac_length)2490 psa_status_t psa_mac_verify_finish( psa_mac_operation_t *operation,
2491 const uint8_t *mac,
2492 size_t mac_length )
2493 {
2494 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2495 psa_status_t abort_status = PSA_ERROR_CORRUPTION_DETECTED;
2496
2497 if( operation->id == 0 )
2498 {
2499 status = PSA_ERROR_BAD_STATE;
2500 goto exit;
2501 }
2502
2503 if( operation->is_sign )
2504 {
2505 status = PSA_ERROR_BAD_STATE;
2506 goto exit;
2507 }
2508
2509 if( operation->mac_size != mac_length )
2510 {
2511 status = PSA_ERROR_INVALID_SIGNATURE;
2512 goto exit;
2513 }
2514
2515 status = psa_driver_wrapper_mac_verify_finish( operation,
2516 mac, mac_length );
2517
2518 exit:
2519 abort_status = psa_mac_abort( operation );
2520
2521 return( status == PSA_SUCCESS ? abort_status : status );
2522 }
2523
psa_mac_compute_internal(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * mac,size_t mac_size,size_t * mac_length,int is_sign)2524 static psa_status_t psa_mac_compute_internal( mbedtls_svc_key_id_t key,
2525 psa_algorithm_t alg,
2526 const uint8_t *input,
2527 size_t input_length,
2528 uint8_t *mac,
2529 size_t mac_size,
2530 size_t *mac_length,
2531 int is_sign )
2532 {
2533 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2534 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2535 psa_key_slot_t *slot;
2536 uint8_t operation_mac_size = 0;
2537 psa_key_attributes_t attributes;
2538
2539 status = psa_get_and_lock_key_slot_with_policy(
2540 key,
2541 &slot,
2542 is_sign ? PSA_KEY_USAGE_SIGN_MESSAGE : PSA_KEY_USAGE_VERIFY_MESSAGE,
2543 alg );
2544 if( status != PSA_SUCCESS )
2545 goto exit;
2546
2547 attributes.core = slot->attr;
2548
2549 status = psa_mac_finalize_alg_and_key_validation( alg, &attributes,
2550 &operation_mac_size );
2551 if( status != PSA_SUCCESS )
2552 goto exit;
2553
2554 if( mac_size < operation_mac_size )
2555 {
2556 status = PSA_ERROR_BUFFER_TOO_SMALL;
2557 goto exit;
2558 }
2559
2560 status = psa_driver_wrapper_mac_compute(
2561 &attributes,
2562 slot->key.data, slot->key.bytes,
2563 alg,
2564 input, input_length,
2565 mac, operation_mac_size, mac_length );
2566
2567 exit:
2568 /* In case of success, set the potential excess room in the output buffer
2569 * to an invalid value, to avoid potentially leaking a longer MAC.
2570 * In case of error, set the output length and content to a safe default,
2571 * such that in case the caller misses an error check, the output would be
2572 * an unachievable MAC.
2573 */
2574 if( status != PSA_SUCCESS )
2575 {
2576 *mac_length = mac_size;
2577 operation_mac_size = 0;
2578 }
2579 if( mac_size > operation_mac_size )
2580 memset( &mac[operation_mac_size], '!', mac_size - operation_mac_size );
2581
2582 unlock_status = psa_unlock_key_slot( slot );
2583
2584 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2585 }
2586
psa_mac_compute(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * mac,size_t mac_size,size_t * mac_length)2587 psa_status_t psa_mac_compute( mbedtls_svc_key_id_t key,
2588 psa_algorithm_t alg,
2589 const uint8_t *input,
2590 size_t input_length,
2591 uint8_t *mac,
2592 size_t mac_size,
2593 size_t *mac_length)
2594 {
2595 return( psa_mac_compute_internal( key, alg,
2596 input, input_length,
2597 mac, mac_size, mac_length, 1 ) );
2598 }
2599
psa_mac_verify(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * mac,size_t mac_length)2600 psa_status_t psa_mac_verify( mbedtls_svc_key_id_t key,
2601 psa_algorithm_t alg,
2602 const uint8_t *input,
2603 size_t input_length,
2604 const uint8_t *mac,
2605 size_t mac_length)
2606 {
2607 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2608 uint8_t actual_mac[PSA_MAC_MAX_SIZE];
2609 size_t actual_mac_length;
2610
2611 status = psa_mac_compute_internal( key, alg,
2612 input, input_length,
2613 actual_mac, sizeof( actual_mac ),
2614 &actual_mac_length, 0 );
2615 if( status != PSA_SUCCESS )
2616 goto exit;
2617
2618 if( mac_length != actual_mac_length )
2619 {
2620 status = PSA_ERROR_INVALID_SIGNATURE;
2621 goto exit;
2622 }
2623 if( mbedtls_psa_safer_memcmp( mac, actual_mac, actual_mac_length ) != 0 )
2624 {
2625 status = PSA_ERROR_INVALID_SIGNATURE;
2626 goto exit;
2627 }
2628
2629 exit:
2630 mbedtls_platform_zeroize( actual_mac, sizeof( actual_mac ) );
2631
2632 return ( status );
2633 }
2634
2635 /****************************************************************/
2636 /* Asymmetric cryptography */
2637 /****************************************************************/
2638
psa_sign_verify_check_alg(int input_is_message,psa_algorithm_t alg)2639 static psa_status_t psa_sign_verify_check_alg( int input_is_message,
2640 psa_algorithm_t alg )
2641 {
2642 if( input_is_message )
2643 {
2644 if( ! PSA_ALG_IS_SIGN_MESSAGE( alg ) )
2645 return( PSA_ERROR_INVALID_ARGUMENT );
2646
2647 if ( PSA_ALG_IS_SIGN_HASH( alg ) )
2648 {
2649 if( ! PSA_ALG_IS_HASH( PSA_ALG_SIGN_GET_HASH( alg ) ) )
2650 return( PSA_ERROR_INVALID_ARGUMENT );
2651 }
2652 }
2653 else
2654 {
2655 if( ! PSA_ALG_IS_SIGN_HASH( alg ) )
2656 return( PSA_ERROR_INVALID_ARGUMENT );
2657 }
2658
2659 return( PSA_SUCCESS );
2660 }
2661
psa_sign_internal(mbedtls_svc_key_id_t key,int input_is_message,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2662 static psa_status_t psa_sign_internal( mbedtls_svc_key_id_t key,
2663 int input_is_message,
2664 psa_algorithm_t alg,
2665 const uint8_t * input,
2666 size_t input_length,
2667 uint8_t * signature,
2668 size_t signature_size,
2669 size_t * signature_length )
2670 {
2671 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2672 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2673 psa_key_slot_t *slot;
2674 psa_key_attributes_t attributes;
2675
2676 *signature_length = 0;
2677
2678 status = psa_sign_verify_check_alg( input_is_message, alg );
2679 if( status != PSA_SUCCESS )
2680 return status;
2681
2682 /* Immediately reject a zero-length signature buffer. This guarantees
2683 * that signature must be a valid pointer. (On the other hand, the input
2684 * buffer can in principle be empty since it doesn't actually have
2685 * to be a hash.) */
2686 if( signature_size == 0 )
2687 return( PSA_ERROR_BUFFER_TOO_SMALL );
2688
2689 status = psa_get_and_lock_key_slot_with_policy(
2690 key, &slot,
2691 input_is_message ? PSA_KEY_USAGE_SIGN_MESSAGE :
2692 PSA_KEY_USAGE_SIGN_HASH,
2693 alg );
2694
2695 if( status != PSA_SUCCESS )
2696 goto exit;
2697
2698 if( ! PSA_KEY_TYPE_IS_KEY_PAIR( slot->attr.type ) )
2699 {
2700 status = PSA_ERROR_INVALID_ARGUMENT;
2701 goto exit;
2702 }
2703
2704 attributes.core = slot->attr;
2705
2706 if( input_is_message )
2707 {
2708 status = psa_driver_wrapper_sign_message(
2709 &attributes, slot->key.data, slot->key.bytes,
2710 alg, input, input_length,
2711 signature, signature_size, signature_length );
2712 }
2713 else
2714 {
2715
2716 status = psa_driver_wrapper_sign_hash(
2717 &attributes, slot->key.data, slot->key.bytes,
2718 alg, input, input_length,
2719 signature, signature_size, signature_length );
2720 }
2721
2722
2723 exit:
2724 /* Fill the unused part of the output buffer (the whole buffer on error,
2725 * the trailing part on success) with something that isn't a valid signature
2726 * (barring an attack on the signature and deliberately-crafted input),
2727 * in case the caller doesn't check the return status properly. */
2728 if( status == PSA_SUCCESS )
2729 memset( signature + *signature_length, '!',
2730 signature_size - *signature_length );
2731 else
2732 memset( signature, '!', signature_size );
2733 /* If signature_size is 0 then we have nothing to do. We must not call
2734 * memset because signature may be NULL in this case. */
2735
2736 unlock_status = psa_unlock_key_slot( slot );
2737
2738 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2739 }
2740
psa_verify_internal(mbedtls_svc_key_id_t key,int input_is_message,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * signature,size_t signature_length)2741 static psa_status_t psa_verify_internal( mbedtls_svc_key_id_t key,
2742 int input_is_message,
2743 psa_algorithm_t alg,
2744 const uint8_t * input,
2745 size_t input_length,
2746 const uint8_t * signature,
2747 size_t signature_length )
2748 {
2749 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2750 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
2751 psa_key_slot_t *slot;
2752
2753 status = psa_sign_verify_check_alg( input_is_message, alg );
2754 if( status != PSA_SUCCESS )
2755 return status;
2756
2757 status = psa_get_and_lock_key_slot_with_policy(
2758 key, &slot,
2759 input_is_message ? PSA_KEY_USAGE_VERIFY_MESSAGE :
2760 PSA_KEY_USAGE_VERIFY_HASH,
2761 alg );
2762
2763 if( status != PSA_SUCCESS )
2764 return( status );
2765
2766 psa_key_attributes_t attributes = {
2767 .core = slot->attr
2768 };
2769
2770 if( input_is_message )
2771 {
2772 status = psa_driver_wrapper_verify_message(
2773 &attributes, slot->key.data, slot->key.bytes,
2774 alg, input, input_length,
2775 signature, signature_length );
2776 }
2777 else
2778 {
2779 status = psa_driver_wrapper_verify_hash(
2780 &attributes, slot->key.data, slot->key.bytes,
2781 alg, input, input_length,
2782 signature, signature_length );
2783 }
2784
2785 unlock_status = psa_unlock_key_slot( slot );
2786
2787 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
2788
2789 }
2790
psa_sign_message_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2791 psa_status_t psa_sign_message_builtin(
2792 const psa_key_attributes_t *attributes,
2793 const uint8_t *key_buffer,
2794 size_t key_buffer_size,
2795 psa_algorithm_t alg,
2796 const uint8_t *input,
2797 size_t input_length,
2798 uint8_t *signature,
2799 size_t signature_size,
2800 size_t *signature_length )
2801 {
2802 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2803
2804 if ( PSA_ALG_IS_SIGN_HASH( alg ) )
2805 {
2806 size_t hash_length;
2807 uint8_t hash[PSA_HASH_MAX_SIZE];
2808
2809 status = psa_driver_wrapper_hash_compute(
2810 PSA_ALG_SIGN_GET_HASH( alg ),
2811 input, input_length,
2812 hash, sizeof( hash ), &hash_length );
2813
2814 if( status != PSA_SUCCESS )
2815 return status;
2816
2817 return psa_driver_wrapper_sign_hash(
2818 attributes, key_buffer, key_buffer_size,
2819 alg, hash, hash_length,
2820 signature, signature_size, signature_length );
2821 }
2822
2823 return( PSA_ERROR_NOT_SUPPORTED );
2824 }
2825
psa_sign_message(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2826 psa_status_t psa_sign_message( mbedtls_svc_key_id_t key,
2827 psa_algorithm_t alg,
2828 const uint8_t * input,
2829 size_t input_length,
2830 uint8_t * signature,
2831 size_t signature_size,
2832 size_t * signature_length )
2833 {
2834 return psa_sign_internal(
2835 key, 1, alg, input, input_length,
2836 signature, signature_size, signature_length );
2837 }
2838
psa_verify_message_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * signature,size_t signature_length)2839 psa_status_t psa_verify_message_builtin(
2840 const psa_key_attributes_t *attributes,
2841 const uint8_t *key_buffer,
2842 size_t key_buffer_size,
2843 psa_algorithm_t alg,
2844 const uint8_t *input,
2845 size_t input_length,
2846 const uint8_t *signature,
2847 size_t signature_length )
2848 {
2849 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
2850
2851 if ( PSA_ALG_IS_SIGN_HASH( alg ) )
2852 {
2853 size_t hash_length;
2854 uint8_t hash[PSA_HASH_MAX_SIZE];
2855
2856 status = psa_driver_wrapper_hash_compute(
2857 PSA_ALG_SIGN_GET_HASH( alg ),
2858 input, input_length,
2859 hash, sizeof( hash ), &hash_length );
2860
2861 if( status != PSA_SUCCESS )
2862 return status;
2863
2864 return psa_driver_wrapper_verify_hash(
2865 attributes, key_buffer, key_buffer_size,
2866 alg, hash, hash_length,
2867 signature, signature_length );
2868 }
2869
2870 return( PSA_ERROR_NOT_SUPPORTED );
2871 }
2872
psa_verify_message(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * signature,size_t signature_length)2873 psa_status_t psa_verify_message( mbedtls_svc_key_id_t key,
2874 psa_algorithm_t alg,
2875 const uint8_t * input,
2876 size_t input_length,
2877 const uint8_t * signature,
2878 size_t signature_length )
2879 {
2880 return psa_verify_internal(
2881 key, 1, alg, input, input_length,
2882 signature, signature_length );
2883 }
2884
psa_sign_hash_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2885 psa_status_t psa_sign_hash_builtin(
2886 const psa_key_attributes_t *attributes,
2887 const uint8_t *key_buffer, size_t key_buffer_size,
2888 psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
2889 uint8_t *signature, size_t signature_size, size_t *signature_length )
2890 {
2891 if( attributes->core.type == PSA_KEY_TYPE_RSA_KEY_PAIR )
2892 {
2893 if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) ||
2894 PSA_ALG_IS_RSA_PSS( alg) )
2895 {
2896 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) || \
2897 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
2898 return( mbedtls_psa_rsa_sign_hash(
2899 attributes,
2900 key_buffer, key_buffer_size,
2901 alg, hash, hash_length,
2902 signature, signature_size, signature_length ) );
2903 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) ||
2904 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) */
2905 }
2906 else
2907 {
2908 return( PSA_ERROR_INVALID_ARGUMENT );
2909 }
2910 }
2911 else if( PSA_KEY_TYPE_IS_ECC( attributes->core.type ) )
2912 {
2913 if( PSA_ALG_IS_ECDSA( alg ) )
2914 {
2915 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
2916 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
2917 return( mbedtls_psa_ecdsa_sign_hash(
2918 attributes,
2919 key_buffer, key_buffer_size,
2920 alg, hash, hash_length,
2921 signature, signature_size, signature_length ) );
2922 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
2923 * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
2924 }
2925 else
2926 {
2927 return( PSA_ERROR_INVALID_ARGUMENT );
2928 }
2929 }
2930
2931 (void)key_buffer;
2932 (void)key_buffer_size;
2933 (void)hash;
2934 (void)hash_length;
2935 (void)signature;
2936 (void)signature_size;
2937 (void)signature_length;
2938
2939 return( PSA_ERROR_NOT_SUPPORTED );
2940 }
2941
psa_sign_hash(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,uint8_t * signature,size_t signature_size,size_t * signature_length)2942 psa_status_t psa_sign_hash( mbedtls_svc_key_id_t key,
2943 psa_algorithm_t alg,
2944 const uint8_t *hash,
2945 size_t hash_length,
2946 uint8_t *signature,
2947 size_t signature_size,
2948 size_t *signature_length )
2949 {
2950 return psa_sign_internal(
2951 key, 0, alg, hash, hash_length,
2952 signature, signature_size, signature_length );
2953 }
2954
psa_verify_hash_builtin(const psa_key_attributes_t * attributes,const uint8_t * key_buffer,size_t key_buffer_size,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,const uint8_t * signature,size_t signature_length)2955 psa_status_t psa_verify_hash_builtin(
2956 const psa_key_attributes_t *attributes,
2957 const uint8_t *key_buffer, size_t key_buffer_size,
2958 psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
2959 const uint8_t *signature, size_t signature_length )
2960 {
2961 if( PSA_KEY_TYPE_IS_RSA( attributes->core.type ) )
2962 {
2963 if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) ||
2964 PSA_ALG_IS_RSA_PSS( alg) )
2965 {
2966 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) || \
2967 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
2968 return( mbedtls_psa_rsa_verify_hash(
2969 attributes,
2970 key_buffer, key_buffer_size,
2971 alg, hash, hash_length,
2972 signature, signature_length ) );
2973 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) ||
2974 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) */
2975 }
2976 else
2977 {
2978 return( PSA_ERROR_INVALID_ARGUMENT );
2979 }
2980 }
2981 else if( PSA_KEY_TYPE_IS_ECC( attributes->core.type ) )
2982 {
2983 if( PSA_ALG_IS_ECDSA( alg ) )
2984 {
2985 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
2986 defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
2987 return( mbedtls_psa_ecdsa_verify_hash(
2988 attributes,
2989 key_buffer, key_buffer_size,
2990 alg, hash, hash_length,
2991 signature, signature_length ) );
2992 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
2993 * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
2994 }
2995 else
2996 {
2997 return( PSA_ERROR_INVALID_ARGUMENT );
2998 }
2999 }
3000
3001 (void)key_buffer;
3002 (void)key_buffer_size;
3003 (void)hash;
3004 (void)hash_length;
3005 (void)signature;
3006 (void)signature_length;
3007
3008 return( PSA_ERROR_NOT_SUPPORTED );
3009 }
3010
psa_verify_hash(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * hash,size_t hash_length,const uint8_t * signature,size_t signature_length)3011 psa_status_t psa_verify_hash( mbedtls_svc_key_id_t key,
3012 psa_algorithm_t alg,
3013 const uint8_t *hash,
3014 size_t hash_length,
3015 const uint8_t *signature,
3016 size_t signature_length )
3017 {
3018 return psa_verify_internal(
3019 key, 0, alg, hash, hash_length,
3020 signature, signature_length );
3021 }
3022
3023 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
psa_rsa_oaep_set_padding_mode(psa_algorithm_t alg,mbedtls_rsa_context * rsa)3024 static int psa_rsa_oaep_set_padding_mode( psa_algorithm_t alg,
3025 mbedtls_rsa_context *rsa )
3026 {
3027 psa_algorithm_t hash_alg = PSA_ALG_RSA_OAEP_GET_HASH( alg );
3028 const mbedtls_md_info_t *md_info = mbedtls_md_info_from_psa( hash_alg );
3029 mbedtls_md_type_t md_alg = mbedtls_md_get_type( md_info );
3030
3031 return( mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V21, md_alg ) );
3032 }
3033 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
3034
psa_asymmetric_encrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * salt,size_t salt_length,uint8_t * output,size_t output_size,size_t * output_length)3035 psa_status_t psa_asymmetric_encrypt( mbedtls_svc_key_id_t key,
3036 psa_algorithm_t alg,
3037 const uint8_t *input,
3038 size_t input_length,
3039 const uint8_t *salt,
3040 size_t salt_length,
3041 uint8_t *output,
3042 size_t output_size,
3043 size_t *output_length )
3044 {
3045 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3046 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3047 psa_key_slot_t *slot;
3048
3049 (void) input;
3050 (void) input_length;
3051 (void) salt;
3052 (void) output;
3053 (void) output_size;
3054
3055 *output_length = 0;
3056
3057 if( ! PSA_ALG_IS_RSA_OAEP( alg ) && salt_length != 0 )
3058 return( PSA_ERROR_INVALID_ARGUMENT );
3059
3060 status = psa_get_and_lock_transparent_key_slot_with_policy(
3061 key, &slot, PSA_KEY_USAGE_ENCRYPT, alg );
3062 if( status != PSA_SUCCESS )
3063 return( status );
3064 if( ! ( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->attr.type ) ||
3065 PSA_KEY_TYPE_IS_KEY_PAIR( slot->attr.type ) ) )
3066 {
3067 status = PSA_ERROR_INVALID_ARGUMENT;
3068 goto exit;
3069 }
3070
3071 if( PSA_KEY_TYPE_IS_RSA( slot->attr.type ) )
3072 {
3073 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
3074 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3075 mbedtls_rsa_context *rsa = NULL;
3076 status = mbedtls_psa_rsa_load_representation( slot->attr.type,
3077 slot->key.data,
3078 slot->key.bytes,
3079 &rsa );
3080 if( status != PSA_SUCCESS )
3081 goto rsa_exit;
3082
3083 if( output_size < mbedtls_rsa_get_len( rsa ) )
3084 {
3085 status = PSA_ERROR_BUFFER_TOO_SMALL;
3086 goto rsa_exit;
3087 }
3088 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
3089 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
3090 if( alg == PSA_ALG_RSA_PKCS1V15_CRYPT )
3091 {
3092 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT)
3093 status = mbedtls_to_psa_error(
3094 mbedtls_rsa_pkcs1_encrypt( rsa,
3095 mbedtls_psa_get_random,
3096 MBEDTLS_PSA_RANDOM_STATE,
3097 input_length,
3098 input,
3099 output ) );
3100 #else
3101 status = PSA_ERROR_NOT_SUPPORTED;
3102 #endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT */
3103 }
3104 else
3105 if( PSA_ALG_IS_RSA_OAEP( alg ) )
3106 {
3107 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3108 status = mbedtls_to_psa_error(
3109 psa_rsa_oaep_set_padding_mode( alg, rsa ) );
3110 if( status != PSA_SUCCESS )
3111 goto rsa_exit;
3112
3113 status = mbedtls_to_psa_error(
3114 mbedtls_rsa_rsaes_oaep_encrypt( rsa,
3115 mbedtls_psa_get_random,
3116 MBEDTLS_PSA_RANDOM_STATE,
3117 salt, salt_length,
3118 input_length,
3119 input,
3120 output ) );
3121 #else
3122 status = PSA_ERROR_NOT_SUPPORTED;
3123 #endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP */
3124 }
3125 else
3126 {
3127 status = PSA_ERROR_INVALID_ARGUMENT;
3128 }
3129 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
3130 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3131 rsa_exit:
3132 if( status == PSA_SUCCESS )
3133 *output_length = mbedtls_rsa_get_len( rsa );
3134
3135 mbedtls_rsa_free( rsa );
3136 mbedtls_free( rsa );
3137 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
3138 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
3139 }
3140 else
3141 {
3142 status = PSA_ERROR_NOT_SUPPORTED;
3143 }
3144
3145 exit:
3146 unlock_status = psa_unlock_key_slot( slot );
3147
3148 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
3149 }
3150
psa_asymmetric_decrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,const uint8_t * salt,size_t salt_length,uint8_t * output,size_t output_size,size_t * output_length)3151 psa_status_t psa_asymmetric_decrypt( mbedtls_svc_key_id_t key,
3152 psa_algorithm_t alg,
3153 const uint8_t *input,
3154 size_t input_length,
3155 const uint8_t *salt,
3156 size_t salt_length,
3157 uint8_t *output,
3158 size_t output_size,
3159 size_t *output_length )
3160 {
3161 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3162 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3163 psa_key_slot_t *slot;
3164
3165 (void) input;
3166 (void) input_length;
3167 (void) salt;
3168 (void) output;
3169 (void) output_size;
3170
3171 *output_length = 0;
3172
3173 if( ! PSA_ALG_IS_RSA_OAEP( alg ) && salt_length != 0 )
3174 return( PSA_ERROR_INVALID_ARGUMENT );
3175
3176 status = psa_get_and_lock_transparent_key_slot_with_policy(
3177 key, &slot, PSA_KEY_USAGE_DECRYPT, alg );
3178 if( status != PSA_SUCCESS )
3179 return( status );
3180 if( ! PSA_KEY_TYPE_IS_KEY_PAIR( slot->attr.type ) )
3181 {
3182 status = PSA_ERROR_INVALID_ARGUMENT;
3183 goto exit;
3184 }
3185
3186 if( slot->attr.type == PSA_KEY_TYPE_RSA_KEY_PAIR )
3187 {
3188 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
3189 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3190 mbedtls_rsa_context *rsa = NULL;
3191 status = mbedtls_psa_rsa_load_representation( slot->attr.type,
3192 slot->key.data,
3193 slot->key.bytes,
3194 &rsa );
3195 if( status != PSA_SUCCESS )
3196 goto exit;
3197
3198 if( input_length != mbedtls_rsa_get_len( rsa ) )
3199 {
3200 status = PSA_ERROR_INVALID_ARGUMENT;
3201 goto rsa_exit;
3202 }
3203 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
3204 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
3205
3206 if( alg == PSA_ALG_RSA_PKCS1V15_CRYPT )
3207 {
3208 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT)
3209 status = mbedtls_to_psa_error(
3210 mbedtls_rsa_pkcs1_decrypt( rsa,
3211 mbedtls_psa_get_random,
3212 MBEDTLS_PSA_RANDOM_STATE,
3213 output_length,
3214 input,
3215 output,
3216 output_size ) );
3217 #else
3218 status = PSA_ERROR_NOT_SUPPORTED;
3219 #endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT */
3220 }
3221 else
3222 if( PSA_ALG_IS_RSA_OAEP( alg ) )
3223 {
3224 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3225 status = mbedtls_to_psa_error(
3226 psa_rsa_oaep_set_padding_mode( alg, rsa ) );
3227 if( status != PSA_SUCCESS )
3228 goto rsa_exit;
3229
3230 status = mbedtls_to_psa_error(
3231 mbedtls_rsa_rsaes_oaep_decrypt( rsa,
3232 mbedtls_psa_get_random,
3233 MBEDTLS_PSA_RANDOM_STATE,
3234 salt, salt_length,
3235 output_length,
3236 input,
3237 output,
3238 output_size ) );
3239 #else
3240 status = PSA_ERROR_NOT_SUPPORTED;
3241 #endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP */
3242 }
3243 else
3244 {
3245 status = PSA_ERROR_INVALID_ARGUMENT;
3246 }
3247
3248 #if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
3249 defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
3250 rsa_exit:
3251 mbedtls_rsa_free( rsa );
3252 mbedtls_free( rsa );
3253 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
3254 * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
3255 }
3256 else
3257 {
3258 status = PSA_ERROR_NOT_SUPPORTED;
3259 }
3260
3261 exit:
3262 unlock_status = psa_unlock_key_slot( slot );
3263
3264 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
3265 }
3266
3267
3268
3269 /****************************************************************/
3270 /* Symmetric cryptography */
3271 /****************************************************************/
3272
psa_cipher_setup(psa_cipher_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg,mbedtls_operation_t cipher_operation)3273 static psa_status_t psa_cipher_setup( psa_cipher_operation_t *operation,
3274 mbedtls_svc_key_id_t key,
3275 psa_algorithm_t alg,
3276 mbedtls_operation_t cipher_operation )
3277 {
3278 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3279 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3280 psa_key_slot_t *slot = NULL;
3281 psa_key_usage_t usage = ( cipher_operation == MBEDTLS_ENCRYPT ?
3282 PSA_KEY_USAGE_ENCRYPT :
3283 PSA_KEY_USAGE_DECRYPT );
3284 psa_key_attributes_t attributes;
3285
3286 /* A context must be freshly initialized before it can be set up. */
3287 if( operation->id != 0 )
3288 {
3289 status = PSA_ERROR_BAD_STATE;
3290 goto exit;
3291 }
3292
3293 if( ! PSA_ALG_IS_CIPHER( alg ) )
3294 {
3295 status = PSA_ERROR_INVALID_ARGUMENT;
3296 goto exit;
3297 }
3298
3299 status = psa_get_and_lock_key_slot_with_policy( key, &slot, usage, alg );
3300 if( status != PSA_SUCCESS )
3301 goto exit;
3302
3303 /* Initialize the operation struct members, except for id. The id member
3304 * is used to indicate to psa_cipher_abort that there are resources to free,
3305 * so we only set it (in the driver wrapper) after resources have been
3306 * allocated/initialized. */
3307 operation->iv_set = 0;
3308 if( alg == PSA_ALG_ECB_NO_PADDING )
3309 operation->iv_required = 0;
3310 else
3311 operation->iv_required = 1;
3312 operation->default_iv_length = PSA_CIPHER_IV_LENGTH( slot->attr.type, alg );
3313
3314 attributes.core = slot->attr;
3315
3316 /* Try doing the operation through a driver before using software fallback. */
3317 if( cipher_operation == MBEDTLS_ENCRYPT )
3318 status = psa_driver_wrapper_cipher_encrypt_setup( operation,
3319 &attributes,
3320 slot->key.data,
3321 slot->key.bytes,
3322 alg );
3323 else
3324 status = psa_driver_wrapper_cipher_decrypt_setup( operation,
3325 &attributes,
3326 slot->key.data,
3327 slot->key.bytes,
3328 alg );
3329
3330 exit:
3331 if( status != PSA_SUCCESS )
3332 psa_cipher_abort( operation );
3333
3334 unlock_status = psa_unlock_key_slot( slot );
3335
3336 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
3337 }
3338
psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3339 psa_status_t psa_cipher_encrypt_setup( psa_cipher_operation_t *operation,
3340 mbedtls_svc_key_id_t key,
3341 psa_algorithm_t alg )
3342 {
3343 return( psa_cipher_setup( operation, key, alg, MBEDTLS_ENCRYPT ) );
3344 }
3345
psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3346 psa_status_t psa_cipher_decrypt_setup( psa_cipher_operation_t *operation,
3347 mbedtls_svc_key_id_t key,
3348 psa_algorithm_t alg )
3349 {
3350 return( psa_cipher_setup( operation, key, alg, MBEDTLS_DECRYPT ) );
3351 }
3352
psa_cipher_generate_iv(psa_cipher_operation_t * operation,uint8_t * iv,size_t iv_size,size_t * iv_length)3353 psa_status_t psa_cipher_generate_iv( psa_cipher_operation_t *operation,
3354 uint8_t *iv,
3355 size_t iv_size,
3356 size_t *iv_length )
3357 {
3358 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3359 uint8_t local_iv[PSA_CIPHER_IV_MAX_SIZE];
3360 size_t default_iv_length;
3361
3362 if( operation->id == 0 )
3363 {
3364 status = PSA_ERROR_BAD_STATE;
3365 goto exit;
3366 }
3367
3368 if( operation->iv_set || ! operation->iv_required )
3369 {
3370 status = PSA_ERROR_BAD_STATE;
3371 goto exit;
3372 }
3373
3374 default_iv_length = operation->default_iv_length;
3375 if( iv_size < default_iv_length )
3376 {
3377 status = PSA_ERROR_BUFFER_TOO_SMALL;
3378 goto exit;
3379 }
3380
3381 if( default_iv_length > PSA_CIPHER_IV_MAX_SIZE )
3382 {
3383 status = PSA_ERROR_GENERIC_ERROR;
3384 goto exit;
3385 }
3386
3387 status = psa_generate_random( local_iv, default_iv_length );
3388 if( status != PSA_SUCCESS )
3389 goto exit;
3390
3391 status = psa_driver_wrapper_cipher_set_iv( operation,
3392 local_iv, default_iv_length );
3393
3394 exit:
3395 if( status == PSA_SUCCESS )
3396 {
3397 memcpy( iv, local_iv, default_iv_length );
3398 *iv_length = default_iv_length;
3399 operation->iv_set = 1;
3400 }
3401 else
3402 {
3403 *iv_length = 0;
3404 psa_cipher_abort( operation );
3405 }
3406
3407 return( status );
3408 }
3409
psa_cipher_set_iv(psa_cipher_operation_t * operation,const uint8_t * iv,size_t iv_length)3410 psa_status_t psa_cipher_set_iv( psa_cipher_operation_t *operation,
3411 const uint8_t *iv,
3412 size_t iv_length )
3413 {
3414 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3415
3416 if( operation->id == 0 )
3417 {
3418 status = PSA_ERROR_BAD_STATE;
3419 goto exit;
3420 }
3421
3422 if( operation->iv_set || ! operation->iv_required )
3423 {
3424 status = PSA_ERROR_BAD_STATE;
3425 goto exit;
3426 }
3427
3428 if( iv_length > PSA_CIPHER_IV_MAX_SIZE )
3429 {
3430 status = PSA_ERROR_INVALID_ARGUMENT;
3431 goto exit;
3432 }
3433
3434 status = psa_driver_wrapper_cipher_set_iv( operation,
3435 iv,
3436 iv_length );
3437
3438 exit:
3439 if( status == PSA_SUCCESS )
3440 operation->iv_set = 1;
3441 else
3442 psa_cipher_abort( operation );
3443 return( status );
3444 }
3445
psa_cipher_update(psa_cipher_operation_t * operation,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)3446 psa_status_t psa_cipher_update( psa_cipher_operation_t *operation,
3447 const uint8_t *input,
3448 size_t input_length,
3449 uint8_t *output,
3450 size_t output_size,
3451 size_t *output_length )
3452 {
3453 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3454
3455 if( operation->id == 0 )
3456 {
3457 status = PSA_ERROR_BAD_STATE;
3458 goto exit;
3459 }
3460
3461 if( operation->iv_required && ! operation->iv_set )
3462 {
3463 status = PSA_ERROR_BAD_STATE;
3464 goto exit;
3465 }
3466
3467 status = psa_driver_wrapper_cipher_update( operation,
3468 input,
3469 input_length,
3470 output,
3471 output_size,
3472 output_length );
3473
3474 exit:
3475 if( status != PSA_SUCCESS )
3476 psa_cipher_abort( operation );
3477
3478 return( status );
3479 }
3480
psa_cipher_finish(psa_cipher_operation_t * operation,uint8_t * output,size_t output_size,size_t * output_length)3481 psa_status_t psa_cipher_finish( psa_cipher_operation_t *operation,
3482 uint8_t *output,
3483 size_t output_size,
3484 size_t *output_length )
3485 {
3486 psa_status_t status = PSA_ERROR_GENERIC_ERROR;
3487
3488 if( operation->id == 0 )
3489 {
3490 status = PSA_ERROR_BAD_STATE;
3491 goto exit;
3492 }
3493
3494 if( operation->iv_required && ! operation->iv_set )
3495 {
3496 status = PSA_ERROR_BAD_STATE;
3497 goto exit;
3498 }
3499
3500 status = psa_driver_wrapper_cipher_finish( operation,
3501 output,
3502 output_size,
3503 output_length );
3504
3505 exit:
3506 if( status == PSA_SUCCESS )
3507 return( psa_cipher_abort( operation ) );
3508 else
3509 {
3510 *output_length = 0;
3511 (void) psa_cipher_abort( operation );
3512
3513 return( status );
3514 }
3515 }
3516
psa_cipher_abort(psa_cipher_operation_t * operation)3517 psa_status_t psa_cipher_abort( psa_cipher_operation_t *operation )
3518 {
3519 if( operation->id == 0 )
3520 {
3521 /* The object has (apparently) been initialized but it is not (yet)
3522 * in use. It's ok to call abort on such an object, and there's
3523 * nothing to do. */
3524 return( PSA_SUCCESS );
3525 }
3526
3527 psa_driver_wrapper_cipher_abort( operation );
3528
3529 operation->id = 0;
3530 operation->iv_set = 0;
3531 operation->iv_required = 0;
3532
3533 return( PSA_SUCCESS );
3534 }
3535
psa_cipher_encrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)3536 psa_status_t psa_cipher_encrypt( mbedtls_svc_key_id_t key,
3537 psa_algorithm_t alg,
3538 const uint8_t *input,
3539 size_t input_length,
3540 uint8_t *output,
3541 size_t output_size,
3542 size_t *output_length )
3543 {
3544 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3545 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3546 psa_key_slot_t *slot = NULL;
3547 uint8_t local_iv[PSA_CIPHER_IV_MAX_SIZE];
3548 size_t default_iv_length = 0;
3549 psa_key_attributes_t attributes;
3550
3551 if( ! PSA_ALG_IS_CIPHER( alg ) )
3552 {
3553 status = PSA_ERROR_INVALID_ARGUMENT;
3554 goto exit;
3555 }
3556
3557 status = psa_get_and_lock_key_slot_with_policy( key, &slot,
3558 PSA_KEY_USAGE_ENCRYPT,
3559 alg );
3560 if( status != PSA_SUCCESS )
3561 goto exit;
3562
3563 attributes.core = slot->attr;
3564
3565 default_iv_length = PSA_CIPHER_IV_LENGTH( slot->attr.type, alg );
3566 if( default_iv_length > PSA_CIPHER_IV_MAX_SIZE )
3567 {
3568 status = PSA_ERROR_GENERIC_ERROR;
3569 goto exit;
3570 }
3571
3572 if( default_iv_length > 0 )
3573 {
3574 if( output_size < default_iv_length )
3575 {
3576 status = PSA_ERROR_BUFFER_TOO_SMALL;
3577 goto exit;
3578 }
3579
3580 status = psa_generate_random( local_iv, default_iv_length );
3581 if( status != PSA_SUCCESS )
3582 goto exit;
3583 }
3584
3585 status = psa_driver_wrapper_cipher_encrypt(
3586 &attributes, slot->key.data, slot->key.bytes,
3587 alg, local_iv, default_iv_length, input, input_length,
3588 output + default_iv_length, output_size - default_iv_length,
3589 output_length );
3590
3591 exit:
3592 unlock_status = psa_unlock_key_slot( slot );
3593 if( status == PSA_SUCCESS )
3594 status = unlock_status;
3595
3596 if( status == PSA_SUCCESS )
3597 {
3598 if( default_iv_length > 0 )
3599 memcpy( output, local_iv, default_iv_length );
3600 *output_length += default_iv_length;
3601 }
3602 else
3603 *output_length = 0;
3604
3605 return( status );
3606 }
3607
psa_cipher_decrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)3608 psa_status_t psa_cipher_decrypt( mbedtls_svc_key_id_t key,
3609 psa_algorithm_t alg,
3610 const uint8_t *input,
3611 size_t input_length,
3612 uint8_t *output,
3613 size_t output_size,
3614 size_t *output_length )
3615 {
3616 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3617 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3618 psa_key_slot_t *slot = NULL;
3619 psa_key_attributes_t attributes;
3620
3621 if( ! PSA_ALG_IS_CIPHER( alg ) )
3622 {
3623 status = PSA_ERROR_INVALID_ARGUMENT;
3624 goto exit;
3625 }
3626
3627 status = psa_get_and_lock_key_slot_with_policy( key, &slot,
3628 PSA_KEY_USAGE_DECRYPT,
3629 alg );
3630 if( status != PSA_SUCCESS )
3631 goto exit;
3632
3633 attributes.core = slot->attr;
3634
3635 if( alg == PSA_ALG_CCM_STAR_NO_TAG && input_length < PSA_BLOCK_CIPHER_BLOCK_LENGTH( slot->attr.type ) )
3636 {
3637 status = PSA_ERROR_INVALID_ARGUMENT;
3638 goto exit;
3639 }
3640 else if ( input_length < PSA_CIPHER_IV_LENGTH( slot->attr.type, alg ) )
3641 {
3642 status = PSA_ERROR_INVALID_ARGUMENT;
3643 goto exit;
3644 }
3645
3646 status = psa_driver_wrapper_cipher_decrypt(
3647 &attributes, slot->key.data, slot->key.bytes,
3648 alg, input, input_length,
3649 output, output_size, output_length );
3650
3651 exit:
3652 unlock_status = psa_unlock_key_slot( slot );
3653 if( status == PSA_SUCCESS )
3654 status = unlock_status;
3655
3656 if( status != PSA_SUCCESS )
3657 *output_length = 0;
3658
3659 return( status );
3660 }
3661
3662
3663 /****************************************************************/
3664 /* AEAD */
3665 /****************************************************************/
3666
3667 /* Helper function to get the base algorithm from its variants. */
psa_aead_get_base_algorithm(psa_algorithm_t alg)3668 static psa_algorithm_t psa_aead_get_base_algorithm( psa_algorithm_t alg )
3669 {
3670 return PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG( alg );
3671 }
3672
3673 /* Helper function to perform common nonce length checks. */
psa_aead_check_nonce_length(psa_algorithm_t alg,size_t nonce_length)3674 static psa_status_t psa_aead_check_nonce_length( psa_algorithm_t alg,
3675 size_t nonce_length )
3676 {
3677 psa_algorithm_t base_alg = psa_aead_get_base_algorithm( alg );
3678
3679 switch(base_alg)
3680 {
3681 #if defined(PSA_WANT_ALG_GCM)
3682 case PSA_ALG_GCM:
3683 /* Not checking max nonce size here as GCM spec allows almost
3684 * arbitrarily large nonces. Please note that we do not generally
3685 * recommend the usage of nonces of greater length than
3686 * PSA_AEAD_NONCE_MAX_SIZE, as large nonces are hashed to a shorter
3687 * size, which can then lead to collisions if you encrypt a very
3688 * large number of messages.*/
3689 if( nonce_length != 0 )
3690 return( PSA_SUCCESS );
3691 break;
3692 #endif /* PSA_WANT_ALG_GCM */
3693 #if defined(PSA_WANT_ALG_CCM)
3694 case PSA_ALG_CCM:
3695 if( nonce_length >= 7 && nonce_length <= 13 )
3696 return( PSA_SUCCESS );
3697 break;
3698 #endif /* PSA_WANT_ALG_CCM */
3699 #if defined(PSA_WANT_ALG_CHACHA20_POLY1305)
3700 case PSA_ALG_CHACHA20_POLY1305:
3701 if( nonce_length == 12 )
3702 return( PSA_SUCCESS );
3703 else if( nonce_length == 8 )
3704 return( PSA_ERROR_NOT_SUPPORTED );
3705 break;
3706 #endif /* PSA_WANT_ALG_CHACHA20_POLY1305 */
3707 default:
3708 return( PSA_ERROR_NOT_SUPPORTED );
3709 }
3710
3711 return( PSA_ERROR_INVALID_ARGUMENT );
3712 }
3713
psa_aead_encrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * nonce,size_t nonce_length,const uint8_t * additional_data,size_t additional_data_length,const uint8_t * plaintext,size_t plaintext_length,uint8_t * ciphertext,size_t ciphertext_size,size_t * ciphertext_length)3714 psa_status_t psa_aead_encrypt( mbedtls_svc_key_id_t key,
3715 psa_algorithm_t alg,
3716 const uint8_t *nonce,
3717 size_t nonce_length,
3718 const uint8_t *additional_data,
3719 size_t additional_data_length,
3720 const uint8_t *plaintext,
3721 size_t plaintext_length,
3722 uint8_t *ciphertext,
3723 size_t ciphertext_size,
3724 size_t *ciphertext_length )
3725 {
3726 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3727 psa_key_slot_t *slot;
3728
3729 *ciphertext_length = 0;
3730
3731 if( !PSA_ALG_IS_AEAD( alg ) || PSA_ALG_IS_WILDCARD( alg ) )
3732 return( PSA_ERROR_NOT_SUPPORTED );
3733
3734 status = psa_get_and_lock_key_slot_with_policy(
3735 key, &slot, PSA_KEY_USAGE_ENCRYPT, alg );
3736 if( status != PSA_SUCCESS )
3737 return( status );
3738
3739 psa_key_attributes_t attributes = {
3740 .core = slot->attr
3741 };
3742
3743 status = psa_aead_check_nonce_length( alg, nonce_length );
3744 if( status != PSA_SUCCESS )
3745 goto exit;
3746
3747 status = psa_driver_wrapper_aead_encrypt(
3748 &attributes, slot->key.data, slot->key.bytes,
3749 alg,
3750 nonce, nonce_length,
3751 additional_data, additional_data_length,
3752 plaintext, plaintext_length,
3753 ciphertext, ciphertext_size, ciphertext_length );
3754
3755 if( status != PSA_SUCCESS && ciphertext_size != 0 )
3756 memset( ciphertext, 0, ciphertext_size );
3757
3758 exit:
3759 psa_unlock_key_slot( slot );
3760
3761 return( status );
3762 }
3763
psa_aead_decrypt(mbedtls_svc_key_id_t key,psa_algorithm_t alg,const uint8_t * nonce,size_t nonce_length,const uint8_t * additional_data,size_t additional_data_length,const uint8_t * ciphertext,size_t ciphertext_length,uint8_t * plaintext,size_t plaintext_size,size_t * plaintext_length)3764 psa_status_t psa_aead_decrypt( mbedtls_svc_key_id_t key,
3765 psa_algorithm_t alg,
3766 const uint8_t *nonce,
3767 size_t nonce_length,
3768 const uint8_t *additional_data,
3769 size_t additional_data_length,
3770 const uint8_t *ciphertext,
3771 size_t ciphertext_length,
3772 uint8_t *plaintext,
3773 size_t plaintext_size,
3774 size_t *plaintext_length )
3775 {
3776 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3777 psa_key_slot_t *slot;
3778
3779 *plaintext_length = 0;
3780
3781 if( !PSA_ALG_IS_AEAD( alg ) || PSA_ALG_IS_WILDCARD( alg ) )
3782 return( PSA_ERROR_NOT_SUPPORTED );
3783
3784 status = psa_get_and_lock_key_slot_with_policy(
3785 key, &slot, PSA_KEY_USAGE_DECRYPT, alg );
3786 if( status != PSA_SUCCESS )
3787 return( status );
3788
3789 psa_key_attributes_t attributes = {
3790 .core = slot->attr
3791 };
3792
3793 status = psa_aead_check_nonce_length( alg, nonce_length );
3794 if( status != PSA_SUCCESS )
3795 goto exit;
3796
3797 status = psa_driver_wrapper_aead_decrypt(
3798 &attributes, slot->key.data, slot->key.bytes,
3799 alg,
3800 nonce, nonce_length,
3801 additional_data, additional_data_length,
3802 ciphertext, ciphertext_length,
3803 plaintext, plaintext_size, plaintext_length );
3804
3805 if( status != PSA_SUCCESS && plaintext_size != 0 )
3806 memset( plaintext, 0, plaintext_size );
3807
3808 exit:
3809 psa_unlock_key_slot( slot );
3810
3811 return( status );
3812 }
3813
3814 /* Set the key for a multipart authenticated operation. */
psa_aead_setup(psa_aead_operation_t * operation,int is_encrypt,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3815 static psa_status_t psa_aead_setup( psa_aead_operation_t *operation,
3816 int is_encrypt,
3817 mbedtls_svc_key_id_t key,
3818 psa_algorithm_t alg )
3819 {
3820 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3821 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
3822 psa_key_slot_t *slot = NULL;
3823 psa_key_usage_t key_usage = 0;
3824 psa_key_attributes_t attributes;
3825
3826 if( !PSA_ALG_IS_AEAD( alg ) || PSA_ALG_IS_WILDCARD( alg ) )
3827 {
3828 status = PSA_ERROR_INVALID_ARGUMENT;
3829 goto exit;
3830 }
3831
3832 if( operation->id != 0 )
3833 {
3834 status = PSA_ERROR_BAD_STATE;
3835 goto exit;
3836 }
3837
3838 if( operation->nonce_set || operation->lengths_set ||
3839 operation->ad_started || operation->body_started )
3840 {
3841 status = PSA_ERROR_BAD_STATE;
3842 goto exit;
3843 }
3844
3845 if( is_encrypt )
3846 key_usage = PSA_KEY_USAGE_ENCRYPT;
3847 else
3848 key_usage = PSA_KEY_USAGE_DECRYPT;
3849
3850 status = psa_get_and_lock_key_slot_with_policy( key, &slot, key_usage,
3851 alg );
3852 if( status != PSA_SUCCESS )
3853 goto exit;
3854
3855 attributes.core = slot->attr;
3856
3857 if( is_encrypt )
3858 status = psa_driver_wrapper_aead_encrypt_setup( operation,
3859 &attributes,
3860 slot->key.data,
3861 slot->key.bytes,
3862 alg );
3863 else
3864 status = psa_driver_wrapper_aead_decrypt_setup( operation,
3865 &attributes,
3866 slot->key.data,
3867 slot->key.bytes,
3868 alg );
3869 if( status != PSA_SUCCESS )
3870 goto exit;
3871
3872 operation->key_type = psa_get_key_type( &attributes );
3873
3874 exit:
3875 unlock_status = psa_unlock_key_slot( slot );
3876
3877 if( status == PSA_SUCCESS )
3878 {
3879 status = unlock_status;
3880 operation->alg = psa_aead_get_base_algorithm( alg );
3881 operation->is_encrypt = is_encrypt;
3882 }
3883 else
3884 psa_aead_abort( operation );
3885
3886 return( status );
3887 }
3888
3889 /* Set the key for a multipart authenticated encryption operation. */
psa_aead_encrypt_setup(psa_aead_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3890 psa_status_t psa_aead_encrypt_setup( psa_aead_operation_t *operation,
3891 mbedtls_svc_key_id_t key,
3892 psa_algorithm_t alg )
3893 {
3894 return( psa_aead_setup( operation, 1, key, alg ) );
3895 }
3896
3897 /* Set the key for a multipart authenticated decryption operation. */
psa_aead_decrypt_setup(psa_aead_operation_t * operation,mbedtls_svc_key_id_t key,psa_algorithm_t alg)3898 psa_status_t psa_aead_decrypt_setup( psa_aead_operation_t *operation,
3899 mbedtls_svc_key_id_t key,
3900 psa_algorithm_t alg )
3901 {
3902 return( psa_aead_setup( operation, 0, key, alg ) );
3903 }
3904
3905 /* Generate a random nonce / IV for multipart AEAD operation */
psa_aead_generate_nonce(psa_aead_operation_t * operation,uint8_t * nonce,size_t nonce_size,size_t * nonce_length)3906 psa_status_t psa_aead_generate_nonce( psa_aead_operation_t *operation,
3907 uint8_t *nonce,
3908 size_t nonce_size,
3909 size_t *nonce_length )
3910 {
3911 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3912 uint8_t local_nonce[PSA_AEAD_NONCE_MAX_SIZE];
3913 size_t required_nonce_size;
3914
3915 *nonce_length = 0;
3916
3917 if( operation->id == 0 )
3918 {
3919 status = PSA_ERROR_BAD_STATE;
3920 goto exit;
3921 }
3922
3923 if( operation->nonce_set || !operation->is_encrypt )
3924 {
3925 status = PSA_ERROR_BAD_STATE;
3926 goto exit;
3927 }
3928
3929 /* For CCM, this size may not be correct according to the PSA
3930 * specification. The PSA Crypto 1.0.1 specification states:
3931 *
3932 * CCM encodes the plaintext length pLen in L octets, with L the smallest
3933 * integer >= 2 where pLen < 2^(8L). The nonce length is then 15 - L bytes.
3934 *
3935 * However this restriction that L has to be the smallest integer is not
3936 * applied in practice, and it is not implementable here since the
3937 * plaintext length may or may not be known at this time. */
3938 required_nonce_size = PSA_AEAD_NONCE_LENGTH( operation->key_type,
3939 operation->alg );
3940 if( nonce_size < required_nonce_size )
3941 {
3942 status = PSA_ERROR_BUFFER_TOO_SMALL;
3943 goto exit;
3944 }
3945
3946 status = psa_generate_random( local_nonce, required_nonce_size );
3947 if( status != PSA_SUCCESS )
3948 goto exit;
3949
3950 status = psa_aead_set_nonce( operation, local_nonce, required_nonce_size );
3951
3952 exit:
3953 if( status == PSA_SUCCESS )
3954 {
3955 memcpy( nonce, local_nonce, required_nonce_size );
3956 *nonce_length = required_nonce_size;
3957 }
3958 else
3959 psa_aead_abort( operation );
3960
3961 return( status );
3962 }
3963
3964 /* Set the nonce for a multipart authenticated encryption or decryption
3965 operation.*/
psa_aead_set_nonce(psa_aead_operation_t * operation,const uint8_t * nonce,size_t nonce_length)3966 psa_status_t psa_aead_set_nonce( psa_aead_operation_t *operation,
3967 const uint8_t *nonce,
3968 size_t nonce_length )
3969 {
3970 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
3971
3972 if( operation->id == 0 )
3973 {
3974 status = PSA_ERROR_BAD_STATE;
3975 goto exit;
3976 }
3977
3978 if( operation->nonce_set )
3979 {
3980 status = PSA_ERROR_BAD_STATE;
3981 goto exit;
3982 }
3983
3984 status = psa_aead_check_nonce_length( operation->alg, nonce_length );
3985 if( status != PSA_SUCCESS )
3986 {
3987 status = PSA_ERROR_INVALID_ARGUMENT;
3988 goto exit;
3989 }
3990
3991 status = psa_driver_wrapper_aead_set_nonce( operation, nonce,
3992 nonce_length );
3993
3994 exit:
3995 if( status == PSA_SUCCESS )
3996 operation->nonce_set = 1;
3997 else
3998 psa_aead_abort( operation );
3999
4000 return( status );
4001 }
4002
4003 /* Declare the lengths of the message and additional data for multipart AEAD. */
psa_aead_set_lengths(psa_aead_operation_t * operation,size_t ad_length,size_t plaintext_length)4004 psa_status_t psa_aead_set_lengths( psa_aead_operation_t *operation,
4005 size_t ad_length,
4006 size_t plaintext_length )
4007 {
4008 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4009
4010 if( operation->id == 0 )
4011 {
4012 status = PSA_ERROR_BAD_STATE;
4013 goto exit;
4014 }
4015
4016 if( operation->lengths_set || operation->ad_started ||
4017 operation->body_started )
4018 {
4019 status = PSA_ERROR_BAD_STATE;
4020 goto exit;
4021 }
4022
4023 switch(operation->alg)
4024 {
4025 #if defined(PSA_WANT_ALG_GCM)
4026 case PSA_ALG_GCM:
4027 /* Lengths can only be too large for GCM if size_t is bigger than 32
4028 * bits. Without the guard this code will generate warnings on 32bit
4029 * builds. */
4030 #if SIZE_MAX > UINT32_MAX
4031 if( (( uint64_t ) ad_length ) >> 61 != 0 ||
4032 (( uint64_t ) plaintext_length ) > 0xFFFFFFFE0ull )
4033 {
4034 status = PSA_ERROR_INVALID_ARGUMENT;
4035 goto exit;
4036 }
4037 #endif
4038 break;
4039 #endif /* PSA_WANT_ALG_GCM */
4040 #if defined(PSA_WANT_ALG_CCM)
4041 case PSA_ALG_CCM:
4042 if( ad_length > 0xFF00 )
4043 {
4044 status = PSA_ERROR_INVALID_ARGUMENT;
4045 goto exit;
4046 }
4047 break;
4048 #endif /* PSA_WANT_ALG_CCM */
4049 #if defined(PSA_WANT_ALG_CHACHA20_POLY1305)
4050 case PSA_ALG_CHACHA20_POLY1305:
4051 /* No length restrictions for ChaChaPoly. */
4052 break;
4053 #endif /* PSA_WANT_ALG_CHACHA20_POLY1305 */
4054 default:
4055 break;
4056 }
4057
4058 status = psa_driver_wrapper_aead_set_lengths( operation, ad_length,
4059 plaintext_length );
4060
4061 exit:
4062 if( status == PSA_SUCCESS )
4063 {
4064 operation->ad_remaining = ad_length;
4065 operation->body_remaining = plaintext_length;
4066 operation->lengths_set = 1;
4067 }
4068 else
4069 psa_aead_abort( operation );
4070
4071 return( status );
4072 }
4073
4074 /* Pass additional data to an active multipart AEAD operation. */
psa_aead_update_ad(psa_aead_operation_t * operation,const uint8_t * input,size_t input_length)4075 psa_status_t psa_aead_update_ad( psa_aead_operation_t *operation,
4076 const uint8_t *input,
4077 size_t input_length )
4078 {
4079 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4080
4081 if( operation->id == 0 )
4082 {
4083 status = PSA_ERROR_BAD_STATE;
4084 goto exit;
4085 }
4086
4087 if( !operation->nonce_set || operation->body_started )
4088 {
4089 status = PSA_ERROR_BAD_STATE;
4090 goto exit;
4091 }
4092
4093 if( operation->lengths_set )
4094 {
4095 if( operation->ad_remaining < input_length )
4096 {
4097 status = PSA_ERROR_INVALID_ARGUMENT;
4098 goto exit;
4099 }
4100
4101 operation->ad_remaining -= input_length;
4102 }
4103 #if defined(PSA_WANT_ALG_CCM)
4104 else if( operation->alg == PSA_ALG_CCM )
4105 {
4106 status = PSA_ERROR_BAD_STATE;
4107 goto exit;
4108 }
4109 #endif /* PSA_WANT_ALG_CCM */
4110
4111 status = psa_driver_wrapper_aead_update_ad( operation, input,
4112 input_length );
4113
4114 exit:
4115 if( status == PSA_SUCCESS )
4116 operation->ad_started = 1;
4117 else
4118 psa_aead_abort( operation );
4119
4120 return( status );
4121 }
4122
4123 /* Encrypt or decrypt a message fragment in an active multipart AEAD
4124 operation.*/
psa_aead_update(psa_aead_operation_t * operation,const uint8_t * input,size_t input_length,uint8_t * output,size_t output_size,size_t * output_length)4125 psa_status_t psa_aead_update( psa_aead_operation_t *operation,
4126 const uint8_t *input,
4127 size_t input_length,
4128 uint8_t *output,
4129 size_t output_size,
4130 size_t *output_length )
4131 {
4132 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4133
4134 *output_length = 0;
4135
4136 if( operation->id == 0 )
4137 {
4138 status = PSA_ERROR_BAD_STATE;
4139 goto exit;
4140 }
4141
4142 if( !operation->nonce_set )
4143 {
4144 status = PSA_ERROR_BAD_STATE;
4145 goto exit;
4146 }
4147
4148 if( operation->lengths_set )
4149 {
4150 /* Additional data length was supplied, but not all the additional
4151 data was supplied.*/
4152 if( operation->ad_remaining != 0 )
4153 {
4154 status = PSA_ERROR_INVALID_ARGUMENT;
4155 goto exit;
4156 }
4157
4158 /* Too much data provided. */
4159 if( operation->body_remaining < input_length )
4160 {
4161 status = PSA_ERROR_INVALID_ARGUMENT;
4162 goto exit;
4163 }
4164
4165 operation->body_remaining -= input_length;
4166 }
4167 #if defined(PSA_WANT_ALG_CCM)
4168 else if( operation->alg == PSA_ALG_CCM )
4169 {
4170 status = PSA_ERROR_BAD_STATE;
4171 goto exit;
4172 }
4173 #endif /* PSA_WANT_ALG_CCM */
4174
4175 status = psa_driver_wrapper_aead_update( operation, input, input_length,
4176 output, output_size,
4177 output_length );
4178
4179 exit:
4180 if( status == PSA_SUCCESS )
4181 operation->body_started = 1;
4182 else
4183 psa_aead_abort( operation );
4184
4185 return( status );
4186 }
4187
psa_aead_final_checks(const psa_aead_operation_t * operation)4188 static psa_status_t psa_aead_final_checks( const psa_aead_operation_t *operation )
4189 {
4190 if( operation->id == 0 || !operation->nonce_set )
4191 return( PSA_ERROR_BAD_STATE );
4192
4193 if( operation->lengths_set && ( operation->ad_remaining != 0 ||
4194 operation->body_remaining != 0 ) )
4195 return( PSA_ERROR_INVALID_ARGUMENT );
4196
4197 return( PSA_SUCCESS );
4198 }
4199
4200 /* Finish encrypting a message in a multipart AEAD operation. */
psa_aead_finish(psa_aead_operation_t * operation,uint8_t * ciphertext,size_t ciphertext_size,size_t * ciphertext_length,uint8_t * tag,size_t tag_size,size_t * tag_length)4201 psa_status_t psa_aead_finish( psa_aead_operation_t *operation,
4202 uint8_t *ciphertext,
4203 size_t ciphertext_size,
4204 size_t *ciphertext_length,
4205 uint8_t *tag,
4206 size_t tag_size,
4207 size_t *tag_length )
4208 {
4209 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4210
4211 *ciphertext_length = 0;
4212 *tag_length = tag_size;
4213
4214 status = psa_aead_final_checks( operation );
4215 if( status != PSA_SUCCESS )
4216 goto exit;
4217
4218 if( !operation->is_encrypt )
4219 {
4220 status = PSA_ERROR_BAD_STATE;
4221 goto exit;
4222 }
4223
4224 status = psa_driver_wrapper_aead_finish( operation, ciphertext,
4225 ciphertext_size,
4226 ciphertext_length,
4227 tag, tag_size, tag_length );
4228
4229 exit:
4230 /* In case the operation fails and the user fails to check for failure or
4231 * the zero tag size, make sure the tag is set to something implausible.
4232 * Even if the operation succeeds, make sure we clear the rest of the
4233 * buffer to prevent potential leakage of anything previously placed in
4234 * the same buffer.*/
4235 if( tag != NULL )
4236 {
4237 if( status != PSA_SUCCESS )
4238 memset( tag, '!', tag_size );
4239 else if( *tag_length < tag_size )
4240 memset( tag + *tag_length, '!', ( tag_size - *tag_length ) );
4241 }
4242
4243 psa_aead_abort( operation );
4244
4245 return( status );
4246 }
4247
4248 /* Finish authenticating and decrypting a message in a multipart AEAD
4249 operation.*/
psa_aead_verify(psa_aead_operation_t * operation,uint8_t * plaintext,size_t plaintext_size,size_t * plaintext_length,const uint8_t * tag,size_t tag_length)4250 psa_status_t psa_aead_verify( psa_aead_operation_t *operation,
4251 uint8_t *plaintext,
4252 size_t plaintext_size,
4253 size_t *plaintext_length,
4254 const uint8_t *tag,
4255 size_t tag_length )
4256 {
4257 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4258
4259 *plaintext_length = 0;
4260
4261 status = psa_aead_final_checks( operation );
4262 if( status != PSA_SUCCESS )
4263 goto exit;
4264
4265 if( operation->is_encrypt )
4266 {
4267 status = PSA_ERROR_BAD_STATE;
4268 goto exit;
4269 }
4270
4271 status = psa_driver_wrapper_aead_verify( operation, plaintext,
4272 plaintext_size,
4273 plaintext_length,
4274 tag, tag_length );
4275
4276 exit:
4277 psa_aead_abort( operation );
4278
4279 return( status );
4280 }
4281
4282 /* Abort an AEAD operation. */
psa_aead_abort(psa_aead_operation_t * operation)4283 psa_status_t psa_aead_abort( psa_aead_operation_t *operation )
4284 {
4285 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4286
4287 if( operation->id == 0 )
4288 {
4289 /* The object has (apparently) been initialized but it is not (yet)
4290 * in use. It's ok to call abort on such an object, and there's
4291 * nothing to do. */
4292 return( PSA_SUCCESS );
4293 }
4294
4295 status = psa_driver_wrapper_aead_abort( operation );
4296
4297 memset( operation, 0, sizeof( *operation ) );
4298
4299 return( status );
4300 }
4301
4302 /****************************************************************/
4303 /* Generators */
4304 /****************************************************************/
4305
4306 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF) || \
4307 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4308 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
4309 #define AT_LEAST_ONE_BUILTIN_KDF
4310 #endif /* At least one builtin KDF */
4311
4312 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF) || \
4313 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4314 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_key_derivation_start_hmac(psa_mac_operation_t * operation,psa_algorithm_t hash_alg,const uint8_t * hmac_key,size_t hmac_key_length)4315 static psa_status_t psa_key_derivation_start_hmac(
4316 psa_mac_operation_t *operation,
4317 psa_algorithm_t hash_alg,
4318 const uint8_t *hmac_key,
4319 size_t hmac_key_length )
4320 {
4321 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
4322 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
4323 psa_set_key_type( &attributes, PSA_KEY_TYPE_HMAC );
4324 psa_set_key_bits( &attributes, PSA_BYTES_TO_BITS( hmac_key_length ) );
4325 psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH );
4326
4327 operation->is_sign = 1;
4328 operation->mac_size = PSA_HASH_LENGTH( hash_alg );
4329
4330 status = psa_driver_wrapper_mac_sign_setup( operation,
4331 &attributes,
4332 hmac_key, hmac_key_length,
4333 PSA_ALG_HMAC( hash_alg ) );
4334
4335 psa_reset_key_attributes( &attributes );
4336 return( status );
4337 }
4338 #endif /* KDF algorithms reliant on HMAC */
4339
4340 #define HKDF_STATE_INIT 0 /* no input yet */
4341 #define HKDF_STATE_STARTED 1 /* got salt */
4342 #define HKDF_STATE_KEYED 2 /* got key */
4343 #define HKDF_STATE_OUTPUT 3 /* output started */
4344
psa_key_derivation_get_kdf_alg(const psa_key_derivation_operation_t * operation)4345 static psa_algorithm_t psa_key_derivation_get_kdf_alg(
4346 const psa_key_derivation_operation_t *operation )
4347 {
4348 if ( PSA_ALG_IS_KEY_AGREEMENT( operation->alg ) )
4349 return( PSA_ALG_KEY_AGREEMENT_GET_KDF( operation->alg ) );
4350 else
4351 return( operation->alg );
4352 }
4353
psa_key_derivation_abort(psa_key_derivation_operation_t * operation)4354 psa_status_t psa_key_derivation_abort( psa_key_derivation_operation_t *operation )
4355 {
4356 psa_status_t status = PSA_SUCCESS;
4357 psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg( operation );
4358 if( kdf_alg == 0 )
4359 {
4360 /* The object has (apparently) been initialized but it is not
4361 * in use. It's ok to call abort on such an object, and there's
4362 * nothing to do. */
4363 }
4364 else
4365 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
4366 if( PSA_ALG_IS_HKDF( kdf_alg ) )
4367 {
4368 mbedtls_free( operation->ctx.hkdf.info );
4369 status = psa_mac_abort( &operation->ctx.hkdf.hmac );
4370 }
4371 else
4372 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF */
4373 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4374 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
4375 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) ||
4376 /* TLS-1.2 PSK-to-MS KDF uses the same core as TLS-1.2 PRF */
4377 PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
4378 {
4379 if( operation->ctx.tls12_prf.secret != NULL )
4380 {
4381 mbedtls_platform_zeroize( operation->ctx.tls12_prf.secret,
4382 operation->ctx.tls12_prf.secret_length );
4383 mbedtls_free( operation->ctx.tls12_prf.secret );
4384 }
4385
4386 if( operation->ctx.tls12_prf.seed != NULL )
4387 {
4388 mbedtls_platform_zeroize( operation->ctx.tls12_prf.seed,
4389 operation->ctx.tls12_prf.seed_length );
4390 mbedtls_free( operation->ctx.tls12_prf.seed );
4391 }
4392
4393 if( operation->ctx.tls12_prf.label != NULL )
4394 {
4395 mbedtls_platform_zeroize( operation->ctx.tls12_prf.label,
4396 operation->ctx.tls12_prf.label_length );
4397 mbedtls_free( operation->ctx.tls12_prf.label );
4398 }
4399
4400 status = PSA_SUCCESS;
4401
4402 /* We leave the fields Ai and output_block to be erased safely by the
4403 * mbedtls_platform_zeroize() in the end of this function. */
4404 }
4405 else
4406 #endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) ||
4407 * defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS) */
4408 {
4409 status = PSA_ERROR_BAD_STATE;
4410 }
4411 mbedtls_platform_zeroize( operation, sizeof( *operation ) );
4412 return( status );
4413 }
4414
psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,size_t * capacity)4415 psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t *operation,
4416 size_t *capacity)
4417 {
4418 if( operation->alg == 0 )
4419 {
4420 /* This is a blank key derivation operation. */
4421 return( PSA_ERROR_BAD_STATE );
4422 }
4423
4424 *capacity = operation->capacity;
4425 return( PSA_SUCCESS );
4426 }
4427
psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,size_t capacity)4428 psa_status_t psa_key_derivation_set_capacity( psa_key_derivation_operation_t *operation,
4429 size_t capacity )
4430 {
4431 if( operation->alg == 0 )
4432 return( PSA_ERROR_BAD_STATE );
4433 if( capacity > operation->capacity )
4434 return( PSA_ERROR_INVALID_ARGUMENT );
4435 operation->capacity = capacity;
4436 return( PSA_SUCCESS );
4437 }
4438
4439 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
4440 /* Read some bytes from an HKDF-based operation. This performs a chunk
4441 * of the expand phase of the HKDF algorithm. */
psa_key_derivation_hkdf_read(psa_hkdf_key_derivation_t * hkdf,psa_algorithm_t hash_alg,uint8_t * output,size_t output_length)4442 static psa_status_t psa_key_derivation_hkdf_read( psa_hkdf_key_derivation_t *hkdf,
4443 psa_algorithm_t hash_alg,
4444 uint8_t *output,
4445 size_t output_length )
4446 {
4447 uint8_t hash_length = PSA_HASH_LENGTH( hash_alg );
4448 size_t hmac_output_length;
4449 psa_status_t status;
4450
4451 if( hkdf->state < HKDF_STATE_KEYED || ! hkdf->info_set )
4452 return( PSA_ERROR_BAD_STATE );
4453 hkdf->state = HKDF_STATE_OUTPUT;
4454
4455 while( output_length != 0 )
4456 {
4457 /* Copy what remains of the current block */
4458 uint8_t n = hash_length - hkdf->offset_in_block;
4459 if( n > output_length )
4460 n = (uint8_t) output_length;
4461 memcpy( output, hkdf->output_block + hkdf->offset_in_block, n );
4462 output += n;
4463 output_length -= n;
4464 hkdf->offset_in_block += n;
4465 if( output_length == 0 )
4466 break;
4467 /* We can't be wanting more output after block 0xff, otherwise
4468 * the capacity check in psa_key_derivation_output_bytes() would have
4469 * prevented this call. It could happen only if the operation
4470 * object was corrupted or if this function is called directly
4471 * inside the library. */
4472 if( hkdf->block_number == 0xff )
4473 return( PSA_ERROR_BAD_STATE );
4474
4475 /* We need a new block */
4476 ++hkdf->block_number;
4477 hkdf->offset_in_block = 0;
4478
4479 status = psa_key_derivation_start_hmac( &hkdf->hmac,
4480 hash_alg,
4481 hkdf->prk,
4482 hash_length );
4483 if( status != PSA_SUCCESS )
4484 return( status );
4485
4486 if( hkdf->block_number != 1 )
4487 {
4488 status = psa_mac_update( &hkdf->hmac,
4489 hkdf->output_block,
4490 hash_length );
4491 if( status != PSA_SUCCESS )
4492 return( status );
4493 }
4494 status = psa_mac_update( &hkdf->hmac,
4495 hkdf->info,
4496 hkdf->info_length );
4497 if( status != PSA_SUCCESS )
4498 return( status );
4499 status = psa_mac_update( &hkdf->hmac,
4500 &hkdf->block_number, 1 );
4501 if( status != PSA_SUCCESS )
4502 return( status );
4503 status = psa_mac_sign_finish( &hkdf->hmac,
4504 hkdf->output_block,
4505 sizeof( hkdf->output_block ),
4506 &hmac_output_length );
4507 if( status != PSA_SUCCESS )
4508 return( status );
4509 }
4510
4511 return( PSA_SUCCESS );
4512 }
4513 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF */
4514
4515 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4516 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_key_derivation_tls12_prf_generate_next_block(psa_tls12_prf_key_derivation_t * tls12_prf,psa_algorithm_t alg)4517 static psa_status_t psa_key_derivation_tls12_prf_generate_next_block(
4518 psa_tls12_prf_key_derivation_t *tls12_prf,
4519 psa_algorithm_t alg )
4520 {
4521 psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( alg );
4522 uint8_t hash_length = PSA_HASH_LENGTH( hash_alg );
4523 psa_mac_operation_t hmac = PSA_MAC_OPERATION_INIT;
4524 size_t hmac_output_length;
4525 psa_status_t status, cleanup_status;
4526
4527 /* We can't be wanting more output after block 0xff, otherwise
4528 * the capacity check in psa_key_derivation_output_bytes() would have
4529 * prevented this call. It could happen only if the operation
4530 * object was corrupted or if this function is called directly
4531 * inside the library. */
4532 if( tls12_prf->block_number == 0xff )
4533 return( PSA_ERROR_CORRUPTION_DETECTED );
4534
4535 /* We need a new block */
4536 ++tls12_prf->block_number;
4537 tls12_prf->left_in_block = hash_length;
4538
4539 /* Recall the definition of the TLS-1.2-PRF from RFC 5246:
4540 *
4541 * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
4542 *
4543 * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
4544 * HMAC_hash(secret, A(2) + seed) +
4545 * HMAC_hash(secret, A(3) + seed) + ...
4546 *
4547 * A(0) = seed
4548 * A(i) = HMAC_hash(secret, A(i-1))
4549 *
4550 * The `psa_tls12_prf_key_derivation` structure saves the block
4551 * `HMAC_hash(secret, A(i) + seed)` from which the output
4552 * is currently extracted as `output_block` and where i is
4553 * `block_number`.
4554 */
4555
4556 status = psa_key_derivation_start_hmac( &hmac,
4557 hash_alg,
4558 tls12_prf->secret,
4559 tls12_prf->secret_length );
4560 if( status != PSA_SUCCESS )
4561 goto cleanup;
4562
4563 /* Calculate A(i) where i = tls12_prf->block_number. */
4564 if( tls12_prf->block_number == 1 )
4565 {
4566 /* A(1) = HMAC_hash(secret, A(0)), where A(0) = seed. (The RFC overloads
4567 * the variable seed and in this instance means it in the context of the
4568 * P_hash function, where seed = label + seed.) */
4569 status = psa_mac_update( &hmac,
4570 tls12_prf->label,
4571 tls12_prf->label_length );
4572 if( status != PSA_SUCCESS )
4573 goto cleanup;
4574 status = psa_mac_update( &hmac,
4575 tls12_prf->seed,
4576 tls12_prf->seed_length );
4577 if( status != PSA_SUCCESS )
4578 goto cleanup;
4579 }
4580 else
4581 {
4582 /* A(i) = HMAC_hash(secret, A(i-1)) */
4583 status = psa_mac_update( &hmac, tls12_prf->Ai, hash_length );
4584 if( status != PSA_SUCCESS )
4585 goto cleanup;
4586 }
4587
4588 status = psa_mac_sign_finish( &hmac,
4589 tls12_prf->Ai, hash_length,
4590 &hmac_output_length );
4591 if( hmac_output_length != hash_length )
4592 status = PSA_ERROR_CORRUPTION_DETECTED;
4593 if( status != PSA_SUCCESS )
4594 goto cleanup;
4595
4596 /* Calculate HMAC_hash(secret, A(i) + label + seed). */
4597 status = psa_key_derivation_start_hmac( &hmac,
4598 hash_alg,
4599 tls12_prf->secret,
4600 tls12_prf->secret_length );
4601 if( status != PSA_SUCCESS )
4602 goto cleanup;
4603 status = psa_mac_update( &hmac, tls12_prf->Ai, hash_length );
4604 if( status != PSA_SUCCESS )
4605 goto cleanup;
4606 status = psa_mac_update( &hmac, tls12_prf->label, tls12_prf->label_length );
4607 if( status != PSA_SUCCESS )
4608 goto cleanup;
4609 status = psa_mac_update( &hmac, tls12_prf->seed, tls12_prf->seed_length );
4610 if( status != PSA_SUCCESS )
4611 goto cleanup;
4612 status = psa_mac_sign_finish( &hmac,
4613 tls12_prf->output_block, hash_length,
4614 &hmac_output_length );
4615 if( status != PSA_SUCCESS )
4616 goto cleanup;
4617
4618
4619 cleanup:
4620 cleanup_status = psa_mac_abort( &hmac );
4621 if( status == PSA_SUCCESS && cleanup_status != PSA_SUCCESS )
4622 status = cleanup_status;
4623
4624 return( status );
4625 }
4626
psa_key_derivation_tls12_prf_read(psa_tls12_prf_key_derivation_t * tls12_prf,psa_algorithm_t alg,uint8_t * output,size_t output_length)4627 static psa_status_t psa_key_derivation_tls12_prf_read(
4628 psa_tls12_prf_key_derivation_t *tls12_prf,
4629 psa_algorithm_t alg,
4630 uint8_t *output,
4631 size_t output_length )
4632 {
4633 psa_algorithm_t hash_alg = PSA_ALG_TLS12_PRF_GET_HASH( alg );
4634 uint8_t hash_length = PSA_HASH_LENGTH( hash_alg );
4635 psa_status_t status;
4636 uint8_t offset, length;
4637
4638 switch( tls12_prf->state )
4639 {
4640 case PSA_TLS12_PRF_STATE_LABEL_SET:
4641 tls12_prf->state = PSA_TLS12_PRF_STATE_OUTPUT;
4642 break;
4643 case PSA_TLS12_PRF_STATE_OUTPUT:
4644 break;
4645 default:
4646 return( PSA_ERROR_BAD_STATE );
4647 }
4648
4649 while( output_length != 0 )
4650 {
4651 /* Check if we have fully processed the current block. */
4652 if( tls12_prf->left_in_block == 0 )
4653 {
4654 status = psa_key_derivation_tls12_prf_generate_next_block( tls12_prf,
4655 alg );
4656 if( status != PSA_SUCCESS )
4657 return( status );
4658
4659 continue;
4660 }
4661
4662 if( tls12_prf->left_in_block > output_length )
4663 length = (uint8_t) output_length;
4664 else
4665 length = tls12_prf->left_in_block;
4666
4667 offset = hash_length - tls12_prf->left_in_block;
4668 memcpy( output, tls12_prf->output_block + offset, length );
4669 output += length;
4670 output_length -= length;
4671 tls12_prf->left_in_block -= length;
4672 }
4673
4674 return( PSA_SUCCESS );
4675 }
4676 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF ||
4677 * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
4678
psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,uint8_t * output,size_t output_length)4679 psa_status_t psa_key_derivation_output_bytes(
4680 psa_key_derivation_operation_t *operation,
4681 uint8_t *output,
4682 size_t output_length )
4683 {
4684 psa_status_t status;
4685 psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg( operation );
4686
4687 if( operation->alg == 0 )
4688 {
4689 /* This is a blank operation. */
4690 return( PSA_ERROR_BAD_STATE );
4691 }
4692
4693 if( output_length > operation->capacity )
4694 {
4695 operation->capacity = 0;
4696 /* Go through the error path to wipe all confidential data now
4697 * that the operation object is useless. */
4698 status = PSA_ERROR_INSUFFICIENT_DATA;
4699 goto exit;
4700 }
4701 if( output_length == 0 && operation->capacity == 0 )
4702 {
4703 /* Edge case: this is a finished operation, and 0 bytes
4704 * were requested. The right error in this case could
4705 * be either INSUFFICIENT_CAPACITY or BAD_STATE. Return
4706 * INSUFFICIENT_CAPACITY, which is right for a finished
4707 * operation, for consistency with the case when
4708 * output_length > 0. */
4709 return( PSA_ERROR_INSUFFICIENT_DATA );
4710 }
4711 operation->capacity -= output_length;
4712
4713 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
4714 if( PSA_ALG_IS_HKDF( kdf_alg ) )
4715 {
4716 psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( kdf_alg );
4717 status = psa_key_derivation_hkdf_read( &operation->ctx.hkdf, hash_alg,
4718 output, output_length );
4719 }
4720 else
4721 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF */
4722 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
4723 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
4724 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) ||
4725 PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
4726 {
4727 status = psa_key_derivation_tls12_prf_read( &operation->ctx.tls12_prf,
4728 kdf_alg, output,
4729 output_length );
4730 }
4731 else
4732 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF ||
4733 * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
4734 {
4735 (void) kdf_alg;
4736 return( PSA_ERROR_BAD_STATE );
4737 }
4738
4739 exit:
4740 if( status != PSA_SUCCESS )
4741 {
4742 /* Preserve the algorithm upon errors, but clear all sensitive state.
4743 * This allows us to differentiate between exhausted operations and
4744 * blank operations, so we can return PSA_ERROR_BAD_STATE on blank
4745 * operations. */
4746 psa_algorithm_t alg = operation->alg;
4747 psa_key_derivation_abort( operation );
4748 operation->alg = alg;
4749 memset( output, '!', output_length );
4750 }
4751 return( status );
4752 }
4753
4754 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
psa_des_set_key_parity(uint8_t * data,size_t data_size)4755 static void psa_des_set_key_parity( uint8_t *data, size_t data_size )
4756 {
4757 if( data_size >= 8 )
4758 mbedtls_des_key_set_parity( data );
4759 if( data_size >= 16 )
4760 mbedtls_des_key_set_parity( data + 8 );
4761 if( data_size >= 24 )
4762 mbedtls_des_key_set_parity( data + 16 );
4763 }
4764 #endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES */
4765
psa_generate_derived_key_internal(psa_key_slot_t * slot,size_t bits,psa_key_derivation_operation_t * operation)4766 static psa_status_t psa_generate_derived_key_internal(
4767 psa_key_slot_t *slot,
4768 size_t bits,
4769 psa_key_derivation_operation_t *operation )
4770 {
4771 uint8_t *data = NULL;
4772 size_t bytes = PSA_BITS_TO_BYTES( bits );
4773 size_t storage_size = bytes;
4774 psa_status_t status;
4775 psa_key_attributes_t attributes;
4776
4777 if( ! key_type_is_raw_bytes( slot->attr.type ) )
4778 return( PSA_ERROR_INVALID_ARGUMENT );
4779 if( bits % 8 != 0 )
4780 return( PSA_ERROR_INVALID_ARGUMENT );
4781 data = mbedtls_calloc( 1, bytes );
4782 if( data == NULL )
4783 return( PSA_ERROR_INSUFFICIENT_MEMORY );
4784
4785 status = psa_key_derivation_output_bytes( operation, data, bytes );
4786 if( status != PSA_SUCCESS )
4787 goto exit;
4788 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
4789 if( slot->attr.type == PSA_KEY_TYPE_DES )
4790 psa_des_set_key_parity( data, bytes );
4791 #endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES */
4792
4793 slot->attr.bits = (psa_key_bits_t) bits;
4794 attributes.core = slot->attr;
4795
4796 if( psa_key_lifetime_is_external( attributes.core.lifetime ) )
4797 {
4798 status = psa_driver_wrapper_get_key_buffer_size( &attributes,
4799 &storage_size );
4800 if( status != PSA_SUCCESS )
4801 goto exit;
4802 }
4803 status = psa_allocate_buffer_to_slot( slot, storage_size );
4804 if( status != PSA_SUCCESS )
4805 goto exit;
4806
4807 status = psa_driver_wrapper_import_key( &attributes,
4808 data, bytes,
4809 slot->key.data,
4810 slot->key.bytes,
4811 &slot->key.bytes, &bits );
4812 if( bits != slot->attr.bits )
4813 status = PSA_ERROR_INVALID_ARGUMENT;
4814
4815 exit:
4816 mbedtls_free( data );
4817 return( status );
4818 }
4819
psa_key_derivation_output_key(const psa_key_attributes_t * attributes,psa_key_derivation_operation_t * operation,mbedtls_svc_key_id_t * key)4820 psa_status_t psa_key_derivation_output_key( const psa_key_attributes_t *attributes,
4821 psa_key_derivation_operation_t *operation,
4822 mbedtls_svc_key_id_t *key )
4823 {
4824 psa_status_t status;
4825 psa_key_slot_t *slot = NULL;
4826 psa_se_drv_table_entry_t *driver = NULL;
4827
4828 *key = MBEDTLS_SVC_KEY_ID_INIT;
4829
4830 /* Reject any attempt to create a zero-length key so that we don't
4831 * risk tripping up later, e.g. on a malloc(0) that returns NULL. */
4832 if( psa_get_key_bits( attributes ) == 0 )
4833 return( PSA_ERROR_INVALID_ARGUMENT );
4834
4835 if( operation->alg == PSA_ALG_NONE )
4836 return( PSA_ERROR_BAD_STATE );
4837
4838 if( ! operation->can_output_key )
4839 return( PSA_ERROR_NOT_PERMITTED );
4840
4841 status = psa_start_key_creation( PSA_KEY_CREATION_DERIVE, attributes,
4842 &slot, &driver );
4843 #if defined(MBEDTLS_PSA_CRYPTO_SE_C)
4844 if( driver != NULL )
4845 {
4846 /* Deriving a key in a secure element is not implemented yet. */
4847 status = PSA_ERROR_NOT_SUPPORTED;
4848 }
4849 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */
4850 if( status == PSA_SUCCESS )
4851 {
4852 status = psa_generate_derived_key_internal( slot,
4853 attributes->core.bits,
4854 operation );
4855 }
4856 if( status == PSA_SUCCESS )
4857 status = psa_finish_key_creation( slot, driver, key );
4858 if( status != PSA_SUCCESS )
4859 psa_fail_key_creation( slot, driver );
4860
4861 return( status );
4862 }
4863
4864
4865
4866 /****************************************************************/
4867 /* Key derivation */
4868 /****************************************************************/
4869
4870 #if defined(AT_LEAST_ONE_BUILTIN_KDF)
psa_key_derivation_setup_kdf(psa_key_derivation_operation_t * operation,psa_algorithm_t kdf_alg)4871 static psa_status_t psa_key_derivation_setup_kdf(
4872 psa_key_derivation_operation_t *operation,
4873 psa_algorithm_t kdf_alg )
4874 {
4875 int is_kdf_alg_supported;
4876
4877 /* Make sure that operation->ctx is properly zero-initialised. (Macro
4878 * initialisers for this union leave some bytes unspecified.) */
4879 memset( &operation->ctx, 0, sizeof( operation->ctx ) );
4880
4881 /* Make sure that kdf_alg is a supported key derivation algorithm. */
4882 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
4883 if( PSA_ALG_IS_HKDF( kdf_alg ) )
4884 is_kdf_alg_supported = 1;
4885 else
4886 #endif
4887 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF)
4888 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) )
4889 is_kdf_alg_supported = 1;
4890 else
4891 #endif
4892 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
4893 if( PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
4894 is_kdf_alg_supported = 1;
4895 else
4896 #endif
4897 is_kdf_alg_supported = 0;
4898
4899 if( is_kdf_alg_supported )
4900 {
4901 psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( kdf_alg );
4902 size_t hash_size = PSA_HASH_LENGTH( hash_alg );
4903 if( hash_size == 0 )
4904 return( PSA_ERROR_NOT_SUPPORTED );
4905 if( ( PSA_ALG_IS_TLS12_PRF( kdf_alg ) ||
4906 PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) ) &&
4907 ! ( hash_alg == PSA_ALG_SHA_256 || hash_alg == PSA_ALG_SHA_384 ) )
4908 {
4909 return( PSA_ERROR_NOT_SUPPORTED );
4910 }
4911 operation->capacity = 255 * hash_size;
4912 return( PSA_SUCCESS );
4913 }
4914
4915 return( PSA_ERROR_NOT_SUPPORTED );
4916 }
4917 #endif /* AT_LEAST_ONE_BUILTIN_KDF */
4918
psa_key_derivation_setup(psa_key_derivation_operation_t * operation,psa_algorithm_t alg)4919 psa_status_t psa_key_derivation_setup( psa_key_derivation_operation_t *operation,
4920 psa_algorithm_t alg )
4921 {
4922 psa_status_t status;
4923
4924 if( operation->alg != 0 )
4925 return( PSA_ERROR_BAD_STATE );
4926
4927 if( PSA_ALG_IS_RAW_KEY_AGREEMENT( alg ) )
4928 return( PSA_ERROR_INVALID_ARGUMENT );
4929 else if( PSA_ALG_IS_KEY_AGREEMENT( alg ) )
4930 {
4931 #if defined(AT_LEAST_ONE_BUILTIN_KDF)
4932 psa_algorithm_t kdf_alg = PSA_ALG_KEY_AGREEMENT_GET_KDF( alg );
4933 status = psa_key_derivation_setup_kdf( operation, kdf_alg );
4934 #else
4935 return( PSA_ERROR_NOT_SUPPORTED );
4936 #endif /* AT_LEAST_ONE_BUILTIN_KDF */
4937 }
4938 else if( PSA_ALG_IS_KEY_DERIVATION( alg ) )
4939 {
4940 #if defined(AT_LEAST_ONE_BUILTIN_KDF)
4941 status = psa_key_derivation_setup_kdf( operation, alg );
4942 #else
4943 return( PSA_ERROR_NOT_SUPPORTED );
4944 #endif /* AT_LEAST_ONE_BUILTIN_KDF */
4945 }
4946 else
4947 return( PSA_ERROR_INVALID_ARGUMENT );
4948
4949 if( status == PSA_SUCCESS )
4950 operation->alg = alg;
4951 return( status );
4952 }
4953
4954 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
psa_hkdf_input(psa_hkdf_key_derivation_t * hkdf,psa_algorithm_t hash_alg,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)4955 static psa_status_t psa_hkdf_input( psa_hkdf_key_derivation_t *hkdf,
4956 psa_algorithm_t hash_alg,
4957 psa_key_derivation_step_t step,
4958 const uint8_t *data,
4959 size_t data_length )
4960 {
4961 psa_status_t status;
4962 switch( step )
4963 {
4964 case PSA_KEY_DERIVATION_INPUT_SALT:
4965 if( hkdf->state != HKDF_STATE_INIT )
4966 return( PSA_ERROR_BAD_STATE );
4967 else
4968 {
4969 status = psa_key_derivation_start_hmac( &hkdf->hmac,
4970 hash_alg,
4971 data, data_length );
4972 if( status != PSA_SUCCESS )
4973 return( status );
4974 hkdf->state = HKDF_STATE_STARTED;
4975 return( PSA_SUCCESS );
4976 }
4977 case PSA_KEY_DERIVATION_INPUT_SECRET:
4978 /* If no salt was provided, use an empty salt. */
4979 if( hkdf->state == HKDF_STATE_INIT )
4980 {
4981 status = psa_key_derivation_start_hmac( &hkdf->hmac,
4982 hash_alg,
4983 NULL, 0 );
4984 if( status != PSA_SUCCESS )
4985 return( status );
4986 hkdf->state = HKDF_STATE_STARTED;
4987 }
4988 if( hkdf->state != HKDF_STATE_STARTED )
4989 return( PSA_ERROR_BAD_STATE );
4990 status = psa_mac_update( &hkdf->hmac,
4991 data, data_length );
4992 if( status != PSA_SUCCESS )
4993 return( status );
4994 status = psa_mac_sign_finish( &hkdf->hmac,
4995 hkdf->prk,
4996 sizeof( hkdf->prk ),
4997 &data_length );
4998 if( status != PSA_SUCCESS )
4999 return( status );
5000 hkdf->offset_in_block = PSA_HASH_LENGTH( hash_alg );
5001 hkdf->block_number = 0;
5002 hkdf->state = HKDF_STATE_KEYED;
5003 return( PSA_SUCCESS );
5004 case PSA_KEY_DERIVATION_INPUT_INFO:
5005 if( hkdf->state == HKDF_STATE_OUTPUT )
5006 return( PSA_ERROR_BAD_STATE );
5007 if( hkdf->info_set )
5008 return( PSA_ERROR_BAD_STATE );
5009 hkdf->info_length = data_length;
5010 if( data_length != 0 )
5011 {
5012 hkdf->info = mbedtls_calloc( 1, data_length );
5013 if( hkdf->info == NULL )
5014 return( PSA_ERROR_INSUFFICIENT_MEMORY );
5015 memcpy( hkdf->info, data, data_length );
5016 }
5017 hkdf->info_set = 1;
5018 return( PSA_SUCCESS );
5019 default:
5020 return( PSA_ERROR_INVALID_ARGUMENT );
5021 }
5022 }
5023 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF */
5024
5025 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
5026 defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_tls12_prf_set_seed(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)5027 static psa_status_t psa_tls12_prf_set_seed( psa_tls12_prf_key_derivation_t *prf,
5028 const uint8_t *data,
5029 size_t data_length )
5030 {
5031 if( prf->state != PSA_TLS12_PRF_STATE_INIT )
5032 return( PSA_ERROR_BAD_STATE );
5033
5034 if( data_length != 0 )
5035 {
5036 prf->seed = mbedtls_calloc( 1, data_length );
5037 if( prf->seed == NULL )
5038 return( PSA_ERROR_INSUFFICIENT_MEMORY );
5039
5040 memcpy( prf->seed, data, data_length );
5041 prf->seed_length = data_length;
5042 }
5043
5044 prf->state = PSA_TLS12_PRF_STATE_SEED_SET;
5045
5046 return( PSA_SUCCESS );
5047 }
5048
psa_tls12_prf_set_key(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)5049 static psa_status_t psa_tls12_prf_set_key( psa_tls12_prf_key_derivation_t *prf,
5050 const uint8_t *data,
5051 size_t data_length )
5052 {
5053 if( prf->state != PSA_TLS12_PRF_STATE_SEED_SET )
5054 return( PSA_ERROR_BAD_STATE );
5055
5056 if( data_length != 0 )
5057 {
5058 prf->secret = mbedtls_calloc( 1, data_length );
5059 if( prf->secret == NULL )
5060 return( PSA_ERROR_INSUFFICIENT_MEMORY );
5061
5062 memcpy( prf->secret, data, data_length );
5063 prf->secret_length = data_length;
5064 }
5065
5066 prf->state = PSA_TLS12_PRF_STATE_KEY_SET;
5067
5068 return( PSA_SUCCESS );
5069 }
5070
psa_tls12_prf_set_label(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)5071 static psa_status_t psa_tls12_prf_set_label( psa_tls12_prf_key_derivation_t *prf,
5072 const uint8_t *data,
5073 size_t data_length )
5074 {
5075 if( prf->state != PSA_TLS12_PRF_STATE_KEY_SET )
5076 return( PSA_ERROR_BAD_STATE );
5077
5078 if( data_length != 0 )
5079 {
5080 prf->label = mbedtls_calloc( 1, data_length );
5081 if( prf->label == NULL )
5082 return( PSA_ERROR_INSUFFICIENT_MEMORY );
5083
5084 memcpy( prf->label, data, data_length );
5085 prf->label_length = data_length;
5086 }
5087
5088 prf->state = PSA_TLS12_PRF_STATE_LABEL_SET;
5089
5090 return( PSA_SUCCESS );
5091 }
5092
psa_tls12_prf_input(psa_tls12_prf_key_derivation_t * prf,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)5093 static psa_status_t psa_tls12_prf_input( psa_tls12_prf_key_derivation_t *prf,
5094 psa_key_derivation_step_t step,
5095 const uint8_t *data,
5096 size_t data_length )
5097 {
5098 switch( step )
5099 {
5100 case PSA_KEY_DERIVATION_INPUT_SEED:
5101 return( psa_tls12_prf_set_seed( prf, data, data_length ) );
5102 case PSA_KEY_DERIVATION_INPUT_SECRET:
5103 return( psa_tls12_prf_set_key( prf, data, data_length ) );
5104 case PSA_KEY_DERIVATION_INPUT_LABEL:
5105 return( psa_tls12_prf_set_label( prf, data, data_length ) );
5106 default:
5107 return( PSA_ERROR_INVALID_ARGUMENT );
5108 }
5109 }
5110 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) ||
5111 * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
5112
5113 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
psa_tls12_prf_psk_to_ms_set_key(psa_tls12_prf_key_derivation_t * prf,const uint8_t * data,size_t data_length)5114 static psa_status_t psa_tls12_prf_psk_to_ms_set_key(
5115 psa_tls12_prf_key_derivation_t *prf,
5116 const uint8_t *data,
5117 size_t data_length )
5118 {
5119 psa_status_t status;
5120 uint8_t pms[ 4 + 2 * PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE ];
5121 uint8_t *cur = pms;
5122
5123 if( data_length > PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE )
5124 return( PSA_ERROR_INVALID_ARGUMENT );
5125
5126 /* Quoting RFC 4279, Section 2:
5127 *
5128 * The premaster secret is formed as follows: if the PSK is N octets
5129 * long, concatenate a uint16 with the value N, N zero octets, a second
5130 * uint16 with the value N, and the PSK itself.
5131 */
5132
5133 *cur++ = MBEDTLS_BYTE_1( data_length );
5134 *cur++ = MBEDTLS_BYTE_0( data_length );
5135 memset( cur, 0, data_length );
5136 cur += data_length;
5137 *cur++ = pms[0];
5138 *cur++ = pms[1];
5139 memcpy( cur, data, data_length );
5140 cur += data_length;
5141
5142 status = psa_tls12_prf_set_key( prf, pms, cur - pms );
5143
5144 mbedtls_platform_zeroize( pms, sizeof( pms ) );
5145 return( status );
5146 }
5147
psa_tls12_prf_psk_to_ms_input(psa_tls12_prf_key_derivation_t * prf,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)5148 static psa_status_t psa_tls12_prf_psk_to_ms_input(
5149 psa_tls12_prf_key_derivation_t *prf,
5150 psa_key_derivation_step_t step,
5151 const uint8_t *data,
5152 size_t data_length )
5153 {
5154 if( step == PSA_KEY_DERIVATION_INPUT_SECRET )
5155 {
5156 return( psa_tls12_prf_psk_to_ms_set_key( prf,
5157 data, data_length ) );
5158 }
5159
5160 return( psa_tls12_prf_input( prf, step, data, data_length ) );
5161 }
5162 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
5163
5164 /** Check whether the given key type is acceptable for the given
5165 * input step of a key derivation.
5166 *
5167 * Secret inputs must have the type #PSA_KEY_TYPE_DERIVE.
5168 * Non-secret inputs must have the type #PSA_KEY_TYPE_RAW_DATA.
5169 * Both secret and non-secret inputs can alternatively have the type
5170 * #PSA_KEY_TYPE_NONE, which is never the type of a key object, meaning
5171 * that the input was passed as a buffer rather than via a key object.
5172 */
psa_key_derivation_check_input_type(psa_key_derivation_step_t step,psa_key_type_t key_type)5173 static int psa_key_derivation_check_input_type(
5174 psa_key_derivation_step_t step,
5175 psa_key_type_t key_type )
5176 {
5177 switch( step )
5178 {
5179 case PSA_KEY_DERIVATION_INPUT_SECRET:
5180 if( key_type == PSA_KEY_TYPE_DERIVE )
5181 return( PSA_SUCCESS );
5182 if( key_type == PSA_KEY_TYPE_NONE )
5183 return( PSA_SUCCESS );
5184 break;
5185 case PSA_KEY_DERIVATION_INPUT_LABEL:
5186 case PSA_KEY_DERIVATION_INPUT_SALT:
5187 case PSA_KEY_DERIVATION_INPUT_INFO:
5188 case PSA_KEY_DERIVATION_INPUT_SEED:
5189 if( key_type == PSA_KEY_TYPE_RAW_DATA )
5190 return( PSA_SUCCESS );
5191 if( key_type == PSA_KEY_TYPE_NONE )
5192 return( PSA_SUCCESS );
5193 break;
5194 }
5195 return( PSA_ERROR_INVALID_ARGUMENT );
5196 }
5197
psa_key_derivation_input_internal(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,psa_key_type_t key_type,const uint8_t * data,size_t data_length)5198 static psa_status_t psa_key_derivation_input_internal(
5199 psa_key_derivation_operation_t *operation,
5200 psa_key_derivation_step_t step,
5201 psa_key_type_t key_type,
5202 const uint8_t *data,
5203 size_t data_length )
5204 {
5205 psa_status_t status;
5206 psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg( operation );
5207
5208 status = psa_key_derivation_check_input_type( step, key_type );
5209 if( status != PSA_SUCCESS )
5210 goto exit;
5211
5212 #if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
5213 if( PSA_ALG_IS_HKDF( kdf_alg ) )
5214 {
5215 status = psa_hkdf_input( &operation->ctx.hkdf,
5216 PSA_ALG_HKDF_GET_HASH( kdf_alg ),
5217 step, data, data_length );
5218 }
5219 else
5220 #endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF */
5221 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF)
5222 if( PSA_ALG_IS_TLS12_PRF( kdf_alg ) )
5223 {
5224 status = psa_tls12_prf_input( &operation->ctx.tls12_prf,
5225 step, data, data_length );
5226 }
5227 else
5228 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF */
5229 #if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
5230 if( PSA_ALG_IS_TLS12_PSK_TO_MS( kdf_alg ) )
5231 {
5232 status = psa_tls12_prf_psk_to_ms_input( &operation->ctx.tls12_prf,
5233 step, data, data_length );
5234 }
5235 else
5236 #endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
5237 {
5238 /* This can't happen unless the operation object was not initialized */
5239 (void) data;
5240 (void) data_length;
5241 (void) kdf_alg;
5242 return( PSA_ERROR_BAD_STATE );
5243 }
5244
5245 exit:
5246 if( status != PSA_SUCCESS )
5247 psa_key_derivation_abort( operation );
5248 return( status );
5249 }
5250
psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,const uint8_t * data,size_t data_length)5251 psa_status_t psa_key_derivation_input_bytes(
5252 psa_key_derivation_operation_t *operation,
5253 psa_key_derivation_step_t step,
5254 const uint8_t *data,
5255 size_t data_length )
5256 {
5257 return( psa_key_derivation_input_internal( operation, step,
5258 PSA_KEY_TYPE_NONE,
5259 data, data_length ) );
5260 }
5261
psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,mbedtls_svc_key_id_t key)5262 psa_status_t psa_key_derivation_input_key(
5263 psa_key_derivation_operation_t *operation,
5264 psa_key_derivation_step_t step,
5265 mbedtls_svc_key_id_t key )
5266 {
5267 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
5268 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
5269 psa_key_slot_t *slot;
5270
5271 status = psa_get_and_lock_transparent_key_slot_with_policy(
5272 key, &slot, PSA_KEY_USAGE_DERIVE, operation->alg );
5273 if( status != PSA_SUCCESS )
5274 {
5275 psa_key_derivation_abort( operation );
5276 return( status );
5277 }
5278
5279 /* Passing a key object as a SECRET input unlocks the permission
5280 * to output to a key object. */
5281 if( step == PSA_KEY_DERIVATION_INPUT_SECRET )
5282 operation->can_output_key = 1;
5283
5284 status = psa_key_derivation_input_internal( operation,
5285 step, slot->attr.type,
5286 slot->key.data,
5287 slot->key.bytes );
5288
5289 unlock_status = psa_unlock_key_slot( slot );
5290
5291 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
5292 }
5293
5294
5295
5296 /****************************************************************/
5297 /* Key agreement */
5298 /****************************************************************/
5299
5300 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
psa_key_agreement_ecdh(const uint8_t * peer_key,size_t peer_key_length,const mbedtls_ecp_keypair * our_key,uint8_t * shared_secret,size_t shared_secret_size,size_t * shared_secret_length)5301 static psa_status_t psa_key_agreement_ecdh( const uint8_t *peer_key,
5302 size_t peer_key_length,
5303 const mbedtls_ecp_keypair *our_key,
5304 uint8_t *shared_secret,
5305 size_t shared_secret_size,
5306 size_t *shared_secret_length )
5307 {
5308 mbedtls_ecp_keypair *their_key = NULL;
5309 mbedtls_ecdh_context ecdh;
5310 psa_status_t status;
5311 size_t bits = 0;
5312 psa_ecc_family_t curve = mbedtls_ecc_group_to_psa( our_key->grp.id, &bits );
5313 mbedtls_ecdh_init( &ecdh );
5314
5315 status = mbedtls_psa_ecp_load_representation(
5316 PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve),
5317 bits,
5318 peer_key,
5319 peer_key_length,
5320 &their_key );
5321 if( status != PSA_SUCCESS )
5322 goto exit;
5323
5324 status = mbedtls_to_psa_error(
5325 mbedtls_ecdh_get_params( &ecdh, their_key, MBEDTLS_ECDH_THEIRS ) );
5326 if( status != PSA_SUCCESS )
5327 goto exit;
5328 status = mbedtls_to_psa_error(
5329 mbedtls_ecdh_get_params( &ecdh, our_key, MBEDTLS_ECDH_OURS ) );
5330 if( status != PSA_SUCCESS )
5331 goto exit;
5332
5333 status = mbedtls_to_psa_error(
5334 mbedtls_ecdh_calc_secret( &ecdh,
5335 shared_secret_length,
5336 shared_secret, shared_secret_size,
5337 mbedtls_psa_get_random,
5338 MBEDTLS_PSA_RANDOM_STATE ) );
5339 if( status != PSA_SUCCESS )
5340 goto exit;
5341 if( PSA_BITS_TO_BYTES( bits ) != *shared_secret_length )
5342 status = PSA_ERROR_CORRUPTION_DETECTED;
5343
5344 exit:
5345 if( status != PSA_SUCCESS )
5346 mbedtls_platform_zeroize( shared_secret, shared_secret_size );
5347 mbedtls_ecdh_free( &ecdh );
5348 mbedtls_ecp_keypair_free( their_key );
5349 mbedtls_free( their_key );
5350
5351 return( status );
5352 }
5353 #endif /* MBEDTLS_PSA_BUILTIN_ALG_ECDH */
5354
5355 #define PSA_KEY_AGREEMENT_MAX_SHARED_SECRET_SIZE MBEDTLS_ECP_MAX_BYTES
5356
psa_key_agreement_raw_internal(psa_algorithm_t alg,psa_key_slot_t * private_key,const uint8_t * peer_key,size_t peer_key_length,uint8_t * shared_secret,size_t shared_secret_size,size_t * shared_secret_length)5357 static psa_status_t psa_key_agreement_raw_internal( psa_algorithm_t alg,
5358 psa_key_slot_t *private_key,
5359 const uint8_t *peer_key,
5360 size_t peer_key_length,
5361 uint8_t *shared_secret,
5362 size_t shared_secret_size,
5363 size_t *shared_secret_length )
5364 {
5365 mbedtls_ecp_keypair *ecp;
5366 psa_status_t status;
5367 switch( alg )
5368 {
5369 #if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
5370 case PSA_ALG_ECDH:
5371 if( ! PSA_KEY_TYPE_IS_ECC_KEY_PAIR( private_key->attr.type ) )
5372 return( PSA_ERROR_INVALID_ARGUMENT );
5373 ecp = NULL;
5374 status = mbedtls_psa_ecp_load_representation(
5375 private_key->attr.type,
5376 private_key->attr.bits,
5377 private_key->key.data,
5378 private_key->key.bytes,
5379 &ecp );
5380 if( status != PSA_SUCCESS )
5381 return( status );
5382 status = psa_key_agreement_ecdh( peer_key, peer_key_length,
5383 ecp,
5384 shared_secret, shared_secret_size,
5385 shared_secret_length );
5386 mbedtls_ecp_keypair_free( ecp );
5387 mbedtls_free( ecp );
5388 return( status );
5389 #endif /* MBEDTLS_PSA_BUILTIN_ALG_ECDH */
5390 default:
5391 (void) private_key;
5392 (void) peer_key;
5393 (void) peer_key_length;
5394 (void) shared_secret;
5395 (void) shared_secret_size;
5396 (void) shared_secret_length;
5397 return( PSA_ERROR_NOT_SUPPORTED );
5398 }
5399 }
5400
5401 /* Note that if this function fails, you must call psa_key_derivation_abort()
5402 * to potentially free embedded data structures and wipe confidential data.
5403 */
psa_key_agreement_internal(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,psa_key_slot_t * private_key,const uint8_t * peer_key,size_t peer_key_length)5404 static psa_status_t psa_key_agreement_internal( psa_key_derivation_operation_t *operation,
5405 psa_key_derivation_step_t step,
5406 psa_key_slot_t *private_key,
5407 const uint8_t *peer_key,
5408 size_t peer_key_length )
5409 {
5410 psa_status_t status;
5411 uint8_t shared_secret[PSA_KEY_AGREEMENT_MAX_SHARED_SECRET_SIZE];
5412 size_t shared_secret_length = 0;
5413 psa_algorithm_t ka_alg = PSA_ALG_KEY_AGREEMENT_GET_BASE( operation->alg );
5414
5415 /* Step 1: run the secret agreement algorithm to generate the shared
5416 * secret. */
5417 status = psa_key_agreement_raw_internal( ka_alg,
5418 private_key,
5419 peer_key, peer_key_length,
5420 shared_secret,
5421 sizeof( shared_secret ),
5422 &shared_secret_length );
5423 if( status != PSA_SUCCESS )
5424 goto exit;
5425
5426 /* Step 2: set up the key derivation to generate key material from
5427 * the shared secret. A shared secret is permitted wherever a key
5428 * of type DERIVE is permitted. */
5429 status = psa_key_derivation_input_internal( operation, step,
5430 PSA_KEY_TYPE_DERIVE,
5431 shared_secret,
5432 shared_secret_length );
5433 exit:
5434 mbedtls_platform_zeroize( shared_secret, shared_secret_length );
5435 return( status );
5436 }
5437
psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,psa_key_derivation_step_t step,mbedtls_svc_key_id_t private_key,const uint8_t * peer_key,size_t peer_key_length)5438 psa_status_t psa_key_derivation_key_agreement( psa_key_derivation_operation_t *operation,
5439 psa_key_derivation_step_t step,
5440 mbedtls_svc_key_id_t private_key,
5441 const uint8_t *peer_key,
5442 size_t peer_key_length )
5443 {
5444 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
5445 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
5446 psa_key_slot_t *slot;
5447
5448 if( ! PSA_ALG_IS_KEY_AGREEMENT( operation->alg ) )
5449 return( PSA_ERROR_INVALID_ARGUMENT );
5450 status = psa_get_and_lock_transparent_key_slot_with_policy(
5451 private_key, &slot, PSA_KEY_USAGE_DERIVE, operation->alg );
5452 if( status != PSA_SUCCESS )
5453 return( status );
5454 status = psa_key_agreement_internal( operation, step,
5455 slot,
5456 peer_key, peer_key_length );
5457 if( status != PSA_SUCCESS )
5458 psa_key_derivation_abort( operation );
5459 else
5460 {
5461 /* If a private key has been added as SECRET, we allow the derived
5462 * key material to be used as a key in PSA Crypto. */
5463 if( step == PSA_KEY_DERIVATION_INPUT_SECRET )
5464 operation->can_output_key = 1;
5465 }
5466
5467 unlock_status = psa_unlock_key_slot( slot );
5468
5469 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
5470 }
5471
psa_raw_key_agreement(psa_algorithm_t alg,mbedtls_svc_key_id_t private_key,const uint8_t * peer_key,size_t peer_key_length,uint8_t * output,size_t output_size,size_t * output_length)5472 psa_status_t psa_raw_key_agreement( psa_algorithm_t alg,
5473 mbedtls_svc_key_id_t private_key,
5474 const uint8_t *peer_key,
5475 size_t peer_key_length,
5476 uint8_t *output,
5477 size_t output_size,
5478 size_t *output_length )
5479 {
5480 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
5481 psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
5482 psa_key_slot_t *slot = NULL;
5483
5484 if( ! PSA_ALG_IS_KEY_AGREEMENT( alg ) )
5485 {
5486 status = PSA_ERROR_INVALID_ARGUMENT;
5487 goto exit;
5488 }
5489 status = psa_get_and_lock_transparent_key_slot_with_policy(
5490 private_key, &slot, PSA_KEY_USAGE_DERIVE, alg );
5491 if( status != PSA_SUCCESS )
5492 goto exit;
5493
5494 status = psa_key_agreement_raw_internal( alg, slot,
5495 peer_key, peer_key_length,
5496 output, output_size,
5497 output_length );
5498
5499 exit:
5500 if( status != PSA_SUCCESS )
5501 {
5502 /* If an error happens and is not handled properly, the output
5503 * may be used as a key to protect sensitive data. Arrange for such
5504 * a key to be random, which is likely to result in decryption or
5505 * verification errors. This is better than filling the buffer with
5506 * some constant data such as zeros, which would result in the data
5507 * being protected with a reproducible, easily knowable key.
5508 */
5509 psa_generate_random( output, output_size );
5510 *output_length = output_size;
5511 }
5512
5513 unlock_status = psa_unlock_key_slot( slot );
5514
5515 return( ( status == PSA_SUCCESS ) ? unlock_status : status );
5516 }
5517
5518
5519
5520 /****************************************************************/
5521 /* Random generation */
5522 /****************************************************************/
5523
5524 /** Initialize the PSA random generator.
5525 */
mbedtls_psa_random_init(mbedtls_psa_random_context_t * rng)5526 static void mbedtls_psa_random_init( mbedtls_psa_random_context_t *rng )
5527 {
5528 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5529 memset( rng, 0, sizeof( *rng ) );
5530 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5531
5532 /* Set default configuration if
5533 * mbedtls_psa_crypto_configure_entropy_sources() hasn't been called. */
5534 if( rng->entropy_init == NULL )
5535 rng->entropy_init = mbedtls_entropy_init;
5536 if( rng->entropy_free == NULL )
5537 rng->entropy_free = mbedtls_entropy_free;
5538
5539 rng->entropy_init( &rng->entropy );
5540 #if defined(MBEDTLS_PSA_INJECT_ENTROPY) && \
5541 defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES)
5542 /* The PSA entropy injection feature depends on using NV seed as an entropy
5543 * source. Add NV seed as an entropy source for PSA entropy injection. */
5544 mbedtls_entropy_add_source( &rng->entropy,
5545 mbedtls_nv_seed_poll, NULL,
5546 MBEDTLS_ENTROPY_BLOCK_SIZE,
5547 MBEDTLS_ENTROPY_SOURCE_STRONG );
5548 #endif
5549
5550 mbedtls_psa_drbg_init( MBEDTLS_PSA_RANDOM_STATE );
5551 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5552 }
5553
5554 /** Deinitialize the PSA random generator.
5555 */
mbedtls_psa_random_free(mbedtls_psa_random_context_t * rng)5556 static void mbedtls_psa_random_free( mbedtls_psa_random_context_t *rng )
5557 {
5558 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5559 memset( rng, 0, sizeof( *rng ) );
5560 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5561 mbedtls_psa_drbg_free( MBEDTLS_PSA_RANDOM_STATE );
5562 rng->entropy_free( &rng->entropy );
5563 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5564 }
5565
5566 /** Seed the PSA random generator.
5567 */
mbedtls_psa_random_seed(mbedtls_psa_random_context_t * rng)5568 static psa_status_t mbedtls_psa_random_seed( mbedtls_psa_random_context_t *rng )
5569 {
5570 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5571 /* Do nothing: the external RNG seeds itself. */
5572 (void) rng;
5573 return( PSA_SUCCESS );
5574 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5575 const unsigned char drbg_seed[] = "PSA";
5576 int ret = mbedtls_psa_drbg_seed( &rng->entropy,
5577 drbg_seed, sizeof( drbg_seed ) - 1 );
5578 return mbedtls_to_psa_error( ret );
5579 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5580 }
5581
psa_generate_random(uint8_t * output,size_t output_size)5582 psa_status_t psa_generate_random( uint8_t *output,
5583 size_t output_size )
5584 {
5585 GUARD_MODULE_INITIALIZED;
5586
5587 #if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
5588
5589 size_t output_length = 0;
5590 psa_status_t status = mbedtls_psa_external_get_random( &global_data.rng,
5591 output, output_size,
5592 &output_length );
5593 if( status != PSA_SUCCESS )
5594 return( status );
5595 /* Breaking up a request into smaller chunks is currently not supported
5596 * for the extrernal RNG interface. */
5597 if( output_length != output_size )
5598 return( PSA_ERROR_INSUFFICIENT_ENTROPY );
5599 return( PSA_SUCCESS );
5600
5601 #else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5602
5603 while( output_size > 0 )
5604 {
5605 size_t request_size =
5606 ( output_size > MBEDTLS_PSA_RANDOM_MAX_REQUEST ?
5607 MBEDTLS_PSA_RANDOM_MAX_REQUEST :
5608 output_size );
5609 int ret = mbedtls_psa_get_random( MBEDTLS_PSA_RANDOM_STATE,
5610 output, request_size );
5611 if( ret != 0 )
5612 return( mbedtls_to_psa_error( ret ) );
5613 output_size -= request_size;
5614 output += request_size;
5615 }
5616 return( PSA_SUCCESS );
5617 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5618 }
5619
5620 /* Wrapper function allowing the classic API to use the PSA RNG.
5621 *
5622 * `mbedtls_psa_get_random(MBEDTLS_PSA_RANDOM_STATE, ...)` calls
5623 * `psa_generate_random(...)`. The state parameter is ignored since the
5624 * PSA API doesn't support passing an explicit state.
5625 *
5626 * In the non-external case, psa_generate_random() calls an
5627 * `mbedtls_xxx_drbg_random` function which has exactly the same signature
5628 * and semantics as mbedtls_psa_get_random(). As an optimization,
5629 * instead of doing this back-and-forth between the PSA API and the
5630 * classic API, psa_crypto_random_impl.h defines `mbedtls_psa_get_random`
5631 * as a constant function pointer to `mbedtls_xxx_drbg_random`.
5632 */
5633 #if defined (MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
mbedtls_psa_get_random(void * p_rng,unsigned char * output,size_t output_size)5634 int mbedtls_psa_get_random( void *p_rng,
5635 unsigned char *output,
5636 size_t output_size )
5637 {
5638 /* This function takes a pointer to the RNG state because that's what
5639 * classic mbedtls functions using an RNG expect. The PSA RNG manages
5640 * its own state internally and doesn't let the caller access that state.
5641 * So we just ignore the state parameter, and in practice we'll pass
5642 * NULL. */
5643 (void) p_rng;
5644 psa_status_t status = psa_generate_random( output, output_size );
5645 if( status == PSA_SUCCESS )
5646 return( 0 );
5647 else
5648 return( MBEDTLS_ERR_ENTROPY_SOURCE_FAILED );
5649 }
5650 #endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
5651
5652 #if defined(MBEDTLS_PSA_INJECT_ENTROPY)
5653 #include "entropy_poll.h"
5654
mbedtls_psa_inject_entropy(const uint8_t * seed,size_t seed_size)5655 psa_status_t mbedtls_psa_inject_entropy( const uint8_t *seed,
5656 size_t seed_size )
5657 {
5658 if( global_data.initialized )
5659 return( PSA_ERROR_NOT_PERMITTED );
5660
5661 if( ( ( seed_size < MBEDTLS_ENTROPY_MIN_PLATFORM ) ||
5662 ( seed_size < MBEDTLS_ENTROPY_BLOCK_SIZE ) ) ||
5663 ( seed_size > MBEDTLS_ENTROPY_MAX_SEED_SIZE ) )
5664 return( PSA_ERROR_INVALID_ARGUMENT );
5665
5666 return( mbedtls_psa_storage_inject_entropy( seed, seed_size ) );
5667 }
5668 #endif /* MBEDTLS_PSA_INJECT_ENTROPY */
5669
5670 /** Validate the key type and size for key generation
5671 *
5672 * \param type The key type
5673 * \param bits The number of bits of the key
5674 *
5675 * \retval #PSA_SUCCESS
5676 * The key type and size are valid.
5677 * \retval #PSA_ERROR_INVALID_ARGUMENT
5678 * The size in bits of the key is not valid.
5679 * \retval #PSA_ERROR_NOT_SUPPORTED
5680 * The type and/or the size in bits of the key or the combination of
5681 * the two is not supported.
5682 */
psa_validate_key_type_and_size_for_key_generation(psa_key_type_t type,size_t bits)5683 static psa_status_t psa_validate_key_type_and_size_for_key_generation(
5684 psa_key_type_t type, size_t bits )
5685 {
5686 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
5687
5688 if( key_type_is_raw_bytes( type ) )
5689 {
5690 status = psa_validate_unstructured_key_bit_size( type, bits );
5691 if( status != PSA_SUCCESS )
5692 return( status );
5693 }
5694 else
5695 #if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR)
5696 if( PSA_KEY_TYPE_IS_RSA( type ) && PSA_KEY_TYPE_IS_KEY_PAIR( type ) )
5697 {
5698 if( bits > PSA_VENDOR_RSA_MAX_KEY_BITS )
5699 return( PSA_ERROR_NOT_SUPPORTED );
5700
5701 /* Accept only byte-aligned keys, for the same reasons as
5702 * in psa_import_rsa_key(). */
5703 if( bits % 8 != 0 )
5704 return( PSA_ERROR_NOT_SUPPORTED );
5705 }
5706 else
5707 #endif /* defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR) */
5708
5709 #if defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR)
5710 if( PSA_KEY_TYPE_IS_ECC( type ) && PSA_KEY_TYPE_IS_KEY_PAIR( type ) )
5711 {
5712 /* To avoid empty block, return successfully here. */
5713 return( PSA_SUCCESS );
5714 }
5715 else
5716 #endif /* defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR) */
5717 {
5718 return( PSA_ERROR_NOT_SUPPORTED );
5719 }
5720
5721 return( PSA_SUCCESS );
5722 }
5723
psa_generate_key_internal(const psa_key_attributes_t * attributes,uint8_t * key_buffer,size_t key_buffer_size,size_t * key_buffer_length)5724 psa_status_t psa_generate_key_internal(
5725 const psa_key_attributes_t *attributes,
5726 uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length )
5727 {
5728 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
5729 psa_key_type_t type = attributes->core.type;
5730
5731 if( ( attributes->domain_parameters == NULL ) &&
5732 ( attributes->domain_parameters_size != 0 ) )
5733 return( PSA_ERROR_INVALID_ARGUMENT );
5734
5735 if( key_type_is_raw_bytes( type ) )
5736 {
5737 status = psa_generate_random( key_buffer, key_buffer_size );
5738 if( status != PSA_SUCCESS )
5739 return( status );
5740
5741 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
5742 if( type == PSA_KEY_TYPE_DES )
5743 psa_des_set_key_parity( key_buffer, key_buffer_size );
5744 #endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES */
5745 }
5746 else
5747
5748 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR) && \
5749 defined(MBEDTLS_GENPRIME)
5750 if ( type == PSA_KEY_TYPE_RSA_KEY_PAIR )
5751 {
5752 return( mbedtls_psa_rsa_generate_key( attributes,
5753 key_buffer,
5754 key_buffer_size,
5755 key_buffer_length ) );
5756 }
5757 else
5758 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR)
5759 * defined(MBEDTLS_GENPRIME) */
5760
5761 #if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR)
5762 if ( PSA_KEY_TYPE_IS_ECC( type ) && PSA_KEY_TYPE_IS_KEY_PAIR( type ) )
5763 {
5764 return( mbedtls_psa_ecp_generate_key( attributes,
5765 key_buffer,
5766 key_buffer_size,
5767 key_buffer_length ) );
5768 }
5769 else
5770 #endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR) */
5771 {
5772 (void)key_buffer_length;
5773 return( PSA_ERROR_NOT_SUPPORTED );
5774 }
5775
5776 return( PSA_SUCCESS );
5777 }
5778
psa_generate_key(const psa_key_attributes_t * attributes,mbedtls_svc_key_id_t * key)5779 psa_status_t psa_generate_key( const psa_key_attributes_t *attributes,
5780 mbedtls_svc_key_id_t *key )
5781 {
5782 psa_status_t status;
5783 psa_key_slot_t *slot = NULL;
5784 psa_se_drv_table_entry_t *driver = NULL;
5785 size_t key_buffer_size;
5786
5787 *key = MBEDTLS_SVC_KEY_ID_INIT;
5788
5789 /* Reject any attempt to create a zero-length key so that we don't
5790 * risk tripping up later, e.g. on a malloc(0) that returns NULL. */
5791 if( psa_get_key_bits( attributes ) == 0 )
5792 return( PSA_ERROR_INVALID_ARGUMENT );
5793
5794 /* Reject any attempt to create a public key. */
5795 if( PSA_KEY_TYPE_IS_PUBLIC_KEY(attributes->core.type) )
5796 return( PSA_ERROR_INVALID_ARGUMENT );
5797
5798 status = psa_start_key_creation( PSA_KEY_CREATION_GENERATE, attributes,
5799 &slot, &driver );
5800 if( status != PSA_SUCCESS )
5801 goto exit;
5802
5803 /* In the case of a transparent key or an opaque key stored in local
5804 * storage ( thus not in the case of generating a key in a secure element
5805 * with storage ( MBEDTLS_PSA_CRYPTO_SE_C ) ),we have to allocate a
5806 * buffer to hold the generated key material. */
5807 if( slot->key.data == NULL )
5808 {
5809 if ( PSA_KEY_LIFETIME_GET_LOCATION( attributes->core.lifetime ) ==
5810 PSA_KEY_LOCATION_LOCAL_STORAGE )
5811 {
5812 status = psa_validate_key_type_and_size_for_key_generation(
5813 attributes->core.type, attributes->core.bits );
5814 if( status != PSA_SUCCESS )
5815 goto exit;
5816
5817 key_buffer_size = PSA_EXPORT_KEY_OUTPUT_SIZE(
5818 attributes->core.type,
5819 attributes->core.bits );
5820 }
5821 else
5822 {
5823 status = psa_driver_wrapper_get_key_buffer_size(
5824 attributes, &key_buffer_size );
5825 if( status != PSA_SUCCESS )
5826 goto exit;
5827 }
5828
5829 status = psa_allocate_buffer_to_slot( slot, key_buffer_size );
5830 if( status != PSA_SUCCESS )
5831 goto exit;
5832 }
5833
5834 status = psa_driver_wrapper_generate_key( attributes,
5835 slot->key.data, slot->key.bytes, &slot->key.bytes );
5836
5837 if( status != PSA_SUCCESS )
5838 psa_remove_key_data_from_memory( slot );
5839
5840 exit:
5841 if( status == PSA_SUCCESS )
5842 status = psa_finish_key_creation( slot, driver, key );
5843 if( status != PSA_SUCCESS )
5844 psa_fail_key_creation( slot, driver );
5845
5846 return( status );
5847 }
5848
5849 /****************************************************************/
5850 /* Module setup */
5851 /****************************************************************/
5852
5853 #if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
mbedtls_psa_crypto_configure_entropy_sources(void (* entropy_init)(mbedtls_entropy_context * ctx),void (* entropy_free)(mbedtls_entropy_context * ctx))5854 psa_status_t mbedtls_psa_crypto_configure_entropy_sources(
5855 void (* entropy_init )( mbedtls_entropy_context *ctx ),
5856 void (* entropy_free )( mbedtls_entropy_context *ctx ) )
5857 {
5858 if( global_data.rng_state != RNG_NOT_INITIALIZED )
5859 return( PSA_ERROR_BAD_STATE );
5860 global_data.rng.entropy_init = entropy_init;
5861 global_data.rng.entropy_free = entropy_free;
5862 return( PSA_SUCCESS );
5863 }
5864 #endif /* !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) */
5865
mbedtls_psa_crypto_free(void)5866 void mbedtls_psa_crypto_free( void )
5867 {
5868 psa_wipe_all_key_slots( );
5869 if( global_data.rng_state != RNG_NOT_INITIALIZED )
5870 {
5871 mbedtls_psa_random_free( &global_data.rng );
5872 }
5873 /* Wipe all remaining data, including configuration.
5874 * In particular, this sets all state indicator to the value
5875 * indicating "uninitialized". */
5876 mbedtls_platform_zeroize( &global_data, sizeof( global_data ) );
5877
5878 /* Terminate drivers */
5879 psa_driver_wrapper_free( );
5880 }
5881
5882 #if defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS)
5883 /** Recover a transaction that was interrupted by a power failure.
5884 *
5885 * This function is called during initialization, before psa_crypto_init()
5886 * returns. If this function returns a failure status, the initialization
5887 * fails.
5888 */
psa_crypto_recover_transaction(const psa_crypto_transaction_t * transaction)5889 static psa_status_t psa_crypto_recover_transaction(
5890 const psa_crypto_transaction_t *transaction )
5891 {
5892 switch( transaction->unknown.type )
5893 {
5894 case PSA_CRYPTO_TRANSACTION_CREATE_KEY:
5895 case PSA_CRYPTO_TRANSACTION_DESTROY_KEY:
5896 /* TODO - fall through to the failure case until this
5897 * is implemented.
5898 * https://github.com/ARMmbed/mbed-crypto/issues/218
5899 */
5900 default:
5901 /* We found an unsupported transaction in the storage.
5902 * We don't know what state the storage is in. Give up. */
5903 return( PSA_ERROR_DATA_INVALID );
5904 }
5905 }
5906 #endif /* PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS */
5907
psa_crypto_init(void)5908 psa_status_t psa_crypto_init( void )
5909 {
5910 psa_status_t status;
5911
5912 /* Double initialization is explicitly allowed. */
5913 if( global_data.initialized != 0 )
5914 return( PSA_SUCCESS );
5915
5916 /* Initialize and seed the random generator. */
5917 mbedtls_psa_random_init( &global_data.rng );
5918 global_data.rng_state = RNG_INITIALIZED;
5919 status = mbedtls_psa_random_seed( &global_data.rng );
5920 if( status != PSA_SUCCESS )
5921 goto exit;
5922 global_data.rng_state = RNG_SEEDED;
5923
5924 status = psa_initialize_key_slots( );
5925 if( status != PSA_SUCCESS )
5926 goto exit;
5927
5928 /* Init drivers */
5929 status = psa_driver_wrapper_init( );
5930 if( status != PSA_SUCCESS )
5931 goto exit;
5932
5933 #if defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS)
5934 status = psa_crypto_load_transaction( );
5935 if( status == PSA_SUCCESS )
5936 {
5937 status = psa_crypto_recover_transaction( &psa_crypto_transaction );
5938 if( status != PSA_SUCCESS )
5939 goto exit;
5940 status = psa_crypto_stop_transaction( );
5941 }
5942 else if( status == PSA_ERROR_DOES_NOT_EXIST )
5943 {
5944 /* There's no transaction to complete. It's all good. */
5945 status = PSA_SUCCESS;
5946 }
5947 #endif /* PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS */
5948
5949 /* All done. */
5950 global_data.initialized = 1;
5951
5952 exit:
5953 if( status != PSA_SUCCESS )
5954 mbedtls_psa_crypto_free( );
5955 return( status );
5956 }
5957
5958 #endif /* MBEDTLS_PSA_CRYPTO_C */
5959