1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 struct sctp_association *assoc,
92 enum sctp_socket_type type);
93
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97
sctp_enter_memory_pressure(struct sock * sk)98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 sctp_memory_pressure = 1;
101 }
102
103
104 /* Get the sndbuf space available at the time on the association. */
sctp_wspace(struct sctp_association * asoc)105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 struct sock *sk = asoc->base.sk;
108
109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 : sk_stream_wspace(sk);
111 }
112
113 /* Increment the used sndbuf space count of the corresponding association by
114 * the size of the outgoing data chunk.
115 * Also, set the skb destructor for sndbuf accounting later.
116 *
117 * Since it is always 1-1 between chunk and skb, and also a new skb is always
118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119 * destructor in the data chunk skb for the purpose of the sndbuf space
120 * tracking.
121 */
sctp_set_owner_w(struct sctp_chunk * chunk)122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 struct sctp_association *asoc = chunk->asoc;
125 struct sock *sk = asoc->base.sk;
126
127 /* The sndbuf space is tracked per association. */
128 sctp_association_hold(asoc);
129
130 if (chunk->shkey)
131 sctp_auth_shkey_hold(chunk->shkey);
132
133 skb_set_owner_w(chunk->skb, sk);
134
135 chunk->skb->destructor = sctp_wfree;
136 /* Save the chunk pointer in skb for sctp_wfree to use later. */
137 skb_shinfo(chunk->skb)->destructor_arg = chunk;
138
139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 sk_mem_charge(sk, chunk->skb->truesize);
143 }
144
sctp_clear_owner_w(struct sctp_chunk * chunk)145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 skb_orphan(chunk->skb);
148 }
149
150 #define traverse_and_process() \
151 do { \
152 msg = chunk->msg; \
153 if (msg == prev_msg) \
154 continue; \
155 list_for_each_entry(c, &msg->chunks, frag_list) { \
156 if ((clear && asoc->base.sk == c->skb->sk) || \
157 (!clear && asoc->base.sk != c->skb->sk)) \
158 cb(c); \
159 } \
160 prev_msg = msg; \
161 } while (0)
162
sctp_for_each_tx_datachunk(struct sctp_association * asoc,bool clear,void (* cb)(struct sctp_chunk *))163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 bool clear,
165 void (*cb)(struct sctp_chunk *))
166
167 {
168 struct sctp_datamsg *msg, *prev_msg = NULL;
169 struct sctp_outq *q = &asoc->outqueue;
170 struct sctp_chunk *chunk, *c;
171 struct sctp_transport *t;
172
173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 traverse_and_process();
176
177 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 traverse_and_process();
179
180 list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 traverse_and_process();
182
183 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 traverse_and_process();
185
186 list_for_each_entry(chunk, &q->out_chunk_list, list)
187 traverse_and_process();
188 }
189
sctp_for_each_rx_skb(struct sctp_association * asoc,struct sock * sk,void (* cb)(struct sk_buff *,struct sock *))190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 void (*cb)(struct sk_buff *, struct sock *))
192
193 {
194 struct sk_buff *skb, *tmp;
195
196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 cb(skb, sk);
198
199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 cb(skb, sk);
204 }
205
206 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 int len)
209 {
210 struct sctp_af *af;
211
212 /* Verify basic sockaddr. */
213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 if (!af)
215 return -EINVAL;
216
217 /* Is this a valid SCTP address? */
218 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 return -EINVAL;
220
221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 return -EINVAL;
223
224 return 0;
225 }
226
227 /* Look up the association by its id. If this is not a UDP-style
228 * socket, the ID field is always ignored.
229 */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 struct sctp_association *asoc = NULL;
233
234 /* If this is not a UDP-style socket, assoc id should be ignored. */
235 if (!sctp_style(sk, UDP)) {
236 /* Return NULL if the socket state is not ESTABLISHED. It
237 * could be a TCP-style listening socket or a socket which
238 * hasn't yet called connect() to establish an association.
239 */
240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 return NULL;
242
243 /* Get the first and the only association from the list. */
244 if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 struct sctp_association, asocs);
247 return asoc;
248 }
249
250 /* Otherwise this is a UDP-style socket. */
251 if (id <= SCTP_ALL_ASSOC)
252 return NULL;
253
254 spin_lock_bh(&sctp_assocs_id_lock);
255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 asoc = NULL;
258 spin_unlock_bh(&sctp_assocs_id_lock);
259
260 return asoc;
261 }
262
263 /* Look up the transport from an address and an assoc id. If both address and
264 * id are specified, the associations matching the address and the id should be
265 * the same.
266 */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 struct sockaddr_storage *addr,
269 sctp_assoc_t id)
270 {
271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 union sctp_addr *laddr = (union sctp_addr *)addr;
274 struct sctp_transport *transport;
275
276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 return NULL;
278
279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 laddr,
281 &transport);
282
283 if (!addr_asoc)
284 return NULL;
285
286 id_asoc = sctp_id2assoc(sk, id);
287 if (id_asoc && (id_asoc != addr_asoc))
288 return NULL;
289
290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 (union sctp_addr *)addr);
292
293 return transport;
294 }
295
296 /* API 3.1.2 bind() - UDP Style Syntax
297 * The syntax of bind() is,
298 *
299 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
300 *
301 * sd - the socket descriptor returned by socket().
302 * addr - the address structure (struct sockaddr_in or struct
303 * sockaddr_in6 [RFC 2553]),
304 * addr_len - the size of the address structure.
305 */
sctp_bind(struct sock * sk,struct sockaddr * addr,int addr_len)306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 int retval = 0;
309
310 lock_sock(sk);
311
312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 addr, addr_len);
314
315 /* Disallow binding twice. */
316 if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 addr_len);
319 else
320 retval = -EINVAL;
321
322 release_sock(sk);
323
324 return retval;
325 }
326
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328
329 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_sock * opt,union sctp_addr * addr,int len)330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 union sctp_addr *addr, int len)
332 {
333 struct sctp_af *af;
334
335 /* Check minimum size. */
336 if (len < sizeof (struct sockaddr))
337 return NULL;
338
339 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 return NULL;
341
342 if (addr->sa.sa_family == AF_INET6) {
343 if (len < SIN6_LEN_RFC2133)
344 return NULL;
345 /* V4 mapped address are really of AF_INET family */
346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 !opt->pf->af_supported(AF_INET, opt))
348 return NULL;
349 }
350
351 /* If we get this far, af is valid. */
352 af = sctp_get_af_specific(addr->sa.sa_family);
353
354 if (len < af->sockaddr_len)
355 return NULL;
356
357 return af;
358 }
359
sctp_auto_asconf_init(struct sctp_sock * sp)360 static void sctp_auto_asconf_init(struct sctp_sock *sp)
361 {
362 struct net *net = sock_net(&sp->inet.sk);
363
364 if (net->sctp.default_auto_asconf) {
365 spin_lock_bh(&net->sctp.addr_wq_lock);
366 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
367 spin_unlock_bh(&net->sctp.addr_wq_lock);
368 sp->do_auto_asconf = 1;
369 }
370 }
371
372 /* Bind a local address either to an endpoint or to an association. */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
374 {
375 struct net *net = sock_net(sk);
376 struct sctp_sock *sp = sctp_sk(sk);
377 struct sctp_endpoint *ep = sp->ep;
378 struct sctp_bind_addr *bp = &ep->base.bind_addr;
379 struct sctp_af *af;
380 unsigned short snum;
381 int ret = 0;
382
383 /* Common sockaddr verification. */
384 af = sctp_sockaddr_af(sp, addr, len);
385 if (!af) {
386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
387 __func__, sk, addr, len);
388 return -EINVAL;
389 }
390
391 snum = ntohs(addr->v4.sin_port);
392
393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
394 __func__, sk, &addr->sa, bp->port, snum, len);
395
396 /* PF specific bind() address verification. */
397 if (!sp->pf->bind_verify(sp, addr))
398 return -EADDRNOTAVAIL;
399
400 /* We must either be unbound, or bind to the same port.
401 * It's OK to allow 0 ports if we are already bound.
402 * We'll just inhert an already bound port in this case
403 */
404 if (bp->port) {
405 if (!snum)
406 snum = bp->port;
407 else if (snum != bp->port) {
408 pr_debug("%s: new port %d doesn't match existing port "
409 "%d\n", __func__, snum, bp->port);
410 return -EINVAL;
411 }
412 }
413
414 if (snum && inet_port_requires_bind_service(net, snum) &&
415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
416 return -EACCES;
417
418 /* See if the address matches any of the addresses we may have
419 * already bound before checking against other endpoints.
420 */
421 if (sctp_bind_addr_match(bp, addr, sp))
422 return -EINVAL;
423
424 /* Make sure we are allowed to bind here.
425 * The function sctp_get_port_local() does duplicate address
426 * detection.
427 */
428 addr->v4.sin_port = htons(snum);
429 if (sctp_get_port_local(sk, addr))
430 return -EADDRINUSE;
431
432 /* Refresh ephemeral port. */
433 if (!bp->port) {
434 bp->port = inet_sk(sk)->inet_num;
435 sctp_auto_asconf_init(sp);
436 }
437
438 /* Add the address to the bind address list.
439 * Use GFP_ATOMIC since BHs will be disabled.
440 */
441 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
442 SCTP_ADDR_SRC, GFP_ATOMIC);
443
444 if (ret) {
445 sctp_put_port(sk);
446 return ret;
447 }
448 /* Copy back into socket for getsockname() use. */
449 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
450 sp->pf->to_sk_saddr(addr, sk);
451
452 return ret;
453 }
454
455 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
456 *
457 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
458 * at any one time. If a sender, after sending an ASCONF chunk, decides
459 * it needs to transfer another ASCONF Chunk, it MUST wait until the
460 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
461 * subsequent ASCONF. Note this restriction binds each side, so at any
462 * time two ASCONF may be in-transit on any given association (one sent
463 * from each endpoint).
464 */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)465 static int sctp_send_asconf(struct sctp_association *asoc,
466 struct sctp_chunk *chunk)
467 {
468 int retval = 0;
469
470 /* If there is an outstanding ASCONF chunk, queue it for later
471 * transmission.
472 */
473 if (asoc->addip_last_asconf) {
474 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
475 goto out;
476 }
477
478 /* Hold the chunk until an ASCONF_ACK is received. */
479 sctp_chunk_hold(chunk);
480 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
481 if (retval)
482 sctp_chunk_free(chunk);
483 else
484 asoc->addip_last_asconf = chunk;
485
486 out:
487 return retval;
488 }
489
490 /* Add a list of addresses as bind addresses to local endpoint or
491 * association.
492 *
493 * Basically run through each address specified in the addrs/addrcnt
494 * array/length pair, determine if it is IPv6 or IPv4 and call
495 * sctp_do_bind() on it.
496 *
497 * If any of them fails, then the operation will be reversed and the
498 * ones that were added will be removed.
499 *
500 * Only sctp_setsockopt_bindx() is supposed to call this function.
501 */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
503 {
504 int cnt;
505 int retval = 0;
506 void *addr_buf;
507 struct sockaddr *sa_addr;
508 struct sctp_af *af;
509
510 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
511 addrs, addrcnt);
512
513 addr_buf = addrs;
514 for (cnt = 0; cnt < addrcnt; cnt++) {
515 /* The list may contain either IPv4 or IPv6 address;
516 * determine the address length for walking thru the list.
517 */
518 sa_addr = addr_buf;
519 af = sctp_get_af_specific(sa_addr->sa_family);
520 if (!af) {
521 retval = -EINVAL;
522 goto err_bindx_add;
523 }
524
525 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
526 af->sockaddr_len);
527
528 addr_buf += af->sockaddr_len;
529
530 err_bindx_add:
531 if (retval < 0) {
532 /* Failed. Cleanup the ones that have been added */
533 if (cnt > 0)
534 sctp_bindx_rem(sk, addrs, cnt);
535 return retval;
536 }
537 }
538
539 return retval;
540 }
541
542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
543 * associations that are part of the endpoint indicating that a list of local
544 * addresses are added to the endpoint.
545 *
546 * If any of the addresses is already in the bind address list of the
547 * association, we do not send the chunk for that association. But it will not
548 * affect other associations.
549 *
550 * Only sctp_setsockopt_bindx() is supposed to call this function.
551 */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)552 static int sctp_send_asconf_add_ip(struct sock *sk,
553 struct sockaddr *addrs,
554 int addrcnt)
555 {
556 struct sctp_sock *sp;
557 struct sctp_endpoint *ep;
558 struct sctp_association *asoc;
559 struct sctp_bind_addr *bp;
560 struct sctp_chunk *chunk;
561 struct sctp_sockaddr_entry *laddr;
562 union sctp_addr *addr;
563 union sctp_addr saveaddr;
564 void *addr_buf;
565 struct sctp_af *af;
566 struct list_head *p;
567 int i;
568 int retval = 0;
569
570 sp = sctp_sk(sk);
571 ep = sp->ep;
572
573 if (!ep->asconf_enable)
574 return retval;
575
576 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
577 __func__, sk, addrs, addrcnt);
578
579 list_for_each_entry(asoc, &ep->asocs, asocs) {
580 if (!asoc->peer.asconf_capable)
581 continue;
582
583 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
584 continue;
585
586 if (!sctp_state(asoc, ESTABLISHED))
587 continue;
588
589 /* Check if any address in the packed array of addresses is
590 * in the bind address list of the association. If so,
591 * do not send the asconf chunk to its peer, but continue with
592 * other associations.
593 */
594 addr_buf = addrs;
595 for (i = 0; i < addrcnt; i++) {
596 addr = addr_buf;
597 af = sctp_get_af_specific(addr->v4.sin_family);
598 if (!af) {
599 retval = -EINVAL;
600 goto out;
601 }
602
603 if (sctp_assoc_lookup_laddr(asoc, addr))
604 break;
605
606 addr_buf += af->sockaddr_len;
607 }
608 if (i < addrcnt)
609 continue;
610
611 /* Use the first valid address in bind addr list of
612 * association as Address Parameter of ASCONF CHUNK.
613 */
614 bp = &asoc->base.bind_addr;
615 p = bp->address_list.next;
616 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
617 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
618 addrcnt, SCTP_PARAM_ADD_IP);
619 if (!chunk) {
620 retval = -ENOMEM;
621 goto out;
622 }
623
624 /* Add the new addresses to the bind address list with
625 * use_as_src set to 0.
626 */
627 addr_buf = addrs;
628 for (i = 0; i < addrcnt; i++) {
629 addr = addr_buf;
630 af = sctp_get_af_specific(addr->v4.sin_family);
631 memcpy(&saveaddr, addr, af->sockaddr_len);
632 retval = sctp_add_bind_addr(bp, &saveaddr,
633 sizeof(saveaddr),
634 SCTP_ADDR_NEW, GFP_ATOMIC);
635 addr_buf += af->sockaddr_len;
636 }
637 if (asoc->src_out_of_asoc_ok) {
638 struct sctp_transport *trans;
639
640 list_for_each_entry(trans,
641 &asoc->peer.transport_addr_list, transports) {
642 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
643 2*asoc->pathmtu, 4380));
644 trans->ssthresh = asoc->peer.i.a_rwnd;
645 trans->rto = asoc->rto_initial;
646 sctp_max_rto(asoc, trans);
647 trans->rtt = trans->srtt = trans->rttvar = 0;
648 /* Clear the source and route cache */
649 sctp_transport_route(trans, NULL,
650 sctp_sk(asoc->base.sk));
651 }
652 }
653 retval = sctp_send_asconf(asoc, chunk);
654 }
655
656 out:
657 return retval;
658 }
659
660 /* Remove a list of addresses from bind addresses list. Do not remove the
661 * last address.
662 *
663 * Basically run through each address specified in the addrs/addrcnt
664 * array/length pair, determine if it is IPv6 or IPv4 and call
665 * sctp_del_bind() on it.
666 *
667 * If any of them fails, then the operation will be reversed and the
668 * ones that were removed will be added back.
669 *
670 * At least one address has to be left; if only one address is
671 * available, the operation will return -EBUSY.
672 *
673 * Only sctp_setsockopt_bindx() is supposed to call this function.
674 */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
676 {
677 struct sctp_sock *sp = sctp_sk(sk);
678 struct sctp_endpoint *ep = sp->ep;
679 int cnt;
680 struct sctp_bind_addr *bp = &ep->base.bind_addr;
681 int retval = 0;
682 void *addr_buf;
683 union sctp_addr *sa_addr;
684 struct sctp_af *af;
685
686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
687 __func__, sk, addrs, addrcnt);
688
689 addr_buf = addrs;
690 for (cnt = 0; cnt < addrcnt; cnt++) {
691 /* If the bind address list is empty or if there is only one
692 * bind address, there is nothing more to be removed (we need
693 * at least one address here).
694 */
695 if (list_empty(&bp->address_list) ||
696 (sctp_list_single_entry(&bp->address_list))) {
697 retval = -EBUSY;
698 goto err_bindx_rem;
699 }
700
701 sa_addr = addr_buf;
702 af = sctp_get_af_specific(sa_addr->sa.sa_family);
703 if (!af) {
704 retval = -EINVAL;
705 goto err_bindx_rem;
706 }
707
708 if (!af->addr_valid(sa_addr, sp, NULL)) {
709 retval = -EADDRNOTAVAIL;
710 goto err_bindx_rem;
711 }
712
713 if (sa_addr->v4.sin_port &&
714 sa_addr->v4.sin_port != htons(bp->port)) {
715 retval = -EINVAL;
716 goto err_bindx_rem;
717 }
718
719 if (!sa_addr->v4.sin_port)
720 sa_addr->v4.sin_port = htons(bp->port);
721
722 /* FIXME - There is probably a need to check if sk->sk_saddr and
723 * sk->sk_rcv_addr are currently set to one of the addresses to
724 * be removed. This is something which needs to be looked into
725 * when we are fixing the outstanding issues with multi-homing
726 * socket routing and failover schemes. Refer to comments in
727 * sctp_do_bind(). -daisy
728 */
729 retval = sctp_del_bind_addr(bp, sa_addr);
730
731 addr_buf += af->sockaddr_len;
732 err_bindx_rem:
733 if (retval < 0) {
734 /* Failed. Add the ones that has been removed back */
735 if (cnt > 0)
736 sctp_bindx_add(sk, addrs, cnt);
737 return retval;
738 }
739 }
740
741 return retval;
742 }
743
744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
745 * the associations that are part of the endpoint indicating that a list of
746 * local addresses are removed from the endpoint.
747 *
748 * If any of the addresses is already in the bind address list of the
749 * association, we do not send the chunk for that association. But it will not
750 * affect other associations.
751 *
752 * Only sctp_setsockopt_bindx() is supposed to call this function.
753 */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)754 static int sctp_send_asconf_del_ip(struct sock *sk,
755 struct sockaddr *addrs,
756 int addrcnt)
757 {
758 struct sctp_sock *sp;
759 struct sctp_endpoint *ep;
760 struct sctp_association *asoc;
761 struct sctp_transport *transport;
762 struct sctp_bind_addr *bp;
763 struct sctp_chunk *chunk;
764 union sctp_addr *laddr;
765 void *addr_buf;
766 struct sctp_af *af;
767 struct sctp_sockaddr_entry *saddr;
768 int i;
769 int retval = 0;
770 int stored = 0;
771
772 chunk = NULL;
773 sp = sctp_sk(sk);
774 ep = sp->ep;
775
776 if (!ep->asconf_enable)
777 return retval;
778
779 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
780 __func__, sk, addrs, addrcnt);
781
782 list_for_each_entry(asoc, &ep->asocs, asocs) {
783
784 if (!asoc->peer.asconf_capable)
785 continue;
786
787 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
788 continue;
789
790 if (!sctp_state(asoc, ESTABLISHED))
791 continue;
792
793 /* Check if any address in the packed array of addresses is
794 * not present in the bind address list of the association.
795 * If so, do not send the asconf chunk to its peer, but
796 * continue with other associations.
797 */
798 addr_buf = addrs;
799 for (i = 0; i < addrcnt; i++) {
800 laddr = addr_buf;
801 af = sctp_get_af_specific(laddr->v4.sin_family);
802 if (!af) {
803 retval = -EINVAL;
804 goto out;
805 }
806
807 if (!sctp_assoc_lookup_laddr(asoc, laddr))
808 break;
809
810 addr_buf += af->sockaddr_len;
811 }
812 if (i < addrcnt)
813 continue;
814
815 /* Find one address in the association's bind address list
816 * that is not in the packed array of addresses. This is to
817 * make sure that we do not delete all the addresses in the
818 * association.
819 */
820 bp = &asoc->base.bind_addr;
821 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
822 addrcnt, sp);
823 if ((laddr == NULL) && (addrcnt == 1)) {
824 if (asoc->asconf_addr_del_pending)
825 continue;
826 asoc->asconf_addr_del_pending =
827 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
828 if (asoc->asconf_addr_del_pending == NULL) {
829 retval = -ENOMEM;
830 goto out;
831 }
832 asoc->asconf_addr_del_pending->sa.sa_family =
833 addrs->sa_family;
834 asoc->asconf_addr_del_pending->v4.sin_port =
835 htons(bp->port);
836 if (addrs->sa_family == AF_INET) {
837 struct sockaddr_in *sin;
838
839 sin = (struct sockaddr_in *)addrs;
840 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
841 } else if (addrs->sa_family == AF_INET6) {
842 struct sockaddr_in6 *sin6;
843
844 sin6 = (struct sockaddr_in6 *)addrs;
845 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
846 }
847
848 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
849 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
850 asoc->asconf_addr_del_pending);
851
852 asoc->src_out_of_asoc_ok = 1;
853 stored = 1;
854 goto skip_mkasconf;
855 }
856
857 if (laddr == NULL)
858 return -EINVAL;
859
860 /* We do not need RCU protection throughout this loop
861 * because this is done under a socket lock from the
862 * setsockopt call.
863 */
864 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
865 SCTP_PARAM_DEL_IP);
866 if (!chunk) {
867 retval = -ENOMEM;
868 goto out;
869 }
870
871 skip_mkasconf:
872 /* Reset use_as_src flag for the addresses in the bind address
873 * list that are to be deleted.
874 */
875 addr_buf = addrs;
876 for (i = 0; i < addrcnt; i++) {
877 laddr = addr_buf;
878 af = sctp_get_af_specific(laddr->v4.sin_family);
879 list_for_each_entry(saddr, &bp->address_list, list) {
880 if (sctp_cmp_addr_exact(&saddr->a, laddr))
881 saddr->state = SCTP_ADDR_DEL;
882 }
883 addr_buf += af->sockaddr_len;
884 }
885
886 /* Update the route and saddr entries for all the transports
887 * as some of the addresses in the bind address list are
888 * about to be deleted and cannot be used as source addresses.
889 */
890 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
891 transports) {
892 sctp_transport_route(transport, NULL,
893 sctp_sk(asoc->base.sk));
894 }
895
896 if (stored)
897 /* We don't need to transmit ASCONF */
898 continue;
899 retval = sctp_send_asconf(asoc, chunk);
900 }
901 out:
902 return retval;
903 }
904
905 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
sctp_asconf_mgmt(struct sctp_sock * sp,struct sctp_sockaddr_entry * addrw)906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
907 {
908 struct sock *sk = sctp_opt2sk(sp);
909 union sctp_addr *addr;
910 struct sctp_af *af;
911
912 /* It is safe to write port space in caller. */
913 addr = &addrw->a;
914 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
915 af = sctp_get_af_specific(addr->sa.sa_family);
916 if (!af)
917 return -EINVAL;
918 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
919 return -EINVAL;
920
921 if (addrw->state == SCTP_ADDR_NEW)
922 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
923 else
924 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
925 }
926
927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
928 *
929 * API 8.1
930 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
931 * int flags);
932 *
933 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
934 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
935 * or IPv6 addresses.
936 *
937 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
938 * Section 3.1.2 for this usage.
939 *
940 * addrs is a pointer to an array of one or more socket addresses. Each
941 * address is contained in its appropriate structure (i.e. struct
942 * sockaddr_in or struct sockaddr_in6) the family of the address type
943 * must be used to distinguish the address length (note that this
944 * representation is termed a "packed array" of addresses). The caller
945 * specifies the number of addresses in the array with addrcnt.
946 *
947 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
948 * -1, and sets errno to the appropriate error code.
949 *
950 * For SCTP, the port given in each socket address must be the same, or
951 * sctp_bindx() will fail, setting errno to EINVAL.
952 *
953 * The flags parameter is formed from the bitwise OR of zero or more of
954 * the following currently defined flags:
955 *
956 * SCTP_BINDX_ADD_ADDR
957 *
958 * SCTP_BINDX_REM_ADDR
959 *
960 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
961 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
962 * addresses from the association. The two flags are mutually exclusive;
963 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
964 * not remove all addresses from an association; sctp_bindx() will
965 * reject such an attempt with EINVAL.
966 *
967 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
968 * additional addresses with an endpoint after calling bind(). Or use
969 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
970 * socket is associated with so that no new association accepted will be
971 * associated with those addresses. If the endpoint supports dynamic
972 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
973 * endpoint to send the appropriate message to the peer to change the
974 * peers address lists.
975 *
976 * Adding and removing addresses from a connected association is
977 * optional functionality. Implementations that do not support this
978 * functionality should return EOPNOTSUPP.
979 *
980 * Basically do nothing but copying the addresses from user to kernel
981 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
982 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
983 * from userspace.
984 *
985 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
986 * it.
987 *
988 * sk The sk of the socket
989 * addrs The pointer to the addresses
990 * addrssize Size of the addrs buffer
991 * op Operation to perform (add or remove, see the flags of
992 * sctp_bindx)
993 *
994 * Returns 0 if ok, <0 errno code on error.
995 */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr * addrs,int addrs_size,int op)996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
997 int addrs_size, int op)
998 {
999 int err;
1000 int addrcnt = 0;
1001 int walk_size = 0;
1002 struct sockaddr *sa_addr;
1003 void *addr_buf = addrs;
1004 struct sctp_af *af;
1005
1006 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1007 __func__, sk, addr_buf, addrs_size, op);
1008
1009 if (unlikely(addrs_size <= 0))
1010 return -EINVAL;
1011
1012 /* Walk through the addrs buffer and count the number of addresses. */
1013 while (walk_size < addrs_size) {
1014 if (walk_size + sizeof(sa_family_t) > addrs_size)
1015 return -EINVAL;
1016
1017 sa_addr = addr_buf;
1018 af = sctp_get_af_specific(sa_addr->sa_family);
1019
1020 /* If the address family is not supported or if this address
1021 * causes the address buffer to overflow return EINVAL.
1022 */
1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1024 return -EINVAL;
1025 addrcnt++;
1026 addr_buf += af->sockaddr_len;
1027 walk_size += af->sockaddr_len;
1028 }
1029
1030 /* Do the work. */
1031 switch (op) {
1032 case SCTP_BINDX_ADD_ADDR:
1033 /* Allow security module to validate bindx addresses. */
1034 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1035 addrs, addrs_size);
1036 if (err)
1037 return err;
1038 err = sctp_bindx_add(sk, addrs, addrcnt);
1039 if (err)
1040 return err;
1041 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1042 case SCTP_BINDX_REM_ADDR:
1043 err = sctp_bindx_rem(sk, addrs, addrcnt);
1044 if (err)
1045 return err;
1046 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1047
1048 default:
1049 return -EINVAL;
1050 }
1051 }
1052
sctp_bind_add(struct sock * sk,struct sockaddr * addrs,int addrlen)1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1054 int addrlen)
1055 {
1056 int err;
1057
1058 lock_sock(sk);
1059 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1060 release_sock(sk);
1061 return err;
1062 }
1063
sctp_connect_new_asoc(struct sctp_endpoint * ep,const union sctp_addr * daddr,const struct sctp_initmsg * init,struct sctp_transport ** tp)1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1065 const union sctp_addr *daddr,
1066 const struct sctp_initmsg *init,
1067 struct sctp_transport **tp)
1068 {
1069 struct sctp_association *asoc;
1070 struct sock *sk = ep->base.sk;
1071 struct net *net = sock_net(sk);
1072 enum sctp_scope scope;
1073 int err;
1074
1075 if (sctp_endpoint_is_peeled_off(ep, daddr))
1076 return -EADDRNOTAVAIL;
1077
1078 if (!ep->base.bind_addr.port) {
1079 if (sctp_autobind(sk))
1080 return -EAGAIN;
1081 } else {
1082 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1083 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1084 return -EACCES;
1085 }
1086
1087 scope = sctp_scope(daddr);
1088 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1089 if (!asoc)
1090 return -ENOMEM;
1091
1092 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1093 if (err < 0)
1094 goto free;
1095
1096 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1097 if (!*tp) {
1098 err = -ENOMEM;
1099 goto free;
1100 }
1101
1102 if (!init)
1103 return 0;
1104
1105 if (init->sinit_num_ostreams) {
1106 __u16 outcnt = init->sinit_num_ostreams;
1107
1108 asoc->c.sinit_num_ostreams = outcnt;
1109 /* outcnt has been changed, need to re-init stream */
1110 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1111 if (err)
1112 goto free;
1113 }
1114
1115 if (init->sinit_max_instreams)
1116 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1117
1118 if (init->sinit_max_attempts)
1119 asoc->max_init_attempts = init->sinit_max_attempts;
1120
1121 if (init->sinit_max_init_timeo)
1122 asoc->max_init_timeo =
1123 msecs_to_jiffies(init->sinit_max_init_timeo);
1124
1125 return 0;
1126 free:
1127 sctp_association_free(asoc);
1128 return err;
1129 }
1130
sctp_connect_add_peer(struct sctp_association * asoc,union sctp_addr * daddr,int addr_len)1131 static int sctp_connect_add_peer(struct sctp_association *asoc,
1132 union sctp_addr *daddr, int addr_len)
1133 {
1134 struct sctp_endpoint *ep = asoc->ep;
1135 struct sctp_association *old;
1136 struct sctp_transport *t;
1137 int err;
1138
1139 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1140 if (err)
1141 return err;
1142
1143 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1144 if (old && old != asoc)
1145 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1146 : -EALREADY;
1147
1148 if (sctp_endpoint_is_peeled_off(ep, daddr))
1149 return -EADDRNOTAVAIL;
1150
1151 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1152 if (!t)
1153 return -ENOMEM;
1154
1155 return 0;
1156 }
1157
1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1159 *
1160 * Common routine for handling connect() and sctp_connectx().
1161 * Connect will come in with just a single address.
1162 */
__sctp_connect(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,int flags,sctp_assoc_t * assoc_id)1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1164 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1165 {
1166 struct sctp_sock *sp = sctp_sk(sk);
1167 struct sctp_endpoint *ep = sp->ep;
1168 struct sctp_transport *transport;
1169 struct sctp_association *asoc;
1170 void *addr_buf = kaddrs;
1171 union sctp_addr *daddr;
1172 struct sctp_af *af;
1173 int walk_size, err;
1174 long timeo;
1175
1176 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1177 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1178 return -EISCONN;
1179
1180 daddr = addr_buf;
1181 af = sctp_get_af_specific(daddr->sa.sa_family);
1182 if (!af || af->sockaddr_len > addrs_size)
1183 return -EINVAL;
1184
1185 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1186 if (err)
1187 return err;
1188
1189 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1190 if (asoc)
1191 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1192 : -EALREADY;
1193
1194 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1195 if (err)
1196 return err;
1197 asoc = transport->asoc;
1198
1199 addr_buf += af->sockaddr_len;
1200 walk_size = af->sockaddr_len;
1201 while (walk_size < addrs_size) {
1202 err = -EINVAL;
1203 if (walk_size + sizeof(sa_family_t) > addrs_size)
1204 goto out_free;
1205
1206 daddr = addr_buf;
1207 af = sctp_get_af_specific(daddr->sa.sa_family);
1208 if (!af || af->sockaddr_len + walk_size > addrs_size)
1209 goto out_free;
1210
1211 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1212 goto out_free;
1213
1214 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1215 if (err)
1216 goto out_free;
1217
1218 addr_buf += af->sockaddr_len;
1219 walk_size += af->sockaddr_len;
1220 }
1221
1222 /* In case the user of sctp_connectx() wants an association
1223 * id back, assign one now.
1224 */
1225 if (assoc_id) {
1226 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1227 if (err < 0)
1228 goto out_free;
1229 }
1230
1231 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1232 if (err < 0)
1233 goto out_free;
1234
1235 /* Initialize sk's dport and daddr for getpeername() */
1236 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1237 sp->pf->to_sk_daddr(daddr, sk);
1238 sk->sk_err = 0;
1239
1240 if (assoc_id)
1241 *assoc_id = asoc->assoc_id;
1242
1243 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1244 return sctp_wait_for_connect(asoc, &timeo);
1245
1246 out_free:
1247 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1248 __func__, asoc, kaddrs, err);
1249 sctp_association_free(asoc);
1250 return err;
1251 }
1252
1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1254 *
1255 * API 8.9
1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1257 * sctp_assoc_t *asoc);
1258 *
1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1261 * or IPv6 addresses.
1262 *
1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1264 * Section 3.1.2 for this usage.
1265 *
1266 * addrs is a pointer to an array of one or more socket addresses. Each
1267 * address is contained in its appropriate structure (i.e. struct
1268 * sockaddr_in or struct sockaddr_in6) the family of the address type
1269 * must be used to distengish the address length (note that this
1270 * representation is termed a "packed array" of addresses). The caller
1271 * specifies the number of addresses in the array with addrcnt.
1272 *
1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1274 * the association id of the new association. On failure, sctp_connectx()
1275 * returns -1, and sets errno to the appropriate error code. The assoc_id
1276 * is not touched by the kernel.
1277 *
1278 * For SCTP, the port given in each socket address must be the same, or
1279 * sctp_connectx() will fail, setting errno to EINVAL.
1280 *
1281 * An application can use sctp_connectx to initiate an association with
1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1283 * allows a caller to specify multiple addresses at which a peer can be
1284 * reached. The way the SCTP stack uses the list of addresses to set up
1285 * the association is implementation dependent. This function only
1286 * specifies that the stack will try to make use of all the addresses in
1287 * the list when needed.
1288 *
1289 * Note that the list of addresses passed in is only used for setting up
1290 * the association. It does not necessarily equal the set of addresses
1291 * the peer uses for the resulting association. If the caller wants to
1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1293 * retrieve them after the association has been set up.
1294 *
1295 * Basically do nothing but copying the addresses from user to kernel
1296 * land and invoking either sctp_connectx(). This is used for tunneling
1297 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1298 *
1299 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1300 * it.
1301 *
1302 * sk The sk of the socket
1303 * addrs The pointer to the addresses
1304 * addrssize Size of the addrs buffer
1305 *
1306 * Returns >=0 if ok, <0 errno code on error.
1307 */
__sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,sctp_assoc_t * assoc_id)1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1309 int addrs_size, sctp_assoc_t *assoc_id)
1310 {
1311 int err = 0, flags = 0;
1312
1313 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1314 __func__, sk, kaddrs, addrs_size);
1315
1316 /* make sure the 1st addr's sa_family is accessible later */
1317 if (unlikely(addrs_size < sizeof(sa_family_t)))
1318 return -EINVAL;
1319
1320 /* Allow security module to validate connectx addresses. */
1321 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1322 (struct sockaddr *)kaddrs,
1323 addrs_size);
1324 if (err)
1325 return err;
1326
1327 /* in-kernel sockets don't generally have a file allocated to them
1328 * if all they do is call sock_create_kern().
1329 */
1330 if (sk->sk_socket->file)
1331 flags = sk->sk_socket->file->f_flags;
1332
1333 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1334 }
1335
1336 /*
1337 * This is an older interface. It's kept for backward compatibility
1338 * to the option that doesn't provide association id.
1339 */
sctp_setsockopt_connectx_old(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 struct sockaddr *kaddrs,
1342 int addrs_size)
1343 {
1344 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1345 }
1346
1347 /*
1348 * New interface for the API. The since the API is done with a socket
1349 * option, to make it simple we feed back the association id is as a return
1350 * indication to the call. Error is always negative and association id is
1351 * always positive.
1352 */
sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 struct sockaddr *kaddrs,
1355 int addrs_size)
1356 {
1357 sctp_assoc_t assoc_id = 0;
1358 int err = 0;
1359
1360 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1361
1362 if (err)
1363 return err;
1364 else
1365 return assoc_id;
1366 }
1367
1368 /*
1369 * New (hopefully final) interface for the API.
1370 * We use the sctp_getaddrs_old structure so that use-space library
1371 * can avoid any unnecessary allocations. The only different part
1372 * is that we store the actual length of the address buffer into the
1373 * addrs_num structure member. That way we can re-use the existing
1374 * code.
1375 */
1376 #ifdef CONFIG_COMPAT
1377 struct compat_sctp_getaddrs_old {
1378 sctp_assoc_t assoc_id;
1379 s32 addr_num;
1380 compat_uptr_t addrs; /* struct sockaddr * */
1381 };
1382 #endif
1383
sctp_getsockopt_connectx3(struct sock * sk,int len,char __user * optval,int __user * optlen)1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1385 char __user *optval,
1386 int __user *optlen)
1387 {
1388 struct sctp_getaddrs_old param;
1389 sctp_assoc_t assoc_id = 0;
1390 struct sockaddr *kaddrs;
1391 int err = 0;
1392
1393 #ifdef CONFIG_COMPAT
1394 if (in_compat_syscall()) {
1395 struct compat_sctp_getaddrs_old param32;
1396
1397 if (len < sizeof(param32))
1398 return -EINVAL;
1399 if (copy_from_user(¶m32, optval, sizeof(param32)))
1400 return -EFAULT;
1401
1402 param.assoc_id = param32.assoc_id;
1403 param.addr_num = param32.addr_num;
1404 param.addrs = compat_ptr(param32.addrs);
1405 } else
1406 #endif
1407 {
1408 if (len < sizeof(param))
1409 return -EINVAL;
1410 if (copy_from_user(¶m, optval, sizeof(param)))
1411 return -EFAULT;
1412 }
1413
1414 kaddrs = memdup_user(param.addrs, param.addr_num);
1415 if (IS_ERR(kaddrs))
1416 return PTR_ERR(kaddrs);
1417
1418 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1419 kfree(kaddrs);
1420 if (err == 0 || err == -EINPROGRESS) {
1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1422 return -EFAULT;
1423 if (put_user(sizeof(assoc_id), optlen))
1424 return -EFAULT;
1425 }
1426
1427 return err;
1428 }
1429
1430 /* API 3.1.4 close() - UDP Style Syntax
1431 * Applications use close() to perform graceful shutdown (as described in
1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1433 * by a UDP-style socket.
1434 *
1435 * The syntax is
1436 *
1437 * ret = close(int sd);
1438 *
1439 * sd - the socket descriptor of the associations to be closed.
1440 *
1441 * To gracefully shutdown a specific association represented by the
1442 * UDP-style socket, an application should use the sendmsg() call,
1443 * passing no user data, but including the appropriate flag in the
1444 * ancillary data (see Section xxxx).
1445 *
1446 * If sd in the close() call is a branched-off socket representing only
1447 * one association, the shutdown is performed on that association only.
1448 *
1449 * 4.1.6 close() - TCP Style Syntax
1450 *
1451 * Applications use close() to gracefully close down an association.
1452 *
1453 * The syntax is:
1454 *
1455 * int close(int sd);
1456 *
1457 * sd - the socket descriptor of the association to be closed.
1458 *
1459 * After an application calls close() on a socket descriptor, no further
1460 * socket operations will succeed on that descriptor.
1461 *
1462 * API 7.1.4 SO_LINGER
1463 *
1464 * An application using the TCP-style socket can use this option to
1465 * perform the SCTP ABORT primitive. The linger option structure is:
1466 *
1467 * struct linger {
1468 * int l_onoff; // option on/off
1469 * int l_linger; // linger time
1470 * };
1471 *
1472 * To enable the option, set l_onoff to 1. If the l_linger value is set
1473 * to 0, calling close() is the same as the ABORT primitive. If the
1474 * value is set to a negative value, the setsockopt() call will return
1475 * an error. If the value is set to a positive value linger_time, the
1476 * close() can be blocked for at most linger_time ms. If the graceful
1477 * shutdown phase does not finish during this period, close() will
1478 * return but the graceful shutdown phase continues in the system.
1479 */
sctp_close(struct sock * sk,long timeout)1480 static void sctp_close(struct sock *sk, long timeout)
1481 {
1482 struct net *net = sock_net(sk);
1483 struct sctp_endpoint *ep;
1484 struct sctp_association *asoc;
1485 struct list_head *pos, *temp;
1486 unsigned int data_was_unread;
1487
1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1489
1490 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1491 sk->sk_shutdown = SHUTDOWN_MASK;
1492 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1493
1494 ep = sctp_sk(sk)->ep;
1495
1496 /* Clean up any skbs sitting on the receive queue. */
1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1499
1500 /* Walk all associations on an endpoint. */
1501 list_for_each_safe(pos, temp, &ep->asocs) {
1502 asoc = list_entry(pos, struct sctp_association, asocs);
1503
1504 if (sctp_style(sk, TCP)) {
1505 /* A closed association can still be in the list if
1506 * it belongs to a TCP-style listening socket that is
1507 * not yet accepted. If so, free it. If not, send an
1508 * ABORT or SHUTDOWN based on the linger options.
1509 */
1510 if (sctp_state(asoc, CLOSED)) {
1511 sctp_association_free(asoc);
1512 continue;
1513 }
1514 }
1515
1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1517 !skb_queue_empty(&asoc->ulpq.reasm) ||
1518 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1519 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1520 struct sctp_chunk *chunk;
1521
1522 chunk = sctp_make_abort_user(asoc, NULL, 0);
1523 sctp_primitive_ABORT(net, asoc, chunk);
1524 } else
1525 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1526 }
1527
1528 /* On a TCP-style socket, block for at most linger_time if set. */
1529 if (sctp_style(sk, TCP) && timeout)
1530 sctp_wait_for_close(sk, timeout);
1531
1532 /* This will run the backlog queue. */
1533 release_sock(sk);
1534
1535 /* Supposedly, no process has access to the socket, but
1536 * the net layers still may.
1537 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1538 * held and that should be grabbed before socket lock.
1539 */
1540 spin_lock_bh(&net->sctp.addr_wq_lock);
1541 bh_lock_sock_nested(sk);
1542
1543 /* Hold the sock, since sk_common_release() will put sock_put()
1544 * and we have just a little more cleanup.
1545 */
1546 sock_hold(sk);
1547 sk_common_release(sk);
1548
1549 bh_unlock_sock(sk);
1550 spin_unlock_bh(&net->sctp.addr_wq_lock);
1551
1552 sock_put(sk);
1553
1554 SCTP_DBG_OBJCNT_DEC(sock);
1555 }
1556
1557 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1558 static int sctp_error(struct sock *sk, int flags, int err)
1559 {
1560 if (err == -EPIPE)
1561 err = sock_error(sk) ? : -EPIPE;
1562 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1563 send_sig(SIGPIPE, current, 0);
1564 return err;
1565 }
1566
1567 /* API 3.1.3 sendmsg() - UDP Style Syntax
1568 *
1569 * An application uses sendmsg() and recvmsg() calls to transmit data to
1570 * and receive data from its peer.
1571 *
1572 * ssize_t sendmsg(int socket, const struct msghdr *message,
1573 * int flags);
1574 *
1575 * socket - the socket descriptor of the endpoint.
1576 * message - pointer to the msghdr structure which contains a single
1577 * user message and possibly some ancillary data.
1578 *
1579 * See Section 5 for complete description of the data
1580 * structures.
1581 *
1582 * flags - flags sent or received with the user message, see Section
1583 * 5 for complete description of the flags.
1584 *
1585 * Note: This function could use a rewrite especially when explicit
1586 * connect support comes in.
1587 */
1588 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1589
1590 static int sctp_msghdr_parse(const struct msghdr *msg,
1591 struct sctp_cmsgs *cmsgs);
1592
sctp_sendmsg_parse(struct sock * sk,struct sctp_cmsgs * cmsgs,struct sctp_sndrcvinfo * srinfo,const struct msghdr * msg,size_t msg_len)1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1594 struct sctp_sndrcvinfo *srinfo,
1595 const struct msghdr *msg, size_t msg_len)
1596 {
1597 __u16 sflags;
1598 int err;
1599
1600 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1601 return -EPIPE;
1602
1603 if (msg_len > sk->sk_sndbuf)
1604 return -EMSGSIZE;
1605
1606 memset(cmsgs, 0, sizeof(*cmsgs));
1607 err = sctp_msghdr_parse(msg, cmsgs);
1608 if (err) {
1609 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1610 return err;
1611 }
1612
1613 memset(srinfo, 0, sizeof(*srinfo));
1614 if (cmsgs->srinfo) {
1615 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1616 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1617 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1618 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1619 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1620 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1621 }
1622
1623 if (cmsgs->sinfo) {
1624 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1625 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1626 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1627 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1628 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1629 }
1630
1631 if (cmsgs->prinfo) {
1632 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1633 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1634 cmsgs->prinfo->pr_policy);
1635 }
1636
1637 sflags = srinfo->sinfo_flags;
1638 if (!sflags && msg_len)
1639 return 0;
1640
1641 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1642 return -EINVAL;
1643
1644 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1645 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1646 return -EINVAL;
1647
1648 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1649 return -EINVAL;
1650
1651 return 0;
1652 }
1653
sctp_sendmsg_new_asoc(struct sock * sk,__u16 sflags,struct sctp_cmsgs * cmsgs,union sctp_addr * daddr,struct sctp_transport ** tp)1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1655 struct sctp_cmsgs *cmsgs,
1656 union sctp_addr *daddr,
1657 struct sctp_transport **tp)
1658 {
1659 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1660 struct sctp_association *asoc;
1661 struct cmsghdr *cmsg;
1662 __be32 flowinfo = 0;
1663 struct sctp_af *af;
1664 int err;
1665
1666 *tp = NULL;
1667
1668 if (sflags & (SCTP_EOF | SCTP_ABORT))
1669 return -EINVAL;
1670
1671 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1672 sctp_sstate(sk, CLOSING)))
1673 return -EADDRNOTAVAIL;
1674
1675 /* Label connection socket for first association 1-to-many
1676 * style for client sequence socket()->sendmsg(). This
1677 * needs to be done before sctp_assoc_add_peer() as that will
1678 * set up the initial packet that needs to account for any
1679 * security ip options (CIPSO/CALIPSO) added to the packet.
1680 */
1681 af = sctp_get_af_specific(daddr->sa.sa_family);
1682 if (!af)
1683 return -EINVAL;
1684 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1685 (struct sockaddr *)daddr,
1686 af->sockaddr_len);
1687 if (err < 0)
1688 return err;
1689
1690 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1691 if (err)
1692 return err;
1693 asoc = (*tp)->asoc;
1694
1695 if (!cmsgs->addrs_msg)
1696 return 0;
1697
1698 if (daddr->sa.sa_family == AF_INET6)
1699 flowinfo = daddr->v6.sin6_flowinfo;
1700
1701 /* sendv addr list parse */
1702 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1703 union sctp_addr _daddr;
1704 int dlen;
1705
1706 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1707 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1708 cmsg->cmsg_type != SCTP_DSTADDRV6))
1709 continue;
1710
1711 daddr = &_daddr;
1712 memset(daddr, 0, sizeof(*daddr));
1713 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1714 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1715 if (dlen < sizeof(struct in_addr)) {
1716 err = -EINVAL;
1717 goto free;
1718 }
1719
1720 dlen = sizeof(struct in_addr);
1721 daddr->v4.sin_family = AF_INET;
1722 daddr->v4.sin_port = htons(asoc->peer.port);
1723 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1724 } else {
1725 if (dlen < sizeof(struct in6_addr)) {
1726 err = -EINVAL;
1727 goto free;
1728 }
1729
1730 dlen = sizeof(struct in6_addr);
1731 daddr->v6.sin6_flowinfo = flowinfo;
1732 daddr->v6.sin6_family = AF_INET6;
1733 daddr->v6.sin6_port = htons(asoc->peer.port);
1734 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1735 }
1736
1737 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1738 if (err)
1739 goto free;
1740 }
1741
1742 return 0;
1743
1744 free:
1745 sctp_association_free(asoc);
1746 return err;
1747 }
1748
sctp_sendmsg_check_sflags(struct sctp_association * asoc,__u16 sflags,struct msghdr * msg,size_t msg_len)1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1750 __u16 sflags, struct msghdr *msg,
1751 size_t msg_len)
1752 {
1753 struct sock *sk = asoc->base.sk;
1754 struct net *net = sock_net(sk);
1755
1756 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1757 return -EPIPE;
1758
1759 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1760 !sctp_state(asoc, ESTABLISHED))
1761 return 0;
1762
1763 if (sflags & SCTP_EOF) {
1764 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1765 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1766
1767 return 0;
1768 }
1769
1770 if (sflags & SCTP_ABORT) {
1771 struct sctp_chunk *chunk;
1772
1773 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1774 if (!chunk)
1775 return -ENOMEM;
1776
1777 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1778 sctp_primitive_ABORT(net, asoc, chunk);
1779 iov_iter_revert(&msg->msg_iter, msg_len);
1780
1781 return 0;
1782 }
1783
1784 return 1;
1785 }
1786
sctp_sendmsg_to_asoc(struct sctp_association * asoc,struct msghdr * msg,size_t msg_len,struct sctp_transport * transport,struct sctp_sndrcvinfo * sinfo)1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1788 struct msghdr *msg, size_t msg_len,
1789 struct sctp_transport *transport,
1790 struct sctp_sndrcvinfo *sinfo)
1791 {
1792 struct sock *sk = asoc->base.sk;
1793 struct sctp_sock *sp = sctp_sk(sk);
1794 struct net *net = sock_net(sk);
1795 struct sctp_datamsg *datamsg;
1796 bool wait_connect = false;
1797 struct sctp_chunk *chunk;
1798 long timeo;
1799 int err;
1800
1801 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1802 err = -EINVAL;
1803 goto err;
1804 }
1805
1806 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1807 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1808 if (err)
1809 goto err;
1810 }
1811
1812 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1813 err = -EMSGSIZE;
1814 goto err;
1815 }
1816
1817 if (asoc->pmtu_pending) {
1818 if (sp->param_flags & SPP_PMTUD_ENABLE)
1819 sctp_assoc_sync_pmtu(asoc);
1820 asoc->pmtu_pending = 0;
1821 }
1822
1823 if (sctp_wspace(asoc) < (int)msg_len)
1824 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1825
1826 if (sk_under_memory_pressure(sk))
1827 sk_mem_reclaim(sk);
1828
1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1832 if (err)
1833 goto err;
1834 }
1835
1836 if (sctp_state(asoc, CLOSED)) {
1837 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1838 if (err)
1839 goto err;
1840
1841 if (asoc->ep->intl_enable) {
1842 timeo = sock_sndtimeo(sk, 0);
1843 err = sctp_wait_for_connect(asoc, &timeo);
1844 if (err) {
1845 err = -ESRCH;
1846 goto err;
1847 }
1848 } else {
1849 wait_connect = true;
1850 }
1851
1852 pr_debug("%s: we associated primitively\n", __func__);
1853 }
1854
1855 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1856 if (IS_ERR(datamsg)) {
1857 err = PTR_ERR(datamsg);
1858 goto err;
1859 }
1860
1861 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1862
1863 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1864 sctp_chunk_hold(chunk);
1865 sctp_set_owner_w(chunk);
1866 chunk->transport = transport;
1867 }
1868
1869 err = sctp_primitive_SEND(net, asoc, datamsg);
1870 if (err) {
1871 sctp_datamsg_free(datamsg);
1872 goto err;
1873 }
1874
1875 pr_debug("%s: we sent primitively\n", __func__);
1876
1877 sctp_datamsg_put(datamsg);
1878
1879 if (unlikely(wait_connect)) {
1880 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881 sctp_wait_for_connect(asoc, &timeo);
1882 }
1883
1884 err = msg_len;
1885
1886 err:
1887 return err;
1888 }
1889
sctp_sendmsg_get_daddr(struct sock * sk,const struct msghdr * msg,struct sctp_cmsgs * cmsgs)1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1891 const struct msghdr *msg,
1892 struct sctp_cmsgs *cmsgs)
1893 {
1894 union sctp_addr *daddr = NULL;
1895 int err;
1896
1897 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1898 int len = msg->msg_namelen;
1899
1900 if (len > sizeof(*daddr))
1901 len = sizeof(*daddr);
1902
1903 daddr = (union sctp_addr *)msg->msg_name;
1904
1905 err = sctp_verify_addr(sk, daddr, len);
1906 if (err)
1907 return ERR_PTR(err);
1908 }
1909
1910 return daddr;
1911 }
1912
sctp_sendmsg_update_sinfo(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,struct sctp_cmsgs * cmsgs)1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1914 struct sctp_sndrcvinfo *sinfo,
1915 struct sctp_cmsgs *cmsgs)
1916 {
1917 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1918 sinfo->sinfo_stream = asoc->default_stream;
1919 sinfo->sinfo_ppid = asoc->default_ppid;
1920 sinfo->sinfo_context = asoc->default_context;
1921 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1922
1923 if (!cmsgs->prinfo)
1924 sinfo->sinfo_flags = asoc->default_flags;
1925 }
1926
1927 if (!cmsgs->srinfo && !cmsgs->prinfo)
1928 sinfo->sinfo_timetolive = asoc->default_timetolive;
1929
1930 if (cmsgs->authinfo) {
1931 /* Reuse sinfo_tsn to indicate that authinfo was set and
1932 * sinfo_ssn to save the keyid on tx path.
1933 */
1934 sinfo->sinfo_tsn = 1;
1935 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1936 }
1937 }
1938
sctp_sendmsg(struct sock * sk,struct msghdr * msg,size_t msg_len)1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1940 {
1941 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1942 struct sctp_transport *transport = NULL;
1943 struct sctp_sndrcvinfo _sinfo, *sinfo;
1944 struct sctp_association *asoc, *tmp;
1945 struct sctp_cmsgs cmsgs;
1946 union sctp_addr *daddr;
1947 bool new = false;
1948 __u16 sflags;
1949 int err;
1950
1951 /* Parse and get snd_info */
1952 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1953 if (err)
1954 goto out;
1955
1956 sinfo = &_sinfo;
1957 sflags = sinfo->sinfo_flags;
1958
1959 /* Get daddr from msg */
1960 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1961 if (IS_ERR(daddr)) {
1962 err = PTR_ERR(daddr);
1963 goto out;
1964 }
1965
1966 lock_sock(sk);
1967
1968 /* SCTP_SENDALL process */
1969 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1970 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1971 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1972 msg_len);
1973 if (err == 0)
1974 continue;
1975 if (err < 0)
1976 goto out_unlock;
1977
1978 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1979
1980 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1981 NULL, sinfo);
1982 if (err < 0)
1983 goto out_unlock;
1984
1985 iov_iter_revert(&msg->msg_iter, err);
1986 }
1987
1988 goto out_unlock;
1989 }
1990
1991 /* Get and check or create asoc */
1992 if (daddr) {
1993 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1994 if (asoc) {
1995 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1996 msg_len);
1997 if (err <= 0)
1998 goto out_unlock;
1999 } else {
2000 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2001 &transport);
2002 if (err)
2003 goto out_unlock;
2004
2005 asoc = transport->asoc;
2006 new = true;
2007 }
2008
2009 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2010 transport = NULL;
2011 } else {
2012 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2013 if (!asoc) {
2014 err = -EPIPE;
2015 goto out_unlock;
2016 }
2017
2018 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2019 if (err <= 0)
2020 goto out_unlock;
2021 }
2022
2023 /* Update snd_info with the asoc */
2024 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2025
2026 /* Send msg to the asoc */
2027 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2028 if (err < 0 && err != -ESRCH && new)
2029 sctp_association_free(asoc);
2030
2031 out_unlock:
2032 release_sock(sk);
2033 out:
2034 return sctp_error(sk, msg->msg_flags, err);
2035 }
2036
2037 /* This is an extended version of skb_pull() that removes the data from the
2038 * start of a skb even when data is spread across the list of skb's in the
2039 * frag_list. len specifies the total amount of data that needs to be removed.
2040 * when 'len' bytes could be removed from the skb, it returns 0.
2041 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2042 * could not be removed.
2043 */
sctp_skb_pull(struct sk_buff * skb,int len)2044 static int sctp_skb_pull(struct sk_buff *skb, int len)
2045 {
2046 struct sk_buff *list;
2047 int skb_len = skb_headlen(skb);
2048 int rlen;
2049
2050 if (len <= skb_len) {
2051 __skb_pull(skb, len);
2052 return 0;
2053 }
2054 len -= skb_len;
2055 __skb_pull(skb, skb_len);
2056
2057 skb_walk_frags(skb, list) {
2058 rlen = sctp_skb_pull(list, len);
2059 skb->len -= (len-rlen);
2060 skb->data_len -= (len-rlen);
2061
2062 if (!rlen)
2063 return 0;
2064
2065 len = rlen;
2066 }
2067
2068 return len;
2069 }
2070
2071 /* API 3.1.3 recvmsg() - UDP Style Syntax
2072 *
2073 * ssize_t recvmsg(int socket, struct msghdr *message,
2074 * int flags);
2075 *
2076 * socket - the socket descriptor of the endpoint.
2077 * message - pointer to the msghdr structure which contains a single
2078 * user message and possibly some ancillary data.
2079 *
2080 * See Section 5 for complete description of the data
2081 * structures.
2082 *
2083 * flags - flags sent or received with the user message, see Section
2084 * 5 for complete description of the flags.
2085 */
sctp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2087 int noblock, int flags, int *addr_len)
2088 {
2089 struct sctp_ulpevent *event = NULL;
2090 struct sctp_sock *sp = sctp_sk(sk);
2091 struct sk_buff *skb, *head_skb;
2092 int copied;
2093 int err = 0;
2094 int skb_len;
2095
2096 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2097 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2098 addr_len);
2099
2100 lock_sock(sk);
2101
2102 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2103 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2104 err = -ENOTCONN;
2105 goto out;
2106 }
2107
2108 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2109 if (!skb)
2110 goto out;
2111
2112 /* Get the total length of the skb including any skb's in the
2113 * frag_list.
2114 */
2115 skb_len = skb->len;
2116
2117 copied = skb_len;
2118 if (copied > len)
2119 copied = len;
2120
2121 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2122
2123 event = sctp_skb2event(skb);
2124
2125 if (err)
2126 goto out_free;
2127
2128 if (event->chunk && event->chunk->head_skb)
2129 head_skb = event->chunk->head_skb;
2130 else
2131 head_skb = skb;
2132 sock_recv_ts_and_drops(msg, sk, head_skb);
2133 if (sctp_ulpevent_is_notification(event)) {
2134 msg->msg_flags |= MSG_NOTIFICATION;
2135 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2136 } else {
2137 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2138 }
2139
2140 /* Check if we allow SCTP_NXTINFO. */
2141 if (sp->recvnxtinfo)
2142 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2143 /* Check if we allow SCTP_RCVINFO. */
2144 if (sp->recvrcvinfo)
2145 sctp_ulpevent_read_rcvinfo(event, msg);
2146 /* Check if we allow SCTP_SNDRCVINFO. */
2147 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2148 sctp_ulpevent_read_sndrcvinfo(event, msg);
2149
2150 err = copied;
2151
2152 /* If skb's length exceeds the user's buffer, update the skb and
2153 * push it back to the receive_queue so that the next call to
2154 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2155 */
2156 if (skb_len > copied) {
2157 msg->msg_flags &= ~MSG_EOR;
2158 if (flags & MSG_PEEK)
2159 goto out_free;
2160 sctp_skb_pull(skb, copied);
2161 skb_queue_head(&sk->sk_receive_queue, skb);
2162
2163 /* When only partial message is copied to the user, increase
2164 * rwnd by that amount. If all the data in the skb is read,
2165 * rwnd is updated when the event is freed.
2166 */
2167 if (!sctp_ulpevent_is_notification(event))
2168 sctp_assoc_rwnd_increase(event->asoc, copied);
2169 goto out;
2170 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2171 (event->msg_flags & MSG_EOR))
2172 msg->msg_flags |= MSG_EOR;
2173 else
2174 msg->msg_flags &= ~MSG_EOR;
2175
2176 out_free:
2177 if (flags & MSG_PEEK) {
2178 /* Release the skb reference acquired after peeking the skb in
2179 * sctp_skb_recv_datagram().
2180 */
2181 kfree_skb(skb);
2182 } else {
2183 /* Free the event which includes releasing the reference to
2184 * the owner of the skb, freeing the skb and updating the
2185 * rwnd.
2186 */
2187 sctp_ulpevent_free(event);
2188 }
2189 out:
2190 release_sock(sk);
2191 return err;
2192 }
2193
2194 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2195 *
2196 * This option is a on/off flag. If enabled no SCTP message
2197 * fragmentation will be performed. Instead if a message being sent
2198 * exceeds the current PMTU size, the message will NOT be sent and
2199 * instead a error will be indicated to the user.
2200 */
sctp_setsockopt_disable_fragments(struct sock * sk,int * val,unsigned int optlen)2201 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2202 unsigned int optlen)
2203 {
2204 if (optlen < sizeof(int))
2205 return -EINVAL;
2206 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2207 return 0;
2208 }
2209
sctp_setsockopt_events(struct sock * sk,__u8 * sn_type,unsigned int optlen)2210 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2211 unsigned int optlen)
2212 {
2213 struct sctp_sock *sp = sctp_sk(sk);
2214 struct sctp_association *asoc;
2215 int i;
2216
2217 if (optlen > sizeof(struct sctp_event_subscribe))
2218 return -EINVAL;
2219
2220 for (i = 0; i < optlen; i++)
2221 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2222 sn_type[i]);
2223
2224 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2225 asoc->subscribe = sctp_sk(sk)->subscribe;
2226
2227 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2228 * if there is no data to be sent or retransmit, the stack will
2229 * immediately send up this notification.
2230 */
2231 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2232 struct sctp_ulpevent *event;
2233
2234 asoc = sctp_id2assoc(sk, 0);
2235 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2236 event = sctp_ulpevent_make_sender_dry_event(asoc,
2237 GFP_USER | __GFP_NOWARN);
2238 if (!event)
2239 return -ENOMEM;
2240
2241 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2242 }
2243 }
2244
2245 return 0;
2246 }
2247
2248 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2249 *
2250 * This socket option is applicable to the UDP-style socket only. When
2251 * set it will cause associations that are idle for more than the
2252 * specified number of seconds to automatically close. An association
2253 * being idle is defined an association that has NOT sent or received
2254 * user data. The special value of '0' indicates that no automatic
2255 * close of any associations should be performed. The option expects an
2256 * integer defining the number of seconds of idle time before an
2257 * association is closed.
2258 */
sctp_setsockopt_autoclose(struct sock * sk,u32 * optval,unsigned int optlen)2259 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2260 unsigned int optlen)
2261 {
2262 struct sctp_sock *sp = sctp_sk(sk);
2263 struct net *net = sock_net(sk);
2264
2265 /* Applicable to UDP-style socket only */
2266 if (sctp_style(sk, TCP))
2267 return -EOPNOTSUPP;
2268 if (optlen != sizeof(int))
2269 return -EINVAL;
2270
2271 sp->autoclose = *optval;
2272 if (sp->autoclose > net->sctp.max_autoclose)
2273 sp->autoclose = net->sctp.max_autoclose;
2274
2275 return 0;
2276 }
2277
2278 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2279 *
2280 * Applications can enable or disable heartbeats for any peer address of
2281 * an association, modify an address's heartbeat interval, force a
2282 * heartbeat to be sent immediately, and adjust the address's maximum
2283 * number of retransmissions sent before an address is considered
2284 * unreachable. The following structure is used to access and modify an
2285 * address's parameters:
2286 *
2287 * struct sctp_paddrparams {
2288 * sctp_assoc_t spp_assoc_id;
2289 * struct sockaddr_storage spp_address;
2290 * uint32_t spp_hbinterval;
2291 * uint16_t spp_pathmaxrxt;
2292 * uint32_t spp_pathmtu;
2293 * uint32_t spp_sackdelay;
2294 * uint32_t spp_flags;
2295 * uint32_t spp_ipv6_flowlabel;
2296 * uint8_t spp_dscp;
2297 * };
2298 *
2299 * spp_assoc_id - (one-to-many style socket) This is filled in the
2300 * application, and identifies the association for
2301 * this query.
2302 * spp_address - This specifies which address is of interest.
2303 * spp_hbinterval - This contains the value of the heartbeat interval,
2304 * in milliseconds. If a value of zero
2305 * is present in this field then no changes are to
2306 * be made to this parameter.
2307 * spp_pathmaxrxt - This contains the maximum number of
2308 * retransmissions before this address shall be
2309 * considered unreachable. If a value of zero
2310 * is present in this field then no changes are to
2311 * be made to this parameter.
2312 * spp_pathmtu - When Path MTU discovery is disabled the value
2313 * specified here will be the "fixed" path mtu.
2314 * Note that if the spp_address field is empty
2315 * then all associations on this address will
2316 * have this fixed path mtu set upon them.
2317 *
2318 * spp_sackdelay - When delayed sack is enabled, this value specifies
2319 * the number of milliseconds that sacks will be delayed
2320 * for. This value will apply to all addresses of an
2321 * association if the spp_address field is empty. Note
2322 * also, that if delayed sack is enabled and this
2323 * value is set to 0, no change is made to the last
2324 * recorded delayed sack timer value.
2325 *
2326 * spp_flags - These flags are used to control various features
2327 * on an association. The flag field may contain
2328 * zero or more of the following options.
2329 *
2330 * SPP_HB_ENABLE - Enable heartbeats on the
2331 * specified address. Note that if the address
2332 * field is empty all addresses for the association
2333 * have heartbeats enabled upon them.
2334 *
2335 * SPP_HB_DISABLE - Disable heartbeats on the
2336 * speicifed address. Note that if the address
2337 * field is empty all addresses for the association
2338 * will have their heartbeats disabled. Note also
2339 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2340 * mutually exclusive, only one of these two should
2341 * be specified. Enabling both fields will have
2342 * undetermined results.
2343 *
2344 * SPP_HB_DEMAND - Request a user initiated heartbeat
2345 * to be made immediately.
2346 *
2347 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2348 * heartbeat delayis to be set to the value of 0
2349 * milliseconds.
2350 *
2351 * SPP_PMTUD_ENABLE - This field will enable PMTU
2352 * discovery upon the specified address. Note that
2353 * if the address feild is empty then all addresses
2354 * on the association are effected.
2355 *
2356 * SPP_PMTUD_DISABLE - This field will disable PMTU
2357 * discovery upon the specified address. Note that
2358 * if the address feild is empty then all addresses
2359 * on the association are effected. Not also that
2360 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2361 * exclusive. Enabling both will have undetermined
2362 * results.
2363 *
2364 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2365 * on delayed sack. The time specified in spp_sackdelay
2366 * is used to specify the sack delay for this address. Note
2367 * that if spp_address is empty then all addresses will
2368 * enable delayed sack and take on the sack delay
2369 * value specified in spp_sackdelay.
2370 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2371 * off delayed sack. If the spp_address field is blank then
2372 * delayed sack is disabled for the entire association. Note
2373 * also that this field is mutually exclusive to
2374 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2375 * results.
2376 *
2377 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2378 * setting of the IPV6 flow label value. The value is
2379 * contained in the spp_ipv6_flowlabel field.
2380 * Upon retrieval, this flag will be set to indicate that
2381 * the spp_ipv6_flowlabel field has a valid value returned.
2382 * If a specific destination address is set (in the
2383 * spp_address field), then the value returned is that of
2384 * the address. If just an association is specified (and
2385 * no address), then the association's default flow label
2386 * is returned. If neither an association nor a destination
2387 * is specified, then the socket's default flow label is
2388 * returned. For non-IPv6 sockets, this flag will be left
2389 * cleared.
2390 *
2391 * SPP_DSCP: Setting this flag enables the setting of the
2392 * Differentiated Services Code Point (DSCP) value
2393 * associated with either the association or a specific
2394 * address. The value is obtained in the spp_dscp field.
2395 * Upon retrieval, this flag will be set to indicate that
2396 * the spp_dscp field has a valid value returned. If a
2397 * specific destination address is set when called (in the
2398 * spp_address field), then that specific destination
2399 * address's DSCP value is returned. If just an association
2400 * is specified, then the association's default DSCP is
2401 * returned. If neither an association nor a destination is
2402 * specified, then the socket's default DSCP is returned.
2403 *
2404 * spp_ipv6_flowlabel
2405 * - This field is used in conjunction with the
2406 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2407 * The 20 least significant bits are used for the flow
2408 * label. This setting has precedence over any IPv6-layer
2409 * setting.
2410 *
2411 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2412 * and contains the DSCP. The 6 most significant bits are
2413 * used for the DSCP. This setting has precedence over any
2414 * IPv4- or IPv6- layer setting.
2415 */
sctp_apply_peer_addr_params(struct sctp_paddrparams * params,struct sctp_transport * trans,struct sctp_association * asoc,struct sctp_sock * sp,int hb_change,int pmtud_change,int sackdelay_change)2416 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2417 struct sctp_transport *trans,
2418 struct sctp_association *asoc,
2419 struct sctp_sock *sp,
2420 int hb_change,
2421 int pmtud_change,
2422 int sackdelay_change)
2423 {
2424 int error;
2425
2426 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2427 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2428 trans->asoc, trans);
2429 if (error)
2430 return error;
2431 }
2432
2433 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2434 * this field is ignored. Note also that a value of zero indicates
2435 * the current setting should be left unchanged.
2436 */
2437 if (params->spp_flags & SPP_HB_ENABLE) {
2438
2439 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2440 * set. This lets us use 0 value when this flag
2441 * is set.
2442 */
2443 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2444 params->spp_hbinterval = 0;
2445
2446 if (params->spp_hbinterval ||
2447 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2448 if (trans) {
2449 trans->hbinterval =
2450 msecs_to_jiffies(params->spp_hbinterval);
2451 } else if (asoc) {
2452 asoc->hbinterval =
2453 msecs_to_jiffies(params->spp_hbinterval);
2454 } else {
2455 sp->hbinterval = params->spp_hbinterval;
2456 }
2457 }
2458 }
2459
2460 if (hb_change) {
2461 if (trans) {
2462 trans->param_flags =
2463 (trans->param_flags & ~SPP_HB) | hb_change;
2464 } else if (asoc) {
2465 asoc->param_flags =
2466 (asoc->param_flags & ~SPP_HB) | hb_change;
2467 } else {
2468 sp->param_flags =
2469 (sp->param_flags & ~SPP_HB) | hb_change;
2470 }
2471 }
2472
2473 /* When Path MTU discovery is disabled the value specified here will
2474 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2475 * include the flag SPP_PMTUD_DISABLE for this field to have any
2476 * effect).
2477 */
2478 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2479 if (trans) {
2480 trans->pathmtu = params->spp_pathmtu;
2481 sctp_assoc_sync_pmtu(asoc);
2482 } else if (asoc) {
2483 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2484 } else {
2485 sp->pathmtu = params->spp_pathmtu;
2486 }
2487 }
2488
2489 if (pmtud_change) {
2490 if (trans) {
2491 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2492 (params->spp_flags & SPP_PMTUD_ENABLE);
2493 trans->param_flags =
2494 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2495 if (update) {
2496 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2497 sctp_assoc_sync_pmtu(asoc);
2498 }
2499 } else if (asoc) {
2500 asoc->param_flags =
2501 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2502 } else {
2503 sp->param_flags =
2504 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2505 }
2506 }
2507
2508 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2509 * value of this field is ignored. Note also that a value of zero
2510 * indicates the current setting should be left unchanged.
2511 */
2512 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2513 if (trans) {
2514 trans->sackdelay =
2515 msecs_to_jiffies(params->spp_sackdelay);
2516 } else if (asoc) {
2517 asoc->sackdelay =
2518 msecs_to_jiffies(params->spp_sackdelay);
2519 } else {
2520 sp->sackdelay = params->spp_sackdelay;
2521 }
2522 }
2523
2524 if (sackdelay_change) {
2525 if (trans) {
2526 trans->param_flags =
2527 (trans->param_flags & ~SPP_SACKDELAY) |
2528 sackdelay_change;
2529 } else if (asoc) {
2530 asoc->param_flags =
2531 (asoc->param_flags & ~SPP_SACKDELAY) |
2532 sackdelay_change;
2533 } else {
2534 sp->param_flags =
2535 (sp->param_flags & ~SPP_SACKDELAY) |
2536 sackdelay_change;
2537 }
2538 }
2539
2540 /* Note that a value of zero indicates the current setting should be
2541 left unchanged.
2542 */
2543 if (params->spp_pathmaxrxt) {
2544 if (trans) {
2545 trans->pathmaxrxt = params->spp_pathmaxrxt;
2546 } else if (asoc) {
2547 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2548 } else {
2549 sp->pathmaxrxt = params->spp_pathmaxrxt;
2550 }
2551 }
2552
2553 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2554 if (trans) {
2555 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2556 trans->flowlabel = params->spp_ipv6_flowlabel &
2557 SCTP_FLOWLABEL_VAL_MASK;
2558 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2559 }
2560 } else if (asoc) {
2561 struct sctp_transport *t;
2562
2563 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2564 transports) {
2565 if (t->ipaddr.sa.sa_family != AF_INET6)
2566 continue;
2567 t->flowlabel = params->spp_ipv6_flowlabel &
2568 SCTP_FLOWLABEL_VAL_MASK;
2569 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2570 }
2571 asoc->flowlabel = params->spp_ipv6_flowlabel &
2572 SCTP_FLOWLABEL_VAL_MASK;
2573 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2574 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2575 sp->flowlabel = params->spp_ipv6_flowlabel &
2576 SCTP_FLOWLABEL_VAL_MASK;
2577 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2578 }
2579 }
2580
2581 if (params->spp_flags & SPP_DSCP) {
2582 if (trans) {
2583 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2584 trans->dscp |= SCTP_DSCP_SET_MASK;
2585 } else if (asoc) {
2586 struct sctp_transport *t;
2587
2588 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2589 transports) {
2590 t->dscp = params->spp_dscp &
2591 SCTP_DSCP_VAL_MASK;
2592 t->dscp |= SCTP_DSCP_SET_MASK;
2593 }
2594 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2595 asoc->dscp |= SCTP_DSCP_SET_MASK;
2596 } else {
2597 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2598 sp->dscp |= SCTP_DSCP_SET_MASK;
2599 }
2600 }
2601
2602 return 0;
2603 }
2604
sctp_setsockopt_peer_addr_params(struct sock * sk,struct sctp_paddrparams * params,unsigned int optlen)2605 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2606 struct sctp_paddrparams *params,
2607 unsigned int optlen)
2608 {
2609 struct sctp_transport *trans = NULL;
2610 struct sctp_association *asoc = NULL;
2611 struct sctp_sock *sp = sctp_sk(sk);
2612 int error;
2613 int hb_change, pmtud_change, sackdelay_change;
2614
2615 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2616 spp_ipv6_flowlabel), 4)) {
2617 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2618 return -EINVAL;
2619 } else if (optlen != sizeof(*params)) {
2620 return -EINVAL;
2621 }
2622
2623 /* Validate flags and value parameters. */
2624 hb_change = params->spp_flags & SPP_HB;
2625 pmtud_change = params->spp_flags & SPP_PMTUD;
2626 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2627
2628 if (hb_change == SPP_HB ||
2629 pmtud_change == SPP_PMTUD ||
2630 sackdelay_change == SPP_SACKDELAY ||
2631 params->spp_sackdelay > 500 ||
2632 (params->spp_pathmtu &&
2633 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2634 return -EINVAL;
2635
2636 /* If an address other than INADDR_ANY is specified, and
2637 * no transport is found, then the request is invalid.
2638 */
2639 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2640 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2641 params->spp_assoc_id);
2642 if (!trans)
2643 return -EINVAL;
2644 }
2645
2646 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2647 * socket is a one to many style socket, and an association
2648 * was not found, then the id was invalid.
2649 */
2650 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2651 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2652 sctp_style(sk, UDP))
2653 return -EINVAL;
2654
2655 /* Heartbeat demand can only be sent on a transport or
2656 * association, but not a socket.
2657 */
2658 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2659 return -EINVAL;
2660
2661 /* Process parameters. */
2662 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2663 hb_change, pmtud_change,
2664 sackdelay_change);
2665
2666 if (error)
2667 return error;
2668
2669 /* If changes are for association, also apply parameters to each
2670 * transport.
2671 */
2672 if (!trans && asoc) {
2673 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2674 transports) {
2675 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2676 hb_change, pmtud_change,
2677 sackdelay_change);
2678 }
2679 }
2680
2681 return 0;
2682 }
2683
sctp_spp_sackdelay_enable(__u32 param_flags)2684 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2685 {
2686 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2687 }
2688
sctp_spp_sackdelay_disable(__u32 param_flags)2689 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2690 {
2691 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2692 }
2693
sctp_apply_asoc_delayed_ack(struct sctp_sack_info * params,struct sctp_association * asoc)2694 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2695 struct sctp_association *asoc)
2696 {
2697 struct sctp_transport *trans;
2698
2699 if (params->sack_delay) {
2700 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2701 asoc->param_flags =
2702 sctp_spp_sackdelay_enable(asoc->param_flags);
2703 }
2704 if (params->sack_freq == 1) {
2705 asoc->param_flags =
2706 sctp_spp_sackdelay_disable(asoc->param_flags);
2707 } else if (params->sack_freq > 1) {
2708 asoc->sackfreq = params->sack_freq;
2709 asoc->param_flags =
2710 sctp_spp_sackdelay_enable(asoc->param_flags);
2711 }
2712
2713 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2714 transports) {
2715 if (params->sack_delay) {
2716 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2717 trans->param_flags =
2718 sctp_spp_sackdelay_enable(trans->param_flags);
2719 }
2720 if (params->sack_freq == 1) {
2721 trans->param_flags =
2722 sctp_spp_sackdelay_disable(trans->param_flags);
2723 } else if (params->sack_freq > 1) {
2724 trans->sackfreq = params->sack_freq;
2725 trans->param_flags =
2726 sctp_spp_sackdelay_enable(trans->param_flags);
2727 }
2728 }
2729 }
2730
2731 /*
2732 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2733 *
2734 * This option will effect the way delayed acks are performed. This
2735 * option allows you to get or set the delayed ack time, in
2736 * milliseconds. It also allows changing the delayed ack frequency.
2737 * Changing the frequency to 1 disables the delayed sack algorithm. If
2738 * the assoc_id is 0, then this sets or gets the endpoints default
2739 * values. If the assoc_id field is non-zero, then the set or get
2740 * effects the specified association for the one to many model (the
2741 * assoc_id field is ignored by the one to one model). Note that if
2742 * sack_delay or sack_freq are 0 when setting this option, then the
2743 * current values will remain unchanged.
2744 *
2745 * struct sctp_sack_info {
2746 * sctp_assoc_t sack_assoc_id;
2747 * uint32_t sack_delay;
2748 * uint32_t sack_freq;
2749 * };
2750 *
2751 * sack_assoc_id - This parameter, indicates which association the user
2752 * is performing an action upon. Note that if this field's value is
2753 * zero then the endpoints default value is changed (effecting future
2754 * associations only).
2755 *
2756 * sack_delay - This parameter contains the number of milliseconds that
2757 * the user is requesting the delayed ACK timer be set to. Note that
2758 * this value is defined in the standard to be between 200 and 500
2759 * milliseconds.
2760 *
2761 * sack_freq - This parameter contains the number of packets that must
2762 * be received before a sack is sent without waiting for the delay
2763 * timer to expire. The default value for this is 2, setting this
2764 * value to 1 will disable the delayed sack algorithm.
2765 */
__sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params)2766 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2767 struct sctp_sack_info *params)
2768 {
2769 struct sctp_sock *sp = sctp_sk(sk);
2770 struct sctp_association *asoc;
2771
2772 /* Validate value parameter. */
2773 if (params->sack_delay > 500)
2774 return -EINVAL;
2775
2776 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2777 * socket is a one to many style socket, and an association
2778 * was not found, then the id was invalid.
2779 */
2780 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2781 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2782 sctp_style(sk, UDP))
2783 return -EINVAL;
2784
2785 if (asoc) {
2786 sctp_apply_asoc_delayed_ack(params, asoc);
2787
2788 return 0;
2789 }
2790
2791 if (sctp_style(sk, TCP))
2792 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2793
2794 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2795 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2796 if (params->sack_delay) {
2797 sp->sackdelay = params->sack_delay;
2798 sp->param_flags =
2799 sctp_spp_sackdelay_enable(sp->param_flags);
2800 }
2801 if (params->sack_freq == 1) {
2802 sp->param_flags =
2803 sctp_spp_sackdelay_disable(sp->param_flags);
2804 } else if (params->sack_freq > 1) {
2805 sp->sackfreq = params->sack_freq;
2806 sp->param_flags =
2807 sctp_spp_sackdelay_enable(sp->param_flags);
2808 }
2809 }
2810
2811 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2812 params->sack_assoc_id == SCTP_ALL_ASSOC)
2813 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2814 sctp_apply_asoc_delayed_ack(params, asoc);
2815
2816 return 0;
2817 }
2818
sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params,unsigned int optlen)2819 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2820 struct sctp_sack_info *params,
2821 unsigned int optlen)
2822 {
2823 if (optlen == sizeof(struct sctp_assoc_value)) {
2824 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2825 struct sctp_sack_info p;
2826
2827 pr_warn_ratelimited(DEPRECATED
2828 "%s (pid %d) "
2829 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2830 "Use struct sctp_sack_info instead\n",
2831 current->comm, task_pid_nr(current));
2832
2833 p.sack_assoc_id = v->assoc_id;
2834 p.sack_delay = v->assoc_value;
2835 p.sack_freq = v->assoc_value ? 0 : 1;
2836 return __sctp_setsockopt_delayed_ack(sk, &p);
2837 }
2838
2839 if (optlen != sizeof(struct sctp_sack_info))
2840 return -EINVAL;
2841 if (params->sack_delay == 0 && params->sack_freq == 0)
2842 return 0;
2843 return __sctp_setsockopt_delayed_ack(sk, params);
2844 }
2845
2846 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2847 *
2848 * Applications can specify protocol parameters for the default association
2849 * initialization. The option name argument to setsockopt() and getsockopt()
2850 * is SCTP_INITMSG.
2851 *
2852 * Setting initialization parameters is effective only on an unconnected
2853 * socket (for UDP-style sockets only future associations are effected
2854 * by the change). With TCP-style sockets, this option is inherited by
2855 * sockets derived from a listener socket.
2856 */
sctp_setsockopt_initmsg(struct sock * sk,struct sctp_initmsg * sinit,unsigned int optlen)2857 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2858 unsigned int optlen)
2859 {
2860 struct sctp_sock *sp = sctp_sk(sk);
2861
2862 if (optlen != sizeof(struct sctp_initmsg))
2863 return -EINVAL;
2864
2865 if (sinit->sinit_num_ostreams)
2866 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2867 if (sinit->sinit_max_instreams)
2868 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2869 if (sinit->sinit_max_attempts)
2870 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2871 if (sinit->sinit_max_init_timeo)
2872 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2873
2874 return 0;
2875 }
2876
2877 /*
2878 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2879 *
2880 * Applications that wish to use the sendto() system call may wish to
2881 * specify a default set of parameters that would normally be supplied
2882 * through the inclusion of ancillary data. This socket option allows
2883 * such an application to set the default sctp_sndrcvinfo structure.
2884 * The application that wishes to use this socket option simply passes
2885 * in to this call the sctp_sndrcvinfo structure defined in Section
2886 * 5.2.2) The input parameters accepted by this call include
2887 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2888 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2889 * to this call if the caller is using the UDP model.
2890 */
sctp_setsockopt_default_send_param(struct sock * sk,struct sctp_sndrcvinfo * info,unsigned int optlen)2891 static int sctp_setsockopt_default_send_param(struct sock *sk,
2892 struct sctp_sndrcvinfo *info,
2893 unsigned int optlen)
2894 {
2895 struct sctp_sock *sp = sctp_sk(sk);
2896 struct sctp_association *asoc;
2897
2898 if (optlen != sizeof(*info))
2899 return -EINVAL;
2900 if (info->sinfo_flags &
2901 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2902 SCTP_ABORT | SCTP_EOF))
2903 return -EINVAL;
2904
2905 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2906 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2907 sctp_style(sk, UDP))
2908 return -EINVAL;
2909
2910 if (asoc) {
2911 asoc->default_stream = info->sinfo_stream;
2912 asoc->default_flags = info->sinfo_flags;
2913 asoc->default_ppid = info->sinfo_ppid;
2914 asoc->default_context = info->sinfo_context;
2915 asoc->default_timetolive = info->sinfo_timetolive;
2916
2917 return 0;
2918 }
2919
2920 if (sctp_style(sk, TCP))
2921 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2922
2923 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2924 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2925 sp->default_stream = info->sinfo_stream;
2926 sp->default_flags = info->sinfo_flags;
2927 sp->default_ppid = info->sinfo_ppid;
2928 sp->default_context = info->sinfo_context;
2929 sp->default_timetolive = info->sinfo_timetolive;
2930 }
2931
2932 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2933 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2934 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2935 asoc->default_stream = info->sinfo_stream;
2936 asoc->default_flags = info->sinfo_flags;
2937 asoc->default_ppid = info->sinfo_ppid;
2938 asoc->default_context = info->sinfo_context;
2939 asoc->default_timetolive = info->sinfo_timetolive;
2940 }
2941 }
2942
2943 return 0;
2944 }
2945
2946 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2947 * (SCTP_DEFAULT_SNDINFO)
2948 */
sctp_setsockopt_default_sndinfo(struct sock * sk,struct sctp_sndinfo * info,unsigned int optlen)2949 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2950 struct sctp_sndinfo *info,
2951 unsigned int optlen)
2952 {
2953 struct sctp_sock *sp = sctp_sk(sk);
2954 struct sctp_association *asoc;
2955
2956 if (optlen != sizeof(*info))
2957 return -EINVAL;
2958 if (info->snd_flags &
2959 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2960 SCTP_ABORT | SCTP_EOF))
2961 return -EINVAL;
2962
2963 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2964 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2965 sctp_style(sk, UDP))
2966 return -EINVAL;
2967
2968 if (asoc) {
2969 asoc->default_stream = info->snd_sid;
2970 asoc->default_flags = info->snd_flags;
2971 asoc->default_ppid = info->snd_ppid;
2972 asoc->default_context = info->snd_context;
2973
2974 return 0;
2975 }
2976
2977 if (sctp_style(sk, TCP))
2978 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2979
2980 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2981 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2982 sp->default_stream = info->snd_sid;
2983 sp->default_flags = info->snd_flags;
2984 sp->default_ppid = info->snd_ppid;
2985 sp->default_context = info->snd_context;
2986 }
2987
2988 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2989 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2990 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2991 asoc->default_stream = info->snd_sid;
2992 asoc->default_flags = info->snd_flags;
2993 asoc->default_ppid = info->snd_ppid;
2994 asoc->default_context = info->snd_context;
2995 }
2996 }
2997
2998 return 0;
2999 }
3000
3001 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3002 *
3003 * Requests that the local SCTP stack use the enclosed peer address as
3004 * the association primary. The enclosed address must be one of the
3005 * association peer's addresses.
3006 */
sctp_setsockopt_primary_addr(struct sock * sk,struct sctp_prim * prim,unsigned int optlen)3007 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3008 unsigned int optlen)
3009 {
3010 struct sctp_transport *trans;
3011 struct sctp_af *af;
3012 int err;
3013
3014 if (optlen != sizeof(struct sctp_prim))
3015 return -EINVAL;
3016
3017 /* Allow security module to validate address but need address len. */
3018 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3019 if (!af)
3020 return -EINVAL;
3021
3022 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3023 (struct sockaddr *)&prim->ssp_addr,
3024 af->sockaddr_len);
3025 if (err)
3026 return err;
3027
3028 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3029 if (!trans)
3030 return -EINVAL;
3031
3032 sctp_assoc_set_primary(trans->asoc, trans);
3033
3034 return 0;
3035 }
3036
3037 /*
3038 * 7.1.5 SCTP_NODELAY
3039 *
3040 * Turn on/off any Nagle-like algorithm. This means that packets are
3041 * generally sent as soon as possible and no unnecessary delays are
3042 * introduced, at the cost of more packets in the network. Expects an
3043 * integer boolean flag.
3044 */
sctp_setsockopt_nodelay(struct sock * sk,int * val,unsigned int optlen)3045 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3046 unsigned int optlen)
3047 {
3048 if (optlen < sizeof(int))
3049 return -EINVAL;
3050 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3051 return 0;
3052 }
3053
3054 /*
3055 *
3056 * 7.1.1 SCTP_RTOINFO
3057 *
3058 * The protocol parameters used to initialize and bound retransmission
3059 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3060 * and modify these parameters.
3061 * All parameters are time values, in milliseconds. A value of 0, when
3062 * modifying the parameters, indicates that the current value should not
3063 * be changed.
3064 *
3065 */
sctp_setsockopt_rtoinfo(struct sock * sk,struct sctp_rtoinfo * rtoinfo,unsigned int optlen)3066 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3067 struct sctp_rtoinfo *rtoinfo,
3068 unsigned int optlen)
3069 {
3070 struct sctp_association *asoc;
3071 unsigned long rto_min, rto_max;
3072 struct sctp_sock *sp = sctp_sk(sk);
3073
3074 if (optlen != sizeof (struct sctp_rtoinfo))
3075 return -EINVAL;
3076
3077 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3078
3079 /* Set the values to the specific association */
3080 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3081 sctp_style(sk, UDP))
3082 return -EINVAL;
3083
3084 rto_max = rtoinfo->srto_max;
3085 rto_min = rtoinfo->srto_min;
3086
3087 if (rto_max)
3088 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3089 else
3090 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3091
3092 if (rto_min)
3093 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3094 else
3095 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3096
3097 if (rto_min > rto_max)
3098 return -EINVAL;
3099
3100 if (asoc) {
3101 if (rtoinfo->srto_initial != 0)
3102 asoc->rto_initial =
3103 msecs_to_jiffies(rtoinfo->srto_initial);
3104 asoc->rto_max = rto_max;
3105 asoc->rto_min = rto_min;
3106 } else {
3107 /* If there is no association or the association-id = 0
3108 * set the values to the endpoint.
3109 */
3110 if (rtoinfo->srto_initial != 0)
3111 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3112 sp->rtoinfo.srto_max = rto_max;
3113 sp->rtoinfo.srto_min = rto_min;
3114 }
3115
3116 return 0;
3117 }
3118
3119 /*
3120 *
3121 * 7.1.2 SCTP_ASSOCINFO
3122 *
3123 * This option is used to tune the maximum retransmission attempts
3124 * of the association.
3125 * Returns an error if the new association retransmission value is
3126 * greater than the sum of the retransmission value of the peer.
3127 * See [SCTP] for more information.
3128 *
3129 */
sctp_setsockopt_associnfo(struct sock * sk,struct sctp_assocparams * assocparams,unsigned int optlen)3130 static int sctp_setsockopt_associnfo(struct sock *sk,
3131 struct sctp_assocparams *assocparams,
3132 unsigned int optlen)
3133 {
3134
3135 struct sctp_association *asoc;
3136
3137 if (optlen != sizeof(struct sctp_assocparams))
3138 return -EINVAL;
3139
3140 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3141
3142 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3143 sctp_style(sk, UDP))
3144 return -EINVAL;
3145
3146 /* Set the values to the specific association */
3147 if (asoc) {
3148 if (assocparams->sasoc_asocmaxrxt != 0) {
3149 __u32 path_sum = 0;
3150 int paths = 0;
3151 struct sctp_transport *peer_addr;
3152
3153 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3154 transports) {
3155 path_sum += peer_addr->pathmaxrxt;
3156 paths++;
3157 }
3158
3159 /* Only validate asocmaxrxt if we have more than
3160 * one path/transport. We do this because path
3161 * retransmissions are only counted when we have more
3162 * then one path.
3163 */
3164 if (paths > 1 &&
3165 assocparams->sasoc_asocmaxrxt > path_sum)
3166 return -EINVAL;
3167
3168 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3169 }
3170
3171 if (assocparams->sasoc_cookie_life != 0)
3172 asoc->cookie_life =
3173 ms_to_ktime(assocparams->sasoc_cookie_life);
3174 } else {
3175 /* Set the values to the endpoint */
3176 struct sctp_sock *sp = sctp_sk(sk);
3177
3178 if (assocparams->sasoc_asocmaxrxt != 0)
3179 sp->assocparams.sasoc_asocmaxrxt =
3180 assocparams->sasoc_asocmaxrxt;
3181 if (assocparams->sasoc_cookie_life != 0)
3182 sp->assocparams.sasoc_cookie_life =
3183 assocparams->sasoc_cookie_life;
3184 }
3185 return 0;
3186 }
3187
3188 /*
3189 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3190 *
3191 * This socket option is a boolean flag which turns on or off mapped V4
3192 * addresses. If this option is turned on and the socket is type
3193 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3194 * If this option is turned off, then no mapping will be done of V4
3195 * addresses and a user will receive both PF_INET6 and PF_INET type
3196 * addresses on the socket.
3197 */
sctp_setsockopt_mappedv4(struct sock * sk,int * val,unsigned int optlen)3198 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3199 unsigned int optlen)
3200 {
3201 struct sctp_sock *sp = sctp_sk(sk);
3202
3203 if (optlen < sizeof(int))
3204 return -EINVAL;
3205 if (*val)
3206 sp->v4mapped = 1;
3207 else
3208 sp->v4mapped = 0;
3209
3210 return 0;
3211 }
3212
3213 /*
3214 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3215 * This option will get or set the maximum size to put in any outgoing
3216 * SCTP DATA chunk. If a message is larger than this size it will be
3217 * fragmented by SCTP into the specified size. Note that the underlying
3218 * SCTP implementation may fragment into smaller sized chunks when the
3219 * PMTU of the underlying association is smaller than the value set by
3220 * the user. The default value for this option is '0' which indicates
3221 * the user is NOT limiting fragmentation and only the PMTU will effect
3222 * SCTP's choice of DATA chunk size. Note also that values set larger
3223 * than the maximum size of an IP datagram will effectively let SCTP
3224 * control fragmentation (i.e. the same as setting this option to 0).
3225 *
3226 * The following structure is used to access and modify this parameter:
3227 *
3228 * struct sctp_assoc_value {
3229 * sctp_assoc_t assoc_id;
3230 * uint32_t assoc_value;
3231 * };
3232 *
3233 * assoc_id: This parameter is ignored for one-to-one style sockets.
3234 * For one-to-many style sockets this parameter indicates which
3235 * association the user is performing an action upon. Note that if
3236 * this field's value is zero then the endpoints default value is
3237 * changed (effecting future associations only).
3238 * assoc_value: This parameter specifies the maximum size in bytes.
3239 */
sctp_setsockopt_maxseg(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3240 static int sctp_setsockopt_maxseg(struct sock *sk,
3241 struct sctp_assoc_value *params,
3242 unsigned int optlen)
3243 {
3244 struct sctp_sock *sp = sctp_sk(sk);
3245 struct sctp_association *asoc;
3246 sctp_assoc_t assoc_id;
3247 int val;
3248
3249 if (optlen == sizeof(int)) {
3250 pr_warn_ratelimited(DEPRECATED
3251 "%s (pid %d) "
3252 "Use of int in maxseg socket option.\n"
3253 "Use struct sctp_assoc_value instead\n",
3254 current->comm, task_pid_nr(current));
3255 assoc_id = SCTP_FUTURE_ASSOC;
3256 val = *(int *)params;
3257 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3258 assoc_id = params->assoc_id;
3259 val = params->assoc_value;
3260 } else {
3261 return -EINVAL;
3262 }
3263
3264 asoc = sctp_id2assoc(sk, assoc_id);
3265 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3266 sctp_style(sk, UDP))
3267 return -EINVAL;
3268
3269 if (val) {
3270 int min_len, max_len;
3271 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3272 sizeof(struct sctp_data_chunk);
3273
3274 min_len = sctp_min_frag_point(sp, datasize);
3275 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3276
3277 if (val < min_len || val > max_len)
3278 return -EINVAL;
3279 }
3280
3281 if (asoc) {
3282 asoc->user_frag = val;
3283 sctp_assoc_update_frag_point(asoc);
3284 } else {
3285 sp->user_frag = val;
3286 }
3287
3288 return 0;
3289 }
3290
3291
3292 /*
3293 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3294 *
3295 * Requests that the peer mark the enclosed address as the association
3296 * primary. The enclosed address must be one of the association's
3297 * locally bound addresses. The following structure is used to make a
3298 * set primary request:
3299 */
sctp_setsockopt_peer_primary_addr(struct sock * sk,struct sctp_setpeerprim * prim,unsigned int optlen)3300 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3301 struct sctp_setpeerprim *prim,
3302 unsigned int optlen)
3303 {
3304 struct sctp_sock *sp;
3305 struct sctp_association *asoc = NULL;
3306 struct sctp_chunk *chunk;
3307 struct sctp_af *af;
3308 int err;
3309
3310 sp = sctp_sk(sk);
3311
3312 if (!sp->ep->asconf_enable)
3313 return -EPERM;
3314
3315 if (optlen != sizeof(struct sctp_setpeerprim))
3316 return -EINVAL;
3317
3318 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3319 if (!asoc)
3320 return -EINVAL;
3321
3322 if (!asoc->peer.asconf_capable)
3323 return -EPERM;
3324
3325 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3326 return -EPERM;
3327
3328 if (!sctp_state(asoc, ESTABLISHED))
3329 return -ENOTCONN;
3330
3331 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3332 if (!af)
3333 return -EINVAL;
3334
3335 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3336 return -EADDRNOTAVAIL;
3337
3338 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3339 return -EADDRNOTAVAIL;
3340
3341 /* Allow security module to validate address. */
3342 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3343 (struct sockaddr *)&prim->sspp_addr,
3344 af->sockaddr_len);
3345 if (err)
3346 return err;
3347
3348 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3349 chunk = sctp_make_asconf_set_prim(asoc,
3350 (union sctp_addr *)&prim->sspp_addr);
3351 if (!chunk)
3352 return -ENOMEM;
3353
3354 err = sctp_send_asconf(asoc, chunk);
3355
3356 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3357
3358 return err;
3359 }
3360
sctp_setsockopt_adaptation_layer(struct sock * sk,struct sctp_setadaptation * adapt,unsigned int optlen)3361 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3362 struct sctp_setadaptation *adapt,
3363 unsigned int optlen)
3364 {
3365 if (optlen != sizeof(struct sctp_setadaptation))
3366 return -EINVAL;
3367
3368 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3369
3370 return 0;
3371 }
3372
3373 /*
3374 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3375 *
3376 * The context field in the sctp_sndrcvinfo structure is normally only
3377 * used when a failed message is retrieved holding the value that was
3378 * sent down on the actual send call. This option allows the setting of
3379 * a default context on an association basis that will be received on
3380 * reading messages from the peer. This is especially helpful in the
3381 * one-2-many model for an application to keep some reference to an
3382 * internal state machine that is processing messages on the
3383 * association. Note that the setting of this value only effects
3384 * received messages from the peer and does not effect the value that is
3385 * saved with outbound messages.
3386 */
sctp_setsockopt_context(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3387 static int sctp_setsockopt_context(struct sock *sk,
3388 struct sctp_assoc_value *params,
3389 unsigned int optlen)
3390 {
3391 struct sctp_sock *sp = sctp_sk(sk);
3392 struct sctp_association *asoc;
3393
3394 if (optlen != sizeof(struct sctp_assoc_value))
3395 return -EINVAL;
3396
3397 asoc = sctp_id2assoc(sk, params->assoc_id);
3398 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3399 sctp_style(sk, UDP))
3400 return -EINVAL;
3401
3402 if (asoc) {
3403 asoc->default_rcv_context = params->assoc_value;
3404
3405 return 0;
3406 }
3407
3408 if (sctp_style(sk, TCP))
3409 params->assoc_id = SCTP_FUTURE_ASSOC;
3410
3411 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3412 params->assoc_id == SCTP_ALL_ASSOC)
3413 sp->default_rcv_context = params->assoc_value;
3414
3415 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3416 params->assoc_id == SCTP_ALL_ASSOC)
3417 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3418 asoc->default_rcv_context = params->assoc_value;
3419
3420 return 0;
3421 }
3422
3423 /*
3424 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3425 *
3426 * This options will at a minimum specify if the implementation is doing
3427 * fragmented interleave. Fragmented interleave, for a one to many
3428 * socket, is when subsequent calls to receive a message may return
3429 * parts of messages from different associations. Some implementations
3430 * may allow you to turn this value on or off. If so, when turned off,
3431 * no fragment interleave will occur (which will cause a head of line
3432 * blocking amongst multiple associations sharing the same one to many
3433 * socket). When this option is turned on, then each receive call may
3434 * come from a different association (thus the user must receive data
3435 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3436 * association each receive belongs to.
3437 *
3438 * This option takes a boolean value. A non-zero value indicates that
3439 * fragmented interleave is on. A value of zero indicates that
3440 * fragmented interleave is off.
3441 *
3442 * Note that it is important that an implementation that allows this
3443 * option to be turned on, have it off by default. Otherwise an unaware
3444 * application using the one to many model may become confused and act
3445 * incorrectly.
3446 */
sctp_setsockopt_fragment_interleave(struct sock * sk,int * val,unsigned int optlen)3447 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3448 unsigned int optlen)
3449 {
3450 if (optlen != sizeof(int))
3451 return -EINVAL;
3452
3453 sctp_sk(sk)->frag_interleave = !!*val;
3454
3455 if (!sctp_sk(sk)->frag_interleave)
3456 sctp_sk(sk)->ep->intl_enable = 0;
3457
3458 return 0;
3459 }
3460
3461 /*
3462 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3463 * (SCTP_PARTIAL_DELIVERY_POINT)
3464 *
3465 * This option will set or get the SCTP partial delivery point. This
3466 * point is the size of a message where the partial delivery API will be
3467 * invoked to help free up rwnd space for the peer. Setting this to a
3468 * lower value will cause partial deliveries to happen more often. The
3469 * calls argument is an integer that sets or gets the partial delivery
3470 * point. Note also that the call will fail if the user attempts to set
3471 * this value larger than the socket receive buffer size.
3472 *
3473 * Note that any single message having a length smaller than or equal to
3474 * the SCTP partial delivery point will be delivered in one single read
3475 * call as long as the user provided buffer is large enough to hold the
3476 * message.
3477 */
sctp_setsockopt_partial_delivery_point(struct sock * sk,u32 * val,unsigned int optlen)3478 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3479 unsigned int optlen)
3480 {
3481 if (optlen != sizeof(u32))
3482 return -EINVAL;
3483
3484 /* Note: We double the receive buffer from what the user sets
3485 * it to be, also initial rwnd is based on rcvbuf/2.
3486 */
3487 if (*val > (sk->sk_rcvbuf >> 1))
3488 return -EINVAL;
3489
3490 sctp_sk(sk)->pd_point = *val;
3491
3492 return 0; /* is this the right error code? */
3493 }
3494
3495 /*
3496 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3497 *
3498 * This option will allow a user to change the maximum burst of packets
3499 * that can be emitted by this association. Note that the default value
3500 * is 4, and some implementations may restrict this setting so that it
3501 * can only be lowered.
3502 *
3503 * NOTE: This text doesn't seem right. Do this on a socket basis with
3504 * future associations inheriting the socket value.
3505 */
sctp_setsockopt_maxburst(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3506 static int sctp_setsockopt_maxburst(struct sock *sk,
3507 struct sctp_assoc_value *params,
3508 unsigned int optlen)
3509 {
3510 struct sctp_sock *sp = sctp_sk(sk);
3511 struct sctp_association *asoc;
3512 sctp_assoc_t assoc_id;
3513 u32 assoc_value;
3514
3515 if (optlen == sizeof(int)) {
3516 pr_warn_ratelimited(DEPRECATED
3517 "%s (pid %d) "
3518 "Use of int in max_burst socket option deprecated.\n"
3519 "Use struct sctp_assoc_value instead\n",
3520 current->comm, task_pid_nr(current));
3521 assoc_id = SCTP_FUTURE_ASSOC;
3522 assoc_value = *((int *)params);
3523 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3524 assoc_id = params->assoc_id;
3525 assoc_value = params->assoc_value;
3526 } else
3527 return -EINVAL;
3528
3529 asoc = sctp_id2assoc(sk, assoc_id);
3530 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3531 return -EINVAL;
3532
3533 if (asoc) {
3534 asoc->max_burst = assoc_value;
3535
3536 return 0;
3537 }
3538
3539 if (sctp_style(sk, TCP))
3540 assoc_id = SCTP_FUTURE_ASSOC;
3541
3542 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3543 sp->max_burst = assoc_value;
3544
3545 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3546 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3547 asoc->max_burst = assoc_value;
3548
3549 return 0;
3550 }
3551
3552 /*
3553 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3554 *
3555 * This set option adds a chunk type that the user is requesting to be
3556 * received only in an authenticated way. Changes to the list of chunks
3557 * will only effect future associations on the socket.
3558 */
sctp_setsockopt_auth_chunk(struct sock * sk,struct sctp_authchunk * val,unsigned int optlen)3559 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3560 struct sctp_authchunk *val,
3561 unsigned int optlen)
3562 {
3563 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3564
3565 if (!ep->auth_enable)
3566 return -EACCES;
3567
3568 if (optlen != sizeof(struct sctp_authchunk))
3569 return -EINVAL;
3570
3571 switch (val->sauth_chunk) {
3572 case SCTP_CID_INIT:
3573 case SCTP_CID_INIT_ACK:
3574 case SCTP_CID_SHUTDOWN_COMPLETE:
3575 case SCTP_CID_AUTH:
3576 return -EINVAL;
3577 }
3578
3579 /* add this chunk id to the endpoint */
3580 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3581 }
3582
3583 /*
3584 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3585 *
3586 * This option gets or sets the list of HMAC algorithms that the local
3587 * endpoint requires the peer to use.
3588 */
sctp_setsockopt_hmac_ident(struct sock * sk,struct sctp_hmacalgo * hmacs,unsigned int optlen)3589 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3590 struct sctp_hmacalgo *hmacs,
3591 unsigned int optlen)
3592 {
3593 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3594 u32 idents;
3595
3596 if (!ep->auth_enable)
3597 return -EACCES;
3598
3599 if (optlen < sizeof(struct sctp_hmacalgo))
3600 return -EINVAL;
3601 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3602 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3603
3604 idents = hmacs->shmac_num_idents;
3605 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3606 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3607 return -EINVAL;
3608
3609 return sctp_auth_ep_set_hmacs(ep, hmacs);
3610 }
3611
3612 /*
3613 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3614 *
3615 * This option will set a shared secret key which is used to build an
3616 * association shared key.
3617 */
sctp_setsockopt_auth_key(struct sock * sk,struct sctp_authkey * authkey,unsigned int optlen)3618 static int sctp_setsockopt_auth_key(struct sock *sk,
3619 struct sctp_authkey *authkey,
3620 unsigned int optlen)
3621 {
3622 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3623 struct sctp_association *asoc;
3624 int ret = -EINVAL;
3625
3626 if (optlen <= sizeof(struct sctp_authkey))
3627 return -EINVAL;
3628 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3629 * this.
3630 */
3631 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3632
3633 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3634 goto out;
3635
3636 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3637 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3638 sctp_style(sk, UDP))
3639 goto out;
3640
3641 if (asoc) {
3642 ret = sctp_auth_set_key(ep, asoc, authkey);
3643 goto out;
3644 }
3645
3646 if (sctp_style(sk, TCP))
3647 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3648
3649 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3650 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3651 ret = sctp_auth_set_key(ep, asoc, authkey);
3652 if (ret)
3653 goto out;
3654 }
3655
3656 ret = 0;
3657
3658 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3659 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3660 list_for_each_entry(asoc, &ep->asocs, asocs) {
3661 int res = sctp_auth_set_key(ep, asoc, authkey);
3662
3663 if (res && !ret)
3664 ret = res;
3665 }
3666 }
3667
3668 out:
3669 memzero_explicit(authkey, optlen);
3670 return ret;
3671 }
3672
3673 /*
3674 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3675 *
3676 * This option will get or set the active shared key to be used to build
3677 * the association shared key.
3678 */
sctp_setsockopt_active_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3679 static int sctp_setsockopt_active_key(struct sock *sk,
3680 struct sctp_authkeyid *val,
3681 unsigned int optlen)
3682 {
3683 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3684 struct sctp_association *asoc;
3685 int ret = 0;
3686
3687 if (optlen != sizeof(struct sctp_authkeyid))
3688 return -EINVAL;
3689
3690 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3691 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3692 sctp_style(sk, UDP))
3693 return -EINVAL;
3694
3695 if (asoc)
3696 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3697
3698 if (sctp_style(sk, TCP))
3699 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3700
3701 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3702 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3703 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3704 if (ret)
3705 return ret;
3706 }
3707
3708 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3709 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3710 list_for_each_entry(asoc, &ep->asocs, asocs) {
3711 int res = sctp_auth_set_active_key(ep, asoc,
3712 val->scact_keynumber);
3713
3714 if (res && !ret)
3715 ret = res;
3716 }
3717 }
3718
3719 return ret;
3720 }
3721
3722 /*
3723 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3724 *
3725 * This set option will delete a shared secret key from use.
3726 */
sctp_setsockopt_del_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3727 static int sctp_setsockopt_del_key(struct sock *sk,
3728 struct sctp_authkeyid *val,
3729 unsigned int optlen)
3730 {
3731 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3732 struct sctp_association *asoc;
3733 int ret = 0;
3734
3735 if (optlen != sizeof(struct sctp_authkeyid))
3736 return -EINVAL;
3737
3738 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3739 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3740 sctp_style(sk, UDP))
3741 return -EINVAL;
3742
3743 if (asoc)
3744 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3745
3746 if (sctp_style(sk, TCP))
3747 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3748
3749 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3750 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3751 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3752 if (ret)
3753 return ret;
3754 }
3755
3756 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3757 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3758 list_for_each_entry(asoc, &ep->asocs, asocs) {
3759 int res = sctp_auth_del_key_id(ep, asoc,
3760 val->scact_keynumber);
3761
3762 if (res && !ret)
3763 ret = res;
3764 }
3765 }
3766
3767 return ret;
3768 }
3769
3770 /*
3771 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3772 *
3773 * This set option will deactivate a shared secret key.
3774 */
sctp_setsockopt_deactivate_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3775 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3776 struct sctp_authkeyid *val,
3777 unsigned int optlen)
3778 {
3779 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3780 struct sctp_association *asoc;
3781 int ret = 0;
3782
3783 if (optlen != sizeof(struct sctp_authkeyid))
3784 return -EINVAL;
3785
3786 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3787 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3788 sctp_style(sk, UDP))
3789 return -EINVAL;
3790
3791 if (asoc)
3792 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3793
3794 if (sctp_style(sk, TCP))
3795 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3796
3797 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3798 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3799 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3800 if (ret)
3801 return ret;
3802 }
3803
3804 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3805 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3806 list_for_each_entry(asoc, &ep->asocs, asocs) {
3807 int res = sctp_auth_deact_key_id(ep, asoc,
3808 val->scact_keynumber);
3809
3810 if (res && !ret)
3811 ret = res;
3812 }
3813 }
3814
3815 return ret;
3816 }
3817
3818 /*
3819 * 8.1.23 SCTP_AUTO_ASCONF
3820 *
3821 * This option will enable or disable the use of the automatic generation of
3822 * ASCONF chunks to add and delete addresses to an existing association. Note
3823 * that this option has two caveats namely: a) it only affects sockets that
3824 * are bound to all addresses available to the SCTP stack, and b) the system
3825 * administrator may have an overriding control that turns the ASCONF feature
3826 * off no matter what setting the socket option may have.
3827 * This option expects an integer boolean flag, where a non-zero value turns on
3828 * the option, and a zero value turns off the option.
3829 * Note. In this implementation, socket operation overrides default parameter
3830 * being set by sysctl as well as FreeBSD implementation
3831 */
sctp_setsockopt_auto_asconf(struct sock * sk,int * val,unsigned int optlen)3832 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3833 unsigned int optlen)
3834 {
3835 struct sctp_sock *sp = sctp_sk(sk);
3836
3837 if (optlen < sizeof(int))
3838 return -EINVAL;
3839 if (!sctp_is_ep_boundall(sk) && *val)
3840 return -EINVAL;
3841 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3842 return 0;
3843
3844 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3845 if (*val == 0 && sp->do_auto_asconf) {
3846 list_del(&sp->auto_asconf_list);
3847 sp->do_auto_asconf = 0;
3848 } else if (*val && !sp->do_auto_asconf) {
3849 list_add_tail(&sp->auto_asconf_list,
3850 &sock_net(sk)->sctp.auto_asconf_splist);
3851 sp->do_auto_asconf = 1;
3852 }
3853 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3854 return 0;
3855 }
3856
3857 /*
3858 * SCTP_PEER_ADDR_THLDS
3859 *
3860 * This option allows us to alter the partially failed threshold for one or all
3861 * transports in an association. See Section 6.1 of:
3862 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3863 */
sctp_setsockopt_paddr_thresholds(struct sock * sk,struct sctp_paddrthlds_v2 * val,unsigned int optlen,bool v2)3864 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3865 struct sctp_paddrthlds_v2 *val,
3866 unsigned int optlen, bool v2)
3867 {
3868 struct sctp_transport *trans;
3869 struct sctp_association *asoc;
3870 int len;
3871
3872 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3873 if (optlen < len)
3874 return -EINVAL;
3875
3876 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3877 return -EINVAL;
3878
3879 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3880 trans = sctp_addr_id2transport(sk, &val->spt_address,
3881 val->spt_assoc_id);
3882 if (!trans)
3883 return -ENOENT;
3884
3885 if (val->spt_pathmaxrxt)
3886 trans->pathmaxrxt = val->spt_pathmaxrxt;
3887 if (v2)
3888 trans->ps_retrans = val->spt_pathcpthld;
3889 trans->pf_retrans = val->spt_pathpfthld;
3890
3891 return 0;
3892 }
3893
3894 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3895 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3896 sctp_style(sk, UDP))
3897 return -EINVAL;
3898
3899 if (asoc) {
3900 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3901 transports) {
3902 if (val->spt_pathmaxrxt)
3903 trans->pathmaxrxt = val->spt_pathmaxrxt;
3904 if (v2)
3905 trans->ps_retrans = val->spt_pathcpthld;
3906 trans->pf_retrans = val->spt_pathpfthld;
3907 }
3908
3909 if (val->spt_pathmaxrxt)
3910 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3911 if (v2)
3912 asoc->ps_retrans = val->spt_pathcpthld;
3913 asoc->pf_retrans = val->spt_pathpfthld;
3914 } else {
3915 struct sctp_sock *sp = sctp_sk(sk);
3916
3917 if (val->spt_pathmaxrxt)
3918 sp->pathmaxrxt = val->spt_pathmaxrxt;
3919 if (v2)
3920 sp->ps_retrans = val->spt_pathcpthld;
3921 sp->pf_retrans = val->spt_pathpfthld;
3922 }
3923
3924 return 0;
3925 }
3926
sctp_setsockopt_recvrcvinfo(struct sock * sk,int * val,unsigned int optlen)3927 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3928 unsigned int optlen)
3929 {
3930 if (optlen < sizeof(int))
3931 return -EINVAL;
3932
3933 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3934
3935 return 0;
3936 }
3937
sctp_setsockopt_recvnxtinfo(struct sock * sk,int * val,unsigned int optlen)3938 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3939 unsigned int optlen)
3940 {
3941 if (optlen < sizeof(int))
3942 return -EINVAL;
3943
3944 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3945
3946 return 0;
3947 }
3948
sctp_setsockopt_pr_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3949 static int sctp_setsockopt_pr_supported(struct sock *sk,
3950 struct sctp_assoc_value *params,
3951 unsigned int optlen)
3952 {
3953 struct sctp_association *asoc;
3954
3955 if (optlen != sizeof(*params))
3956 return -EINVAL;
3957
3958 asoc = sctp_id2assoc(sk, params->assoc_id);
3959 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3960 sctp_style(sk, UDP))
3961 return -EINVAL;
3962
3963 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3964
3965 return 0;
3966 }
3967
sctp_setsockopt_default_prinfo(struct sock * sk,struct sctp_default_prinfo * info,unsigned int optlen)3968 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3969 struct sctp_default_prinfo *info,
3970 unsigned int optlen)
3971 {
3972 struct sctp_sock *sp = sctp_sk(sk);
3973 struct sctp_association *asoc;
3974 int retval = -EINVAL;
3975
3976 if (optlen != sizeof(*info))
3977 goto out;
3978
3979 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3980 goto out;
3981
3982 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3983 info->pr_value = 0;
3984
3985 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3986 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3987 sctp_style(sk, UDP))
3988 goto out;
3989
3990 retval = 0;
3991
3992 if (asoc) {
3993 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3994 asoc->default_timetolive = info->pr_value;
3995 goto out;
3996 }
3997
3998 if (sctp_style(sk, TCP))
3999 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4000
4001 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4002 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4003 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4004 sp->default_timetolive = info->pr_value;
4005 }
4006
4007 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4008 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4009 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4010 SCTP_PR_SET_POLICY(asoc->default_flags,
4011 info->pr_policy);
4012 asoc->default_timetolive = info->pr_value;
4013 }
4014 }
4015
4016 out:
4017 return retval;
4018 }
4019
sctp_setsockopt_reconfig_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4020 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4021 struct sctp_assoc_value *params,
4022 unsigned int optlen)
4023 {
4024 struct sctp_association *asoc;
4025 int retval = -EINVAL;
4026
4027 if (optlen != sizeof(*params))
4028 goto out;
4029
4030 asoc = sctp_id2assoc(sk, params->assoc_id);
4031 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4032 sctp_style(sk, UDP))
4033 goto out;
4034
4035 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4036
4037 retval = 0;
4038
4039 out:
4040 return retval;
4041 }
4042
sctp_setsockopt_enable_strreset(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4043 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4044 struct sctp_assoc_value *params,
4045 unsigned int optlen)
4046 {
4047 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4048 struct sctp_association *asoc;
4049 int retval = -EINVAL;
4050
4051 if (optlen != sizeof(*params))
4052 goto out;
4053
4054 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4055 goto out;
4056
4057 asoc = sctp_id2assoc(sk, params->assoc_id);
4058 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4059 sctp_style(sk, UDP))
4060 goto out;
4061
4062 retval = 0;
4063
4064 if (asoc) {
4065 asoc->strreset_enable = params->assoc_value;
4066 goto out;
4067 }
4068
4069 if (sctp_style(sk, TCP))
4070 params->assoc_id = SCTP_FUTURE_ASSOC;
4071
4072 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4073 params->assoc_id == SCTP_ALL_ASSOC)
4074 ep->strreset_enable = params->assoc_value;
4075
4076 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4077 params->assoc_id == SCTP_ALL_ASSOC)
4078 list_for_each_entry(asoc, &ep->asocs, asocs)
4079 asoc->strreset_enable = params->assoc_value;
4080
4081 out:
4082 return retval;
4083 }
4084
sctp_setsockopt_reset_streams(struct sock * sk,struct sctp_reset_streams * params,unsigned int optlen)4085 static int sctp_setsockopt_reset_streams(struct sock *sk,
4086 struct sctp_reset_streams *params,
4087 unsigned int optlen)
4088 {
4089 struct sctp_association *asoc;
4090
4091 if (optlen < sizeof(*params))
4092 return -EINVAL;
4093 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4094 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4095 sizeof(__u16) * sizeof(*params));
4096
4097 if (params->srs_number_streams * sizeof(__u16) >
4098 optlen - sizeof(*params))
4099 return -EINVAL;
4100
4101 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4102 if (!asoc)
4103 return -EINVAL;
4104
4105 return sctp_send_reset_streams(asoc, params);
4106 }
4107
sctp_setsockopt_reset_assoc(struct sock * sk,sctp_assoc_t * associd,unsigned int optlen)4108 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4109 unsigned int optlen)
4110 {
4111 struct sctp_association *asoc;
4112
4113 if (optlen != sizeof(*associd))
4114 return -EINVAL;
4115
4116 asoc = sctp_id2assoc(sk, *associd);
4117 if (!asoc)
4118 return -EINVAL;
4119
4120 return sctp_send_reset_assoc(asoc);
4121 }
4122
sctp_setsockopt_add_streams(struct sock * sk,struct sctp_add_streams * params,unsigned int optlen)4123 static int sctp_setsockopt_add_streams(struct sock *sk,
4124 struct sctp_add_streams *params,
4125 unsigned int optlen)
4126 {
4127 struct sctp_association *asoc;
4128
4129 if (optlen != sizeof(*params))
4130 return -EINVAL;
4131
4132 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4133 if (!asoc)
4134 return -EINVAL;
4135
4136 return sctp_send_add_streams(asoc, params);
4137 }
4138
sctp_setsockopt_scheduler(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4139 static int sctp_setsockopt_scheduler(struct sock *sk,
4140 struct sctp_assoc_value *params,
4141 unsigned int optlen)
4142 {
4143 struct sctp_sock *sp = sctp_sk(sk);
4144 struct sctp_association *asoc;
4145 int retval = 0;
4146
4147 if (optlen < sizeof(*params))
4148 return -EINVAL;
4149
4150 if (params->assoc_value > SCTP_SS_MAX)
4151 return -EINVAL;
4152
4153 asoc = sctp_id2assoc(sk, params->assoc_id);
4154 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4155 sctp_style(sk, UDP))
4156 return -EINVAL;
4157
4158 if (asoc)
4159 return sctp_sched_set_sched(asoc, params->assoc_value);
4160
4161 if (sctp_style(sk, TCP))
4162 params->assoc_id = SCTP_FUTURE_ASSOC;
4163
4164 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4165 params->assoc_id == SCTP_ALL_ASSOC)
4166 sp->default_ss = params->assoc_value;
4167
4168 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4169 params->assoc_id == SCTP_ALL_ASSOC) {
4170 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4171 int ret = sctp_sched_set_sched(asoc,
4172 params->assoc_value);
4173
4174 if (ret && !retval)
4175 retval = ret;
4176 }
4177 }
4178
4179 return retval;
4180 }
4181
sctp_setsockopt_scheduler_value(struct sock * sk,struct sctp_stream_value * params,unsigned int optlen)4182 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4183 struct sctp_stream_value *params,
4184 unsigned int optlen)
4185 {
4186 struct sctp_association *asoc;
4187 int retval = -EINVAL;
4188
4189 if (optlen < sizeof(*params))
4190 goto out;
4191
4192 asoc = sctp_id2assoc(sk, params->assoc_id);
4193 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4194 sctp_style(sk, UDP))
4195 goto out;
4196
4197 if (asoc) {
4198 retval = sctp_sched_set_value(asoc, params->stream_id,
4199 params->stream_value, GFP_KERNEL);
4200 goto out;
4201 }
4202
4203 retval = 0;
4204
4205 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4206 int ret = sctp_sched_set_value(asoc, params->stream_id,
4207 params->stream_value,
4208 GFP_KERNEL);
4209 if (ret && !retval) /* try to return the 1st error. */
4210 retval = ret;
4211 }
4212
4213 out:
4214 return retval;
4215 }
4216
sctp_setsockopt_interleaving_supported(struct sock * sk,struct sctp_assoc_value * p,unsigned int optlen)4217 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4218 struct sctp_assoc_value *p,
4219 unsigned int optlen)
4220 {
4221 struct sctp_sock *sp = sctp_sk(sk);
4222 struct sctp_association *asoc;
4223
4224 if (optlen < sizeof(*p))
4225 return -EINVAL;
4226
4227 asoc = sctp_id2assoc(sk, p->assoc_id);
4228 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4229 return -EINVAL;
4230
4231 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4232 return -EPERM;
4233 }
4234
4235 sp->ep->intl_enable = !!p->assoc_value;
4236 return 0;
4237 }
4238
sctp_setsockopt_reuse_port(struct sock * sk,int * val,unsigned int optlen)4239 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4240 unsigned int optlen)
4241 {
4242 if (!sctp_style(sk, TCP))
4243 return -EOPNOTSUPP;
4244
4245 if (sctp_sk(sk)->ep->base.bind_addr.port)
4246 return -EFAULT;
4247
4248 if (optlen < sizeof(int))
4249 return -EINVAL;
4250
4251 sctp_sk(sk)->reuse = !!*val;
4252
4253 return 0;
4254 }
4255
sctp_assoc_ulpevent_type_set(struct sctp_event * param,struct sctp_association * asoc)4256 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4257 struct sctp_association *asoc)
4258 {
4259 struct sctp_ulpevent *event;
4260
4261 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4262
4263 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4264 if (sctp_outq_is_empty(&asoc->outqueue)) {
4265 event = sctp_ulpevent_make_sender_dry_event(asoc,
4266 GFP_USER | __GFP_NOWARN);
4267 if (!event)
4268 return -ENOMEM;
4269
4270 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4271 }
4272 }
4273
4274 return 0;
4275 }
4276
sctp_setsockopt_event(struct sock * sk,struct sctp_event * param,unsigned int optlen)4277 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4278 unsigned int optlen)
4279 {
4280 struct sctp_sock *sp = sctp_sk(sk);
4281 struct sctp_association *asoc;
4282 int retval = 0;
4283
4284 if (optlen < sizeof(*param))
4285 return -EINVAL;
4286
4287 if (param->se_type < SCTP_SN_TYPE_BASE ||
4288 param->se_type > SCTP_SN_TYPE_MAX)
4289 return -EINVAL;
4290
4291 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4292 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4293 sctp_style(sk, UDP))
4294 return -EINVAL;
4295
4296 if (asoc)
4297 return sctp_assoc_ulpevent_type_set(param, asoc);
4298
4299 if (sctp_style(sk, TCP))
4300 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4301
4302 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4303 param->se_assoc_id == SCTP_ALL_ASSOC)
4304 sctp_ulpevent_type_set(&sp->subscribe,
4305 param->se_type, param->se_on);
4306
4307 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4308 param->se_assoc_id == SCTP_ALL_ASSOC) {
4309 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4310 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4311
4312 if (ret && !retval)
4313 retval = ret;
4314 }
4315 }
4316
4317 return retval;
4318 }
4319
sctp_setsockopt_asconf_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4320 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4321 struct sctp_assoc_value *params,
4322 unsigned int optlen)
4323 {
4324 struct sctp_association *asoc;
4325 struct sctp_endpoint *ep;
4326 int retval = -EINVAL;
4327
4328 if (optlen != sizeof(*params))
4329 goto out;
4330
4331 asoc = sctp_id2assoc(sk, params->assoc_id);
4332 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4333 sctp_style(sk, UDP))
4334 goto out;
4335
4336 ep = sctp_sk(sk)->ep;
4337 ep->asconf_enable = !!params->assoc_value;
4338
4339 if (ep->asconf_enable && ep->auth_enable) {
4340 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4341 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4342 }
4343
4344 retval = 0;
4345
4346 out:
4347 return retval;
4348 }
4349
sctp_setsockopt_auth_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4350 static int sctp_setsockopt_auth_supported(struct sock *sk,
4351 struct sctp_assoc_value *params,
4352 unsigned int optlen)
4353 {
4354 struct sctp_association *asoc;
4355 struct sctp_endpoint *ep;
4356 int retval = -EINVAL;
4357
4358 if (optlen != sizeof(*params))
4359 goto out;
4360
4361 asoc = sctp_id2assoc(sk, params->assoc_id);
4362 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4363 sctp_style(sk, UDP))
4364 goto out;
4365
4366 ep = sctp_sk(sk)->ep;
4367 if (params->assoc_value) {
4368 retval = sctp_auth_init(ep, GFP_KERNEL);
4369 if (retval)
4370 goto out;
4371 if (ep->asconf_enable) {
4372 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4373 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4374 }
4375 }
4376
4377 ep->auth_enable = !!params->assoc_value;
4378 retval = 0;
4379
4380 out:
4381 return retval;
4382 }
4383
sctp_setsockopt_ecn_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4384 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4385 struct sctp_assoc_value *params,
4386 unsigned int optlen)
4387 {
4388 struct sctp_association *asoc;
4389 int retval = -EINVAL;
4390
4391 if (optlen != sizeof(*params))
4392 goto out;
4393
4394 asoc = sctp_id2assoc(sk, params->assoc_id);
4395 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4396 sctp_style(sk, UDP))
4397 goto out;
4398
4399 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4400 retval = 0;
4401
4402 out:
4403 return retval;
4404 }
4405
sctp_setsockopt_pf_expose(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4406 static int sctp_setsockopt_pf_expose(struct sock *sk,
4407 struct sctp_assoc_value *params,
4408 unsigned int optlen)
4409 {
4410 struct sctp_association *asoc;
4411 int retval = -EINVAL;
4412
4413 if (optlen != sizeof(*params))
4414 goto out;
4415
4416 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4417 goto out;
4418
4419 asoc = sctp_id2assoc(sk, params->assoc_id);
4420 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4421 sctp_style(sk, UDP))
4422 goto out;
4423
4424 if (asoc)
4425 asoc->pf_expose = params->assoc_value;
4426 else
4427 sctp_sk(sk)->pf_expose = params->assoc_value;
4428 retval = 0;
4429
4430 out:
4431 return retval;
4432 }
4433
4434 /* API 6.2 setsockopt(), getsockopt()
4435 *
4436 * Applications use setsockopt() and getsockopt() to set or retrieve
4437 * socket options. Socket options are used to change the default
4438 * behavior of sockets calls. They are described in Section 7.
4439 *
4440 * The syntax is:
4441 *
4442 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4443 * int __user *optlen);
4444 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4445 * int optlen);
4446 *
4447 * sd - the socket descript.
4448 * level - set to IPPROTO_SCTP for all SCTP options.
4449 * optname - the option name.
4450 * optval - the buffer to store the value of the option.
4451 * optlen - the size of the buffer.
4452 */
sctp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4453 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4454 sockptr_t optval, unsigned int optlen)
4455 {
4456 void *kopt = NULL;
4457 int retval = 0;
4458
4459 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4460
4461 /* I can hardly begin to describe how wrong this is. This is
4462 * so broken as to be worse than useless. The API draft
4463 * REALLY is NOT helpful here... I am not convinced that the
4464 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4465 * are at all well-founded.
4466 */
4467 if (level != SOL_SCTP) {
4468 struct sctp_af *af = sctp_sk(sk)->pf->af;
4469
4470 return af->setsockopt(sk, level, optname, optval, optlen);
4471 }
4472
4473 if (optlen > 0) {
4474 /* Trim it to the biggest size sctp sockopt may need if necessary */
4475 optlen = min_t(unsigned int, optlen,
4476 PAGE_ALIGN(USHRT_MAX +
4477 sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4478 kopt = memdup_sockptr(optval, optlen);
4479 if (IS_ERR(kopt))
4480 return PTR_ERR(kopt);
4481 }
4482
4483 lock_sock(sk);
4484
4485 switch (optname) {
4486 case SCTP_SOCKOPT_BINDX_ADD:
4487 /* 'optlen' is the size of the addresses buffer. */
4488 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4489 SCTP_BINDX_ADD_ADDR);
4490 break;
4491
4492 case SCTP_SOCKOPT_BINDX_REM:
4493 /* 'optlen' is the size of the addresses buffer. */
4494 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4495 SCTP_BINDX_REM_ADDR);
4496 break;
4497
4498 case SCTP_SOCKOPT_CONNECTX_OLD:
4499 /* 'optlen' is the size of the addresses buffer. */
4500 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4501 break;
4502
4503 case SCTP_SOCKOPT_CONNECTX:
4504 /* 'optlen' is the size of the addresses buffer. */
4505 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4506 break;
4507
4508 case SCTP_DISABLE_FRAGMENTS:
4509 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4510 break;
4511
4512 case SCTP_EVENTS:
4513 retval = sctp_setsockopt_events(sk, kopt, optlen);
4514 break;
4515
4516 case SCTP_AUTOCLOSE:
4517 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4518 break;
4519
4520 case SCTP_PEER_ADDR_PARAMS:
4521 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4522 break;
4523
4524 case SCTP_DELAYED_SACK:
4525 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4526 break;
4527 case SCTP_PARTIAL_DELIVERY_POINT:
4528 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4529 break;
4530
4531 case SCTP_INITMSG:
4532 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4533 break;
4534 case SCTP_DEFAULT_SEND_PARAM:
4535 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4536 break;
4537 case SCTP_DEFAULT_SNDINFO:
4538 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4539 break;
4540 case SCTP_PRIMARY_ADDR:
4541 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4542 break;
4543 case SCTP_SET_PEER_PRIMARY_ADDR:
4544 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4545 break;
4546 case SCTP_NODELAY:
4547 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4548 break;
4549 case SCTP_RTOINFO:
4550 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4551 break;
4552 case SCTP_ASSOCINFO:
4553 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4554 break;
4555 case SCTP_I_WANT_MAPPED_V4_ADDR:
4556 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4557 break;
4558 case SCTP_MAXSEG:
4559 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4560 break;
4561 case SCTP_ADAPTATION_LAYER:
4562 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4563 break;
4564 case SCTP_CONTEXT:
4565 retval = sctp_setsockopt_context(sk, kopt, optlen);
4566 break;
4567 case SCTP_FRAGMENT_INTERLEAVE:
4568 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4569 break;
4570 case SCTP_MAX_BURST:
4571 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4572 break;
4573 case SCTP_AUTH_CHUNK:
4574 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4575 break;
4576 case SCTP_HMAC_IDENT:
4577 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4578 break;
4579 case SCTP_AUTH_KEY:
4580 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4581 break;
4582 case SCTP_AUTH_ACTIVE_KEY:
4583 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4584 break;
4585 case SCTP_AUTH_DELETE_KEY:
4586 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4587 break;
4588 case SCTP_AUTH_DEACTIVATE_KEY:
4589 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4590 break;
4591 case SCTP_AUTO_ASCONF:
4592 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4593 break;
4594 case SCTP_PEER_ADDR_THLDS:
4595 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4596 false);
4597 break;
4598 case SCTP_PEER_ADDR_THLDS_V2:
4599 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4600 true);
4601 break;
4602 case SCTP_RECVRCVINFO:
4603 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4604 break;
4605 case SCTP_RECVNXTINFO:
4606 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4607 break;
4608 case SCTP_PR_SUPPORTED:
4609 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4610 break;
4611 case SCTP_DEFAULT_PRINFO:
4612 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4613 break;
4614 case SCTP_RECONFIG_SUPPORTED:
4615 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4616 break;
4617 case SCTP_ENABLE_STREAM_RESET:
4618 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4619 break;
4620 case SCTP_RESET_STREAMS:
4621 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4622 break;
4623 case SCTP_RESET_ASSOC:
4624 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4625 break;
4626 case SCTP_ADD_STREAMS:
4627 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4628 break;
4629 case SCTP_STREAM_SCHEDULER:
4630 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4631 break;
4632 case SCTP_STREAM_SCHEDULER_VALUE:
4633 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4634 break;
4635 case SCTP_INTERLEAVING_SUPPORTED:
4636 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4637 optlen);
4638 break;
4639 case SCTP_REUSE_PORT:
4640 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4641 break;
4642 case SCTP_EVENT:
4643 retval = sctp_setsockopt_event(sk, kopt, optlen);
4644 break;
4645 case SCTP_ASCONF_SUPPORTED:
4646 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4647 break;
4648 case SCTP_AUTH_SUPPORTED:
4649 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4650 break;
4651 case SCTP_ECN_SUPPORTED:
4652 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4653 break;
4654 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4655 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4656 break;
4657 default:
4658 retval = -ENOPROTOOPT;
4659 break;
4660 }
4661
4662 release_sock(sk);
4663 kfree(kopt);
4664 return retval;
4665 }
4666
4667 /* API 3.1.6 connect() - UDP Style Syntax
4668 *
4669 * An application may use the connect() call in the UDP model to initiate an
4670 * association without sending data.
4671 *
4672 * The syntax is:
4673 *
4674 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4675 *
4676 * sd: the socket descriptor to have a new association added to.
4677 *
4678 * nam: the address structure (either struct sockaddr_in or struct
4679 * sockaddr_in6 defined in RFC2553 [7]).
4680 *
4681 * len: the size of the address.
4682 */
sctp_connect(struct sock * sk,struct sockaddr * addr,int addr_len,int flags)4683 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4684 int addr_len, int flags)
4685 {
4686 struct sctp_af *af;
4687 int err = -EINVAL;
4688
4689 lock_sock(sk);
4690 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4691 addr, addr_len);
4692
4693 /* Validate addr_len before calling common connect/connectx routine. */
4694 af = sctp_get_af_specific(addr->sa_family);
4695 if (af && addr_len >= af->sockaddr_len)
4696 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4697
4698 release_sock(sk);
4699 return err;
4700 }
4701
sctp_inet_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)4702 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4703 int addr_len, int flags)
4704 {
4705 if (addr_len < sizeof(uaddr->sa_family))
4706 return -EINVAL;
4707
4708 if (uaddr->sa_family == AF_UNSPEC)
4709 return -EOPNOTSUPP;
4710
4711 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4712 }
4713
4714 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)4715 static int sctp_disconnect(struct sock *sk, int flags)
4716 {
4717 return -EOPNOTSUPP; /* STUB */
4718 }
4719
4720 /* 4.1.4 accept() - TCP Style Syntax
4721 *
4722 * Applications use accept() call to remove an established SCTP
4723 * association from the accept queue of the endpoint. A new socket
4724 * descriptor will be returned from accept() to represent the newly
4725 * formed association.
4726 */
sctp_accept(struct sock * sk,int flags,int * err,bool kern)4727 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4728 {
4729 struct sctp_sock *sp;
4730 struct sctp_endpoint *ep;
4731 struct sock *newsk = NULL;
4732 struct sctp_association *asoc;
4733 long timeo;
4734 int error = 0;
4735
4736 lock_sock(sk);
4737
4738 sp = sctp_sk(sk);
4739 ep = sp->ep;
4740
4741 if (!sctp_style(sk, TCP)) {
4742 error = -EOPNOTSUPP;
4743 goto out;
4744 }
4745
4746 if (!sctp_sstate(sk, LISTENING)) {
4747 error = -EINVAL;
4748 goto out;
4749 }
4750
4751 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4752
4753 error = sctp_wait_for_accept(sk, timeo);
4754 if (error)
4755 goto out;
4756
4757 /* We treat the list of associations on the endpoint as the accept
4758 * queue and pick the first association on the list.
4759 */
4760 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4761
4762 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4763 if (!newsk) {
4764 error = -ENOMEM;
4765 goto out;
4766 }
4767
4768 /* Populate the fields of the newsk from the oldsk and migrate the
4769 * asoc to the newsk.
4770 */
4771 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4772 if (error) {
4773 sk_common_release(newsk);
4774 newsk = NULL;
4775 }
4776
4777 out:
4778 release_sock(sk);
4779 *err = error;
4780 return newsk;
4781 }
4782
4783 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,unsigned long arg)4784 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4785 {
4786 int rc = -ENOTCONN;
4787
4788 lock_sock(sk);
4789
4790 /*
4791 * SEQPACKET-style sockets in LISTENING state are valid, for
4792 * SCTP, so only discard TCP-style sockets in LISTENING state.
4793 */
4794 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4795 goto out;
4796
4797 switch (cmd) {
4798 case SIOCINQ: {
4799 struct sk_buff *skb;
4800 unsigned int amount = 0;
4801
4802 skb = skb_peek(&sk->sk_receive_queue);
4803 if (skb != NULL) {
4804 /*
4805 * We will only return the amount of this packet since
4806 * that is all that will be read.
4807 */
4808 amount = skb->len;
4809 }
4810 rc = put_user(amount, (int __user *)arg);
4811 break;
4812 }
4813 default:
4814 rc = -ENOIOCTLCMD;
4815 break;
4816 }
4817 out:
4818 release_sock(sk);
4819 return rc;
4820 }
4821
4822 /* This is the function which gets called during socket creation to
4823 * initialized the SCTP-specific portion of the sock.
4824 * The sock structure should already be zero-filled memory.
4825 */
sctp_init_sock(struct sock * sk)4826 static int sctp_init_sock(struct sock *sk)
4827 {
4828 struct net *net = sock_net(sk);
4829 struct sctp_sock *sp;
4830
4831 pr_debug("%s: sk:%p\n", __func__, sk);
4832
4833 sp = sctp_sk(sk);
4834
4835 /* Initialize the SCTP per socket area. */
4836 switch (sk->sk_type) {
4837 case SOCK_SEQPACKET:
4838 sp->type = SCTP_SOCKET_UDP;
4839 break;
4840 case SOCK_STREAM:
4841 sp->type = SCTP_SOCKET_TCP;
4842 break;
4843 default:
4844 return -ESOCKTNOSUPPORT;
4845 }
4846
4847 sk->sk_gso_type = SKB_GSO_SCTP;
4848
4849 /* Initialize default send parameters. These parameters can be
4850 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4851 */
4852 sp->default_stream = 0;
4853 sp->default_ppid = 0;
4854 sp->default_flags = 0;
4855 sp->default_context = 0;
4856 sp->default_timetolive = 0;
4857
4858 sp->default_rcv_context = 0;
4859 sp->max_burst = net->sctp.max_burst;
4860
4861 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4862
4863 /* Initialize default setup parameters. These parameters
4864 * can be modified with the SCTP_INITMSG socket option or
4865 * overridden by the SCTP_INIT CMSG.
4866 */
4867 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4868 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4869 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4870 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4871
4872 /* Initialize default RTO related parameters. These parameters can
4873 * be modified for with the SCTP_RTOINFO socket option.
4874 */
4875 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4876 sp->rtoinfo.srto_max = net->sctp.rto_max;
4877 sp->rtoinfo.srto_min = net->sctp.rto_min;
4878
4879 /* Initialize default association related parameters. These parameters
4880 * can be modified with the SCTP_ASSOCINFO socket option.
4881 */
4882 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4883 sp->assocparams.sasoc_number_peer_destinations = 0;
4884 sp->assocparams.sasoc_peer_rwnd = 0;
4885 sp->assocparams.sasoc_local_rwnd = 0;
4886 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4887
4888 /* Initialize default event subscriptions. By default, all the
4889 * options are off.
4890 */
4891 sp->subscribe = 0;
4892
4893 /* Default Peer Address Parameters. These defaults can
4894 * be modified via SCTP_PEER_ADDR_PARAMS
4895 */
4896 sp->hbinterval = net->sctp.hb_interval;
4897 sp->pathmaxrxt = net->sctp.max_retrans_path;
4898 sp->pf_retrans = net->sctp.pf_retrans;
4899 sp->ps_retrans = net->sctp.ps_retrans;
4900 sp->pf_expose = net->sctp.pf_expose;
4901 sp->pathmtu = 0; /* allow default discovery */
4902 sp->sackdelay = net->sctp.sack_timeout;
4903 sp->sackfreq = 2;
4904 sp->param_flags = SPP_HB_ENABLE |
4905 SPP_PMTUD_ENABLE |
4906 SPP_SACKDELAY_ENABLE;
4907 sp->default_ss = SCTP_SS_DEFAULT;
4908
4909 /* If enabled no SCTP message fragmentation will be performed.
4910 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4911 */
4912 sp->disable_fragments = 0;
4913
4914 /* Enable Nagle algorithm by default. */
4915 sp->nodelay = 0;
4916
4917 sp->recvrcvinfo = 0;
4918 sp->recvnxtinfo = 0;
4919
4920 /* Enable by default. */
4921 sp->v4mapped = 1;
4922
4923 /* Auto-close idle associations after the configured
4924 * number of seconds. A value of 0 disables this
4925 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4926 * for UDP-style sockets only.
4927 */
4928 sp->autoclose = 0;
4929
4930 /* User specified fragmentation limit. */
4931 sp->user_frag = 0;
4932
4933 sp->adaptation_ind = 0;
4934
4935 sp->pf = sctp_get_pf_specific(sk->sk_family);
4936
4937 /* Control variables for partial data delivery. */
4938 atomic_set(&sp->pd_mode, 0);
4939 skb_queue_head_init(&sp->pd_lobby);
4940 sp->frag_interleave = 0;
4941
4942 /* Create a per socket endpoint structure. Even if we
4943 * change the data structure relationships, this may still
4944 * be useful for storing pre-connect address information.
4945 */
4946 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4947 if (!sp->ep)
4948 return -ENOMEM;
4949
4950 sp->hmac = NULL;
4951
4952 sk->sk_destruct = sctp_destruct_sock;
4953
4954 SCTP_DBG_OBJCNT_INC(sock);
4955
4956 local_bh_disable();
4957 sk_sockets_allocated_inc(sk);
4958 sock_prot_inuse_add(net, sk->sk_prot, 1);
4959
4960 local_bh_enable();
4961
4962 return 0;
4963 }
4964
4965 /* Cleanup any SCTP per socket resources. Must be called with
4966 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4967 */
sctp_destroy_sock(struct sock * sk)4968 static void sctp_destroy_sock(struct sock *sk)
4969 {
4970 struct sctp_sock *sp;
4971
4972 pr_debug("%s: sk:%p\n", __func__, sk);
4973
4974 /* Release our hold on the endpoint. */
4975 sp = sctp_sk(sk);
4976 /* This could happen during socket init, thus we bail out
4977 * early, since the rest of the below is not setup either.
4978 */
4979 if (sp->ep == NULL)
4980 return;
4981
4982 if (sp->do_auto_asconf) {
4983 sp->do_auto_asconf = 0;
4984 list_del(&sp->auto_asconf_list);
4985 }
4986 sctp_endpoint_free(sp->ep);
4987 local_bh_disable();
4988 sk_sockets_allocated_dec(sk);
4989 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4990 local_bh_enable();
4991 }
4992
4993 /* Triggered when there are no references on the socket anymore */
sctp_destruct_sock(struct sock * sk)4994 static void sctp_destruct_sock(struct sock *sk)
4995 {
4996 struct sctp_sock *sp = sctp_sk(sk);
4997
4998 /* Free up the HMAC transform. */
4999 crypto_free_shash(sp->hmac);
5000
5001 inet_sock_destruct(sk);
5002 }
5003
5004 /* API 4.1.7 shutdown() - TCP Style Syntax
5005 * int shutdown(int socket, int how);
5006 *
5007 * sd - the socket descriptor of the association to be closed.
5008 * how - Specifies the type of shutdown. The values are
5009 * as follows:
5010 * SHUT_RD
5011 * Disables further receive operations. No SCTP
5012 * protocol action is taken.
5013 * SHUT_WR
5014 * Disables further send operations, and initiates
5015 * the SCTP shutdown sequence.
5016 * SHUT_RDWR
5017 * Disables further send and receive operations
5018 * and initiates the SCTP shutdown sequence.
5019 */
sctp_shutdown(struct sock * sk,int how)5020 static void sctp_shutdown(struct sock *sk, int how)
5021 {
5022 struct net *net = sock_net(sk);
5023 struct sctp_endpoint *ep;
5024
5025 if (!sctp_style(sk, TCP))
5026 return;
5027
5028 ep = sctp_sk(sk)->ep;
5029 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5030 struct sctp_association *asoc;
5031
5032 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5033 asoc = list_entry(ep->asocs.next,
5034 struct sctp_association, asocs);
5035 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5036 }
5037 }
5038
sctp_get_sctp_info(struct sock * sk,struct sctp_association * asoc,struct sctp_info * info)5039 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5040 struct sctp_info *info)
5041 {
5042 struct sctp_transport *prim;
5043 struct list_head *pos;
5044 int mask;
5045
5046 memset(info, 0, sizeof(*info));
5047 if (!asoc) {
5048 struct sctp_sock *sp = sctp_sk(sk);
5049
5050 info->sctpi_s_autoclose = sp->autoclose;
5051 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5052 info->sctpi_s_pd_point = sp->pd_point;
5053 info->sctpi_s_nodelay = sp->nodelay;
5054 info->sctpi_s_disable_fragments = sp->disable_fragments;
5055 info->sctpi_s_v4mapped = sp->v4mapped;
5056 info->sctpi_s_frag_interleave = sp->frag_interleave;
5057 info->sctpi_s_type = sp->type;
5058
5059 return 0;
5060 }
5061
5062 info->sctpi_tag = asoc->c.my_vtag;
5063 info->sctpi_state = asoc->state;
5064 info->sctpi_rwnd = asoc->a_rwnd;
5065 info->sctpi_unackdata = asoc->unack_data;
5066 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5067 info->sctpi_instrms = asoc->stream.incnt;
5068 info->sctpi_outstrms = asoc->stream.outcnt;
5069 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5070 info->sctpi_inqueue++;
5071 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5072 info->sctpi_outqueue++;
5073 info->sctpi_overall_error = asoc->overall_error_count;
5074 info->sctpi_max_burst = asoc->max_burst;
5075 info->sctpi_maxseg = asoc->frag_point;
5076 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5077 info->sctpi_peer_tag = asoc->c.peer_vtag;
5078
5079 mask = asoc->peer.ecn_capable << 1;
5080 mask = (mask | asoc->peer.ipv4_address) << 1;
5081 mask = (mask | asoc->peer.ipv6_address) << 1;
5082 mask = (mask | asoc->peer.hostname_address) << 1;
5083 mask = (mask | asoc->peer.asconf_capable) << 1;
5084 mask = (mask | asoc->peer.prsctp_capable) << 1;
5085 mask = (mask | asoc->peer.auth_capable);
5086 info->sctpi_peer_capable = mask;
5087 mask = asoc->peer.sack_needed << 1;
5088 mask = (mask | asoc->peer.sack_generation) << 1;
5089 mask = (mask | asoc->peer.zero_window_announced);
5090 info->sctpi_peer_sack = mask;
5091
5092 info->sctpi_isacks = asoc->stats.isacks;
5093 info->sctpi_osacks = asoc->stats.osacks;
5094 info->sctpi_opackets = asoc->stats.opackets;
5095 info->sctpi_ipackets = asoc->stats.ipackets;
5096 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5097 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5098 info->sctpi_idupchunks = asoc->stats.idupchunks;
5099 info->sctpi_gapcnt = asoc->stats.gapcnt;
5100 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5101 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5102 info->sctpi_oodchunks = asoc->stats.oodchunks;
5103 info->sctpi_iodchunks = asoc->stats.iodchunks;
5104 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5105 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5106
5107 prim = asoc->peer.primary_path;
5108 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5109 info->sctpi_p_state = prim->state;
5110 info->sctpi_p_cwnd = prim->cwnd;
5111 info->sctpi_p_srtt = prim->srtt;
5112 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5113 info->sctpi_p_hbinterval = prim->hbinterval;
5114 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5115 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5116 info->sctpi_p_ssthresh = prim->ssthresh;
5117 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5118 info->sctpi_p_flight_size = prim->flight_size;
5119 info->sctpi_p_error = prim->error_count;
5120
5121 return 0;
5122 }
5123 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5124
5125 /* use callback to avoid exporting the core structure */
sctp_transport_walk_start(struct rhashtable_iter * iter)5126 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5127 {
5128 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5129
5130 rhashtable_walk_start(iter);
5131 }
5132
sctp_transport_walk_stop(struct rhashtable_iter * iter)5133 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5134 {
5135 rhashtable_walk_stop(iter);
5136 rhashtable_walk_exit(iter);
5137 }
5138
sctp_transport_get_next(struct net * net,struct rhashtable_iter * iter)5139 struct sctp_transport *sctp_transport_get_next(struct net *net,
5140 struct rhashtable_iter *iter)
5141 {
5142 struct sctp_transport *t;
5143
5144 t = rhashtable_walk_next(iter);
5145 for (; t; t = rhashtable_walk_next(iter)) {
5146 if (IS_ERR(t)) {
5147 if (PTR_ERR(t) == -EAGAIN)
5148 continue;
5149 break;
5150 }
5151
5152 if (!sctp_transport_hold(t))
5153 continue;
5154
5155 if (net_eq(t->asoc->base.net, net) &&
5156 t->asoc->peer.primary_path == t)
5157 break;
5158
5159 sctp_transport_put(t);
5160 }
5161
5162 return t;
5163 }
5164
sctp_transport_get_idx(struct net * net,struct rhashtable_iter * iter,int pos)5165 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5166 struct rhashtable_iter *iter,
5167 int pos)
5168 {
5169 struct sctp_transport *t;
5170
5171 if (!pos)
5172 return SEQ_START_TOKEN;
5173
5174 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5175 if (!--pos)
5176 break;
5177 sctp_transport_put(t);
5178 }
5179
5180 return t;
5181 }
5182
sctp_for_each_endpoint(int (* cb)(struct sctp_endpoint *,void *),void * p)5183 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5184 void *p) {
5185 int err = 0;
5186 int hash = 0;
5187 struct sctp_ep_common *epb;
5188 struct sctp_hashbucket *head;
5189
5190 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5191 hash++, head++) {
5192 read_lock_bh(&head->lock);
5193 sctp_for_each_hentry(epb, &head->chain) {
5194 err = cb(sctp_ep(epb), p);
5195 if (err)
5196 break;
5197 }
5198 read_unlock_bh(&head->lock);
5199 }
5200
5201 return err;
5202 }
5203 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5204
sctp_transport_lookup_process(int (* cb)(struct sctp_transport *,void *),struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,void * p)5205 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5206 struct net *net,
5207 const union sctp_addr *laddr,
5208 const union sctp_addr *paddr, void *p)
5209 {
5210 struct sctp_transport *transport;
5211 int err;
5212
5213 rcu_read_lock();
5214 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5215 rcu_read_unlock();
5216 if (!transport)
5217 return -ENOENT;
5218
5219 err = cb(transport, p);
5220 sctp_transport_put(transport);
5221
5222 return err;
5223 }
5224 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5225
sctp_transport_traverse_process(sctp_callback_t cb,sctp_callback_t cb_done,struct net * net,int * pos,void * p)5226 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5227 struct net *net, int *pos, void *p)
5228 {
5229 struct rhashtable_iter hti;
5230 struct sctp_transport *tsp;
5231 struct sctp_endpoint *ep;
5232 int ret;
5233
5234 again:
5235 ret = 0;
5236 sctp_transport_walk_start(&hti);
5237
5238 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5239 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5240 ep = tsp->asoc->ep;
5241 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5242 ret = cb(ep, tsp, p);
5243 if (ret)
5244 break;
5245 sctp_endpoint_put(ep);
5246 }
5247 (*pos)++;
5248 sctp_transport_put(tsp);
5249 }
5250 sctp_transport_walk_stop(&hti);
5251
5252 if (ret) {
5253 if (cb_done && !cb_done(ep, tsp, p)) {
5254 (*pos)++;
5255 sctp_endpoint_put(ep);
5256 sctp_transport_put(tsp);
5257 goto again;
5258 }
5259 sctp_endpoint_put(ep);
5260 sctp_transport_put(tsp);
5261 }
5262
5263 return ret;
5264 }
5265 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5266
5267 /* 7.2.1 Association Status (SCTP_STATUS)
5268
5269 * Applications can retrieve current status information about an
5270 * association, including association state, peer receiver window size,
5271 * number of unacked data chunks, and number of data chunks pending
5272 * receipt. This information is read-only.
5273 */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char __user * optval,int __user * optlen)5274 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5275 char __user *optval,
5276 int __user *optlen)
5277 {
5278 struct sctp_status status;
5279 struct sctp_association *asoc = NULL;
5280 struct sctp_transport *transport;
5281 sctp_assoc_t associd;
5282 int retval = 0;
5283
5284 if (len < sizeof(status)) {
5285 retval = -EINVAL;
5286 goto out;
5287 }
5288
5289 len = sizeof(status);
5290 if (copy_from_user(&status, optval, len)) {
5291 retval = -EFAULT;
5292 goto out;
5293 }
5294
5295 associd = status.sstat_assoc_id;
5296 asoc = sctp_id2assoc(sk, associd);
5297 if (!asoc) {
5298 retval = -EINVAL;
5299 goto out;
5300 }
5301
5302 transport = asoc->peer.primary_path;
5303
5304 status.sstat_assoc_id = sctp_assoc2id(asoc);
5305 status.sstat_state = sctp_assoc_to_state(asoc);
5306 status.sstat_rwnd = asoc->peer.rwnd;
5307 status.sstat_unackdata = asoc->unack_data;
5308
5309 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5310 status.sstat_instrms = asoc->stream.incnt;
5311 status.sstat_outstrms = asoc->stream.outcnt;
5312 status.sstat_fragmentation_point = asoc->frag_point;
5313 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5314 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5315 transport->af_specific->sockaddr_len);
5316 /* Map ipv4 address into v4-mapped-on-v6 address. */
5317 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5318 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5319 status.sstat_primary.spinfo_state = transport->state;
5320 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5321 status.sstat_primary.spinfo_srtt = transport->srtt;
5322 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5323 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5324
5325 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5326 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5327
5328 if (put_user(len, optlen)) {
5329 retval = -EFAULT;
5330 goto out;
5331 }
5332
5333 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5334 __func__, len, status.sstat_state, status.sstat_rwnd,
5335 status.sstat_assoc_id);
5336
5337 if (copy_to_user(optval, &status, len)) {
5338 retval = -EFAULT;
5339 goto out;
5340 }
5341
5342 out:
5343 return retval;
5344 }
5345
5346
5347 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5348 *
5349 * Applications can retrieve information about a specific peer address
5350 * of an association, including its reachability state, congestion
5351 * window, and retransmission timer values. This information is
5352 * read-only.
5353 */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char __user * optval,int __user * optlen)5354 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5355 char __user *optval,
5356 int __user *optlen)
5357 {
5358 struct sctp_paddrinfo pinfo;
5359 struct sctp_transport *transport;
5360 int retval = 0;
5361
5362 if (len < sizeof(pinfo)) {
5363 retval = -EINVAL;
5364 goto out;
5365 }
5366
5367 len = sizeof(pinfo);
5368 if (copy_from_user(&pinfo, optval, len)) {
5369 retval = -EFAULT;
5370 goto out;
5371 }
5372
5373 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5374 pinfo.spinfo_assoc_id);
5375 if (!transport) {
5376 retval = -EINVAL;
5377 goto out;
5378 }
5379
5380 if (transport->state == SCTP_PF &&
5381 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5382 retval = -EACCES;
5383 goto out;
5384 }
5385
5386 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5387 pinfo.spinfo_state = transport->state;
5388 pinfo.spinfo_cwnd = transport->cwnd;
5389 pinfo.spinfo_srtt = transport->srtt;
5390 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5391 pinfo.spinfo_mtu = transport->pathmtu;
5392
5393 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5394 pinfo.spinfo_state = SCTP_ACTIVE;
5395
5396 if (put_user(len, optlen)) {
5397 retval = -EFAULT;
5398 goto out;
5399 }
5400
5401 if (copy_to_user(optval, &pinfo, len)) {
5402 retval = -EFAULT;
5403 goto out;
5404 }
5405
5406 out:
5407 return retval;
5408 }
5409
5410 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5411 *
5412 * This option is a on/off flag. If enabled no SCTP message
5413 * fragmentation will be performed. Instead if a message being sent
5414 * exceeds the current PMTU size, the message will NOT be sent and
5415 * instead a error will be indicated to the user.
5416 */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char __user * optval,int __user * optlen)5417 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5418 char __user *optval, int __user *optlen)
5419 {
5420 int val;
5421
5422 if (len < sizeof(int))
5423 return -EINVAL;
5424
5425 len = sizeof(int);
5426 val = (sctp_sk(sk)->disable_fragments == 1);
5427 if (put_user(len, optlen))
5428 return -EFAULT;
5429 if (copy_to_user(optval, &val, len))
5430 return -EFAULT;
5431 return 0;
5432 }
5433
5434 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5435 *
5436 * This socket option is used to specify various notifications and
5437 * ancillary data the user wishes to receive.
5438 */
sctp_getsockopt_events(struct sock * sk,int len,char __user * optval,int __user * optlen)5439 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5440 int __user *optlen)
5441 {
5442 struct sctp_event_subscribe subscribe;
5443 __u8 *sn_type = (__u8 *)&subscribe;
5444 int i;
5445
5446 if (len == 0)
5447 return -EINVAL;
5448 if (len > sizeof(struct sctp_event_subscribe))
5449 len = sizeof(struct sctp_event_subscribe);
5450 if (put_user(len, optlen))
5451 return -EFAULT;
5452
5453 for (i = 0; i < len; i++)
5454 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5455 SCTP_SN_TYPE_BASE + i);
5456
5457 if (copy_to_user(optval, &subscribe, len))
5458 return -EFAULT;
5459
5460 return 0;
5461 }
5462
5463 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5464 *
5465 * This socket option is applicable to the UDP-style socket only. When
5466 * set it will cause associations that are idle for more than the
5467 * specified number of seconds to automatically close. An association
5468 * being idle is defined an association that has NOT sent or received
5469 * user data. The special value of '0' indicates that no automatic
5470 * close of any associations should be performed. The option expects an
5471 * integer defining the number of seconds of idle time before an
5472 * association is closed.
5473 */
sctp_getsockopt_autoclose(struct sock * sk,int len,char __user * optval,int __user * optlen)5474 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5475 {
5476 /* Applicable to UDP-style socket only */
5477 if (sctp_style(sk, TCP))
5478 return -EOPNOTSUPP;
5479 if (len < sizeof(int))
5480 return -EINVAL;
5481 len = sizeof(int);
5482 if (put_user(len, optlen))
5483 return -EFAULT;
5484 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5485 return -EFAULT;
5486 return 0;
5487 }
5488
5489 /* Helper routine to branch off an association to a new socket. */
sctp_do_peeloff(struct sock * sk,sctp_assoc_t id,struct socket ** sockp)5490 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5491 {
5492 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5493 struct sctp_sock *sp = sctp_sk(sk);
5494 struct socket *sock;
5495 int err = 0;
5496
5497 /* Do not peel off from one netns to another one. */
5498 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5499 return -EINVAL;
5500
5501 if (!asoc)
5502 return -EINVAL;
5503
5504 /* An association cannot be branched off from an already peeled-off
5505 * socket, nor is this supported for tcp style sockets.
5506 */
5507 if (!sctp_style(sk, UDP))
5508 return -EINVAL;
5509
5510 /* Create a new socket. */
5511 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5512 if (err < 0)
5513 return err;
5514
5515 sctp_copy_sock(sock->sk, sk, asoc);
5516
5517 /* Make peeled-off sockets more like 1-1 accepted sockets.
5518 * Set the daddr and initialize id to something more random and also
5519 * copy over any ip options.
5520 */
5521 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5522 sp->pf->copy_ip_options(sk, sock->sk);
5523
5524 /* Populate the fields of the newsk from the oldsk and migrate the
5525 * asoc to the newsk.
5526 */
5527 err = sctp_sock_migrate(sk, sock->sk, asoc,
5528 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5529 if (err) {
5530 sock_release(sock);
5531 sock = NULL;
5532 }
5533
5534 *sockp = sock;
5535
5536 return err;
5537 }
5538 EXPORT_SYMBOL(sctp_do_peeloff);
5539
sctp_getsockopt_peeloff_common(struct sock * sk,sctp_peeloff_arg_t * peeloff,struct file ** newfile,unsigned flags)5540 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5541 struct file **newfile, unsigned flags)
5542 {
5543 struct socket *newsock;
5544 int retval;
5545
5546 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5547 if (retval < 0)
5548 goto out;
5549
5550 /* Map the socket to an unused fd that can be returned to the user. */
5551 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5552 if (retval < 0) {
5553 sock_release(newsock);
5554 goto out;
5555 }
5556
5557 *newfile = sock_alloc_file(newsock, 0, NULL);
5558 if (IS_ERR(*newfile)) {
5559 put_unused_fd(retval);
5560 retval = PTR_ERR(*newfile);
5561 *newfile = NULL;
5562 return retval;
5563 }
5564
5565 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5566 retval);
5567
5568 peeloff->sd = retval;
5569
5570 if (flags & SOCK_NONBLOCK)
5571 (*newfile)->f_flags |= O_NONBLOCK;
5572 out:
5573 return retval;
5574 }
5575
sctp_getsockopt_peeloff(struct sock * sk,int len,char __user * optval,int __user * optlen)5576 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5577 {
5578 sctp_peeloff_arg_t peeloff;
5579 struct file *newfile = NULL;
5580 int retval = 0;
5581
5582 if (len < sizeof(sctp_peeloff_arg_t))
5583 return -EINVAL;
5584 len = sizeof(sctp_peeloff_arg_t);
5585 if (copy_from_user(&peeloff, optval, len))
5586 return -EFAULT;
5587
5588 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5589 if (retval < 0)
5590 goto out;
5591
5592 /* Return the fd mapped to the new socket. */
5593 if (put_user(len, optlen)) {
5594 fput(newfile);
5595 put_unused_fd(retval);
5596 return -EFAULT;
5597 }
5598
5599 if (copy_to_user(optval, &peeloff, len)) {
5600 fput(newfile);
5601 put_unused_fd(retval);
5602 return -EFAULT;
5603 }
5604 fd_install(retval, newfile);
5605 out:
5606 return retval;
5607 }
5608
sctp_getsockopt_peeloff_flags(struct sock * sk,int len,char __user * optval,int __user * optlen)5609 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5610 char __user *optval, int __user *optlen)
5611 {
5612 sctp_peeloff_flags_arg_t peeloff;
5613 struct file *newfile = NULL;
5614 int retval = 0;
5615
5616 if (len < sizeof(sctp_peeloff_flags_arg_t))
5617 return -EINVAL;
5618 len = sizeof(sctp_peeloff_flags_arg_t);
5619 if (copy_from_user(&peeloff, optval, len))
5620 return -EFAULT;
5621
5622 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5623 &newfile, peeloff.flags);
5624 if (retval < 0)
5625 goto out;
5626
5627 /* Return the fd mapped to the new socket. */
5628 if (put_user(len, optlen)) {
5629 fput(newfile);
5630 put_unused_fd(retval);
5631 return -EFAULT;
5632 }
5633
5634 if (copy_to_user(optval, &peeloff, len)) {
5635 fput(newfile);
5636 put_unused_fd(retval);
5637 return -EFAULT;
5638 }
5639 fd_install(retval, newfile);
5640 out:
5641 return retval;
5642 }
5643
5644 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5645 *
5646 * Applications can enable or disable heartbeats for any peer address of
5647 * an association, modify an address's heartbeat interval, force a
5648 * heartbeat to be sent immediately, and adjust the address's maximum
5649 * number of retransmissions sent before an address is considered
5650 * unreachable. The following structure is used to access and modify an
5651 * address's parameters:
5652 *
5653 * struct sctp_paddrparams {
5654 * sctp_assoc_t spp_assoc_id;
5655 * struct sockaddr_storage spp_address;
5656 * uint32_t spp_hbinterval;
5657 * uint16_t spp_pathmaxrxt;
5658 * uint32_t spp_pathmtu;
5659 * uint32_t spp_sackdelay;
5660 * uint32_t spp_flags;
5661 * };
5662 *
5663 * spp_assoc_id - (one-to-many style socket) This is filled in the
5664 * application, and identifies the association for
5665 * this query.
5666 * spp_address - This specifies which address is of interest.
5667 * spp_hbinterval - This contains the value of the heartbeat interval,
5668 * in milliseconds. If a value of zero
5669 * is present in this field then no changes are to
5670 * be made to this parameter.
5671 * spp_pathmaxrxt - This contains the maximum number of
5672 * retransmissions before this address shall be
5673 * considered unreachable. If a value of zero
5674 * is present in this field then no changes are to
5675 * be made to this parameter.
5676 * spp_pathmtu - When Path MTU discovery is disabled the value
5677 * specified here will be the "fixed" path mtu.
5678 * Note that if the spp_address field is empty
5679 * then all associations on this address will
5680 * have this fixed path mtu set upon them.
5681 *
5682 * spp_sackdelay - When delayed sack is enabled, this value specifies
5683 * the number of milliseconds that sacks will be delayed
5684 * for. This value will apply to all addresses of an
5685 * association if the spp_address field is empty. Note
5686 * also, that if delayed sack is enabled and this
5687 * value is set to 0, no change is made to the last
5688 * recorded delayed sack timer value.
5689 *
5690 * spp_flags - These flags are used to control various features
5691 * on an association. The flag field may contain
5692 * zero or more of the following options.
5693 *
5694 * SPP_HB_ENABLE - Enable heartbeats on the
5695 * specified address. Note that if the address
5696 * field is empty all addresses for the association
5697 * have heartbeats enabled upon them.
5698 *
5699 * SPP_HB_DISABLE - Disable heartbeats on the
5700 * speicifed address. Note that if the address
5701 * field is empty all addresses for the association
5702 * will have their heartbeats disabled. Note also
5703 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5704 * mutually exclusive, only one of these two should
5705 * be specified. Enabling both fields will have
5706 * undetermined results.
5707 *
5708 * SPP_HB_DEMAND - Request a user initiated heartbeat
5709 * to be made immediately.
5710 *
5711 * SPP_PMTUD_ENABLE - This field will enable PMTU
5712 * discovery upon the specified address. Note that
5713 * if the address feild is empty then all addresses
5714 * on the association are effected.
5715 *
5716 * SPP_PMTUD_DISABLE - This field will disable PMTU
5717 * discovery upon the specified address. Note that
5718 * if the address feild is empty then all addresses
5719 * on the association are effected. Not also that
5720 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5721 * exclusive. Enabling both will have undetermined
5722 * results.
5723 *
5724 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5725 * on delayed sack. The time specified in spp_sackdelay
5726 * is used to specify the sack delay for this address. Note
5727 * that if spp_address is empty then all addresses will
5728 * enable delayed sack and take on the sack delay
5729 * value specified in spp_sackdelay.
5730 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5731 * off delayed sack. If the spp_address field is blank then
5732 * delayed sack is disabled for the entire association. Note
5733 * also that this field is mutually exclusive to
5734 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5735 * results.
5736 *
5737 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5738 * setting of the IPV6 flow label value. The value is
5739 * contained in the spp_ipv6_flowlabel field.
5740 * Upon retrieval, this flag will be set to indicate that
5741 * the spp_ipv6_flowlabel field has a valid value returned.
5742 * If a specific destination address is set (in the
5743 * spp_address field), then the value returned is that of
5744 * the address. If just an association is specified (and
5745 * no address), then the association's default flow label
5746 * is returned. If neither an association nor a destination
5747 * is specified, then the socket's default flow label is
5748 * returned. For non-IPv6 sockets, this flag will be left
5749 * cleared.
5750 *
5751 * SPP_DSCP: Setting this flag enables the setting of the
5752 * Differentiated Services Code Point (DSCP) value
5753 * associated with either the association or a specific
5754 * address. The value is obtained in the spp_dscp field.
5755 * Upon retrieval, this flag will be set to indicate that
5756 * the spp_dscp field has a valid value returned. If a
5757 * specific destination address is set when called (in the
5758 * spp_address field), then that specific destination
5759 * address's DSCP value is returned. If just an association
5760 * is specified, then the association's default DSCP is
5761 * returned. If neither an association nor a destination is
5762 * specified, then the socket's default DSCP is returned.
5763 *
5764 * spp_ipv6_flowlabel
5765 * - This field is used in conjunction with the
5766 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5767 * The 20 least significant bits are used for the flow
5768 * label. This setting has precedence over any IPv6-layer
5769 * setting.
5770 *
5771 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5772 * and contains the DSCP. The 6 most significant bits are
5773 * used for the DSCP. This setting has precedence over any
5774 * IPv4- or IPv6- layer setting.
5775 */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char __user * optval,int __user * optlen)5776 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5777 char __user *optval, int __user *optlen)
5778 {
5779 struct sctp_paddrparams params;
5780 struct sctp_transport *trans = NULL;
5781 struct sctp_association *asoc = NULL;
5782 struct sctp_sock *sp = sctp_sk(sk);
5783
5784 if (len >= sizeof(params))
5785 len = sizeof(params);
5786 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5787 spp_ipv6_flowlabel), 4))
5788 len = ALIGN(offsetof(struct sctp_paddrparams,
5789 spp_ipv6_flowlabel), 4);
5790 else
5791 return -EINVAL;
5792
5793 if (copy_from_user(¶ms, optval, len))
5794 return -EFAULT;
5795
5796 /* If an address other than INADDR_ANY is specified, and
5797 * no transport is found, then the request is invalid.
5798 */
5799 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5800 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5801 params.spp_assoc_id);
5802 if (!trans) {
5803 pr_debug("%s: failed no transport\n", __func__);
5804 return -EINVAL;
5805 }
5806 }
5807
5808 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5809 * socket is a one to many style socket, and an association
5810 * was not found, then the id was invalid.
5811 */
5812 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5813 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5814 sctp_style(sk, UDP)) {
5815 pr_debug("%s: failed no association\n", __func__);
5816 return -EINVAL;
5817 }
5818
5819 if (trans) {
5820 /* Fetch transport values. */
5821 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5822 params.spp_pathmtu = trans->pathmtu;
5823 params.spp_pathmaxrxt = trans->pathmaxrxt;
5824 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5825
5826 /*draft-11 doesn't say what to return in spp_flags*/
5827 params.spp_flags = trans->param_flags;
5828 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5829 params.spp_ipv6_flowlabel = trans->flowlabel &
5830 SCTP_FLOWLABEL_VAL_MASK;
5831 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5832 }
5833 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5834 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5835 params.spp_flags |= SPP_DSCP;
5836 }
5837 } else if (asoc) {
5838 /* Fetch association values. */
5839 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5840 params.spp_pathmtu = asoc->pathmtu;
5841 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5842 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5843
5844 /*draft-11 doesn't say what to return in spp_flags*/
5845 params.spp_flags = asoc->param_flags;
5846 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5847 params.spp_ipv6_flowlabel = asoc->flowlabel &
5848 SCTP_FLOWLABEL_VAL_MASK;
5849 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5850 }
5851 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5852 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5853 params.spp_flags |= SPP_DSCP;
5854 }
5855 } else {
5856 /* Fetch socket values. */
5857 params.spp_hbinterval = sp->hbinterval;
5858 params.spp_pathmtu = sp->pathmtu;
5859 params.spp_sackdelay = sp->sackdelay;
5860 params.spp_pathmaxrxt = sp->pathmaxrxt;
5861
5862 /*draft-11 doesn't say what to return in spp_flags*/
5863 params.spp_flags = sp->param_flags;
5864 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5865 params.spp_ipv6_flowlabel = sp->flowlabel &
5866 SCTP_FLOWLABEL_VAL_MASK;
5867 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5868 }
5869 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5870 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5871 params.spp_flags |= SPP_DSCP;
5872 }
5873 }
5874
5875 if (copy_to_user(optval, ¶ms, len))
5876 return -EFAULT;
5877
5878 if (put_user(len, optlen))
5879 return -EFAULT;
5880
5881 return 0;
5882 }
5883
5884 /*
5885 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5886 *
5887 * This option will effect the way delayed acks are performed. This
5888 * option allows you to get or set the delayed ack time, in
5889 * milliseconds. It also allows changing the delayed ack frequency.
5890 * Changing the frequency to 1 disables the delayed sack algorithm. If
5891 * the assoc_id is 0, then this sets or gets the endpoints default
5892 * values. If the assoc_id field is non-zero, then the set or get
5893 * effects the specified association for the one to many model (the
5894 * assoc_id field is ignored by the one to one model). Note that if
5895 * sack_delay or sack_freq are 0 when setting this option, then the
5896 * current values will remain unchanged.
5897 *
5898 * struct sctp_sack_info {
5899 * sctp_assoc_t sack_assoc_id;
5900 * uint32_t sack_delay;
5901 * uint32_t sack_freq;
5902 * };
5903 *
5904 * sack_assoc_id - This parameter, indicates which association the user
5905 * is performing an action upon. Note that if this field's value is
5906 * zero then the endpoints default value is changed (effecting future
5907 * associations only).
5908 *
5909 * sack_delay - This parameter contains the number of milliseconds that
5910 * the user is requesting the delayed ACK timer be set to. Note that
5911 * this value is defined in the standard to be between 200 and 500
5912 * milliseconds.
5913 *
5914 * sack_freq - This parameter contains the number of packets that must
5915 * be received before a sack is sent without waiting for the delay
5916 * timer to expire. The default value for this is 2, setting this
5917 * value to 1 will disable the delayed sack algorithm.
5918 */
sctp_getsockopt_delayed_ack(struct sock * sk,int len,char __user * optval,int __user * optlen)5919 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5920 char __user *optval,
5921 int __user *optlen)
5922 {
5923 struct sctp_sack_info params;
5924 struct sctp_association *asoc = NULL;
5925 struct sctp_sock *sp = sctp_sk(sk);
5926
5927 if (len >= sizeof(struct sctp_sack_info)) {
5928 len = sizeof(struct sctp_sack_info);
5929
5930 if (copy_from_user(¶ms, optval, len))
5931 return -EFAULT;
5932 } else if (len == sizeof(struct sctp_assoc_value)) {
5933 pr_warn_ratelimited(DEPRECATED
5934 "%s (pid %d) "
5935 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5936 "Use struct sctp_sack_info instead\n",
5937 current->comm, task_pid_nr(current));
5938 if (copy_from_user(¶ms, optval, len))
5939 return -EFAULT;
5940 } else
5941 return -EINVAL;
5942
5943 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5944 * socket is a one to many style socket, and an association
5945 * was not found, then the id was invalid.
5946 */
5947 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5948 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5949 sctp_style(sk, UDP))
5950 return -EINVAL;
5951
5952 if (asoc) {
5953 /* Fetch association values. */
5954 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5955 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5956 params.sack_freq = asoc->sackfreq;
5957
5958 } else {
5959 params.sack_delay = 0;
5960 params.sack_freq = 1;
5961 }
5962 } else {
5963 /* Fetch socket values. */
5964 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5965 params.sack_delay = sp->sackdelay;
5966 params.sack_freq = sp->sackfreq;
5967 } else {
5968 params.sack_delay = 0;
5969 params.sack_freq = 1;
5970 }
5971 }
5972
5973 if (copy_to_user(optval, ¶ms, len))
5974 return -EFAULT;
5975
5976 if (put_user(len, optlen))
5977 return -EFAULT;
5978
5979 return 0;
5980 }
5981
5982 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5983 *
5984 * Applications can specify protocol parameters for the default association
5985 * initialization. The option name argument to setsockopt() and getsockopt()
5986 * is SCTP_INITMSG.
5987 *
5988 * Setting initialization parameters is effective only on an unconnected
5989 * socket (for UDP-style sockets only future associations are effected
5990 * by the change). With TCP-style sockets, this option is inherited by
5991 * sockets derived from a listener socket.
5992 */
sctp_getsockopt_initmsg(struct sock * sk,int len,char __user * optval,int __user * optlen)5993 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5994 {
5995 if (len < sizeof(struct sctp_initmsg))
5996 return -EINVAL;
5997 len = sizeof(struct sctp_initmsg);
5998 if (put_user(len, optlen))
5999 return -EFAULT;
6000 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6001 return -EFAULT;
6002 return 0;
6003 }
6004
6005
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6006 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6007 char __user *optval, int __user *optlen)
6008 {
6009 struct sctp_association *asoc;
6010 int cnt = 0;
6011 struct sctp_getaddrs getaddrs;
6012 struct sctp_transport *from;
6013 void __user *to;
6014 union sctp_addr temp;
6015 struct sctp_sock *sp = sctp_sk(sk);
6016 int addrlen;
6017 size_t space_left;
6018 int bytes_copied;
6019
6020 if (len < sizeof(struct sctp_getaddrs))
6021 return -EINVAL;
6022
6023 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6024 return -EFAULT;
6025
6026 /* For UDP-style sockets, id specifies the association to query. */
6027 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6028 if (!asoc)
6029 return -EINVAL;
6030
6031 to = optval + offsetof(struct sctp_getaddrs, addrs);
6032 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6033
6034 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6035 transports) {
6036 memcpy(&temp, &from->ipaddr, sizeof(temp));
6037 addrlen = sctp_get_pf_specific(sk->sk_family)
6038 ->addr_to_user(sp, &temp);
6039 if (space_left < addrlen)
6040 return -ENOMEM;
6041 if (copy_to_user(to, &temp, addrlen))
6042 return -EFAULT;
6043 to += addrlen;
6044 cnt++;
6045 space_left -= addrlen;
6046 }
6047
6048 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6049 return -EFAULT;
6050 bytes_copied = ((char __user *)to) - optval;
6051 if (put_user(bytes_copied, optlen))
6052 return -EFAULT;
6053
6054 return 0;
6055 }
6056
sctp_copy_laddrs(struct sock * sk,__u16 port,void * to,size_t space_left,int * bytes_copied)6057 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6058 size_t space_left, int *bytes_copied)
6059 {
6060 struct sctp_sockaddr_entry *addr;
6061 union sctp_addr temp;
6062 int cnt = 0;
6063 int addrlen;
6064 struct net *net = sock_net(sk);
6065
6066 rcu_read_lock();
6067 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6068 if (!addr->valid)
6069 continue;
6070
6071 if ((PF_INET == sk->sk_family) &&
6072 (AF_INET6 == addr->a.sa.sa_family))
6073 continue;
6074 if ((PF_INET6 == sk->sk_family) &&
6075 inet_v6_ipv6only(sk) &&
6076 (AF_INET == addr->a.sa.sa_family))
6077 continue;
6078 memcpy(&temp, &addr->a, sizeof(temp));
6079 if (!temp.v4.sin_port)
6080 temp.v4.sin_port = htons(port);
6081
6082 addrlen = sctp_get_pf_specific(sk->sk_family)
6083 ->addr_to_user(sctp_sk(sk), &temp);
6084
6085 if (space_left < addrlen) {
6086 cnt = -ENOMEM;
6087 break;
6088 }
6089 memcpy(to, &temp, addrlen);
6090
6091 to += addrlen;
6092 cnt++;
6093 space_left -= addrlen;
6094 *bytes_copied += addrlen;
6095 }
6096 rcu_read_unlock();
6097
6098 return cnt;
6099 }
6100
6101
sctp_getsockopt_local_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6102 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6103 char __user *optval, int __user *optlen)
6104 {
6105 struct sctp_bind_addr *bp;
6106 struct sctp_association *asoc;
6107 int cnt = 0;
6108 struct sctp_getaddrs getaddrs;
6109 struct sctp_sockaddr_entry *addr;
6110 void __user *to;
6111 union sctp_addr temp;
6112 struct sctp_sock *sp = sctp_sk(sk);
6113 int addrlen;
6114 int err = 0;
6115 size_t space_left;
6116 int bytes_copied = 0;
6117 void *addrs;
6118 void *buf;
6119
6120 if (len < sizeof(struct sctp_getaddrs))
6121 return -EINVAL;
6122
6123 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6124 return -EFAULT;
6125
6126 /*
6127 * For UDP-style sockets, id specifies the association to query.
6128 * If the id field is set to the value '0' then the locally bound
6129 * addresses are returned without regard to any particular
6130 * association.
6131 */
6132 if (0 == getaddrs.assoc_id) {
6133 bp = &sctp_sk(sk)->ep->base.bind_addr;
6134 } else {
6135 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6136 if (!asoc)
6137 return -EINVAL;
6138 bp = &asoc->base.bind_addr;
6139 }
6140
6141 to = optval + offsetof(struct sctp_getaddrs, addrs);
6142 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6143
6144 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6145 if (!addrs)
6146 return -ENOMEM;
6147
6148 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6149 * addresses from the global local address list.
6150 */
6151 if (sctp_list_single_entry(&bp->address_list)) {
6152 addr = list_entry(bp->address_list.next,
6153 struct sctp_sockaddr_entry, list);
6154 if (sctp_is_any(sk, &addr->a)) {
6155 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6156 space_left, &bytes_copied);
6157 if (cnt < 0) {
6158 err = cnt;
6159 goto out;
6160 }
6161 goto copy_getaddrs;
6162 }
6163 }
6164
6165 buf = addrs;
6166 /* Protection on the bound address list is not needed since
6167 * in the socket option context we hold a socket lock and
6168 * thus the bound address list can't change.
6169 */
6170 list_for_each_entry(addr, &bp->address_list, list) {
6171 memcpy(&temp, &addr->a, sizeof(temp));
6172 addrlen = sctp_get_pf_specific(sk->sk_family)
6173 ->addr_to_user(sp, &temp);
6174 if (space_left < addrlen) {
6175 err = -ENOMEM; /*fixme: right error?*/
6176 goto out;
6177 }
6178 memcpy(buf, &temp, addrlen);
6179 buf += addrlen;
6180 bytes_copied += addrlen;
6181 cnt++;
6182 space_left -= addrlen;
6183 }
6184
6185 copy_getaddrs:
6186 if (copy_to_user(to, addrs, bytes_copied)) {
6187 err = -EFAULT;
6188 goto out;
6189 }
6190 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6191 err = -EFAULT;
6192 goto out;
6193 }
6194 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6195 * but we can't change it anymore.
6196 */
6197 if (put_user(bytes_copied, optlen))
6198 err = -EFAULT;
6199 out:
6200 kfree(addrs);
6201 return err;
6202 }
6203
6204 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6205 *
6206 * Requests that the local SCTP stack use the enclosed peer address as
6207 * the association primary. The enclosed address must be one of the
6208 * association peer's addresses.
6209 */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char __user * optval,int __user * optlen)6210 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6211 char __user *optval, int __user *optlen)
6212 {
6213 struct sctp_prim prim;
6214 struct sctp_association *asoc;
6215 struct sctp_sock *sp = sctp_sk(sk);
6216
6217 if (len < sizeof(struct sctp_prim))
6218 return -EINVAL;
6219
6220 len = sizeof(struct sctp_prim);
6221
6222 if (copy_from_user(&prim, optval, len))
6223 return -EFAULT;
6224
6225 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6226 if (!asoc)
6227 return -EINVAL;
6228
6229 if (!asoc->peer.primary_path)
6230 return -ENOTCONN;
6231
6232 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6233 asoc->peer.primary_path->af_specific->sockaddr_len);
6234
6235 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6236 (union sctp_addr *)&prim.ssp_addr);
6237
6238 if (put_user(len, optlen))
6239 return -EFAULT;
6240 if (copy_to_user(optval, &prim, len))
6241 return -EFAULT;
6242
6243 return 0;
6244 }
6245
6246 /*
6247 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6248 *
6249 * Requests that the local endpoint set the specified Adaptation Layer
6250 * Indication parameter for all future INIT and INIT-ACK exchanges.
6251 */
sctp_getsockopt_adaptation_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)6252 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6253 char __user *optval, int __user *optlen)
6254 {
6255 struct sctp_setadaptation adaptation;
6256
6257 if (len < sizeof(struct sctp_setadaptation))
6258 return -EINVAL;
6259
6260 len = sizeof(struct sctp_setadaptation);
6261
6262 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6263
6264 if (put_user(len, optlen))
6265 return -EFAULT;
6266 if (copy_to_user(optval, &adaptation, len))
6267 return -EFAULT;
6268
6269 return 0;
6270 }
6271
6272 /*
6273 *
6274 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6275 *
6276 * Applications that wish to use the sendto() system call may wish to
6277 * specify a default set of parameters that would normally be supplied
6278 * through the inclusion of ancillary data. This socket option allows
6279 * such an application to set the default sctp_sndrcvinfo structure.
6280
6281
6282 * The application that wishes to use this socket option simply passes
6283 * in to this call the sctp_sndrcvinfo structure defined in Section
6284 * 5.2.2) The input parameters accepted by this call include
6285 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6286 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6287 * to this call if the caller is using the UDP model.
6288 *
6289 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6290 */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char __user * optval,int __user * optlen)6291 static int sctp_getsockopt_default_send_param(struct sock *sk,
6292 int len, char __user *optval,
6293 int __user *optlen)
6294 {
6295 struct sctp_sock *sp = sctp_sk(sk);
6296 struct sctp_association *asoc;
6297 struct sctp_sndrcvinfo info;
6298
6299 if (len < sizeof(info))
6300 return -EINVAL;
6301
6302 len = sizeof(info);
6303
6304 if (copy_from_user(&info, optval, len))
6305 return -EFAULT;
6306
6307 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6308 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6309 sctp_style(sk, UDP))
6310 return -EINVAL;
6311
6312 if (asoc) {
6313 info.sinfo_stream = asoc->default_stream;
6314 info.sinfo_flags = asoc->default_flags;
6315 info.sinfo_ppid = asoc->default_ppid;
6316 info.sinfo_context = asoc->default_context;
6317 info.sinfo_timetolive = asoc->default_timetolive;
6318 } else {
6319 info.sinfo_stream = sp->default_stream;
6320 info.sinfo_flags = sp->default_flags;
6321 info.sinfo_ppid = sp->default_ppid;
6322 info.sinfo_context = sp->default_context;
6323 info.sinfo_timetolive = sp->default_timetolive;
6324 }
6325
6326 if (put_user(len, optlen))
6327 return -EFAULT;
6328 if (copy_to_user(optval, &info, len))
6329 return -EFAULT;
6330
6331 return 0;
6332 }
6333
6334 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6335 * (SCTP_DEFAULT_SNDINFO)
6336 */
sctp_getsockopt_default_sndinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6337 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6338 char __user *optval,
6339 int __user *optlen)
6340 {
6341 struct sctp_sock *sp = sctp_sk(sk);
6342 struct sctp_association *asoc;
6343 struct sctp_sndinfo info;
6344
6345 if (len < sizeof(info))
6346 return -EINVAL;
6347
6348 len = sizeof(info);
6349
6350 if (copy_from_user(&info, optval, len))
6351 return -EFAULT;
6352
6353 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6354 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6355 sctp_style(sk, UDP))
6356 return -EINVAL;
6357
6358 if (asoc) {
6359 info.snd_sid = asoc->default_stream;
6360 info.snd_flags = asoc->default_flags;
6361 info.snd_ppid = asoc->default_ppid;
6362 info.snd_context = asoc->default_context;
6363 } else {
6364 info.snd_sid = sp->default_stream;
6365 info.snd_flags = sp->default_flags;
6366 info.snd_ppid = sp->default_ppid;
6367 info.snd_context = sp->default_context;
6368 }
6369
6370 if (put_user(len, optlen))
6371 return -EFAULT;
6372 if (copy_to_user(optval, &info, len))
6373 return -EFAULT;
6374
6375 return 0;
6376 }
6377
6378 /*
6379 *
6380 * 7.1.5 SCTP_NODELAY
6381 *
6382 * Turn on/off any Nagle-like algorithm. This means that packets are
6383 * generally sent as soon as possible and no unnecessary delays are
6384 * introduced, at the cost of more packets in the network. Expects an
6385 * integer boolean flag.
6386 */
6387
sctp_getsockopt_nodelay(struct sock * sk,int len,char __user * optval,int __user * optlen)6388 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6389 char __user *optval, int __user *optlen)
6390 {
6391 int val;
6392
6393 if (len < sizeof(int))
6394 return -EINVAL;
6395
6396 len = sizeof(int);
6397 val = (sctp_sk(sk)->nodelay == 1);
6398 if (put_user(len, optlen))
6399 return -EFAULT;
6400 if (copy_to_user(optval, &val, len))
6401 return -EFAULT;
6402 return 0;
6403 }
6404
6405 /*
6406 *
6407 * 7.1.1 SCTP_RTOINFO
6408 *
6409 * The protocol parameters used to initialize and bound retransmission
6410 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6411 * and modify these parameters.
6412 * All parameters are time values, in milliseconds. A value of 0, when
6413 * modifying the parameters, indicates that the current value should not
6414 * be changed.
6415 *
6416 */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6417 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6418 char __user *optval,
6419 int __user *optlen) {
6420 struct sctp_rtoinfo rtoinfo;
6421 struct sctp_association *asoc;
6422
6423 if (len < sizeof (struct sctp_rtoinfo))
6424 return -EINVAL;
6425
6426 len = sizeof(struct sctp_rtoinfo);
6427
6428 if (copy_from_user(&rtoinfo, optval, len))
6429 return -EFAULT;
6430
6431 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6432
6433 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6434 sctp_style(sk, UDP))
6435 return -EINVAL;
6436
6437 /* Values corresponding to the specific association. */
6438 if (asoc) {
6439 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6440 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6441 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6442 } else {
6443 /* Values corresponding to the endpoint. */
6444 struct sctp_sock *sp = sctp_sk(sk);
6445
6446 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6447 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6448 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6449 }
6450
6451 if (put_user(len, optlen))
6452 return -EFAULT;
6453
6454 if (copy_to_user(optval, &rtoinfo, len))
6455 return -EFAULT;
6456
6457 return 0;
6458 }
6459
6460 /*
6461 *
6462 * 7.1.2 SCTP_ASSOCINFO
6463 *
6464 * This option is used to tune the maximum retransmission attempts
6465 * of the association.
6466 * Returns an error if the new association retransmission value is
6467 * greater than the sum of the retransmission value of the peer.
6468 * See [SCTP] for more information.
6469 *
6470 */
sctp_getsockopt_associnfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6471 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6472 char __user *optval,
6473 int __user *optlen)
6474 {
6475
6476 struct sctp_assocparams assocparams;
6477 struct sctp_association *asoc;
6478 struct list_head *pos;
6479 int cnt = 0;
6480
6481 if (len < sizeof (struct sctp_assocparams))
6482 return -EINVAL;
6483
6484 len = sizeof(struct sctp_assocparams);
6485
6486 if (copy_from_user(&assocparams, optval, len))
6487 return -EFAULT;
6488
6489 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6490
6491 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6492 sctp_style(sk, UDP))
6493 return -EINVAL;
6494
6495 /* Values correspoinding to the specific association */
6496 if (asoc) {
6497 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6498 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6499 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6500 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6501
6502 list_for_each(pos, &asoc->peer.transport_addr_list) {
6503 cnt++;
6504 }
6505
6506 assocparams.sasoc_number_peer_destinations = cnt;
6507 } else {
6508 /* Values corresponding to the endpoint */
6509 struct sctp_sock *sp = sctp_sk(sk);
6510
6511 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6512 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6513 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6514 assocparams.sasoc_cookie_life =
6515 sp->assocparams.sasoc_cookie_life;
6516 assocparams.sasoc_number_peer_destinations =
6517 sp->assocparams.
6518 sasoc_number_peer_destinations;
6519 }
6520
6521 if (put_user(len, optlen))
6522 return -EFAULT;
6523
6524 if (copy_to_user(optval, &assocparams, len))
6525 return -EFAULT;
6526
6527 return 0;
6528 }
6529
6530 /*
6531 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6532 *
6533 * This socket option is a boolean flag which turns on or off mapped V4
6534 * addresses. If this option is turned on and the socket is type
6535 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6536 * If this option is turned off, then no mapping will be done of V4
6537 * addresses and a user will receive both PF_INET6 and PF_INET type
6538 * addresses on the socket.
6539 */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char __user * optval,int __user * optlen)6540 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6541 char __user *optval, int __user *optlen)
6542 {
6543 int val;
6544 struct sctp_sock *sp = sctp_sk(sk);
6545
6546 if (len < sizeof(int))
6547 return -EINVAL;
6548
6549 len = sizeof(int);
6550 val = sp->v4mapped;
6551 if (put_user(len, optlen))
6552 return -EFAULT;
6553 if (copy_to_user(optval, &val, len))
6554 return -EFAULT;
6555
6556 return 0;
6557 }
6558
6559 /*
6560 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6561 * (chapter and verse is quoted at sctp_setsockopt_context())
6562 */
sctp_getsockopt_context(struct sock * sk,int len,char __user * optval,int __user * optlen)6563 static int sctp_getsockopt_context(struct sock *sk, int len,
6564 char __user *optval, int __user *optlen)
6565 {
6566 struct sctp_assoc_value params;
6567 struct sctp_association *asoc;
6568
6569 if (len < sizeof(struct sctp_assoc_value))
6570 return -EINVAL;
6571
6572 len = sizeof(struct sctp_assoc_value);
6573
6574 if (copy_from_user(¶ms, optval, len))
6575 return -EFAULT;
6576
6577 asoc = sctp_id2assoc(sk, params.assoc_id);
6578 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6579 sctp_style(sk, UDP))
6580 return -EINVAL;
6581
6582 params.assoc_value = asoc ? asoc->default_rcv_context
6583 : sctp_sk(sk)->default_rcv_context;
6584
6585 if (put_user(len, optlen))
6586 return -EFAULT;
6587 if (copy_to_user(optval, ¶ms, len))
6588 return -EFAULT;
6589
6590 return 0;
6591 }
6592
6593 /*
6594 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6595 * This option will get or set the maximum size to put in any outgoing
6596 * SCTP DATA chunk. If a message is larger than this size it will be
6597 * fragmented by SCTP into the specified size. Note that the underlying
6598 * SCTP implementation may fragment into smaller sized chunks when the
6599 * PMTU of the underlying association is smaller than the value set by
6600 * the user. The default value for this option is '0' which indicates
6601 * the user is NOT limiting fragmentation and only the PMTU will effect
6602 * SCTP's choice of DATA chunk size. Note also that values set larger
6603 * than the maximum size of an IP datagram will effectively let SCTP
6604 * control fragmentation (i.e. the same as setting this option to 0).
6605 *
6606 * The following structure is used to access and modify this parameter:
6607 *
6608 * struct sctp_assoc_value {
6609 * sctp_assoc_t assoc_id;
6610 * uint32_t assoc_value;
6611 * };
6612 *
6613 * assoc_id: This parameter is ignored for one-to-one style sockets.
6614 * For one-to-many style sockets this parameter indicates which
6615 * association the user is performing an action upon. Note that if
6616 * this field's value is zero then the endpoints default value is
6617 * changed (effecting future associations only).
6618 * assoc_value: This parameter specifies the maximum size in bytes.
6619 */
sctp_getsockopt_maxseg(struct sock * sk,int len,char __user * optval,int __user * optlen)6620 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6621 char __user *optval, int __user *optlen)
6622 {
6623 struct sctp_assoc_value params;
6624 struct sctp_association *asoc;
6625
6626 if (len == sizeof(int)) {
6627 pr_warn_ratelimited(DEPRECATED
6628 "%s (pid %d) "
6629 "Use of int in maxseg socket option.\n"
6630 "Use struct sctp_assoc_value instead\n",
6631 current->comm, task_pid_nr(current));
6632 params.assoc_id = SCTP_FUTURE_ASSOC;
6633 } else if (len >= sizeof(struct sctp_assoc_value)) {
6634 len = sizeof(struct sctp_assoc_value);
6635 if (copy_from_user(¶ms, optval, len))
6636 return -EFAULT;
6637 } else
6638 return -EINVAL;
6639
6640 asoc = sctp_id2assoc(sk, params.assoc_id);
6641 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6642 sctp_style(sk, UDP))
6643 return -EINVAL;
6644
6645 if (asoc)
6646 params.assoc_value = asoc->frag_point;
6647 else
6648 params.assoc_value = sctp_sk(sk)->user_frag;
6649
6650 if (put_user(len, optlen))
6651 return -EFAULT;
6652 if (len == sizeof(int)) {
6653 if (copy_to_user(optval, ¶ms.assoc_value, len))
6654 return -EFAULT;
6655 } else {
6656 if (copy_to_user(optval, ¶ms, len))
6657 return -EFAULT;
6658 }
6659
6660 return 0;
6661 }
6662
6663 /*
6664 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6665 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6666 */
sctp_getsockopt_fragment_interleave(struct sock * sk,int len,char __user * optval,int __user * optlen)6667 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6668 char __user *optval, int __user *optlen)
6669 {
6670 int val;
6671
6672 if (len < sizeof(int))
6673 return -EINVAL;
6674
6675 len = sizeof(int);
6676
6677 val = sctp_sk(sk)->frag_interleave;
6678 if (put_user(len, optlen))
6679 return -EFAULT;
6680 if (copy_to_user(optval, &val, len))
6681 return -EFAULT;
6682
6683 return 0;
6684 }
6685
6686 /*
6687 * 7.1.25. Set or Get the sctp partial delivery point
6688 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6689 */
sctp_getsockopt_partial_delivery_point(struct sock * sk,int len,char __user * optval,int __user * optlen)6690 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6691 char __user *optval,
6692 int __user *optlen)
6693 {
6694 u32 val;
6695
6696 if (len < sizeof(u32))
6697 return -EINVAL;
6698
6699 len = sizeof(u32);
6700
6701 val = sctp_sk(sk)->pd_point;
6702 if (put_user(len, optlen))
6703 return -EFAULT;
6704 if (copy_to_user(optval, &val, len))
6705 return -EFAULT;
6706
6707 return 0;
6708 }
6709
6710 /*
6711 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6712 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6713 */
sctp_getsockopt_maxburst(struct sock * sk,int len,char __user * optval,int __user * optlen)6714 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6715 char __user *optval,
6716 int __user *optlen)
6717 {
6718 struct sctp_assoc_value params;
6719 struct sctp_association *asoc;
6720
6721 if (len == sizeof(int)) {
6722 pr_warn_ratelimited(DEPRECATED
6723 "%s (pid %d) "
6724 "Use of int in max_burst socket option.\n"
6725 "Use struct sctp_assoc_value instead\n",
6726 current->comm, task_pid_nr(current));
6727 params.assoc_id = SCTP_FUTURE_ASSOC;
6728 } else if (len >= sizeof(struct sctp_assoc_value)) {
6729 len = sizeof(struct sctp_assoc_value);
6730 if (copy_from_user(¶ms, optval, len))
6731 return -EFAULT;
6732 } else
6733 return -EINVAL;
6734
6735 asoc = sctp_id2assoc(sk, params.assoc_id);
6736 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6737 sctp_style(sk, UDP))
6738 return -EINVAL;
6739
6740 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6741
6742 if (len == sizeof(int)) {
6743 if (copy_to_user(optval, ¶ms.assoc_value, len))
6744 return -EFAULT;
6745 } else {
6746 if (copy_to_user(optval, ¶ms, len))
6747 return -EFAULT;
6748 }
6749
6750 return 0;
6751
6752 }
6753
sctp_getsockopt_hmac_ident(struct sock * sk,int len,char __user * optval,int __user * optlen)6754 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6755 char __user *optval, int __user *optlen)
6756 {
6757 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6758 struct sctp_hmacalgo __user *p = (void __user *)optval;
6759 struct sctp_hmac_algo_param *hmacs;
6760 __u16 data_len = 0;
6761 u32 num_idents;
6762 int i;
6763
6764 if (!ep->auth_enable)
6765 return -EACCES;
6766
6767 hmacs = ep->auth_hmacs_list;
6768 data_len = ntohs(hmacs->param_hdr.length) -
6769 sizeof(struct sctp_paramhdr);
6770
6771 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6772 return -EINVAL;
6773
6774 len = sizeof(struct sctp_hmacalgo) + data_len;
6775 num_idents = data_len / sizeof(u16);
6776
6777 if (put_user(len, optlen))
6778 return -EFAULT;
6779 if (put_user(num_idents, &p->shmac_num_idents))
6780 return -EFAULT;
6781 for (i = 0; i < num_idents; i++) {
6782 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6783
6784 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6785 return -EFAULT;
6786 }
6787 return 0;
6788 }
6789
sctp_getsockopt_active_key(struct sock * sk,int len,char __user * optval,int __user * optlen)6790 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6791 char __user *optval, int __user *optlen)
6792 {
6793 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6794 struct sctp_authkeyid val;
6795 struct sctp_association *asoc;
6796
6797 if (len < sizeof(struct sctp_authkeyid))
6798 return -EINVAL;
6799
6800 len = sizeof(struct sctp_authkeyid);
6801 if (copy_from_user(&val, optval, len))
6802 return -EFAULT;
6803
6804 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6805 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6806 return -EINVAL;
6807
6808 if (asoc) {
6809 if (!asoc->peer.auth_capable)
6810 return -EACCES;
6811 val.scact_keynumber = asoc->active_key_id;
6812 } else {
6813 if (!ep->auth_enable)
6814 return -EACCES;
6815 val.scact_keynumber = ep->active_key_id;
6816 }
6817
6818 if (put_user(len, optlen))
6819 return -EFAULT;
6820 if (copy_to_user(optval, &val, len))
6821 return -EFAULT;
6822
6823 return 0;
6824 }
6825
sctp_getsockopt_peer_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6826 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6827 char __user *optval, int __user *optlen)
6828 {
6829 struct sctp_authchunks __user *p = (void __user *)optval;
6830 struct sctp_authchunks val;
6831 struct sctp_association *asoc;
6832 struct sctp_chunks_param *ch;
6833 u32 num_chunks = 0;
6834 char __user *to;
6835
6836 if (len < sizeof(struct sctp_authchunks))
6837 return -EINVAL;
6838
6839 if (copy_from_user(&val, optval, sizeof(val)))
6840 return -EFAULT;
6841
6842 to = p->gauth_chunks;
6843 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6844 if (!asoc)
6845 return -EINVAL;
6846
6847 if (!asoc->peer.auth_capable)
6848 return -EACCES;
6849
6850 ch = asoc->peer.peer_chunks;
6851 if (!ch)
6852 goto num;
6853
6854 /* See if the user provided enough room for all the data */
6855 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6856 if (len < num_chunks)
6857 return -EINVAL;
6858
6859 if (copy_to_user(to, ch->chunks, num_chunks))
6860 return -EFAULT;
6861 num:
6862 len = sizeof(struct sctp_authchunks) + num_chunks;
6863 if (put_user(len, optlen))
6864 return -EFAULT;
6865 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6866 return -EFAULT;
6867 return 0;
6868 }
6869
sctp_getsockopt_local_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6870 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6871 char __user *optval, int __user *optlen)
6872 {
6873 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6874 struct sctp_authchunks __user *p = (void __user *)optval;
6875 struct sctp_authchunks val;
6876 struct sctp_association *asoc;
6877 struct sctp_chunks_param *ch;
6878 u32 num_chunks = 0;
6879 char __user *to;
6880
6881 if (len < sizeof(struct sctp_authchunks))
6882 return -EINVAL;
6883
6884 if (copy_from_user(&val, optval, sizeof(val)))
6885 return -EFAULT;
6886
6887 to = p->gauth_chunks;
6888 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6889 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6890 sctp_style(sk, UDP))
6891 return -EINVAL;
6892
6893 if (asoc) {
6894 if (!asoc->peer.auth_capable)
6895 return -EACCES;
6896 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6897 } else {
6898 if (!ep->auth_enable)
6899 return -EACCES;
6900 ch = ep->auth_chunk_list;
6901 }
6902 if (!ch)
6903 goto num;
6904
6905 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6906 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6907 return -EINVAL;
6908
6909 if (copy_to_user(to, ch->chunks, num_chunks))
6910 return -EFAULT;
6911 num:
6912 len = sizeof(struct sctp_authchunks) + num_chunks;
6913 if (put_user(len, optlen))
6914 return -EFAULT;
6915 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6916 return -EFAULT;
6917
6918 return 0;
6919 }
6920
6921 /*
6922 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6923 * This option gets the current number of associations that are attached
6924 * to a one-to-many style socket. The option value is an uint32_t.
6925 */
sctp_getsockopt_assoc_number(struct sock * sk,int len,char __user * optval,int __user * optlen)6926 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6927 char __user *optval, int __user *optlen)
6928 {
6929 struct sctp_sock *sp = sctp_sk(sk);
6930 struct sctp_association *asoc;
6931 u32 val = 0;
6932
6933 if (sctp_style(sk, TCP))
6934 return -EOPNOTSUPP;
6935
6936 if (len < sizeof(u32))
6937 return -EINVAL;
6938
6939 len = sizeof(u32);
6940
6941 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6942 val++;
6943 }
6944
6945 if (put_user(len, optlen))
6946 return -EFAULT;
6947 if (copy_to_user(optval, &val, len))
6948 return -EFAULT;
6949
6950 return 0;
6951 }
6952
6953 /*
6954 * 8.1.23 SCTP_AUTO_ASCONF
6955 * See the corresponding setsockopt entry as description
6956 */
sctp_getsockopt_auto_asconf(struct sock * sk,int len,char __user * optval,int __user * optlen)6957 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6958 char __user *optval, int __user *optlen)
6959 {
6960 int val = 0;
6961
6962 if (len < sizeof(int))
6963 return -EINVAL;
6964
6965 len = sizeof(int);
6966 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6967 val = 1;
6968 if (put_user(len, optlen))
6969 return -EFAULT;
6970 if (copy_to_user(optval, &val, len))
6971 return -EFAULT;
6972 return 0;
6973 }
6974
6975 /*
6976 * 8.2.6. Get the Current Identifiers of Associations
6977 * (SCTP_GET_ASSOC_ID_LIST)
6978 *
6979 * This option gets the current list of SCTP association identifiers of
6980 * the SCTP associations handled by a one-to-many style socket.
6981 */
sctp_getsockopt_assoc_ids(struct sock * sk,int len,char __user * optval,int __user * optlen)6982 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6983 char __user *optval, int __user *optlen)
6984 {
6985 struct sctp_sock *sp = sctp_sk(sk);
6986 struct sctp_association *asoc;
6987 struct sctp_assoc_ids *ids;
6988 u32 num = 0;
6989
6990 if (sctp_style(sk, TCP))
6991 return -EOPNOTSUPP;
6992
6993 if (len < sizeof(struct sctp_assoc_ids))
6994 return -EINVAL;
6995
6996 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6997 num++;
6998 }
6999
7000 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7001 return -EINVAL;
7002
7003 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7004
7005 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7006 if (unlikely(!ids))
7007 return -ENOMEM;
7008
7009 ids->gaids_number_of_ids = num;
7010 num = 0;
7011 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7012 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7013 }
7014
7015 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7016 kfree(ids);
7017 return -EFAULT;
7018 }
7019
7020 kfree(ids);
7021 return 0;
7022 }
7023
7024 /*
7025 * SCTP_PEER_ADDR_THLDS
7026 *
7027 * This option allows us to fetch the partially failed threshold for one or all
7028 * transports in an association. See Section 6.1 of:
7029 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7030 */
sctp_getsockopt_paddr_thresholds(struct sock * sk,char __user * optval,int len,int __user * optlen,bool v2)7031 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7032 char __user *optval, int len,
7033 int __user *optlen, bool v2)
7034 {
7035 struct sctp_paddrthlds_v2 val;
7036 struct sctp_transport *trans;
7037 struct sctp_association *asoc;
7038 int min;
7039
7040 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7041 if (len < min)
7042 return -EINVAL;
7043 len = min;
7044 if (copy_from_user(&val, optval, len))
7045 return -EFAULT;
7046
7047 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7048 trans = sctp_addr_id2transport(sk, &val.spt_address,
7049 val.spt_assoc_id);
7050 if (!trans)
7051 return -ENOENT;
7052
7053 val.spt_pathmaxrxt = trans->pathmaxrxt;
7054 val.spt_pathpfthld = trans->pf_retrans;
7055 val.spt_pathcpthld = trans->ps_retrans;
7056
7057 goto out;
7058 }
7059
7060 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7061 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7062 sctp_style(sk, UDP))
7063 return -EINVAL;
7064
7065 if (asoc) {
7066 val.spt_pathpfthld = asoc->pf_retrans;
7067 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7068 val.spt_pathcpthld = asoc->ps_retrans;
7069 } else {
7070 struct sctp_sock *sp = sctp_sk(sk);
7071
7072 val.spt_pathpfthld = sp->pf_retrans;
7073 val.spt_pathmaxrxt = sp->pathmaxrxt;
7074 val.spt_pathcpthld = sp->ps_retrans;
7075 }
7076
7077 out:
7078 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7079 return -EFAULT;
7080
7081 return 0;
7082 }
7083
7084 /*
7085 * SCTP_GET_ASSOC_STATS
7086 *
7087 * This option retrieves local per endpoint statistics. It is modeled
7088 * after OpenSolaris' implementation
7089 */
sctp_getsockopt_assoc_stats(struct sock * sk,int len,char __user * optval,int __user * optlen)7090 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7091 char __user *optval,
7092 int __user *optlen)
7093 {
7094 struct sctp_assoc_stats sas;
7095 struct sctp_association *asoc = NULL;
7096
7097 /* User must provide at least the assoc id */
7098 if (len < sizeof(sctp_assoc_t))
7099 return -EINVAL;
7100
7101 /* Allow the struct to grow and fill in as much as possible */
7102 len = min_t(size_t, len, sizeof(sas));
7103
7104 if (copy_from_user(&sas, optval, len))
7105 return -EFAULT;
7106
7107 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7108 if (!asoc)
7109 return -EINVAL;
7110
7111 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7112 sas.sas_gapcnt = asoc->stats.gapcnt;
7113 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7114 sas.sas_osacks = asoc->stats.osacks;
7115 sas.sas_isacks = asoc->stats.isacks;
7116 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7117 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7118 sas.sas_oodchunks = asoc->stats.oodchunks;
7119 sas.sas_iodchunks = asoc->stats.iodchunks;
7120 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7121 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7122 sas.sas_idupchunks = asoc->stats.idupchunks;
7123 sas.sas_opackets = asoc->stats.opackets;
7124 sas.sas_ipackets = asoc->stats.ipackets;
7125
7126 /* New high max rto observed, will return 0 if not a single
7127 * RTO update took place. obs_rto_ipaddr will be bogus
7128 * in such a case
7129 */
7130 sas.sas_maxrto = asoc->stats.max_obs_rto;
7131 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7132 sizeof(struct sockaddr_storage));
7133
7134 /* Mark beginning of a new observation period */
7135 asoc->stats.max_obs_rto = asoc->rto_min;
7136
7137 if (put_user(len, optlen))
7138 return -EFAULT;
7139
7140 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7141
7142 if (copy_to_user(optval, &sas, len))
7143 return -EFAULT;
7144
7145 return 0;
7146 }
7147
sctp_getsockopt_recvrcvinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7148 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7149 char __user *optval,
7150 int __user *optlen)
7151 {
7152 int val = 0;
7153
7154 if (len < sizeof(int))
7155 return -EINVAL;
7156
7157 len = sizeof(int);
7158 if (sctp_sk(sk)->recvrcvinfo)
7159 val = 1;
7160 if (put_user(len, optlen))
7161 return -EFAULT;
7162 if (copy_to_user(optval, &val, len))
7163 return -EFAULT;
7164
7165 return 0;
7166 }
7167
sctp_getsockopt_recvnxtinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7168 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7169 char __user *optval,
7170 int __user *optlen)
7171 {
7172 int val = 0;
7173
7174 if (len < sizeof(int))
7175 return -EINVAL;
7176
7177 len = sizeof(int);
7178 if (sctp_sk(sk)->recvnxtinfo)
7179 val = 1;
7180 if (put_user(len, optlen))
7181 return -EFAULT;
7182 if (copy_to_user(optval, &val, len))
7183 return -EFAULT;
7184
7185 return 0;
7186 }
7187
sctp_getsockopt_pr_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7188 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7189 char __user *optval,
7190 int __user *optlen)
7191 {
7192 struct sctp_assoc_value params;
7193 struct sctp_association *asoc;
7194 int retval = -EFAULT;
7195
7196 if (len < sizeof(params)) {
7197 retval = -EINVAL;
7198 goto out;
7199 }
7200
7201 len = sizeof(params);
7202 if (copy_from_user(¶ms, optval, len))
7203 goto out;
7204
7205 asoc = sctp_id2assoc(sk, params.assoc_id);
7206 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7207 sctp_style(sk, UDP)) {
7208 retval = -EINVAL;
7209 goto out;
7210 }
7211
7212 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7213 : sctp_sk(sk)->ep->prsctp_enable;
7214
7215 if (put_user(len, optlen))
7216 goto out;
7217
7218 if (copy_to_user(optval, ¶ms, len))
7219 goto out;
7220
7221 retval = 0;
7222
7223 out:
7224 return retval;
7225 }
7226
sctp_getsockopt_default_prinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7227 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7228 char __user *optval,
7229 int __user *optlen)
7230 {
7231 struct sctp_default_prinfo info;
7232 struct sctp_association *asoc;
7233 int retval = -EFAULT;
7234
7235 if (len < sizeof(info)) {
7236 retval = -EINVAL;
7237 goto out;
7238 }
7239
7240 len = sizeof(info);
7241 if (copy_from_user(&info, optval, len))
7242 goto out;
7243
7244 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7245 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7246 sctp_style(sk, UDP)) {
7247 retval = -EINVAL;
7248 goto out;
7249 }
7250
7251 if (asoc) {
7252 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7253 info.pr_value = asoc->default_timetolive;
7254 } else {
7255 struct sctp_sock *sp = sctp_sk(sk);
7256
7257 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7258 info.pr_value = sp->default_timetolive;
7259 }
7260
7261 if (put_user(len, optlen))
7262 goto out;
7263
7264 if (copy_to_user(optval, &info, len))
7265 goto out;
7266
7267 retval = 0;
7268
7269 out:
7270 return retval;
7271 }
7272
sctp_getsockopt_pr_assocstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7273 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7274 char __user *optval,
7275 int __user *optlen)
7276 {
7277 struct sctp_prstatus params;
7278 struct sctp_association *asoc;
7279 int policy;
7280 int retval = -EINVAL;
7281
7282 if (len < sizeof(params))
7283 goto out;
7284
7285 len = sizeof(params);
7286 if (copy_from_user(¶ms, optval, len)) {
7287 retval = -EFAULT;
7288 goto out;
7289 }
7290
7291 policy = params.sprstat_policy;
7292 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7293 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7294 goto out;
7295
7296 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7297 if (!asoc)
7298 goto out;
7299
7300 if (policy == SCTP_PR_SCTP_ALL) {
7301 params.sprstat_abandoned_unsent = 0;
7302 params.sprstat_abandoned_sent = 0;
7303 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7304 params.sprstat_abandoned_unsent +=
7305 asoc->abandoned_unsent[policy];
7306 params.sprstat_abandoned_sent +=
7307 asoc->abandoned_sent[policy];
7308 }
7309 } else {
7310 params.sprstat_abandoned_unsent =
7311 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7312 params.sprstat_abandoned_sent =
7313 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7314 }
7315
7316 if (put_user(len, optlen)) {
7317 retval = -EFAULT;
7318 goto out;
7319 }
7320
7321 if (copy_to_user(optval, ¶ms, len)) {
7322 retval = -EFAULT;
7323 goto out;
7324 }
7325
7326 retval = 0;
7327
7328 out:
7329 return retval;
7330 }
7331
sctp_getsockopt_pr_streamstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7332 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7333 char __user *optval,
7334 int __user *optlen)
7335 {
7336 struct sctp_stream_out_ext *streamoute;
7337 struct sctp_association *asoc;
7338 struct sctp_prstatus params;
7339 int retval = -EINVAL;
7340 int policy;
7341
7342 if (len < sizeof(params))
7343 goto out;
7344
7345 len = sizeof(params);
7346 if (copy_from_user(¶ms, optval, len)) {
7347 retval = -EFAULT;
7348 goto out;
7349 }
7350
7351 policy = params.sprstat_policy;
7352 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7353 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7354 goto out;
7355
7356 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7357 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7358 goto out;
7359
7360 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7361 if (!streamoute) {
7362 /* Not allocated yet, means all stats are 0 */
7363 params.sprstat_abandoned_unsent = 0;
7364 params.sprstat_abandoned_sent = 0;
7365 retval = 0;
7366 goto out;
7367 }
7368
7369 if (policy == SCTP_PR_SCTP_ALL) {
7370 params.sprstat_abandoned_unsent = 0;
7371 params.sprstat_abandoned_sent = 0;
7372 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7373 params.sprstat_abandoned_unsent +=
7374 streamoute->abandoned_unsent[policy];
7375 params.sprstat_abandoned_sent +=
7376 streamoute->abandoned_sent[policy];
7377 }
7378 } else {
7379 params.sprstat_abandoned_unsent =
7380 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7381 params.sprstat_abandoned_sent =
7382 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7383 }
7384
7385 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7386 retval = -EFAULT;
7387 goto out;
7388 }
7389
7390 retval = 0;
7391
7392 out:
7393 return retval;
7394 }
7395
sctp_getsockopt_reconfig_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7396 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7397 char __user *optval,
7398 int __user *optlen)
7399 {
7400 struct sctp_assoc_value params;
7401 struct sctp_association *asoc;
7402 int retval = -EFAULT;
7403
7404 if (len < sizeof(params)) {
7405 retval = -EINVAL;
7406 goto out;
7407 }
7408
7409 len = sizeof(params);
7410 if (copy_from_user(¶ms, optval, len))
7411 goto out;
7412
7413 asoc = sctp_id2assoc(sk, params.assoc_id);
7414 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7415 sctp_style(sk, UDP)) {
7416 retval = -EINVAL;
7417 goto out;
7418 }
7419
7420 params.assoc_value = asoc ? asoc->peer.reconf_capable
7421 : sctp_sk(sk)->ep->reconf_enable;
7422
7423 if (put_user(len, optlen))
7424 goto out;
7425
7426 if (copy_to_user(optval, ¶ms, len))
7427 goto out;
7428
7429 retval = 0;
7430
7431 out:
7432 return retval;
7433 }
7434
sctp_getsockopt_enable_strreset(struct sock * sk,int len,char __user * optval,int __user * optlen)7435 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7436 char __user *optval,
7437 int __user *optlen)
7438 {
7439 struct sctp_assoc_value params;
7440 struct sctp_association *asoc;
7441 int retval = -EFAULT;
7442
7443 if (len < sizeof(params)) {
7444 retval = -EINVAL;
7445 goto out;
7446 }
7447
7448 len = sizeof(params);
7449 if (copy_from_user(¶ms, optval, len))
7450 goto out;
7451
7452 asoc = sctp_id2assoc(sk, params.assoc_id);
7453 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7454 sctp_style(sk, UDP)) {
7455 retval = -EINVAL;
7456 goto out;
7457 }
7458
7459 params.assoc_value = asoc ? asoc->strreset_enable
7460 : sctp_sk(sk)->ep->strreset_enable;
7461
7462 if (put_user(len, optlen))
7463 goto out;
7464
7465 if (copy_to_user(optval, ¶ms, len))
7466 goto out;
7467
7468 retval = 0;
7469
7470 out:
7471 return retval;
7472 }
7473
sctp_getsockopt_scheduler(struct sock * sk,int len,char __user * optval,int __user * optlen)7474 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7475 char __user *optval,
7476 int __user *optlen)
7477 {
7478 struct sctp_assoc_value params;
7479 struct sctp_association *asoc;
7480 int retval = -EFAULT;
7481
7482 if (len < sizeof(params)) {
7483 retval = -EINVAL;
7484 goto out;
7485 }
7486
7487 len = sizeof(params);
7488 if (copy_from_user(¶ms, optval, len))
7489 goto out;
7490
7491 asoc = sctp_id2assoc(sk, params.assoc_id);
7492 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7493 sctp_style(sk, UDP)) {
7494 retval = -EINVAL;
7495 goto out;
7496 }
7497
7498 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7499 : sctp_sk(sk)->default_ss;
7500
7501 if (put_user(len, optlen))
7502 goto out;
7503
7504 if (copy_to_user(optval, ¶ms, len))
7505 goto out;
7506
7507 retval = 0;
7508
7509 out:
7510 return retval;
7511 }
7512
sctp_getsockopt_scheduler_value(struct sock * sk,int len,char __user * optval,int __user * optlen)7513 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7514 char __user *optval,
7515 int __user *optlen)
7516 {
7517 struct sctp_stream_value params;
7518 struct sctp_association *asoc;
7519 int retval = -EFAULT;
7520
7521 if (len < sizeof(params)) {
7522 retval = -EINVAL;
7523 goto out;
7524 }
7525
7526 len = sizeof(params);
7527 if (copy_from_user(¶ms, optval, len))
7528 goto out;
7529
7530 asoc = sctp_id2assoc(sk, params.assoc_id);
7531 if (!asoc) {
7532 retval = -EINVAL;
7533 goto out;
7534 }
7535
7536 retval = sctp_sched_get_value(asoc, params.stream_id,
7537 ¶ms.stream_value);
7538 if (retval)
7539 goto out;
7540
7541 if (put_user(len, optlen)) {
7542 retval = -EFAULT;
7543 goto out;
7544 }
7545
7546 if (copy_to_user(optval, ¶ms, len)) {
7547 retval = -EFAULT;
7548 goto out;
7549 }
7550
7551 out:
7552 return retval;
7553 }
7554
sctp_getsockopt_interleaving_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7555 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7556 char __user *optval,
7557 int __user *optlen)
7558 {
7559 struct sctp_assoc_value params;
7560 struct sctp_association *asoc;
7561 int retval = -EFAULT;
7562
7563 if (len < sizeof(params)) {
7564 retval = -EINVAL;
7565 goto out;
7566 }
7567
7568 len = sizeof(params);
7569 if (copy_from_user(¶ms, optval, len))
7570 goto out;
7571
7572 asoc = sctp_id2assoc(sk, params.assoc_id);
7573 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7574 sctp_style(sk, UDP)) {
7575 retval = -EINVAL;
7576 goto out;
7577 }
7578
7579 params.assoc_value = asoc ? asoc->peer.intl_capable
7580 : sctp_sk(sk)->ep->intl_enable;
7581
7582 if (put_user(len, optlen))
7583 goto out;
7584
7585 if (copy_to_user(optval, ¶ms, len))
7586 goto out;
7587
7588 retval = 0;
7589
7590 out:
7591 return retval;
7592 }
7593
sctp_getsockopt_reuse_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7594 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7595 char __user *optval,
7596 int __user *optlen)
7597 {
7598 int val;
7599
7600 if (len < sizeof(int))
7601 return -EINVAL;
7602
7603 len = sizeof(int);
7604 val = sctp_sk(sk)->reuse;
7605 if (put_user(len, optlen))
7606 return -EFAULT;
7607
7608 if (copy_to_user(optval, &val, len))
7609 return -EFAULT;
7610
7611 return 0;
7612 }
7613
sctp_getsockopt_event(struct sock * sk,int len,char __user * optval,int __user * optlen)7614 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7615 int __user *optlen)
7616 {
7617 struct sctp_association *asoc;
7618 struct sctp_event param;
7619 __u16 subscribe;
7620
7621 if (len < sizeof(param))
7622 return -EINVAL;
7623
7624 len = sizeof(param);
7625 if (copy_from_user(¶m, optval, len))
7626 return -EFAULT;
7627
7628 if (param.se_type < SCTP_SN_TYPE_BASE ||
7629 param.se_type > SCTP_SN_TYPE_MAX)
7630 return -EINVAL;
7631
7632 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7633 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7634 sctp_style(sk, UDP))
7635 return -EINVAL;
7636
7637 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7638 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7639
7640 if (put_user(len, optlen))
7641 return -EFAULT;
7642
7643 if (copy_to_user(optval, ¶m, len))
7644 return -EFAULT;
7645
7646 return 0;
7647 }
7648
sctp_getsockopt_asconf_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7649 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7650 char __user *optval,
7651 int __user *optlen)
7652 {
7653 struct sctp_assoc_value params;
7654 struct sctp_association *asoc;
7655 int retval = -EFAULT;
7656
7657 if (len < sizeof(params)) {
7658 retval = -EINVAL;
7659 goto out;
7660 }
7661
7662 len = sizeof(params);
7663 if (copy_from_user(¶ms, optval, len))
7664 goto out;
7665
7666 asoc = sctp_id2assoc(sk, params.assoc_id);
7667 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7668 sctp_style(sk, UDP)) {
7669 retval = -EINVAL;
7670 goto out;
7671 }
7672
7673 params.assoc_value = asoc ? asoc->peer.asconf_capable
7674 : sctp_sk(sk)->ep->asconf_enable;
7675
7676 if (put_user(len, optlen))
7677 goto out;
7678
7679 if (copy_to_user(optval, ¶ms, len))
7680 goto out;
7681
7682 retval = 0;
7683
7684 out:
7685 return retval;
7686 }
7687
sctp_getsockopt_auth_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7688 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7689 char __user *optval,
7690 int __user *optlen)
7691 {
7692 struct sctp_assoc_value params;
7693 struct sctp_association *asoc;
7694 int retval = -EFAULT;
7695
7696 if (len < sizeof(params)) {
7697 retval = -EINVAL;
7698 goto out;
7699 }
7700
7701 len = sizeof(params);
7702 if (copy_from_user(¶ms, optval, len))
7703 goto out;
7704
7705 asoc = sctp_id2assoc(sk, params.assoc_id);
7706 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7707 sctp_style(sk, UDP)) {
7708 retval = -EINVAL;
7709 goto out;
7710 }
7711
7712 params.assoc_value = asoc ? asoc->peer.auth_capable
7713 : sctp_sk(sk)->ep->auth_enable;
7714
7715 if (put_user(len, optlen))
7716 goto out;
7717
7718 if (copy_to_user(optval, ¶ms, len))
7719 goto out;
7720
7721 retval = 0;
7722
7723 out:
7724 return retval;
7725 }
7726
sctp_getsockopt_ecn_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7727 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7728 char __user *optval,
7729 int __user *optlen)
7730 {
7731 struct sctp_assoc_value params;
7732 struct sctp_association *asoc;
7733 int retval = -EFAULT;
7734
7735 if (len < sizeof(params)) {
7736 retval = -EINVAL;
7737 goto out;
7738 }
7739
7740 len = sizeof(params);
7741 if (copy_from_user(¶ms, optval, len))
7742 goto out;
7743
7744 asoc = sctp_id2assoc(sk, params.assoc_id);
7745 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7746 sctp_style(sk, UDP)) {
7747 retval = -EINVAL;
7748 goto out;
7749 }
7750
7751 params.assoc_value = asoc ? asoc->peer.ecn_capable
7752 : sctp_sk(sk)->ep->ecn_enable;
7753
7754 if (put_user(len, optlen))
7755 goto out;
7756
7757 if (copy_to_user(optval, ¶ms, len))
7758 goto out;
7759
7760 retval = 0;
7761
7762 out:
7763 return retval;
7764 }
7765
sctp_getsockopt_pf_expose(struct sock * sk,int len,char __user * optval,int __user * optlen)7766 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7767 char __user *optval,
7768 int __user *optlen)
7769 {
7770 struct sctp_assoc_value params;
7771 struct sctp_association *asoc;
7772 int retval = -EFAULT;
7773
7774 if (len < sizeof(params)) {
7775 retval = -EINVAL;
7776 goto out;
7777 }
7778
7779 len = sizeof(params);
7780 if (copy_from_user(¶ms, optval, len))
7781 goto out;
7782
7783 asoc = sctp_id2assoc(sk, params.assoc_id);
7784 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7785 sctp_style(sk, UDP)) {
7786 retval = -EINVAL;
7787 goto out;
7788 }
7789
7790 params.assoc_value = asoc ? asoc->pf_expose
7791 : sctp_sk(sk)->pf_expose;
7792
7793 if (put_user(len, optlen))
7794 goto out;
7795
7796 if (copy_to_user(optval, ¶ms, len))
7797 goto out;
7798
7799 retval = 0;
7800
7801 out:
7802 return retval;
7803 }
7804
sctp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)7805 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7806 char __user *optval, int __user *optlen)
7807 {
7808 int retval = 0;
7809 int len;
7810
7811 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7812
7813 /* I can hardly begin to describe how wrong this is. This is
7814 * so broken as to be worse than useless. The API draft
7815 * REALLY is NOT helpful here... I am not convinced that the
7816 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7817 * are at all well-founded.
7818 */
7819 if (level != SOL_SCTP) {
7820 struct sctp_af *af = sctp_sk(sk)->pf->af;
7821
7822 retval = af->getsockopt(sk, level, optname, optval, optlen);
7823 return retval;
7824 }
7825
7826 if (get_user(len, optlen))
7827 return -EFAULT;
7828
7829 if (len < 0)
7830 return -EINVAL;
7831
7832 lock_sock(sk);
7833
7834 switch (optname) {
7835 case SCTP_STATUS:
7836 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7837 break;
7838 case SCTP_DISABLE_FRAGMENTS:
7839 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7840 optlen);
7841 break;
7842 case SCTP_EVENTS:
7843 retval = sctp_getsockopt_events(sk, len, optval, optlen);
7844 break;
7845 case SCTP_AUTOCLOSE:
7846 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7847 break;
7848 case SCTP_SOCKOPT_PEELOFF:
7849 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7850 break;
7851 case SCTP_SOCKOPT_PEELOFF_FLAGS:
7852 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7853 break;
7854 case SCTP_PEER_ADDR_PARAMS:
7855 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7856 optlen);
7857 break;
7858 case SCTP_DELAYED_SACK:
7859 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7860 optlen);
7861 break;
7862 case SCTP_INITMSG:
7863 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7864 break;
7865 case SCTP_GET_PEER_ADDRS:
7866 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7867 optlen);
7868 break;
7869 case SCTP_GET_LOCAL_ADDRS:
7870 retval = sctp_getsockopt_local_addrs(sk, len, optval,
7871 optlen);
7872 break;
7873 case SCTP_SOCKOPT_CONNECTX3:
7874 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7875 break;
7876 case SCTP_DEFAULT_SEND_PARAM:
7877 retval = sctp_getsockopt_default_send_param(sk, len,
7878 optval, optlen);
7879 break;
7880 case SCTP_DEFAULT_SNDINFO:
7881 retval = sctp_getsockopt_default_sndinfo(sk, len,
7882 optval, optlen);
7883 break;
7884 case SCTP_PRIMARY_ADDR:
7885 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7886 break;
7887 case SCTP_NODELAY:
7888 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7889 break;
7890 case SCTP_RTOINFO:
7891 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7892 break;
7893 case SCTP_ASSOCINFO:
7894 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7895 break;
7896 case SCTP_I_WANT_MAPPED_V4_ADDR:
7897 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7898 break;
7899 case SCTP_MAXSEG:
7900 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7901 break;
7902 case SCTP_GET_PEER_ADDR_INFO:
7903 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7904 optlen);
7905 break;
7906 case SCTP_ADAPTATION_LAYER:
7907 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7908 optlen);
7909 break;
7910 case SCTP_CONTEXT:
7911 retval = sctp_getsockopt_context(sk, len, optval, optlen);
7912 break;
7913 case SCTP_FRAGMENT_INTERLEAVE:
7914 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7915 optlen);
7916 break;
7917 case SCTP_PARTIAL_DELIVERY_POINT:
7918 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7919 optlen);
7920 break;
7921 case SCTP_MAX_BURST:
7922 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7923 break;
7924 case SCTP_AUTH_KEY:
7925 case SCTP_AUTH_CHUNK:
7926 case SCTP_AUTH_DELETE_KEY:
7927 case SCTP_AUTH_DEACTIVATE_KEY:
7928 retval = -EOPNOTSUPP;
7929 break;
7930 case SCTP_HMAC_IDENT:
7931 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7932 break;
7933 case SCTP_AUTH_ACTIVE_KEY:
7934 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7935 break;
7936 case SCTP_PEER_AUTH_CHUNKS:
7937 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7938 optlen);
7939 break;
7940 case SCTP_LOCAL_AUTH_CHUNKS:
7941 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7942 optlen);
7943 break;
7944 case SCTP_GET_ASSOC_NUMBER:
7945 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7946 break;
7947 case SCTP_GET_ASSOC_ID_LIST:
7948 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7949 break;
7950 case SCTP_AUTO_ASCONF:
7951 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7952 break;
7953 case SCTP_PEER_ADDR_THLDS:
7954 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
7955 optlen, false);
7956 break;
7957 case SCTP_PEER_ADDR_THLDS_V2:
7958 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
7959 optlen, true);
7960 break;
7961 case SCTP_GET_ASSOC_STATS:
7962 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7963 break;
7964 case SCTP_RECVRCVINFO:
7965 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7966 break;
7967 case SCTP_RECVNXTINFO:
7968 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7969 break;
7970 case SCTP_PR_SUPPORTED:
7971 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7972 break;
7973 case SCTP_DEFAULT_PRINFO:
7974 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7975 optlen);
7976 break;
7977 case SCTP_PR_ASSOC_STATUS:
7978 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7979 optlen);
7980 break;
7981 case SCTP_PR_STREAM_STATUS:
7982 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7983 optlen);
7984 break;
7985 case SCTP_RECONFIG_SUPPORTED:
7986 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7987 optlen);
7988 break;
7989 case SCTP_ENABLE_STREAM_RESET:
7990 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7991 optlen);
7992 break;
7993 case SCTP_STREAM_SCHEDULER:
7994 retval = sctp_getsockopt_scheduler(sk, len, optval,
7995 optlen);
7996 break;
7997 case SCTP_STREAM_SCHEDULER_VALUE:
7998 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7999 optlen);
8000 break;
8001 case SCTP_INTERLEAVING_SUPPORTED:
8002 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8003 optlen);
8004 break;
8005 case SCTP_REUSE_PORT:
8006 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8007 break;
8008 case SCTP_EVENT:
8009 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8010 break;
8011 case SCTP_ASCONF_SUPPORTED:
8012 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8013 optlen);
8014 break;
8015 case SCTP_AUTH_SUPPORTED:
8016 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8017 optlen);
8018 break;
8019 case SCTP_ECN_SUPPORTED:
8020 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8021 break;
8022 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8023 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8024 break;
8025 default:
8026 retval = -ENOPROTOOPT;
8027 break;
8028 }
8029
8030 release_sock(sk);
8031 return retval;
8032 }
8033
sctp_hash(struct sock * sk)8034 static int sctp_hash(struct sock *sk)
8035 {
8036 /* STUB */
8037 return 0;
8038 }
8039
sctp_unhash(struct sock * sk)8040 static void sctp_unhash(struct sock *sk)
8041 {
8042 /* STUB */
8043 }
8044
8045 /* Check if port is acceptable. Possibly find first available port.
8046 *
8047 * The port hash table (contained in the 'global' SCTP protocol storage
8048 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8049 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8050 * list (the list number is the port number hashed out, so as you
8051 * would expect from a hash function, all the ports in a given list have
8052 * such a number that hashes out to the same list number; you were
8053 * expecting that, right?); so each list has a set of ports, with a
8054 * link to the socket (struct sock) that uses it, the port number and
8055 * a fastreuse flag (FIXME: NPI ipg).
8056 */
8057 static struct sctp_bind_bucket *sctp_bucket_create(
8058 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8059
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)8060 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8061 {
8062 struct sctp_sock *sp = sctp_sk(sk);
8063 bool reuse = (sk->sk_reuse || sp->reuse);
8064 struct sctp_bind_hashbucket *head; /* hash list */
8065 struct net *net = sock_net(sk);
8066 kuid_t uid = sock_i_uid(sk);
8067 struct sctp_bind_bucket *pp;
8068 unsigned short snum;
8069 int ret;
8070
8071 snum = ntohs(addr->v4.sin_port);
8072
8073 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8074
8075 if (snum == 0) {
8076 /* Search for an available port. */
8077 int low, high, remaining, index;
8078 unsigned int rover;
8079
8080 inet_get_local_port_range(net, &low, &high);
8081 remaining = (high - low) + 1;
8082 rover = prandom_u32() % remaining + low;
8083
8084 do {
8085 rover++;
8086 if ((rover < low) || (rover > high))
8087 rover = low;
8088 if (inet_is_local_reserved_port(net, rover))
8089 continue;
8090 index = sctp_phashfn(net, rover);
8091 head = &sctp_port_hashtable[index];
8092 spin_lock_bh(&head->lock);
8093 sctp_for_each_hentry(pp, &head->chain)
8094 if ((pp->port == rover) &&
8095 net_eq(net, pp->net))
8096 goto next;
8097 break;
8098 next:
8099 spin_unlock_bh(&head->lock);
8100 cond_resched();
8101 } while (--remaining > 0);
8102
8103 /* Exhausted local port range during search? */
8104 ret = 1;
8105 if (remaining <= 0)
8106 return ret;
8107
8108 /* OK, here is the one we will use. HEAD (the port
8109 * hash table list entry) is non-NULL and we hold it's
8110 * mutex.
8111 */
8112 snum = rover;
8113 } else {
8114 /* We are given an specific port number; we verify
8115 * that it is not being used. If it is used, we will
8116 * exahust the search in the hash list corresponding
8117 * to the port number (snum) - we detect that with the
8118 * port iterator, pp being NULL.
8119 */
8120 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8121 spin_lock_bh(&head->lock);
8122 sctp_for_each_hentry(pp, &head->chain) {
8123 if ((pp->port == snum) && net_eq(pp->net, net))
8124 goto pp_found;
8125 }
8126 }
8127 pp = NULL;
8128 goto pp_not_found;
8129 pp_found:
8130 if (!hlist_empty(&pp->owner)) {
8131 /* We had a port hash table hit - there is an
8132 * available port (pp != NULL) and it is being
8133 * used by other socket (pp->owner not empty); that other
8134 * socket is going to be sk2.
8135 */
8136 struct sock *sk2;
8137
8138 pr_debug("%s: found a possible match\n", __func__);
8139
8140 if ((pp->fastreuse && reuse &&
8141 sk->sk_state != SCTP_SS_LISTENING) ||
8142 (pp->fastreuseport && sk->sk_reuseport &&
8143 uid_eq(pp->fastuid, uid)))
8144 goto success;
8145
8146 /* Run through the list of sockets bound to the port
8147 * (pp->port) [via the pointers bind_next and
8148 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8149 * we get the endpoint they describe and run through
8150 * the endpoint's list of IP (v4 or v6) addresses,
8151 * comparing each of the addresses with the address of
8152 * the socket sk. If we find a match, then that means
8153 * that this port/socket (sk) combination are already
8154 * in an endpoint.
8155 */
8156 sk_for_each_bound(sk2, &pp->owner) {
8157 struct sctp_sock *sp2 = sctp_sk(sk2);
8158 struct sctp_endpoint *ep2 = sp2->ep;
8159
8160 if (sk == sk2 ||
8161 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8162 sk2->sk_state != SCTP_SS_LISTENING) ||
8163 (sk->sk_reuseport && sk2->sk_reuseport &&
8164 uid_eq(uid, sock_i_uid(sk2))))
8165 continue;
8166
8167 if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8168 addr, sp2, sp)) {
8169 ret = 1;
8170 goto fail_unlock;
8171 }
8172 }
8173
8174 pr_debug("%s: found a match\n", __func__);
8175 }
8176 pp_not_found:
8177 /* If there was a hash table miss, create a new port. */
8178 ret = 1;
8179 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8180 goto fail_unlock;
8181
8182 /* In either case (hit or miss), make sure fastreuse is 1 only
8183 * if sk->sk_reuse is too (that is, if the caller requested
8184 * SO_REUSEADDR on this socket -sk-).
8185 */
8186 if (hlist_empty(&pp->owner)) {
8187 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8188 pp->fastreuse = 1;
8189 else
8190 pp->fastreuse = 0;
8191
8192 if (sk->sk_reuseport) {
8193 pp->fastreuseport = 1;
8194 pp->fastuid = uid;
8195 } else {
8196 pp->fastreuseport = 0;
8197 }
8198 } else {
8199 if (pp->fastreuse &&
8200 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8201 pp->fastreuse = 0;
8202
8203 if (pp->fastreuseport &&
8204 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8205 pp->fastreuseport = 0;
8206 }
8207
8208 /* We are set, so fill up all the data in the hash table
8209 * entry, tie the socket list information with the rest of the
8210 * sockets FIXME: Blurry, NPI (ipg).
8211 */
8212 success:
8213 if (!sp->bind_hash) {
8214 inet_sk(sk)->inet_num = snum;
8215 sk_add_bind_node(sk, &pp->owner);
8216 sp->bind_hash = pp;
8217 }
8218 ret = 0;
8219
8220 fail_unlock:
8221 spin_unlock_bh(&head->lock);
8222 return ret;
8223 }
8224
8225 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8226 * port is requested.
8227 */
sctp_get_port(struct sock * sk,unsigned short snum)8228 static int sctp_get_port(struct sock *sk, unsigned short snum)
8229 {
8230 union sctp_addr addr;
8231 struct sctp_af *af = sctp_sk(sk)->pf->af;
8232
8233 /* Set up a dummy address struct from the sk. */
8234 af->from_sk(&addr, sk);
8235 addr.v4.sin_port = htons(snum);
8236
8237 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8238 return sctp_get_port_local(sk, &addr);
8239 }
8240
8241 /*
8242 * Move a socket to LISTENING state.
8243 */
sctp_listen_start(struct sock * sk,int backlog)8244 static int sctp_listen_start(struct sock *sk, int backlog)
8245 {
8246 struct sctp_sock *sp = sctp_sk(sk);
8247 struct sctp_endpoint *ep = sp->ep;
8248 struct crypto_shash *tfm = NULL;
8249 char alg[32];
8250
8251 /* Allocate HMAC for generating cookie. */
8252 if (!sp->hmac && sp->sctp_hmac_alg) {
8253 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8254 tfm = crypto_alloc_shash(alg, 0, 0);
8255 if (IS_ERR(tfm)) {
8256 net_info_ratelimited("failed to load transform for %s: %ld\n",
8257 sp->sctp_hmac_alg, PTR_ERR(tfm));
8258 return -ENOSYS;
8259 }
8260 sctp_sk(sk)->hmac = tfm;
8261 }
8262
8263 /*
8264 * If a bind() or sctp_bindx() is not called prior to a listen()
8265 * call that allows new associations to be accepted, the system
8266 * picks an ephemeral port and will choose an address set equivalent
8267 * to binding with a wildcard address.
8268 *
8269 * This is not currently spelled out in the SCTP sockets
8270 * extensions draft, but follows the practice as seen in TCP
8271 * sockets.
8272 *
8273 */
8274 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8275 if (!ep->base.bind_addr.port) {
8276 if (sctp_autobind(sk))
8277 return -EAGAIN;
8278 } else {
8279 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8280 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8281 return -EADDRINUSE;
8282 }
8283 }
8284
8285 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8286 return sctp_hash_endpoint(ep);
8287 }
8288
8289 /*
8290 * 4.1.3 / 5.1.3 listen()
8291 *
8292 * By default, new associations are not accepted for UDP style sockets.
8293 * An application uses listen() to mark a socket as being able to
8294 * accept new associations.
8295 *
8296 * On TCP style sockets, applications use listen() to ready the SCTP
8297 * endpoint for accepting inbound associations.
8298 *
8299 * On both types of endpoints a backlog of '0' disables listening.
8300 *
8301 * Move a socket to LISTENING state.
8302 */
sctp_inet_listen(struct socket * sock,int backlog)8303 int sctp_inet_listen(struct socket *sock, int backlog)
8304 {
8305 struct sock *sk = sock->sk;
8306 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8307 int err = -EINVAL;
8308
8309 if (unlikely(backlog < 0))
8310 return err;
8311
8312 lock_sock(sk);
8313
8314 /* Peeled-off sockets are not allowed to listen(). */
8315 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8316 goto out;
8317
8318 if (sock->state != SS_UNCONNECTED)
8319 goto out;
8320
8321 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8322 goto out;
8323
8324 /* If backlog is zero, disable listening. */
8325 if (!backlog) {
8326 if (sctp_sstate(sk, CLOSED))
8327 goto out;
8328
8329 err = 0;
8330 sctp_unhash_endpoint(ep);
8331 sk->sk_state = SCTP_SS_CLOSED;
8332 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8333 sctp_sk(sk)->bind_hash->fastreuse = 1;
8334 goto out;
8335 }
8336
8337 /* If we are already listening, just update the backlog */
8338 if (sctp_sstate(sk, LISTENING))
8339 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8340 else {
8341 err = sctp_listen_start(sk, backlog);
8342 if (err)
8343 goto out;
8344 }
8345
8346 err = 0;
8347 out:
8348 release_sock(sk);
8349 return err;
8350 }
8351
8352 /*
8353 * This function is done by modeling the current datagram_poll() and the
8354 * tcp_poll(). Note that, based on these implementations, we don't
8355 * lock the socket in this function, even though it seems that,
8356 * ideally, locking or some other mechanisms can be used to ensure
8357 * the integrity of the counters (sndbuf and wmem_alloc) used
8358 * in this place. We assume that we don't need locks either until proven
8359 * otherwise.
8360 *
8361 * Another thing to note is that we include the Async I/O support
8362 * here, again, by modeling the current TCP/UDP code. We don't have
8363 * a good way to test with it yet.
8364 */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)8365 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8366 {
8367 struct sock *sk = sock->sk;
8368 struct sctp_sock *sp = sctp_sk(sk);
8369 __poll_t mask;
8370
8371 poll_wait(file, sk_sleep(sk), wait);
8372
8373 sock_rps_record_flow(sk);
8374
8375 /* A TCP-style listening socket becomes readable when the accept queue
8376 * is not empty.
8377 */
8378 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8379 return (!list_empty(&sp->ep->asocs)) ?
8380 (EPOLLIN | EPOLLRDNORM) : 0;
8381
8382 mask = 0;
8383
8384 /* Is there any exceptional events? */
8385 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8386 mask |= EPOLLERR |
8387 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8388 if (sk->sk_shutdown & RCV_SHUTDOWN)
8389 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8390 if (sk->sk_shutdown == SHUTDOWN_MASK)
8391 mask |= EPOLLHUP;
8392
8393 /* Is it readable? Reconsider this code with TCP-style support. */
8394 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8395 mask |= EPOLLIN | EPOLLRDNORM;
8396
8397 /* The association is either gone or not ready. */
8398 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8399 return mask;
8400
8401 /* Is it writable? */
8402 if (sctp_writeable(sk)) {
8403 mask |= EPOLLOUT | EPOLLWRNORM;
8404 } else {
8405 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8406 /*
8407 * Since the socket is not locked, the buffer
8408 * might be made available after the writeable check and
8409 * before the bit is set. This could cause a lost I/O
8410 * signal. tcp_poll() has a race breaker for this race
8411 * condition. Based on their implementation, we put
8412 * in the following code to cover it as well.
8413 */
8414 if (sctp_writeable(sk))
8415 mask |= EPOLLOUT | EPOLLWRNORM;
8416 }
8417 return mask;
8418 }
8419
8420 /********************************************************************
8421 * 2nd Level Abstractions
8422 ********************************************************************/
8423
sctp_bucket_create(struct sctp_bind_hashbucket * head,struct net * net,unsigned short snum)8424 static struct sctp_bind_bucket *sctp_bucket_create(
8425 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8426 {
8427 struct sctp_bind_bucket *pp;
8428
8429 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8430 if (pp) {
8431 SCTP_DBG_OBJCNT_INC(bind_bucket);
8432 pp->port = snum;
8433 pp->fastreuse = 0;
8434 INIT_HLIST_HEAD(&pp->owner);
8435 pp->net = net;
8436 hlist_add_head(&pp->node, &head->chain);
8437 }
8438 return pp;
8439 }
8440
8441 /* Caller must hold hashbucket lock for this tb with local BH disabled */
sctp_bucket_destroy(struct sctp_bind_bucket * pp)8442 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8443 {
8444 if (pp && hlist_empty(&pp->owner)) {
8445 __hlist_del(&pp->node);
8446 kmem_cache_free(sctp_bucket_cachep, pp);
8447 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8448 }
8449 }
8450
8451 /* Release this socket's reference to a local port. */
__sctp_put_port(struct sock * sk)8452 static inline void __sctp_put_port(struct sock *sk)
8453 {
8454 struct sctp_bind_hashbucket *head =
8455 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8456 inet_sk(sk)->inet_num)];
8457 struct sctp_bind_bucket *pp;
8458
8459 spin_lock(&head->lock);
8460 pp = sctp_sk(sk)->bind_hash;
8461 __sk_del_bind_node(sk);
8462 sctp_sk(sk)->bind_hash = NULL;
8463 inet_sk(sk)->inet_num = 0;
8464 sctp_bucket_destroy(pp);
8465 spin_unlock(&head->lock);
8466 }
8467
sctp_put_port(struct sock * sk)8468 void sctp_put_port(struct sock *sk)
8469 {
8470 local_bh_disable();
8471 __sctp_put_port(sk);
8472 local_bh_enable();
8473 }
8474
8475 /*
8476 * The system picks an ephemeral port and choose an address set equivalent
8477 * to binding with a wildcard address.
8478 * One of those addresses will be the primary address for the association.
8479 * This automatically enables the multihoming capability of SCTP.
8480 */
sctp_autobind(struct sock * sk)8481 static int sctp_autobind(struct sock *sk)
8482 {
8483 union sctp_addr autoaddr;
8484 struct sctp_af *af;
8485 __be16 port;
8486
8487 /* Initialize a local sockaddr structure to INADDR_ANY. */
8488 af = sctp_sk(sk)->pf->af;
8489
8490 port = htons(inet_sk(sk)->inet_num);
8491 af->inaddr_any(&autoaddr, port);
8492
8493 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8494 }
8495
8496 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8497 *
8498 * From RFC 2292
8499 * 4.2 The cmsghdr Structure *
8500 *
8501 * When ancillary data is sent or received, any number of ancillary data
8502 * objects can be specified by the msg_control and msg_controllen members of
8503 * the msghdr structure, because each object is preceded by
8504 * a cmsghdr structure defining the object's length (the cmsg_len member).
8505 * Historically Berkeley-derived implementations have passed only one object
8506 * at a time, but this API allows multiple objects to be
8507 * passed in a single call to sendmsg() or recvmsg(). The following example
8508 * shows two ancillary data objects in a control buffer.
8509 *
8510 * |<--------------------------- msg_controllen -------------------------->|
8511 * | |
8512 *
8513 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8514 *
8515 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8516 * | | |
8517 *
8518 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8519 *
8520 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8521 * | | | | |
8522 *
8523 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8524 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8525 *
8526 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8527 *
8528 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8529 * ^
8530 * |
8531 *
8532 * msg_control
8533 * points here
8534 */
sctp_msghdr_parse(const struct msghdr * msg,struct sctp_cmsgs * cmsgs)8535 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8536 {
8537 struct msghdr *my_msg = (struct msghdr *)msg;
8538 struct cmsghdr *cmsg;
8539
8540 for_each_cmsghdr(cmsg, my_msg) {
8541 if (!CMSG_OK(my_msg, cmsg))
8542 return -EINVAL;
8543
8544 /* Should we parse this header or ignore? */
8545 if (cmsg->cmsg_level != IPPROTO_SCTP)
8546 continue;
8547
8548 /* Strictly check lengths following example in SCM code. */
8549 switch (cmsg->cmsg_type) {
8550 case SCTP_INIT:
8551 /* SCTP Socket API Extension
8552 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8553 *
8554 * This cmsghdr structure provides information for
8555 * initializing new SCTP associations with sendmsg().
8556 * The SCTP_INITMSG socket option uses this same data
8557 * structure. This structure is not used for
8558 * recvmsg().
8559 *
8560 * cmsg_level cmsg_type cmsg_data[]
8561 * ------------ ------------ ----------------------
8562 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8563 */
8564 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8565 return -EINVAL;
8566
8567 cmsgs->init = CMSG_DATA(cmsg);
8568 break;
8569
8570 case SCTP_SNDRCV:
8571 /* SCTP Socket API Extension
8572 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8573 *
8574 * This cmsghdr structure specifies SCTP options for
8575 * sendmsg() and describes SCTP header information
8576 * about a received message through recvmsg().
8577 *
8578 * cmsg_level cmsg_type cmsg_data[]
8579 * ------------ ------------ ----------------------
8580 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8581 */
8582 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8583 return -EINVAL;
8584
8585 cmsgs->srinfo = CMSG_DATA(cmsg);
8586
8587 if (cmsgs->srinfo->sinfo_flags &
8588 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8589 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8590 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8591 return -EINVAL;
8592 break;
8593
8594 case SCTP_SNDINFO:
8595 /* SCTP Socket API Extension
8596 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8597 *
8598 * This cmsghdr structure specifies SCTP options for
8599 * sendmsg(). This structure and SCTP_RCVINFO replaces
8600 * SCTP_SNDRCV which has been deprecated.
8601 *
8602 * cmsg_level cmsg_type cmsg_data[]
8603 * ------------ ------------ ---------------------
8604 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8605 */
8606 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8607 return -EINVAL;
8608
8609 cmsgs->sinfo = CMSG_DATA(cmsg);
8610
8611 if (cmsgs->sinfo->snd_flags &
8612 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8613 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8614 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8615 return -EINVAL;
8616 break;
8617 case SCTP_PRINFO:
8618 /* SCTP Socket API Extension
8619 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8620 *
8621 * This cmsghdr structure specifies SCTP options for sendmsg().
8622 *
8623 * cmsg_level cmsg_type cmsg_data[]
8624 * ------------ ------------ ---------------------
8625 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8626 */
8627 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8628 return -EINVAL;
8629
8630 cmsgs->prinfo = CMSG_DATA(cmsg);
8631 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8632 return -EINVAL;
8633
8634 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8635 cmsgs->prinfo->pr_value = 0;
8636 break;
8637 case SCTP_AUTHINFO:
8638 /* SCTP Socket API Extension
8639 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8640 *
8641 * This cmsghdr structure specifies SCTP options for sendmsg().
8642 *
8643 * cmsg_level cmsg_type cmsg_data[]
8644 * ------------ ------------ ---------------------
8645 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8646 */
8647 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8648 return -EINVAL;
8649
8650 cmsgs->authinfo = CMSG_DATA(cmsg);
8651 break;
8652 case SCTP_DSTADDRV4:
8653 case SCTP_DSTADDRV6:
8654 /* SCTP Socket API Extension
8655 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8656 *
8657 * This cmsghdr structure specifies SCTP options for sendmsg().
8658 *
8659 * cmsg_level cmsg_type cmsg_data[]
8660 * ------------ ------------ ---------------------
8661 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8662 * ------------ ------------ ---------------------
8663 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8664 */
8665 cmsgs->addrs_msg = my_msg;
8666 break;
8667 default:
8668 return -EINVAL;
8669 }
8670 }
8671
8672 return 0;
8673 }
8674
8675 /*
8676 * Wait for a packet..
8677 * Note: This function is the same function as in core/datagram.c
8678 * with a few modifications to make lksctp work.
8679 */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)8680 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8681 {
8682 int error;
8683 DEFINE_WAIT(wait);
8684
8685 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8686
8687 /* Socket errors? */
8688 error = sock_error(sk);
8689 if (error)
8690 goto out;
8691
8692 if (!skb_queue_empty(&sk->sk_receive_queue))
8693 goto ready;
8694
8695 /* Socket shut down? */
8696 if (sk->sk_shutdown & RCV_SHUTDOWN)
8697 goto out;
8698
8699 /* Sequenced packets can come disconnected. If so we report the
8700 * problem.
8701 */
8702 error = -ENOTCONN;
8703
8704 /* Is there a good reason to think that we may receive some data? */
8705 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8706 goto out;
8707
8708 /* Handle signals. */
8709 if (signal_pending(current))
8710 goto interrupted;
8711
8712 /* Let another process have a go. Since we are going to sleep
8713 * anyway. Note: This may cause odd behaviors if the message
8714 * does not fit in the user's buffer, but this seems to be the
8715 * only way to honor MSG_DONTWAIT realistically.
8716 */
8717 release_sock(sk);
8718 *timeo_p = schedule_timeout(*timeo_p);
8719 lock_sock(sk);
8720
8721 ready:
8722 finish_wait(sk_sleep(sk), &wait);
8723 return 0;
8724
8725 interrupted:
8726 error = sock_intr_errno(*timeo_p);
8727
8728 out:
8729 finish_wait(sk_sleep(sk), &wait);
8730 *err = error;
8731 return error;
8732 }
8733
8734 /* Receive a datagram.
8735 * Note: This is pretty much the same routine as in core/datagram.c
8736 * with a few changes to make lksctp work.
8737 */
sctp_skb_recv_datagram(struct sock * sk,int flags,int noblock,int * err)8738 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8739 int noblock, int *err)
8740 {
8741 int error;
8742 struct sk_buff *skb;
8743 long timeo;
8744
8745 timeo = sock_rcvtimeo(sk, noblock);
8746
8747 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8748 MAX_SCHEDULE_TIMEOUT);
8749
8750 do {
8751 /* Again only user level code calls this function,
8752 * so nothing interrupt level
8753 * will suddenly eat the receive_queue.
8754 *
8755 * Look at current nfs client by the way...
8756 * However, this function was correct in any case. 8)
8757 */
8758 if (flags & MSG_PEEK) {
8759 skb = skb_peek(&sk->sk_receive_queue);
8760 if (skb)
8761 refcount_inc(&skb->users);
8762 } else {
8763 skb = __skb_dequeue(&sk->sk_receive_queue);
8764 }
8765
8766 if (skb)
8767 return skb;
8768
8769 /* Caller is allowed not to check sk->sk_err before calling. */
8770 error = sock_error(sk);
8771 if (error)
8772 goto no_packet;
8773
8774 if (sk->sk_shutdown & RCV_SHUTDOWN)
8775 break;
8776
8777 if (sk_can_busy_loop(sk)) {
8778 sk_busy_loop(sk, noblock);
8779
8780 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8781 continue;
8782 }
8783
8784 /* User doesn't want to wait. */
8785 error = -EAGAIN;
8786 if (!timeo)
8787 goto no_packet;
8788 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8789
8790 return NULL;
8791
8792 no_packet:
8793 *err = error;
8794 return NULL;
8795 }
8796
8797 /* If sndbuf has changed, wake up per association sndbuf waiters. */
__sctp_write_space(struct sctp_association * asoc)8798 static void __sctp_write_space(struct sctp_association *asoc)
8799 {
8800 struct sock *sk = asoc->base.sk;
8801
8802 if (sctp_wspace(asoc) <= 0)
8803 return;
8804
8805 if (waitqueue_active(&asoc->wait))
8806 wake_up_interruptible(&asoc->wait);
8807
8808 if (sctp_writeable(sk)) {
8809 struct socket_wq *wq;
8810
8811 rcu_read_lock();
8812 wq = rcu_dereference(sk->sk_wq);
8813 if (wq) {
8814 if (waitqueue_active(&wq->wait))
8815 wake_up_interruptible(&wq->wait);
8816
8817 /* Note that we try to include the Async I/O support
8818 * here by modeling from the current TCP/UDP code.
8819 * We have not tested with it yet.
8820 */
8821 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8822 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8823 }
8824 rcu_read_unlock();
8825 }
8826 }
8827
sctp_wake_up_waiters(struct sock * sk,struct sctp_association * asoc)8828 static void sctp_wake_up_waiters(struct sock *sk,
8829 struct sctp_association *asoc)
8830 {
8831 struct sctp_association *tmp = asoc;
8832
8833 /* We do accounting for the sndbuf space per association,
8834 * so we only need to wake our own association.
8835 */
8836 if (asoc->ep->sndbuf_policy)
8837 return __sctp_write_space(asoc);
8838
8839 /* If association goes down and is just flushing its
8840 * outq, then just normally notify others.
8841 */
8842 if (asoc->base.dead)
8843 return sctp_write_space(sk);
8844
8845 /* Accounting for the sndbuf space is per socket, so we
8846 * need to wake up others, try to be fair and in case of
8847 * other associations, let them have a go first instead
8848 * of just doing a sctp_write_space() call.
8849 *
8850 * Note that we reach sctp_wake_up_waiters() only when
8851 * associations free up queued chunks, thus we are under
8852 * lock and the list of associations on a socket is
8853 * guaranteed not to change.
8854 */
8855 for (tmp = list_next_entry(tmp, asocs); 1;
8856 tmp = list_next_entry(tmp, asocs)) {
8857 /* Manually skip the head element. */
8858 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8859 continue;
8860 /* Wake up association. */
8861 __sctp_write_space(tmp);
8862 /* We've reached the end. */
8863 if (tmp == asoc)
8864 break;
8865 }
8866 }
8867
8868 /* Do accounting for the sndbuf space.
8869 * Decrement the used sndbuf space of the corresponding association by the
8870 * data size which was just transmitted(freed).
8871 */
sctp_wfree(struct sk_buff * skb)8872 static void sctp_wfree(struct sk_buff *skb)
8873 {
8874 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8875 struct sctp_association *asoc = chunk->asoc;
8876 struct sock *sk = asoc->base.sk;
8877
8878 sk_mem_uncharge(sk, skb->truesize);
8879 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8880 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8881 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8882 &sk->sk_wmem_alloc));
8883
8884 if (chunk->shkey) {
8885 struct sctp_shared_key *shkey = chunk->shkey;
8886
8887 /* refcnt == 2 and !list_empty mean after this release, it's
8888 * not being used anywhere, and it's time to notify userland
8889 * that this shkey can be freed if it's been deactivated.
8890 */
8891 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8892 refcount_read(&shkey->refcnt) == 2) {
8893 struct sctp_ulpevent *ev;
8894
8895 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8896 SCTP_AUTH_FREE_KEY,
8897 GFP_KERNEL);
8898 if (ev)
8899 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8900 }
8901 sctp_auth_shkey_release(chunk->shkey);
8902 }
8903
8904 sock_wfree(skb);
8905 sctp_wake_up_waiters(sk, asoc);
8906
8907 sctp_association_put(asoc);
8908 }
8909
8910 /* Do accounting for the receive space on the socket.
8911 * Accounting for the association is done in ulpevent.c
8912 * We set this as a destructor for the cloned data skbs so that
8913 * accounting is done at the correct time.
8914 */
sctp_sock_rfree(struct sk_buff * skb)8915 void sctp_sock_rfree(struct sk_buff *skb)
8916 {
8917 struct sock *sk = skb->sk;
8918 struct sctp_ulpevent *event = sctp_skb2event(skb);
8919
8920 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8921
8922 /*
8923 * Mimic the behavior of sock_rfree
8924 */
8925 sk_mem_uncharge(sk, event->rmem_len);
8926 }
8927
8928
8929 /* Helper function to wait for space in the sndbuf. */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)8930 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8931 size_t msg_len)
8932 {
8933 struct sock *sk = asoc->base.sk;
8934 long current_timeo = *timeo_p;
8935 DEFINE_WAIT(wait);
8936 int err = 0;
8937
8938 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8939 *timeo_p, msg_len);
8940
8941 /* Increment the association's refcnt. */
8942 sctp_association_hold(asoc);
8943
8944 /* Wait on the association specific sndbuf space. */
8945 for (;;) {
8946 prepare_to_wait_exclusive(&asoc->wait, &wait,
8947 TASK_INTERRUPTIBLE);
8948 if (asoc->base.dead)
8949 goto do_dead;
8950 if (!*timeo_p)
8951 goto do_nonblock;
8952 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8953 goto do_error;
8954 if (signal_pending(current))
8955 goto do_interrupted;
8956 if (sk_under_memory_pressure(sk))
8957 sk_mem_reclaim(sk);
8958 if ((int)msg_len <= sctp_wspace(asoc) &&
8959 sk_wmem_schedule(sk, msg_len))
8960 break;
8961
8962 /* Let another process have a go. Since we are going
8963 * to sleep anyway.
8964 */
8965 release_sock(sk);
8966 current_timeo = schedule_timeout(current_timeo);
8967 lock_sock(sk);
8968 if (sk != asoc->base.sk)
8969 goto do_error;
8970
8971 *timeo_p = current_timeo;
8972 }
8973
8974 out:
8975 finish_wait(&asoc->wait, &wait);
8976
8977 /* Release the association's refcnt. */
8978 sctp_association_put(asoc);
8979
8980 return err;
8981
8982 do_dead:
8983 err = -ESRCH;
8984 goto out;
8985
8986 do_error:
8987 err = -EPIPE;
8988 goto out;
8989
8990 do_interrupted:
8991 err = sock_intr_errno(*timeo_p);
8992 goto out;
8993
8994 do_nonblock:
8995 err = -EAGAIN;
8996 goto out;
8997 }
8998
sctp_data_ready(struct sock * sk)8999 void sctp_data_ready(struct sock *sk)
9000 {
9001 struct socket_wq *wq;
9002
9003 rcu_read_lock();
9004 wq = rcu_dereference(sk->sk_wq);
9005 if (skwq_has_sleeper(wq))
9006 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9007 EPOLLRDNORM | EPOLLRDBAND);
9008 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9009 rcu_read_unlock();
9010 }
9011
9012 /* If socket sndbuf has changed, wake up all per association waiters. */
sctp_write_space(struct sock * sk)9013 void sctp_write_space(struct sock *sk)
9014 {
9015 struct sctp_association *asoc;
9016
9017 /* Wake up the tasks in each wait queue. */
9018 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9019 __sctp_write_space(asoc);
9020 }
9021 }
9022
9023 /* Is there any sndbuf space available on the socket?
9024 *
9025 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9026 * associations on the same socket. For a UDP-style socket with
9027 * multiple associations, it is possible for it to be "unwriteable"
9028 * prematurely. I assume that this is acceptable because
9029 * a premature "unwriteable" is better than an accidental "writeable" which
9030 * would cause an unwanted block under certain circumstances. For the 1-1
9031 * UDP-style sockets or TCP-style sockets, this code should work.
9032 * - Daisy
9033 */
sctp_writeable(struct sock * sk)9034 static bool sctp_writeable(struct sock *sk)
9035 {
9036 return sk->sk_sndbuf > sk->sk_wmem_queued;
9037 }
9038
9039 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9040 * returns immediately with EINPROGRESS.
9041 */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)9042 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9043 {
9044 struct sock *sk = asoc->base.sk;
9045 int err = 0;
9046 long current_timeo = *timeo_p;
9047 DEFINE_WAIT(wait);
9048
9049 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9050
9051 /* Increment the association's refcnt. */
9052 sctp_association_hold(asoc);
9053
9054 for (;;) {
9055 prepare_to_wait_exclusive(&asoc->wait, &wait,
9056 TASK_INTERRUPTIBLE);
9057 if (!*timeo_p)
9058 goto do_nonblock;
9059 if (sk->sk_shutdown & RCV_SHUTDOWN)
9060 break;
9061 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9062 asoc->base.dead)
9063 goto do_error;
9064 if (signal_pending(current))
9065 goto do_interrupted;
9066
9067 if (sctp_state(asoc, ESTABLISHED))
9068 break;
9069
9070 /* Let another process have a go. Since we are going
9071 * to sleep anyway.
9072 */
9073 release_sock(sk);
9074 current_timeo = schedule_timeout(current_timeo);
9075 lock_sock(sk);
9076
9077 *timeo_p = current_timeo;
9078 }
9079
9080 out:
9081 finish_wait(&asoc->wait, &wait);
9082
9083 /* Release the association's refcnt. */
9084 sctp_association_put(asoc);
9085
9086 return err;
9087
9088 do_error:
9089 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9090 err = -ETIMEDOUT;
9091 else
9092 err = -ECONNREFUSED;
9093 goto out;
9094
9095 do_interrupted:
9096 err = sock_intr_errno(*timeo_p);
9097 goto out;
9098
9099 do_nonblock:
9100 err = -EINPROGRESS;
9101 goto out;
9102 }
9103
sctp_wait_for_accept(struct sock * sk,long timeo)9104 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9105 {
9106 struct sctp_endpoint *ep;
9107 int err = 0;
9108 DEFINE_WAIT(wait);
9109
9110 ep = sctp_sk(sk)->ep;
9111
9112
9113 for (;;) {
9114 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9115 TASK_INTERRUPTIBLE);
9116
9117 if (list_empty(&ep->asocs)) {
9118 release_sock(sk);
9119 timeo = schedule_timeout(timeo);
9120 lock_sock(sk);
9121 }
9122
9123 err = -EINVAL;
9124 if (!sctp_sstate(sk, LISTENING))
9125 break;
9126
9127 err = 0;
9128 if (!list_empty(&ep->asocs))
9129 break;
9130
9131 err = sock_intr_errno(timeo);
9132 if (signal_pending(current))
9133 break;
9134
9135 err = -EAGAIN;
9136 if (!timeo)
9137 break;
9138 }
9139
9140 finish_wait(sk_sleep(sk), &wait);
9141
9142 return err;
9143 }
9144
sctp_wait_for_close(struct sock * sk,long timeout)9145 static void sctp_wait_for_close(struct sock *sk, long timeout)
9146 {
9147 DEFINE_WAIT(wait);
9148
9149 do {
9150 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9151 if (list_empty(&sctp_sk(sk)->ep->asocs))
9152 break;
9153 release_sock(sk);
9154 timeout = schedule_timeout(timeout);
9155 lock_sock(sk);
9156 } while (!signal_pending(current) && timeout);
9157
9158 finish_wait(sk_sleep(sk), &wait);
9159 }
9160
sctp_skb_set_owner_r_frag(struct sk_buff * skb,struct sock * sk)9161 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9162 {
9163 struct sk_buff *frag;
9164
9165 if (!skb->data_len)
9166 goto done;
9167
9168 /* Don't forget the fragments. */
9169 skb_walk_frags(skb, frag)
9170 sctp_skb_set_owner_r_frag(frag, sk);
9171
9172 done:
9173 sctp_skb_set_owner_r(skb, sk);
9174 }
9175
sctp_copy_sock(struct sock * newsk,struct sock * sk,struct sctp_association * asoc)9176 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9177 struct sctp_association *asoc)
9178 {
9179 struct inet_sock *inet = inet_sk(sk);
9180 struct inet_sock *newinet;
9181 struct sctp_sock *sp = sctp_sk(sk);
9182 struct sctp_endpoint *ep = sp->ep;
9183
9184 newsk->sk_type = sk->sk_type;
9185 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9186 newsk->sk_flags = sk->sk_flags;
9187 newsk->sk_tsflags = sk->sk_tsflags;
9188 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9189 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9190 newsk->sk_reuse = sk->sk_reuse;
9191 sctp_sk(newsk)->reuse = sp->reuse;
9192
9193 newsk->sk_shutdown = sk->sk_shutdown;
9194 newsk->sk_destruct = sctp_destruct_sock;
9195 newsk->sk_family = sk->sk_family;
9196 newsk->sk_protocol = IPPROTO_SCTP;
9197 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9198 newsk->sk_sndbuf = sk->sk_sndbuf;
9199 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9200 newsk->sk_lingertime = sk->sk_lingertime;
9201 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9202 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9203 newsk->sk_rxhash = sk->sk_rxhash;
9204
9205 newinet = inet_sk(newsk);
9206
9207 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9208 * getsockname() and getpeername()
9209 */
9210 newinet->inet_sport = inet->inet_sport;
9211 newinet->inet_saddr = inet->inet_saddr;
9212 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9213 newinet->inet_dport = htons(asoc->peer.port);
9214 newinet->pmtudisc = inet->pmtudisc;
9215 newinet->inet_id = prandom_u32();
9216
9217 newinet->uc_ttl = inet->uc_ttl;
9218 newinet->mc_loop = 1;
9219 newinet->mc_ttl = 1;
9220 newinet->mc_index = 0;
9221 newinet->mc_list = NULL;
9222
9223 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9224 net_enable_timestamp();
9225
9226 /* Set newsk security attributes from orginal sk and connection
9227 * security attribute from ep.
9228 */
9229 security_sctp_sk_clone(ep, sk, newsk);
9230 }
9231
sctp_copy_descendant(struct sock * sk_to,const struct sock * sk_from)9232 static inline void sctp_copy_descendant(struct sock *sk_to,
9233 const struct sock *sk_from)
9234 {
9235 size_t ancestor_size = sizeof(struct inet_sock);
9236
9237 ancestor_size += sk_from->sk_prot->obj_size;
9238 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9239 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9240 }
9241
9242 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9243 * and its messages to the newsk.
9244 */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,enum sctp_socket_type type)9245 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9246 struct sctp_association *assoc,
9247 enum sctp_socket_type type)
9248 {
9249 struct sctp_sock *oldsp = sctp_sk(oldsk);
9250 struct sctp_sock *newsp = sctp_sk(newsk);
9251 struct sctp_bind_bucket *pp; /* hash list port iterator */
9252 struct sctp_endpoint *newep = newsp->ep;
9253 struct sk_buff *skb, *tmp;
9254 struct sctp_ulpevent *event;
9255 struct sctp_bind_hashbucket *head;
9256 int err;
9257
9258 /* Migrate socket buffer sizes and all the socket level options to the
9259 * new socket.
9260 */
9261 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9262 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9263 /* Brute force copy old sctp opt. */
9264 sctp_copy_descendant(newsk, oldsk);
9265
9266 /* Restore the ep value that was overwritten with the above structure
9267 * copy.
9268 */
9269 newsp->ep = newep;
9270 newsp->hmac = NULL;
9271
9272 /* Hook this new socket in to the bind_hash list. */
9273 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9274 inet_sk(oldsk)->inet_num)];
9275 spin_lock_bh(&head->lock);
9276 pp = sctp_sk(oldsk)->bind_hash;
9277 sk_add_bind_node(newsk, &pp->owner);
9278 sctp_sk(newsk)->bind_hash = pp;
9279 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9280 spin_unlock_bh(&head->lock);
9281
9282 /* Copy the bind_addr list from the original endpoint to the new
9283 * endpoint so that we can handle restarts properly
9284 */
9285 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9286 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9287 if (err)
9288 return err;
9289
9290 /* New ep's auth_hmacs should be set if old ep's is set, in case
9291 * that net->sctp.auth_enable has been changed to 0 by users and
9292 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9293 */
9294 if (oldsp->ep->auth_hmacs) {
9295 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9296 if (err)
9297 return err;
9298 }
9299
9300 sctp_auto_asconf_init(newsp);
9301
9302 /* Move any messages in the old socket's receive queue that are for the
9303 * peeled off association to the new socket's receive queue.
9304 */
9305 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9306 event = sctp_skb2event(skb);
9307 if (event->asoc == assoc) {
9308 __skb_unlink(skb, &oldsk->sk_receive_queue);
9309 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9310 sctp_skb_set_owner_r_frag(skb, newsk);
9311 }
9312 }
9313
9314 /* Clean up any messages pending delivery due to partial
9315 * delivery. Three cases:
9316 * 1) No partial deliver; no work.
9317 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9318 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9319 */
9320 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9321
9322 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9323 struct sk_buff_head *queue;
9324
9325 /* Decide which queue to move pd_lobby skbs to. */
9326 if (assoc->ulpq.pd_mode) {
9327 queue = &newsp->pd_lobby;
9328 } else
9329 queue = &newsk->sk_receive_queue;
9330
9331 /* Walk through the pd_lobby, looking for skbs that
9332 * need moved to the new socket.
9333 */
9334 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9335 event = sctp_skb2event(skb);
9336 if (event->asoc == assoc) {
9337 __skb_unlink(skb, &oldsp->pd_lobby);
9338 __skb_queue_tail(queue, skb);
9339 sctp_skb_set_owner_r_frag(skb, newsk);
9340 }
9341 }
9342
9343 /* Clear up any skbs waiting for the partial
9344 * delivery to finish.
9345 */
9346 if (assoc->ulpq.pd_mode)
9347 sctp_clear_pd(oldsk, NULL);
9348
9349 }
9350
9351 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9352
9353 /* Set the type of socket to indicate that it is peeled off from the
9354 * original UDP-style socket or created with the accept() call on a
9355 * TCP-style socket..
9356 */
9357 newsp->type = type;
9358
9359 /* Mark the new socket "in-use" by the user so that any packets
9360 * that may arrive on the association after we've moved it are
9361 * queued to the backlog. This prevents a potential race between
9362 * backlog processing on the old socket and new-packet processing
9363 * on the new socket.
9364 *
9365 * The caller has just allocated newsk so we can guarantee that other
9366 * paths won't try to lock it and then oldsk.
9367 */
9368 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9369 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9370 sctp_assoc_migrate(assoc, newsk);
9371 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9372
9373 /* If the association on the newsk is already closed before accept()
9374 * is called, set RCV_SHUTDOWN flag.
9375 */
9376 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9377 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9378 newsk->sk_shutdown |= RCV_SHUTDOWN;
9379 } else {
9380 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9381 }
9382
9383 release_sock(newsk);
9384
9385 return 0;
9386 }
9387
9388
9389 /* This proto struct describes the ULP interface for SCTP. */
9390 struct proto sctp_prot = {
9391 .name = "SCTP",
9392 .owner = THIS_MODULE,
9393 .close = sctp_close,
9394 .disconnect = sctp_disconnect,
9395 .accept = sctp_accept,
9396 .ioctl = sctp_ioctl,
9397 .init = sctp_init_sock,
9398 .destroy = sctp_destroy_sock,
9399 .shutdown = sctp_shutdown,
9400 .setsockopt = sctp_setsockopt,
9401 .getsockopt = sctp_getsockopt,
9402 .sendmsg = sctp_sendmsg,
9403 .recvmsg = sctp_recvmsg,
9404 .bind = sctp_bind,
9405 .bind_add = sctp_bind_add,
9406 .backlog_rcv = sctp_backlog_rcv,
9407 .hash = sctp_hash,
9408 .unhash = sctp_unhash,
9409 .no_autobind = true,
9410 .obj_size = sizeof(struct sctp_sock),
9411 .useroffset = offsetof(struct sctp_sock, subscribe),
9412 .usersize = offsetof(struct sctp_sock, initmsg) -
9413 offsetof(struct sctp_sock, subscribe) +
9414 sizeof_field(struct sctp_sock, initmsg),
9415 .sysctl_mem = sysctl_sctp_mem,
9416 .sysctl_rmem = sysctl_sctp_rmem,
9417 .sysctl_wmem = sysctl_sctp_wmem,
9418 .memory_pressure = &sctp_memory_pressure,
9419 .enter_memory_pressure = sctp_enter_memory_pressure,
9420 .memory_allocated = &sctp_memory_allocated,
9421 .sockets_allocated = &sctp_sockets_allocated,
9422 };
9423
9424 #if IS_ENABLED(CONFIG_IPV6)
9425
9426 #include <net/transp_v6.h>
sctp_v6_destroy_sock(struct sock * sk)9427 static void sctp_v6_destroy_sock(struct sock *sk)
9428 {
9429 sctp_destroy_sock(sk);
9430 inet6_destroy_sock(sk);
9431 }
9432
9433 struct proto sctpv6_prot = {
9434 .name = "SCTPv6",
9435 .owner = THIS_MODULE,
9436 .close = sctp_close,
9437 .disconnect = sctp_disconnect,
9438 .accept = sctp_accept,
9439 .ioctl = sctp_ioctl,
9440 .init = sctp_init_sock,
9441 .destroy = sctp_v6_destroy_sock,
9442 .shutdown = sctp_shutdown,
9443 .setsockopt = sctp_setsockopt,
9444 .getsockopt = sctp_getsockopt,
9445 .sendmsg = sctp_sendmsg,
9446 .recvmsg = sctp_recvmsg,
9447 .bind = sctp_bind,
9448 .bind_add = sctp_bind_add,
9449 .backlog_rcv = sctp_backlog_rcv,
9450 .hash = sctp_hash,
9451 .unhash = sctp_unhash,
9452 .no_autobind = true,
9453 .obj_size = sizeof(struct sctp6_sock),
9454 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9455 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9456 offsetof(struct sctp6_sock, sctp.subscribe) +
9457 sizeof_field(struct sctp6_sock, sctp.initmsg),
9458 .sysctl_mem = sysctl_sctp_mem,
9459 .sysctl_rmem = sysctl_sctp_rmem,
9460 .sysctl_wmem = sysctl_sctp_wmem,
9461 .memory_pressure = &sctp_memory_pressure,
9462 .enter_memory_pressure = sctp_enter_memory_pressure,
9463 .memory_allocated = &sctp_memory_allocated,
9464 .sockets_allocated = &sctp_sockets_allocated,
9465 };
9466 #endif /* IS_ENABLED(CONFIG_IPV6) */
9467