1 /* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to
5 * deal in the Software without restriction, including without limitation the
6 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
7 * sell copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
18 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
19 * IN THE SOFTWARE.
20 */
21
22 #include "task.h"
23 #include "uv.h"
24
25 #define IPC_PIPE_NAME TEST_PIPENAME
26 #define NUM_CONNECTS (250 * 1000)
27
28 union stream_handle {
29 uv_pipe_t pipe;
30 uv_tcp_t tcp;
31 };
32
33 /* Use as (uv_stream_t *) &handle_storage -- it's kind of clunky but it
34 * avoids aliasing warnings.
35 */
36 typedef unsigned char handle_storage_t[sizeof(union stream_handle)];
37
38 /* Used for passing around the listen handle, not part of the benchmark proper.
39 * We have an overabundance of server types here. It works like this:
40 *
41 * 1. The main thread starts an IPC pipe server.
42 * 2. The worker threads connect to the IPC server and obtain a listen handle.
43 * 3. The worker threads start accepting requests on the listen handle.
44 * 4. The main thread starts connecting repeatedly.
45 *
46 * Step #4 should perhaps be farmed out over several threads.
47 */
48 struct ipc_server_ctx {
49 handle_storage_t server_handle;
50 unsigned int num_connects;
51 uv_pipe_t ipc_pipe;
52 };
53
54 struct ipc_peer_ctx {
55 handle_storage_t peer_handle;
56 uv_write_t write_req;
57 };
58
59 struct ipc_client_ctx {
60 uv_connect_t connect_req;
61 uv_stream_t* server_handle;
62 uv_pipe_t ipc_pipe;
63 char scratch[16];
64 };
65
66 /* Used in the actual benchmark. */
67 struct server_ctx {
68 handle_storage_t server_handle;
69 unsigned int num_connects;
70 uv_async_t async_handle;
71 uv_thread_t thread_id;
72 uv_sem_t semaphore;
73 };
74
75 struct client_ctx {
76 handle_storage_t client_handle;
77 unsigned int num_connects;
78 uv_connect_t connect_req;
79 uv_idle_t idle_handle;
80 };
81
82 static void ipc_connection_cb(uv_stream_t* ipc_pipe, int status);
83 static void ipc_write_cb(uv_write_t* req, int status);
84 static void ipc_close_cb(uv_handle_t* handle);
85 static void ipc_connect_cb(uv_connect_t* req, int status);
86 static void ipc_read_cb(uv_stream_t* handle,
87 ssize_t nread,
88 const uv_buf_t* buf);
89 static void ipc_alloc_cb(uv_handle_t* handle,
90 size_t suggested_size,
91 uv_buf_t* buf);
92
93 static void sv_async_cb(uv_async_t* handle);
94 static void sv_connection_cb(uv_stream_t* server_handle, int status);
95 static void sv_read_cb(uv_stream_t* handle, ssize_t nread, const uv_buf_t* buf);
96 static void sv_alloc_cb(uv_handle_t* handle,
97 size_t suggested_size,
98 uv_buf_t* buf);
99
100 static void cl_connect_cb(uv_connect_t* req, int status);
101 static void cl_idle_cb(uv_idle_t* handle);
102 static void cl_close_cb(uv_handle_t* handle);
103
104 static struct sockaddr_in listen_addr;
105
106
ipc_connection_cb(uv_stream_t * ipc_pipe,int status)107 static void ipc_connection_cb(uv_stream_t* ipc_pipe, int status) {
108 struct ipc_server_ctx* sc;
109 struct ipc_peer_ctx* pc;
110 uv_loop_t* loop;
111 uv_buf_t buf;
112
113 loop = ipc_pipe->loop;
114 buf = uv_buf_init("PING", 4);
115 sc = container_of(ipc_pipe, struct ipc_server_ctx, ipc_pipe);
116 pc = calloc(1, sizeof(*pc));
117 ASSERT_NOT_NULL(pc);
118
119 if (ipc_pipe->type == UV_TCP)
120 ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) &pc->peer_handle));
121 else if (ipc_pipe->type == UV_NAMED_PIPE)
122 ASSERT(0 == uv_pipe_init(loop, (uv_pipe_t*) &pc->peer_handle, 1));
123 else
124 ASSERT(0);
125
126 ASSERT(0 == uv_accept(ipc_pipe, (uv_stream_t*) &pc->peer_handle));
127 ASSERT(0 == uv_write2(&pc->write_req,
128 (uv_stream_t*) &pc->peer_handle,
129 &buf,
130 1,
131 (uv_stream_t*) &sc->server_handle,
132 ipc_write_cb));
133
134 if (--sc->num_connects == 0)
135 uv_close((uv_handle_t*) ipc_pipe, NULL);
136 }
137
138
ipc_write_cb(uv_write_t * req,int status)139 static void ipc_write_cb(uv_write_t* req, int status) {
140 struct ipc_peer_ctx* ctx;
141 ctx = container_of(req, struct ipc_peer_ctx, write_req);
142 uv_close((uv_handle_t*) &ctx->peer_handle, ipc_close_cb);
143 }
144
145
ipc_close_cb(uv_handle_t * handle)146 static void ipc_close_cb(uv_handle_t* handle) {
147 struct ipc_peer_ctx* ctx;
148 ctx = container_of(handle, struct ipc_peer_ctx, peer_handle);
149 free(ctx);
150 }
151
152
ipc_connect_cb(uv_connect_t * req,int status)153 static void ipc_connect_cb(uv_connect_t* req, int status) {
154 struct ipc_client_ctx* ctx;
155 ctx = container_of(req, struct ipc_client_ctx, connect_req);
156 ASSERT(0 == status);
157 ASSERT(0 == uv_read_start((uv_stream_t*) &ctx->ipc_pipe,
158 ipc_alloc_cb,
159 ipc_read_cb));
160 }
161
162
ipc_alloc_cb(uv_handle_t * handle,size_t suggested_size,uv_buf_t * buf)163 static void ipc_alloc_cb(uv_handle_t* handle,
164 size_t suggested_size,
165 uv_buf_t* buf) {
166 struct ipc_client_ctx* ctx;
167 ctx = container_of(handle, struct ipc_client_ctx, ipc_pipe);
168 buf->base = ctx->scratch;
169 buf->len = sizeof(ctx->scratch);
170 }
171
172
ipc_read_cb(uv_stream_t * handle,ssize_t nread,const uv_buf_t * buf)173 static void ipc_read_cb(uv_stream_t* handle,
174 ssize_t nread,
175 const uv_buf_t* buf) {
176 struct ipc_client_ctx* ctx;
177 uv_loop_t* loop;
178 uv_handle_type type;
179 uv_pipe_t* ipc_pipe;
180
181 ipc_pipe = (uv_pipe_t*) handle;
182 ctx = container_of(ipc_pipe, struct ipc_client_ctx, ipc_pipe);
183 loop = ipc_pipe->loop;
184
185 ASSERT(1 == uv_pipe_pending_count(ipc_pipe));
186 type = uv_pipe_pending_type(ipc_pipe);
187 if (type == UV_TCP)
188 ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) ctx->server_handle));
189 else if (type == UV_NAMED_PIPE)
190 ASSERT(0 == uv_pipe_init(loop, (uv_pipe_t*) ctx->server_handle, 0));
191 else
192 ASSERT(0);
193
194 ASSERT(0 == uv_accept(handle, ctx->server_handle));
195 uv_close((uv_handle_t*) &ctx->ipc_pipe, NULL);
196 }
197
198
199 /* Set up an IPC pipe server that hands out listen sockets to the worker
200 * threads. It's kind of cumbersome for such a simple operation, maybe we
201 * should revive uv_import() and uv_export().
202 */
send_listen_handles(uv_handle_type type,unsigned int num_servers,struct server_ctx * servers)203 static void send_listen_handles(uv_handle_type type,
204 unsigned int num_servers,
205 struct server_ctx* servers) {
206 struct ipc_server_ctx ctx;
207 uv_loop_t* loop;
208 unsigned int i;
209
210 loop = uv_default_loop();
211 ctx.num_connects = num_servers;
212
213 if (type == UV_TCP) {
214 ASSERT(0 == uv_tcp_init(loop, (uv_tcp_t*) &ctx.server_handle));
215 ASSERT(0 == uv_tcp_bind((uv_tcp_t*) &ctx.server_handle,
216 (const struct sockaddr*) &listen_addr,
217 0));
218 }
219 else
220 ASSERT(0);
221 /* We need to initialize this pipe with ipc=0 - this is not a uv_pipe we'll
222 * be sending handles over, it's just for listening for new connections.
223 * If we accept a connection then the connected pipe must be initialized
224 * with ipc=1.
225 */
226 ASSERT(0 == uv_pipe_init(loop, &ctx.ipc_pipe, 0));
227 ASSERT(0 == uv_pipe_bind(&ctx.ipc_pipe, IPC_PIPE_NAME));
228 ASSERT(0 == uv_listen((uv_stream_t*) &ctx.ipc_pipe, 128, ipc_connection_cb));
229
230 for (i = 0; i < num_servers; i++)
231 uv_sem_post(&servers[i].semaphore);
232
233 ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
234 uv_close((uv_handle_t*) &ctx.server_handle, NULL);
235 ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
236
237 for (i = 0; i < num_servers; i++)
238 uv_sem_wait(&servers[i].semaphore);
239 }
240
241
get_listen_handle(uv_loop_t * loop,uv_stream_t * server_handle)242 static void get_listen_handle(uv_loop_t* loop, uv_stream_t* server_handle) {
243 struct ipc_client_ctx ctx;
244
245 ctx.server_handle = server_handle;
246 ctx.server_handle->data = "server handle";
247
248 ASSERT(0 == uv_pipe_init(loop, &ctx.ipc_pipe, 1));
249 uv_pipe_connect(&ctx.connect_req,
250 &ctx.ipc_pipe,
251 IPC_PIPE_NAME,
252 ipc_connect_cb);
253 ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
254 }
255
256
server_cb(void * arg)257 static void server_cb(void *arg) {
258 struct server_ctx *ctx;
259 uv_loop_t loop;
260
261 ctx = arg;
262 ASSERT(0 == uv_loop_init(&loop));
263
264 ASSERT(0 == uv_async_init(&loop, &ctx->async_handle, sv_async_cb));
265 uv_unref((uv_handle_t*) &ctx->async_handle);
266
267 /* Wait until the main thread is ready. */
268 uv_sem_wait(&ctx->semaphore);
269 get_listen_handle(&loop, (uv_stream_t*) &ctx->server_handle);
270 uv_sem_post(&ctx->semaphore);
271
272 /* Now start the actual benchmark. */
273 ASSERT(0 == uv_listen((uv_stream_t*) &ctx->server_handle,
274 128,
275 sv_connection_cb));
276 ASSERT(0 == uv_run(&loop, UV_RUN_DEFAULT));
277
278 uv_loop_close(&loop);
279 }
280
281
sv_async_cb(uv_async_t * handle)282 static void sv_async_cb(uv_async_t* handle) {
283 struct server_ctx* ctx;
284 ctx = container_of(handle, struct server_ctx, async_handle);
285 uv_close((uv_handle_t*) &ctx->server_handle, NULL);
286 uv_close((uv_handle_t*) &ctx->async_handle, NULL);
287 }
288
289
sv_connection_cb(uv_stream_t * server_handle,int status)290 static void sv_connection_cb(uv_stream_t* server_handle, int status) {
291 handle_storage_t* storage;
292 struct server_ctx* ctx;
293
294 ctx = container_of(server_handle, struct server_ctx, server_handle);
295 ASSERT(status == 0);
296
297 storage = malloc(sizeof(*storage));
298 ASSERT_NOT_NULL(storage);
299
300 if (server_handle->type == UV_TCP)
301 ASSERT(0 == uv_tcp_init(server_handle->loop, (uv_tcp_t*) storage));
302 else if (server_handle->type == UV_NAMED_PIPE)
303 ASSERT(0 == uv_pipe_init(server_handle->loop, (uv_pipe_t*) storage, 0));
304 else
305 ASSERT(0);
306
307 ASSERT(0 == uv_accept(server_handle, (uv_stream_t*) storage));
308 ASSERT(0 == uv_read_start((uv_stream_t*) storage, sv_alloc_cb, sv_read_cb));
309 ctx->num_connects++;
310 }
311
312
sv_alloc_cb(uv_handle_t * handle,size_t suggested_size,uv_buf_t * buf)313 static void sv_alloc_cb(uv_handle_t* handle,
314 size_t suggested_size,
315 uv_buf_t* buf) {
316 static char slab[32];
317 buf->base = slab;
318 buf->len = sizeof(slab);
319 }
320
321
sv_read_cb(uv_stream_t * handle,ssize_t nread,const uv_buf_t * buf)322 static void sv_read_cb(uv_stream_t* handle,
323 ssize_t nread,
324 const uv_buf_t* buf) {
325 ASSERT(nread == UV_EOF);
326 uv_close((uv_handle_t*) handle, (uv_close_cb) free);
327 }
328
329
cl_connect_cb(uv_connect_t * req,int status)330 static void cl_connect_cb(uv_connect_t* req, int status) {
331 struct client_ctx* ctx = container_of(req, struct client_ctx, connect_req);
332 uv_idle_start(&ctx->idle_handle, cl_idle_cb);
333 ASSERT(0 == status);
334 }
335
336
cl_idle_cb(uv_idle_t * handle)337 static void cl_idle_cb(uv_idle_t* handle) {
338 struct client_ctx* ctx = container_of(handle, struct client_ctx, idle_handle);
339 uv_close((uv_handle_t*) &ctx->client_handle, cl_close_cb);
340 uv_idle_stop(&ctx->idle_handle);
341 }
342
343
cl_close_cb(uv_handle_t * handle)344 static void cl_close_cb(uv_handle_t* handle) {
345 struct client_ctx* ctx;
346
347 ctx = container_of(handle, struct client_ctx, client_handle);
348
349 if (--ctx->num_connects == 0) {
350 uv_close((uv_handle_t*) &ctx->idle_handle, NULL);
351 return;
352 }
353
354 ASSERT(0 == uv_tcp_init(handle->loop, (uv_tcp_t*) &ctx->client_handle));
355 ASSERT(0 == uv_tcp_connect(&ctx->connect_req,
356 (uv_tcp_t*) &ctx->client_handle,
357 (const struct sockaddr*) &listen_addr,
358 cl_connect_cb));
359 }
360
361
test_tcp(unsigned int num_servers,unsigned int num_clients)362 static int test_tcp(unsigned int num_servers, unsigned int num_clients) {
363 struct server_ctx* servers;
364 struct client_ctx* clients;
365 uv_loop_t* loop;
366 uv_tcp_t* handle;
367 unsigned int i;
368 double time;
369
370 ASSERT(0 == uv_ip4_addr("127.0.0.1", TEST_PORT, &listen_addr));
371 loop = uv_default_loop();
372
373 servers = calloc(num_servers, sizeof(servers[0]));
374 clients = calloc(num_clients, sizeof(clients[0]));
375 ASSERT_NOT_NULL(servers);
376 ASSERT_NOT_NULL(clients);
377
378 /* We're making the assumption here that from the perspective of the
379 * OS scheduler, threads are functionally equivalent to and interchangeable
380 * with full-blown processes.
381 */
382 for (i = 0; i < num_servers; i++) {
383 struct server_ctx* ctx = servers + i;
384 ASSERT(0 == uv_sem_init(&ctx->semaphore, 0));
385 ASSERT(0 == uv_thread_create(&ctx->thread_id, server_cb, ctx));
386 }
387
388 send_listen_handles(UV_TCP, num_servers, servers);
389
390 for (i = 0; i < num_clients; i++) {
391 struct client_ctx* ctx = clients + i;
392 ctx->num_connects = NUM_CONNECTS / num_clients;
393 handle = (uv_tcp_t*) &ctx->client_handle;
394 handle->data = "client handle";
395 ASSERT(0 == uv_tcp_init(loop, handle));
396 ASSERT(0 == uv_tcp_connect(&ctx->connect_req,
397 handle,
398 (const struct sockaddr*) &listen_addr,
399 cl_connect_cb));
400 ASSERT(0 == uv_idle_init(loop, &ctx->idle_handle));
401 }
402
403 {
404 uint64_t t = uv_hrtime();
405 ASSERT(0 == uv_run(loop, UV_RUN_DEFAULT));
406 t = uv_hrtime() - t;
407 time = t / 1e9;
408 }
409
410 for (i = 0; i < num_servers; i++) {
411 struct server_ctx* ctx = servers + i;
412 uv_async_send(&ctx->async_handle);
413 ASSERT(0 == uv_thread_join(&ctx->thread_id));
414 uv_sem_destroy(&ctx->semaphore);
415 }
416
417 printf("accept%u: %.0f accepts/sec (%u total)\n",
418 num_servers,
419 NUM_CONNECTS / time,
420 NUM_CONNECTS);
421
422 for (i = 0; i < num_servers; i++) {
423 struct server_ctx* ctx = servers + i;
424 printf(" thread #%u: %.0f accepts/sec (%u total, %.1f%%)\n",
425 i,
426 ctx->num_connects / time,
427 ctx->num_connects,
428 ctx->num_connects * 100.0 / NUM_CONNECTS);
429 }
430
431 free(clients);
432 free(servers);
433
434 MAKE_VALGRIND_HAPPY();
435 return 0;
436 }
437
438
BENCHMARK_IMPL(tcp_multi_accept2)439 BENCHMARK_IMPL(tcp_multi_accept2) {
440 return test_tcp(2, 40);
441 }
442
443
BENCHMARK_IMPL(tcp_multi_accept4)444 BENCHMARK_IMPL(tcp_multi_accept4) {
445 return test_tcp(4, 40);
446 }
447
448
BENCHMARK_IMPL(tcp_multi_accept8)449 BENCHMARK_IMPL(tcp_multi_accept8) {
450 return test_tcp(8, 40);
451 }
452