• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 
29 #include "mpdecimal.h"
30 
31 #include <assert.h>
32 #include <limits.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 
37 #include "bits.h"
38 #include "constants.h"
39 #include "transpose.h"
40 #include "typearith.h"
41 
42 
43 #define BUFSIZE 4096
44 #define SIDE 128
45 
46 
47 /* Bignum: The transpose functions are used for very large transforms
48    in sixstep.c and fourstep.c. */
49 
50 
51 /* Definition of the matrix transpose */
52 void
std_trans(mpd_uint_t dest[],mpd_uint_t src[],mpd_size_t rows,mpd_size_t cols)53 std_trans(mpd_uint_t dest[], mpd_uint_t src[], mpd_size_t rows, mpd_size_t cols)
54 {
55     mpd_size_t idest, isrc;
56     mpd_size_t r, c;
57 
58     for (r = 0; r < rows; r++) {
59         isrc = r * cols;
60         idest = r;
61         for (c = 0; c < cols; c++) {
62             dest[idest] = src[isrc];
63             isrc += 1;
64             idest += rows;
65         }
66     }
67 }
68 
69 /*
70  * Swap half-rows of 2^n * (2*2^n) matrix.
71  * FORWARD_CYCLE: even/odd permutation of the halfrows.
72  * BACKWARD_CYCLE: reverse the even/odd permutation.
73  */
74 static int
swap_halfrows_pow2(mpd_uint_t * matrix,mpd_size_t rows,mpd_size_t cols,int dir)75 swap_halfrows_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols, int dir)
76 {
77     mpd_uint_t buf1[BUFSIZE];
78     mpd_uint_t buf2[BUFSIZE];
79     mpd_uint_t *readbuf, *writebuf, *hp;
80     mpd_size_t *done, dbits;
81     mpd_size_t b = BUFSIZE, stride;
82     mpd_size_t hn, hmax; /* halfrow number */
83     mpd_size_t m, r=0;
84     mpd_size_t offset;
85     mpd_size_t next;
86 
87 
88     assert(cols == mul_size_t(2, rows));
89 
90     if (dir == FORWARD_CYCLE) {
91         r = rows;
92     }
93     else if (dir == BACKWARD_CYCLE) {
94         r = 2;
95     }
96     else {
97         abort(); /* GCOV_NOT_REACHED */
98     }
99 
100     m = cols - 1;
101     hmax = rows; /* cycles start at odd halfrows */
102     dbits = 8 * sizeof *done;
103     if ((done = mpd_calloc(hmax/(sizeof *done) + 1, sizeof *done)) == NULL) {
104         return 0;
105     }
106 
107     for (hn = 1; hn <= hmax; hn += 2) {
108 
109         if (done[hn/dbits] & mpd_bits[hn%dbits]) {
110             continue;
111         }
112 
113         readbuf = buf1; writebuf = buf2;
114 
115         for (offset = 0; offset < cols/2; offset += b) {
116 
117             stride = (offset + b < cols/2) ? b : cols/2-offset;
118 
119             hp = matrix + hn*cols/2;
120             memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
121             pointerswap(&readbuf, &writebuf);
122 
123             next = mulmod_size_t(hn, r, m);
124             hp = matrix + next*cols/2;
125 
126             while (next != hn) {
127 
128                 memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
129                 memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
130                 pointerswap(&readbuf, &writebuf);
131 
132                 done[next/dbits] |= mpd_bits[next%dbits];
133 
134                 next = mulmod_size_t(next, r, m);
135                     hp = matrix + next*cols/2;
136 
137             }
138 
139             memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
140 
141             done[hn/dbits] |= mpd_bits[hn%dbits];
142         }
143     }
144 
145     mpd_free(done);
146     return 1;
147 }
148 
149 /* In-place transpose of a square matrix */
150 static inline void
squaretrans(mpd_uint_t * buf,mpd_size_t cols)151 squaretrans(mpd_uint_t *buf, mpd_size_t cols)
152 {
153     mpd_uint_t tmp;
154     mpd_size_t idest, isrc;
155     mpd_size_t r, c;
156 
157     for (r = 0; r < cols; r++) {
158         c = r+1;
159         isrc = r*cols + c;
160         idest = c*cols + r;
161         for (c = r+1; c < cols; c++) {
162             tmp = buf[isrc];
163             buf[isrc] = buf[idest];
164             buf[idest] = tmp;
165             isrc += 1;
166             idest += cols;
167         }
168     }
169 }
170 
171 /*
172  * Transpose 2^n * 2^n matrix. For cache efficiency, the matrix is split into
173  * square blocks with side length 'SIDE'. First, the blocks are transposed,
174  * then a square transposition is done on each individual block.
175  */
176 static void
squaretrans_pow2(mpd_uint_t * matrix,mpd_size_t size)177 squaretrans_pow2(mpd_uint_t *matrix, mpd_size_t size)
178 {
179     mpd_uint_t buf1[SIDE*SIDE];
180     mpd_uint_t buf2[SIDE*SIDE];
181     mpd_uint_t *to, *from;
182     mpd_size_t b = size;
183     mpd_size_t r, c;
184     mpd_size_t i;
185 
186     while (b > SIDE) b >>= 1;
187 
188     for (r = 0; r < size; r += b) {
189 
190         for (c = r; c < size; c += b) {
191 
192             from = matrix + r*size + c;
193             to = buf1;
194             for (i = 0; i < b; i++) {
195                 memcpy(to, from, b*(sizeof *to));
196                 from += size;
197                 to += b;
198             }
199             squaretrans(buf1, b);
200 
201             if (r == c) {
202                 to = matrix + r*size + c;
203                 from = buf1;
204                 for (i = 0; i < b; i++) {
205                     memcpy(to, from, b*(sizeof *to));
206                     from += b;
207                     to += size;
208                 }
209                 continue;
210             }
211             else {
212                 from = matrix + c*size + r;
213                 to = buf2;
214                 for (i = 0; i < b; i++) {
215                     memcpy(to, from, b*(sizeof *to));
216                     from += size;
217                     to += b;
218                 }
219                 squaretrans(buf2, b);
220 
221                 to = matrix + c*size + r;
222                 from = buf1;
223                 for (i = 0; i < b; i++) {
224                     memcpy(to, from, b*(sizeof *to));
225                     from += b;
226                     to += size;
227                 }
228 
229                 to = matrix + r*size + c;
230                 from = buf2;
231                 for (i = 0; i < b; i++) {
232                     memcpy(to, from, b*(sizeof *to));
233                     from += b;
234                     to += size;
235                 }
236             }
237         }
238     }
239 
240 }
241 
242 /*
243  * In-place transposition of a 2^n x 2^n or a 2^n x (2*2^n)
244  * or a (2*2^n) x 2^n matrix.
245  */
246 int
transpose_pow2(mpd_uint_t * matrix,mpd_size_t rows,mpd_size_t cols)247 transpose_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols)
248 {
249     mpd_size_t size = mul_size_t(rows, cols);
250 
251     assert(ispower2(rows));
252     assert(ispower2(cols));
253 
254     if (cols == rows) {
255         squaretrans_pow2(matrix, rows);
256     }
257     else if (cols == mul_size_t(2, rows)) {
258         if (!swap_halfrows_pow2(matrix, rows, cols, FORWARD_CYCLE)) {
259             return 0;
260         }
261         squaretrans_pow2(matrix, rows);
262         squaretrans_pow2(matrix+(size/2), rows);
263     }
264     else if (rows == mul_size_t(2, cols)) {
265         squaretrans_pow2(matrix, cols);
266         squaretrans_pow2(matrix+(size/2), cols);
267         if (!swap_halfrows_pow2(matrix, cols, rows, BACKWARD_CYCLE)) {
268             return 0;
269         }
270     }
271     else {
272         abort(); /* GCOV_NOT_REACHED */
273     }
274 
275     return 1;
276 }
277