• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 #include "block-group.h"
22 #include "space-info.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root,
139 			   struct btrfs_log_ctx *ctx)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	int ret = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 
146 	if (root->log_root) {
147 		if (btrfs_need_log_full_commit(trans)) {
148 			ret = -EAGAIN;
149 			goto out;
150 		}
151 
152 		if (!root->log_start_pid) {
153 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 			root->log_start_pid = current->pid;
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 	} else {
159 		mutex_lock(&fs_info->tree_log_mutex);
160 		if (!fs_info->log_root_tree)
161 			ret = btrfs_init_log_root_tree(trans, fs_info);
162 		mutex_unlock(&fs_info->tree_log_mutex);
163 		if (ret)
164 			goto out;
165 
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			goto out;
169 
170 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
171 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
172 		root->log_start_pid = current->pid;
173 	}
174 
175 	atomic_inc(&root->log_batch);
176 	atomic_inc(&root->log_writers);
177 	if (ctx && !ctx->logging_new_name) {
178 		int index = root->log_transid % 2;
179 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
180 		ctx->log_transid = root->log_transid;
181 	}
182 
183 out:
184 	mutex_unlock(&root->log_mutex);
185 	return ret;
186 }
187 
188 /*
189  * returns 0 if there was a log transaction running and we were able
190  * to join, or returns -ENOENT if there were not transactions
191  * in progress
192  */
join_running_log_trans(struct btrfs_root * root)193 static int join_running_log_trans(struct btrfs_root *root)
194 {
195 	int ret = -ENOENT;
196 
197 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
198 		return ret;
199 
200 	mutex_lock(&root->log_mutex);
201 	if (root->log_root) {
202 		ret = 0;
203 		atomic_inc(&root->log_writers);
204 	}
205 	mutex_unlock(&root->log_mutex);
206 	return ret;
207 }
208 
209 /*
210  * This either makes the current running log transaction wait
211  * until you call btrfs_end_log_trans() or it makes any future
212  * log transactions wait until you call btrfs_end_log_trans()
213  */
btrfs_pin_log_trans(struct btrfs_root * root)214 void btrfs_pin_log_trans(struct btrfs_root *root)
215 {
216 	atomic_inc(&root->log_writers);
217 }
218 
219 /*
220  * indicate we're done making changes to the log tree
221  * and wake up anyone waiting to do a sync
222  */
btrfs_end_log_trans(struct btrfs_root * root)223 void btrfs_end_log_trans(struct btrfs_root *root)
224 {
225 	if (atomic_dec_and_test(&root->log_writers)) {
226 		/* atomic_dec_and_test implies a barrier */
227 		cond_wake_up_nomb(&root->log_writer_wait);
228 	}
229 }
230 
btrfs_write_tree_block(struct extent_buffer * buf)231 static int btrfs_write_tree_block(struct extent_buffer *buf)
232 {
233 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
234 					buf->start + buf->len - 1);
235 }
236 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)237 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
238 {
239 	filemap_fdatawait_range(buf->pages[0]->mapping,
240 			        buf->start, buf->start + buf->len - 1);
241 }
242 
243 /*
244  * the walk control struct is used to pass state down the chain when
245  * processing the log tree.  The stage field tells us which part
246  * of the log tree processing we are currently doing.  The others
247  * are state fields used for that specific part
248  */
249 struct walk_control {
250 	/* should we free the extent on disk when done?  This is used
251 	 * at transaction commit time while freeing a log tree
252 	 */
253 	int free;
254 
255 	/* should we write out the extent buffer?  This is used
256 	 * while flushing the log tree to disk during a sync
257 	 */
258 	int write;
259 
260 	/* should we wait for the extent buffer io to finish?  Also used
261 	 * while flushing the log tree to disk for a sync
262 	 */
263 	int wait;
264 
265 	/* pin only walk, we record which extents on disk belong to the
266 	 * log trees
267 	 */
268 	int pin;
269 
270 	/* what stage of the replay code we're currently in */
271 	int stage;
272 
273 	/*
274 	 * Ignore any items from the inode currently being processed. Needs
275 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
276 	 * the LOG_WALK_REPLAY_INODES stage.
277 	 */
278 	bool ignore_cur_inode;
279 
280 	/* the root we are currently replaying */
281 	struct btrfs_root *replay_dest;
282 
283 	/* the trans handle for the current replay */
284 	struct btrfs_trans_handle *trans;
285 
286 	/* the function that gets used to process blocks we find in the
287 	 * tree.  Note the extent_buffer might not be up to date when it is
288 	 * passed in, and it must be checked or read if you need the data
289 	 * inside it
290 	 */
291 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
292 			    struct walk_control *wc, u64 gen, int level);
293 };
294 
295 /*
296  * process_func used to pin down extents, write them or wait on them
297  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)298 static int process_one_buffer(struct btrfs_root *log,
299 			      struct extent_buffer *eb,
300 			      struct walk_control *wc, u64 gen, int level)
301 {
302 	struct btrfs_fs_info *fs_info = log->fs_info;
303 	int ret = 0;
304 
305 	/*
306 	 * If this fs is mixed then we need to be able to process the leaves to
307 	 * pin down any logged extents, so we have to read the block.
308 	 */
309 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
310 		ret = btrfs_read_buffer(eb, gen, level, NULL);
311 		if (ret)
312 			return ret;
313 	}
314 
315 	if (wc->pin)
316 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
317 						      eb->len);
318 
319 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
320 		if (wc->pin && btrfs_header_level(eb) == 0)
321 			ret = btrfs_exclude_logged_extents(eb);
322 		if (wc->write)
323 			btrfs_write_tree_block(eb);
324 		if (wc->wait)
325 			btrfs_wait_tree_block_writeback(eb);
326 	}
327 	return ret;
328 }
329 
330 /*
331  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
332  * to the src data we are copying out.
333  *
334  * root is the tree we are copying into, and path is a scratch
335  * path for use in this function (it should be released on entry and
336  * will be released on exit).
337  *
338  * If the key is already in the destination tree the existing item is
339  * overwritten.  If the existing item isn't big enough, it is extended.
340  * If it is too large, it is truncated.
341  *
342  * If the key isn't in the destination yet, a new item is inserted.
343  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)344 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
345 				   struct btrfs_root *root,
346 				   struct btrfs_path *path,
347 				   struct extent_buffer *eb, int slot,
348 				   struct btrfs_key *key)
349 {
350 	int ret;
351 	u32 item_size;
352 	u64 saved_i_size = 0;
353 	int save_old_i_size = 0;
354 	unsigned long src_ptr;
355 	unsigned long dst_ptr;
356 	int overwrite_root = 0;
357 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
358 
359 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 		overwrite_root = 1;
361 
362 	item_size = btrfs_item_size_nr(eb, slot);
363 	src_ptr = btrfs_item_ptr_offset(eb, slot);
364 
365 	/* look for the key in the destination tree */
366 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
367 	if (ret < 0)
368 		return ret;
369 
370 	if (ret == 0) {
371 		char *src_copy;
372 		char *dst_copy;
373 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
374 						  path->slots[0]);
375 		if (dst_size != item_size)
376 			goto insert;
377 
378 		if (item_size == 0) {
379 			btrfs_release_path(path);
380 			return 0;
381 		}
382 		dst_copy = kmalloc(item_size, GFP_NOFS);
383 		src_copy = kmalloc(item_size, GFP_NOFS);
384 		if (!dst_copy || !src_copy) {
385 			btrfs_release_path(path);
386 			kfree(dst_copy);
387 			kfree(src_copy);
388 			return -ENOMEM;
389 		}
390 
391 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
392 
393 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
394 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
395 				   item_size);
396 		ret = memcmp(dst_copy, src_copy, item_size);
397 
398 		kfree(dst_copy);
399 		kfree(src_copy);
400 		/*
401 		 * they have the same contents, just return, this saves
402 		 * us from cowing blocks in the destination tree and doing
403 		 * extra writes that may not have been done by a previous
404 		 * sync
405 		 */
406 		if (ret == 0) {
407 			btrfs_release_path(path);
408 			return 0;
409 		}
410 
411 		/*
412 		 * We need to load the old nbytes into the inode so when we
413 		 * replay the extents we've logged we get the right nbytes.
414 		 */
415 		if (inode_item) {
416 			struct btrfs_inode_item *item;
417 			u64 nbytes;
418 			u32 mode;
419 
420 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
421 					      struct btrfs_inode_item);
422 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
423 			item = btrfs_item_ptr(eb, slot,
424 					      struct btrfs_inode_item);
425 			btrfs_set_inode_nbytes(eb, item, nbytes);
426 
427 			/*
428 			 * If this is a directory we need to reset the i_size to
429 			 * 0 so that we can set it up properly when replaying
430 			 * the rest of the items in this log.
431 			 */
432 			mode = btrfs_inode_mode(eb, item);
433 			if (S_ISDIR(mode))
434 				btrfs_set_inode_size(eb, item, 0);
435 		}
436 	} else if (inode_item) {
437 		struct btrfs_inode_item *item;
438 		u32 mode;
439 
440 		/*
441 		 * New inode, set nbytes to 0 so that the nbytes comes out
442 		 * properly when we replay the extents.
443 		 */
444 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
445 		btrfs_set_inode_nbytes(eb, item, 0);
446 
447 		/*
448 		 * If this is a directory we need to reset the i_size to 0 so
449 		 * that we can set it up properly when replaying the rest of
450 		 * the items in this log.
451 		 */
452 		mode = btrfs_inode_mode(eb, item);
453 		if (S_ISDIR(mode))
454 			btrfs_set_inode_size(eb, item, 0);
455 	}
456 insert:
457 	btrfs_release_path(path);
458 	/* try to insert the key into the destination tree */
459 	path->skip_release_on_error = 1;
460 	ret = btrfs_insert_empty_item(trans, root, path,
461 				      key, item_size);
462 	path->skip_release_on_error = 0;
463 
464 	/* make sure any existing item is the correct size */
465 	if (ret == -EEXIST || ret == -EOVERFLOW) {
466 		u32 found_size;
467 		found_size = btrfs_item_size_nr(path->nodes[0],
468 						path->slots[0]);
469 		if (found_size > item_size)
470 			btrfs_truncate_item(path, item_size, 1);
471 		else if (found_size < item_size)
472 			btrfs_extend_item(path, item_size - found_size);
473 	} else if (ret) {
474 		return ret;
475 	}
476 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 					path->slots[0]);
478 
479 	/* don't overwrite an existing inode if the generation number
480 	 * was logged as zero.  This is done when the tree logging code
481 	 * is just logging an inode to make sure it exists after recovery.
482 	 *
483 	 * Also, don't overwrite i_size on directories during replay.
484 	 * log replay inserts and removes directory items based on the
485 	 * state of the tree found in the subvolume, and i_size is modified
486 	 * as it goes
487 	 */
488 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
489 		struct btrfs_inode_item *src_item;
490 		struct btrfs_inode_item *dst_item;
491 
492 		src_item = (struct btrfs_inode_item *)src_ptr;
493 		dst_item = (struct btrfs_inode_item *)dst_ptr;
494 
495 		if (btrfs_inode_generation(eb, src_item) == 0) {
496 			struct extent_buffer *dst_eb = path->nodes[0];
497 			const u64 ino_size = btrfs_inode_size(eb, src_item);
498 
499 			/*
500 			 * For regular files an ino_size == 0 is used only when
501 			 * logging that an inode exists, as part of a directory
502 			 * fsync, and the inode wasn't fsynced before. In this
503 			 * case don't set the size of the inode in the fs/subvol
504 			 * tree, otherwise we would be throwing valid data away.
505 			 */
506 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
507 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
508 			    ino_size != 0)
509 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
510 			goto no_copy;
511 		}
512 
513 		if (overwrite_root &&
514 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
515 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
516 			save_old_i_size = 1;
517 			saved_i_size = btrfs_inode_size(path->nodes[0],
518 							dst_item);
519 		}
520 	}
521 
522 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
523 			   src_ptr, item_size);
524 
525 	if (save_old_i_size) {
526 		struct btrfs_inode_item *dst_item;
527 		dst_item = (struct btrfs_inode_item *)dst_ptr;
528 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
529 	}
530 
531 	/* make sure the generation is filled in */
532 	if (key->type == BTRFS_INODE_ITEM_KEY) {
533 		struct btrfs_inode_item *dst_item;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
536 			btrfs_set_inode_generation(path->nodes[0], dst_item,
537 						   trans->transid);
538 		}
539 	}
540 no_copy:
541 	btrfs_mark_buffer_dirty(path->nodes[0]);
542 	btrfs_release_path(path);
543 	return 0;
544 }
545 
546 /*
547  * simple helper to read an inode off the disk from a given root
548  * This can only be called for subvolume roots and not for the log
549  */
read_one_inode(struct btrfs_root * root,u64 objectid)550 static noinline struct inode *read_one_inode(struct btrfs_root *root,
551 					     u64 objectid)
552 {
553 	struct inode *inode;
554 
555 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
556 	if (IS_ERR(inode))
557 		inode = NULL;
558 	return inode;
559 }
560 
561 /* replays a single extent in 'eb' at 'slot' with 'key' into the
562  * subvolume 'root'.  path is released on entry and should be released
563  * on exit.
564  *
565  * extents in the log tree have not been allocated out of the extent
566  * tree yet.  So, this completes the allocation, taking a reference
567  * as required if the extent already exists or creating a new extent
568  * if it isn't in the extent allocation tree yet.
569  *
570  * The extent is inserted into the file, dropping any existing extents
571  * from the file that overlap the new one.
572  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)573 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
574 				      struct btrfs_root *root,
575 				      struct btrfs_path *path,
576 				      struct extent_buffer *eb, int slot,
577 				      struct btrfs_key *key)
578 {
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	int found_type;
581 	u64 extent_end;
582 	u64 start = key->offset;
583 	u64 nbytes = 0;
584 	struct btrfs_file_extent_item *item;
585 	struct inode *inode = NULL;
586 	unsigned long size;
587 	int ret = 0;
588 
589 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
590 	found_type = btrfs_file_extent_type(eb, item);
591 
592 	if (found_type == BTRFS_FILE_EXTENT_REG ||
593 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
594 		nbytes = btrfs_file_extent_num_bytes(eb, item);
595 		extent_end = start + nbytes;
596 
597 		/*
598 		 * We don't add to the inodes nbytes if we are prealloc or a
599 		 * hole.
600 		 */
601 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
602 			nbytes = 0;
603 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
604 		size = btrfs_file_extent_ram_bytes(eb, item);
605 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
606 		extent_end = ALIGN(start + size,
607 				   fs_info->sectorsize);
608 	} else {
609 		ret = 0;
610 		goto out;
611 	}
612 
613 	inode = read_one_inode(root, key->objectid);
614 	if (!inode) {
615 		ret = -EIO;
616 		goto out;
617 	}
618 
619 	/*
620 	 * first check to see if we already have this extent in the
621 	 * file.  This must be done before the btrfs_drop_extents run
622 	 * so we don't try to drop this extent.
623 	 */
624 	ret = btrfs_lookup_file_extent(trans, root, path,
625 			btrfs_ino(BTRFS_I(inode)), start, 0);
626 
627 	if (ret == 0 &&
628 	    (found_type == BTRFS_FILE_EXTENT_REG ||
629 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
630 		struct btrfs_file_extent_item cmp1;
631 		struct btrfs_file_extent_item cmp2;
632 		struct btrfs_file_extent_item *existing;
633 		struct extent_buffer *leaf;
634 
635 		leaf = path->nodes[0];
636 		existing = btrfs_item_ptr(leaf, path->slots[0],
637 					  struct btrfs_file_extent_item);
638 
639 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
640 				   sizeof(cmp1));
641 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
642 				   sizeof(cmp2));
643 
644 		/*
645 		 * we already have a pointer to this exact extent,
646 		 * we don't have to do anything
647 		 */
648 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
649 			btrfs_release_path(path);
650 			goto out;
651 		}
652 	}
653 	btrfs_release_path(path);
654 
655 	/* drop any overlapping extents */
656 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
657 	if (ret)
658 		goto out;
659 
660 	if (found_type == BTRFS_FILE_EXTENT_REG ||
661 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 		u64 offset;
663 		unsigned long dest_offset;
664 		struct btrfs_key ins;
665 
666 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
667 		    btrfs_fs_incompat(fs_info, NO_HOLES))
668 			goto update_inode;
669 
670 		ret = btrfs_insert_empty_item(trans, root, path, key,
671 					      sizeof(*item));
672 		if (ret)
673 			goto out;
674 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
675 						    path->slots[0]);
676 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
677 				(unsigned long)item,  sizeof(*item));
678 
679 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
680 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
681 		ins.type = BTRFS_EXTENT_ITEM_KEY;
682 		offset = key->offset - btrfs_file_extent_offset(eb, item);
683 
684 		/*
685 		 * Manually record dirty extent, as here we did a shallow
686 		 * file extent item copy and skip normal backref update,
687 		 * but modifying extent tree all by ourselves.
688 		 * So need to manually record dirty extent for qgroup,
689 		 * as the owner of the file extent changed from log tree
690 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
691 		 */
692 		ret = btrfs_qgroup_trace_extent(trans,
693 				btrfs_file_extent_disk_bytenr(eb, item),
694 				btrfs_file_extent_disk_num_bytes(eb, item),
695 				GFP_NOFS);
696 		if (ret < 0)
697 			goto out;
698 
699 		if (ins.objectid > 0) {
700 			struct btrfs_ref ref = { 0 };
701 			u64 csum_start;
702 			u64 csum_end;
703 			LIST_HEAD(ordered_sums);
704 
705 			/*
706 			 * is this extent already allocated in the extent
707 			 * allocation tree?  If so, just add a reference
708 			 */
709 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
710 						ins.offset);
711 			if (ret < 0) {
712 				goto out;
713 			} else if (ret == 0) {
714 				btrfs_init_generic_ref(&ref,
715 						BTRFS_ADD_DELAYED_REF,
716 						ins.objectid, ins.offset, 0);
717 				btrfs_init_data_ref(&ref,
718 						root->root_key.objectid,
719 						key->objectid, offset);
720 				ret = btrfs_inc_extent_ref(trans, &ref);
721 				if (ret)
722 					goto out;
723 			} else {
724 				/*
725 				 * insert the extent pointer in the extent
726 				 * allocation tree
727 				 */
728 				ret = btrfs_alloc_logged_file_extent(trans,
729 						root->root_key.objectid,
730 						key->objectid, offset, &ins);
731 				if (ret)
732 					goto out;
733 			}
734 			btrfs_release_path(path);
735 
736 			if (btrfs_file_extent_compression(eb, item)) {
737 				csum_start = ins.objectid;
738 				csum_end = csum_start + ins.offset;
739 			} else {
740 				csum_start = ins.objectid +
741 					btrfs_file_extent_offset(eb, item);
742 				csum_end = csum_start +
743 					btrfs_file_extent_num_bytes(eb, item);
744 			}
745 
746 			ret = btrfs_lookup_csums_range(root->log_root,
747 						csum_start, csum_end - 1,
748 						&ordered_sums, 0);
749 			if (ret)
750 				goto out;
751 			/*
752 			 * Now delete all existing cums in the csum root that
753 			 * cover our range. We do this because we can have an
754 			 * extent that is completely referenced by one file
755 			 * extent item and partially referenced by another
756 			 * file extent item (like after using the clone or
757 			 * extent_same ioctls). In this case if we end up doing
758 			 * the replay of the one that partially references the
759 			 * extent first, and we do not do the csum deletion
760 			 * below, we can get 2 csum items in the csum tree that
761 			 * overlap each other. For example, imagine our log has
762 			 * the two following file extent items:
763 			 *
764 			 * key (257 EXTENT_DATA 409600)
765 			 *     extent data disk byte 12845056 nr 102400
766 			 *     extent data offset 20480 nr 20480 ram 102400
767 			 *
768 			 * key (257 EXTENT_DATA 819200)
769 			 *     extent data disk byte 12845056 nr 102400
770 			 *     extent data offset 0 nr 102400 ram 102400
771 			 *
772 			 * Where the second one fully references the 100K extent
773 			 * that starts at disk byte 12845056, and the log tree
774 			 * has a single csum item that covers the entire range
775 			 * of the extent:
776 			 *
777 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
778 			 *
779 			 * After the first file extent item is replayed, the
780 			 * csum tree gets the following csum item:
781 			 *
782 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 			 *
784 			 * Which covers the 20K sub-range starting at offset 20K
785 			 * of our extent. Now when we replay the second file
786 			 * extent item, if we do not delete existing csum items
787 			 * that cover any of its blocks, we end up getting two
788 			 * csum items in our csum tree that overlap each other:
789 			 *
790 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
791 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
792 			 *
793 			 * Which is a problem, because after this anyone trying
794 			 * to lookup up for the checksum of any block of our
795 			 * extent starting at an offset of 40K or higher, will
796 			 * end up looking at the second csum item only, which
797 			 * does not contain the checksum for any block starting
798 			 * at offset 40K or higher of our extent.
799 			 */
800 			while (!list_empty(&ordered_sums)) {
801 				struct btrfs_ordered_sum *sums;
802 				sums = list_entry(ordered_sums.next,
803 						struct btrfs_ordered_sum,
804 						list);
805 				if (!ret)
806 					ret = btrfs_del_csums(trans,
807 							      fs_info->csum_root,
808 							      sums->bytenr,
809 							      sums->len);
810 				if (!ret)
811 					ret = btrfs_csum_file_blocks(trans,
812 						fs_info->csum_root, sums);
813 				list_del(&sums->list);
814 				kfree(sums);
815 			}
816 			if (ret)
817 				goto out;
818 		} else {
819 			btrfs_release_path(path);
820 		}
821 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
822 		/* inline extents are easy, we just overwrite them */
823 		ret = overwrite_item(trans, root, path, eb, slot, key);
824 		if (ret)
825 			goto out;
826 	}
827 
828 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
829 						extent_end - start);
830 	if (ret)
831 		goto out;
832 
833 	inode_add_bytes(inode, nbytes);
834 update_inode:
835 	ret = btrfs_update_inode(trans, root, inode);
836 out:
837 	if (inode)
838 		iput(inode);
839 	return ret;
840 }
841 
842 /*
843  * when cleaning up conflicts between the directory names in the
844  * subvolume, directory names in the log and directory names in the
845  * inode back references, we may have to unlink inodes from directories.
846  *
847  * This is a helper function to do the unlink of a specific directory
848  * item
849  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 				      struct btrfs_root *root,
852 				      struct btrfs_path *path,
853 				      struct btrfs_inode *dir,
854 				      struct btrfs_dir_item *di)
855 {
856 	struct inode *inode;
857 	char *name;
858 	int name_len;
859 	struct extent_buffer *leaf;
860 	struct btrfs_key location;
861 	int ret;
862 
863 	leaf = path->nodes[0];
864 
865 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 	name_len = btrfs_dir_name_len(leaf, di);
867 	name = kmalloc(name_len, GFP_NOFS);
868 	if (!name)
869 		return -ENOMEM;
870 
871 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
872 	btrfs_release_path(path);
873 
874 	inode = read_one_inode(root, location.objectid);
875 	if (!inode) {
876 		ret = -EIO;
877 		goto out;
878 	}
879 
880 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
881 	if (ret)
882 		goto out;
883 
884 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 			name_len);
886 	if (ret)
887 		goto out;
888 	else
889 		ret = btrfs_run_delayed_items(trans);
890 out:
891 	kfree(name);
892 	iput(inode);
893 	return ret;
894 }
895 
896 /*
897  * See if a given name and sequence number found in an inode back reference are
898  * already in a directory and correctly point to this inode.
899  *
900  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
901  * exists.
902  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)903 static noinline int inode_in_dir(struct btrfs_root *root,
904 				 struct btrfs_path *path,
905 				 u64 dirid, u64 objectid, u64 index,
906 				 const char *name, int name_len)
907 {
908 	struct btrfs_dir_item *di;
909 	struct btrfs_key location;
910 	int ret = 0;
911 
912 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 					 index, name, name_len, 0);
914 	if (IS_ERR(di)) {
915 		if (PTR_ERR(di) != -ENOENT)
916 			ret = PTR_ERR(di);
917 		goto out;
918 	} else if (di) {
919 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
920 		if (location.objectid != objectid)
921 			goto out;
922 	} else {
923 		goto out;
924 	}
925 
926 	btrfs_release_path(path);
927 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
928 	if (IS_ERR(di)) {
929 		ret = PTR_ERR(di);
930 		goto out;
931 	} else if (di) {
932 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
933 		if (location.objectid == objectid)
934 			ret = 1;
935 	}
936 out:
937 	btrfs_release_path(path);
938 	return ret;
939 }
940 
941 /*
942  * helper function to check a log tree for a named back reference in
943  * an inode.  This is used to decide if a back reference that is
944  * found in the subvolume conflicts with what we find in the log.
945  *
946  * inode backreferences may have multiple refs in a single item,
947  * during replay we process one reference at a time, and we don't
948  * want to delete valid links to a file from the subvolume if that
949  * link is also in the log.
950  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)951 static noinline int backref_in_log(struct btrfs_root *log,
952 				   struct btrfs_key *key,
953 				   u64 ref_objectid,
954 				   const char *name, int namelen)
955 {
956 	struct btrfs_path *path;
957 	int ret;
958 
959 	path = btrfs_alloc_path();
960 	if (!path)
961 		return -ENOMEM;
962 
963 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
964 	if (ret < 0) {
965 		goto out;
966 	} else if (ret == 1) {
967 		ret = 0;
968 		goto out;
969 	}
970 
971 	if (key->type == BTRFS_INODE_EXTREF_KEY)
972 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
973 						       path->slots[0],
974 						       ref_objectid,
975 						       name, namelen);
976 	else
977 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
978 						   path->slots[0],
979 						   name, namelen);
980 out:
981 	btrfs_free_path(path);
982 	return ret;
983 }
984 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)985 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
986 				  struct btrfs_root *root,
987 				  struct btrfs_path *path,
988 				  struct btrfs_root *log_root,
989 				  struct btrfs_inode *dir,
990 				  struct btrfs_inode *inode,
991 				  u64 inode_objectid, u64 parent_objectid,
992 				  u64 ref_index, char *name, int namelen,
993 				  int *search_done)
994 {
995 	int ret;
996 	char *victim_name;
997 	int victim_name_len;
998 	struct extent_buffer *leaf;
999 	struct btrfs_dir_item *di;
1000 	struct btrfs_key search_key;
1001 	struct btrfs_inode_extref *extref;
1002 
1003 again:
1004 	/* Search old style refs */
1005 	search_key.objectid = inode_objectid;
1006 	search_key.type = BTRFS_INODE_REF_KEY;
1007 	search_key.offset = parent_objectid;
1008 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1009 	if (ret == 0) {
1010 		struct btrfs_inode_ref *victim_ref;
1011 		unsigned long ptr;
1012 		unsigned long ptr_end;
1013 
1014 		leaf = path->nodes[0];
1015 
1016 		/* are we trying to overwrite a back ref for the root directory
1017 		 * if so, just jump out, we're done
1018 		 */
1019 		if (search_key.objectid == search_key.offset)
1020 			return 1;
1021 
1022 		/* check all the names in this back reference to see
1023 		 * if they are in the log.  if so, we allow them to stay
1024 		 * otherwise they must be unlinked as a conflict
1025 		 */
1026 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1027 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1028 		while (ptr < ptr_end) {
1029 			victim_ref = (struct btrfs_inode_ref *)ptr;
1030 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1031 								   victim_ref);
1032 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1033 			if (!victim_name)
1034 				return -ENOMEM;
1035 
1036 			read_extent_buffer(leaf, victim_name,
1037 					   (unsigned long)(victim_ref + 1),
1038 					   victim_name_len);
1039 
1040 			ret = backref_in_log(log_root, &search_key,
1041 					     parent_objectid, victim_name,
1042 					     victim_name_len);
1043 			if (ret < 0) {
1044 				kfree(victim_name);
1045 				return ret;
1046 			} else if (!ret) {
1047 				inc_nlink(&inode->vfs_inode);
1048 				btrfs_release_path(path);
1049 
1050 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1051 						victim_name, victim_name_len);
1052 				kfree(victim_name);
1053 				if (ret)
1054 					return ret;
1055 				ret = btrfs_run_delayed_items(trans);
1056 				if (ret)
1057 					return ret;
1058 				*search_done = 1;
1059 				goto again;
1060 			}
1061 			kfree(victim_name);
1062 
1063 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1064 		}
1065 
1066 		/*
1067 		 * NOTE: we have searched root tree and checked the
1068 		 * corresponding ref, it does not need to check again.
1069 		 */
1070 		*search_done = 1;
1071 	}
1072 	btrfs_release_path(path);
1073 
1074 	/* Same search but for extended refs */
1075 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1076 					   inode_objectid, parent_objectid, 0,
1077 					   0);
1078 	if (IS_ERR(extref)) {
1079 		return PTR_ERR(extref);
1080 	} else if (extref) {
1081 		u32 item_size;
1082 		u32 cur_offset = 0;
1083 		unsigned long base;
1084 		struct inode *victim_parent;
1085 
1086 		leaf = path->nodes[0];
1087 
1088 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1089 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1090 
1091 		while (cur_offset < item_size) {
1092 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1093 
1094 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1095 
1096 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1097 				goto next;
1098 
1099 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1100 			if (!victim_name)
1101 				return -ENOMEM;
1102 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1103 					   victim_name_len);
1104 
1105 			search_key.objectid = inode_objectid;
1106 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1107 			search_key.offset = btrfs_extref_hash(parent_objectid,
1108 							      victim_name,
1109 							      victim_name_len);
1110 			ret = backref_in_log(log_root, &search_key,
1111 					     parent_objectid, victim_name,
1112 					     victim_name_len);
1113 			if (ret < 0) {
1114 				kfree(victim_name);
1115 				return ret;
1116 			} else if (!ret) {
1117 				ret = -ENOENT;
1118 				victim_parent = read_one_inode(root,
1119 						parent_objectid);
1120 				if (victim_parent) {
1121 					inc_nlink(&inode->vfs_inode);
1122 					btrfs_release_path(path);
1123 
1124 					ret = btrfs_unlink_inode(trans, root,
1125 							BTRFS_I(victim_parent),
1126 							inode,
1127 							victim_name,
1128 							victim_name_len);
1129 					if (!ret)
1130 						ret = btrfs_run_delayed_items(
1131 								  trans);
1132 				}
1133 				iput(victim_parent);
1134 				kfree(victim_name);
1135 				if (ret)
1136 					return ret;
1137 				*search_done = 1;
1138 				goto again;
1139 			}
1140 			kfree(victim_name);
1141 next:
1142 			cur_offset += victim_name_len + sizeof(*extref);
1143 		}
1144 		*search_done = 1;
1145 	}
1146 	btrfs_release_path(path);
1147 
1148 	/* look for a conflicting sequence number */
1149 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1150 					 ref_index, name, namelen, 0);
1151 	if (IS_ERR(di)) {
1152 		if (PTR_ERR(di) != -ENOENT)
1153 			return PTR_ERR(di);
1154 	} else if (di) {
1155 		ret = drop_one_dir_item(trans, root, path, dir, di);
1156 		if (ret)
1157 			return ret;
1158 	}
1159 	btrfs_release_path(path);
1160 
1161 	/* look for a conflicting name */
1162 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1163 				   name, namelen, 0);
1164 	if (IS_ERR(di)) {
1165 		return PTR_ERR(di);
1166 	} else if (di) {
1167 		ret = drop_one_dir_item(trans, root, path, dir, di);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 	btrfs_release_path(path);
1172 
1173 	return 0;
1174 }
1175 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1176 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1177 			     u32 *namelen, char **name, u64 *index,
1178 			     u64 *parent_objectid)
1179 {
1180 	struct btrfs_inode_extref *extref;
1181 
1182 	extref = (struct btrfs_inode_extref *)ref_ptr;
1183 
1184 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1185 	*name = kmalloc(*namelen, GFP_NOFS);
1186 	if (*name == NULL)
1187 		return -ENOMEM;
1188 
1189 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1190 			   *namelen);
1191 
1192 	if (index)
1193 		*index = btrfs_inode_extref_index(eb, extref);
1194 	if (parent_objectid)
1195 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1196 
1197 	return 0;
1198 }
1199 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1200 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1201 			  u32 *namelen, char **name, u64 *index)
1202 {
1203 	struct btrfs_inode_ref *ref;
1204 
1205 	ref = (struct btrfs_inode_ref *)ref_ptr;
1206 
1207 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1208 	*name = kmalloc(*namelen, GFP_NOFS);
1209 	if (*name == NULL)
1210 		return -ENOMEM;
1211 
1212 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1213 
1214 	if (index)
1215 		*index = btrfs_inode_ref_index(eb, ref);
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Take an inode reference item from the log tree and iterate all names from the
1222  * inode reference item in the subvolume tree with the same key (if it exists).
1223  * For any name that is not in the inode reference item from the log tree, do a
1224  * proper unlink of that name (that is, remove its entry from the inode
1225  * reference item and both dir index keys).
1226  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1227 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1228 				 struct btrfs_root *root,
1229 				 struct btrfs_path *path,
1230 				 struct btrfs_inode *inode,
1231 				 struct extent_buffer *log_eb,
1232 				 int log_slot,
1233 				 struct btrfs_key *key)
1234 {
1235 	int ret;
1236 	unsigned long ref_ptr;
1237 	unsigned long ref_end;
1238 	struct extent_buffer *eb;
1239 
1240 again:
1241 	btrfs_release_path(path);
1242 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1243 	if (ret > 0) {
1244 		ret = 0;
1245 		goto out;
1246 	}
1247 	if (ret < 0)
1248 		goto out;
1249 
1250 	eb = path->nodes[0];
1251 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1252 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1253 	while (ref_ptr < ref_end) {
1254 		char *name = NULL;
1255 		int namelen;
1256 		u64 parent_id;
1257 
1258 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1259 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1260 						NULL, &parent_id);
1261 		} else {
1262 			parent_id = key->offset;
1263 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1264 					     NULL);
1265 		}
1266 		if (ret)
1267 			goto out;
1268 
1269 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1270 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1271 							       parent_id, name,
1272 							       namelen);
1273 		else
1274 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1275 							   name, namelen);
1276 
1277 		if (!ret) {
1278 			struct inode *dir;
1279 
1280 			btrfs_release_path(path);
1281 			dir = read_one_inode(root, parent_id);
1282 			if (!dir) {
1283 				ret = -ENOENT;
1284 				kfree(name);
1285 				goto out;
1286 			}
1287 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1288 						 inode, name, namelen);
1289 			kfree(name);
1290 			iput(dir);
1291 			/*
1292 			 * Whenever we need to check if a name exists or not, we
1293 			 * check the subvolume tree. So after an unlink we must
1294 			 * run delayed items, so that future checks for a name
1295 			 * during log replay see that the name does not exists
1296 			 * anymore.
1297 			 */
1298 			if (!ret)
1299 				ret = btrfs_run_delayed_items(trans);
1300 			if (ret)
1301 				goto out;
1302 			goto again;
1303 		}
1304 
1305 		kfree(name);
1306 		ref_ptr += namelen;
1307 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1308 			ref_ptr += sizeof(struct btrfs_inode_extref);
1309 		else
1310 			ref_ptr += sizeof(struct btrfs_inode_ref);
1311 	}
1312 	ret = 0;
1313  out:
1314 	btrfs_release_path(path);
1315 	return ret;
1316 }
1317 
btrfs_inode_ref_exists(struct inode * inode,struct inode * dir,const u8 ref_type,const char * name,const int namelen)1318 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1319 				  const u8 ref_type, const char *name,
1320 				  const int namelen)
1321 {
1322 	struct btrfs_key key;
1323 	struct btrfs_path *path;
1324 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1325 	int ret;
1326 
1327 	path = btrfs_alloc_path();
1328 	if (!path)
1329 		return -ENOMEM;
1330 
1331 	key.objectid = btrfs_ino(BTRFS_I(inode));
1332 	key.type = ref_type;
1333 	if (key.type == BTRFS_INODE_REF_KEY)
1334 		key.offset = parent_id;
1335 	else
1336 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1337 
1338 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1339 	if (ret < 0)
1340 		goto out;
1341 	if (ret > 0) {
1342 		ret = 0;
1343 		goto out;
1344 	}
1345 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1346 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1347 				path->slots[0], parent_id, name, namelen);
1348 	else
1349 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1350 						   name, namelen);
1351 
1352 out:
1353 	btrfs_free_path(path);
1354 	return ret;
1355 }
1356 
add_link(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int namelen,u64 ref_index)1357 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1358 		    struct inode *dir, struct inode *inode, const char *name,
1359 		    int namelen, u64 ref_index)
1360 {
1361 	struct btrfs_dir_item *dir_item;
1362 	struct btrfs_key key;
1363 	struct btrfs_path *path;
1364 	struct inode *other_inode = NULL;
1365 	int ret;
1366 
1367 	path = btrfs_alloc_path();
1368 	if (!path)
1369 		return -ENOMEM;
1370 
1371 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1372 					 btrfs_ino(BTRFS_I(dir)),
1373 					 name, namelen, 0);
1374 	if (!dir_item) {
1375 		btrfs_release_path(path);
1376 		goto add_link;
1377 	} else if (IS_ERR(dir_item)) {
1378 		ret = PTR_ERR(dir_item);
1379 		goto out;
1380 	}
1381 
1382 	/*
1383 	 * Our inode's dentry collides with the dentry of another inode which is
1384 	 * in the log but not yet processed since it has a higher inode number.
1385 	 * So delete that other dentry.
1386 	 */
1387 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1388 	btrfs_release_path(path);
1389 	other_inode = read_one_inode(root, key.objectid);
1390 	if (!other_inode) {
1391 		ret = -ENOENT;
1392 		goto out;
1393 	}
1394 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1395 				 name, namelen);
1396 	if (ret)
1397 		goto out;
1398 	/*
1399 	 * If we dropped the link count to 0, bump it so that later the iput()
1400 	 * on the inode will not free it. We will fixup the link count later.
1401 	 */
1402 	if (other_inode->i_nlink == 0)
1403 		inc_nlink(other_inode);
1404 
1405 	ret = btrfs_run_delayed_items(trans);
1406 	if (ret)
1407 		goto out;
1408 add_link:
1409 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1410 			     name, namelen, 0, ref_index);
1411 out:
1412 	iput(other_inode);
1413 	btrfs_free_path(path);
1414 
1415 	return ret;
1416 }
1417 
1418 /*
1419  * replay one inode back reference item found in the log tree.
1420  * eb, slot and key refer to the buffer and key found in the log tree.
1421  * root is the destination we are replaying into, and path is for temp
1422  * use by this function.  (it should be released on return).
1423  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1424 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1425 				  struct btrfs_root *root,
1426 				  struct btrfs_root *log,
1427 				  struct btrfs_path *path,
1428 				  struct extent_buffer *eb, int slot,
1429 				  struct btrfs_key *key)
1430 {
1431 	struct inode *dir = NULL;
1432 	struct inode *inode = NULL;
1433 	unsigned long ref_ptr;
1434 	unsigned long ref_end;
1435 	char *name = NULL;
1436 	int namelen;
1437 	int ret;
1438 	int search_done = 0;
1439 	int log_ref_ver = 0;
1440 	u64 parent_objectid;
1441 	u64 inode_objectid;
1442 	u64 ref_index = 0;
1443 	int ref_struct_size;
1444 
1445 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1446 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1447 
1448 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1449 		struct btrfs_inode_extref *r;
1450 
1451 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1452 		log_ref_ver = 1;
1453 		r = (struct btrfs_inode_extref *)ref_ptr;
1454 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1455 	} else {
1456 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1457 		parent_objectid = key->offset;
1458 	}
1459 	inode_objectid = key->objectid;
1460 
1461 	/*
1462 	 * it is possible that we didn't log all the parent directories
1463 	 * for a given inode.  If we don't find the dir, just don't
1464 	 * copy the back ref in.  The link count fixup code will take
1465 	 * care of the rest
1466 	 */
1467 	dir = read_one_inode(root, parent_objectid);
1468 	if (!dir) {
1469 		ret = -ENOENT;
1470 		goto out;
1471 	}
1472 
1473 	inode = read_one_inode(root, inode_objectid);
1474 	if (!inode) {
1475 		ret = -EIO;
1476 		goto out;
1477 	}
1478 
1479 	while (ref_ptr < ref_end) {
1480 		if (log_ref_ver) {
1481 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1482 						&ref_index, &parent_objectid);
1483 			/*
1484 			 * parent object can change from one array
1485 			 * item to another.
1486 			 */
1487 			if (!dir)
1488 				dir = read_one_inode(root, parent_objectid);
1489 			if (!dir) {
1490 				ret = -ENOENT;
1491 				goto out;
1492 			}
1493 		} else {
1494 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1495 					     &ref_index);
1496 		}
1497 		if (ret)
1498 			goto out;
1499 
1500 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1501 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1502 				   name, namelen);
1503 		if (ret < 0) {
1504 			goto out;
1505 		} else if (ret == 0) {
1506 			/*
1507 			 * look for a conflicting back reference in the
1508 			 * metadata. if we find one we have to unlink that name
1509 			 * of the file before we add our new link.  Later on, we
1510 			 * overwrite any existing back reference, and we don't
1511 			 * want to create dangling pointers in the directory.
1512 			 */
1513 
1514 			if (!search_done) {
1515 				ret = __add_inode_ref(trans, root, path, log,
1516 						      BTRFS_I(dir),
1517 						      BTRFS_I(inode),
1518 						      inode_objectid,
1519 						      parent_objectid,
1520 						      ref_index, name, namelen,
1521 						      &search_done);
1522 				if (ret) {
1523 					if (ret == 1)
1524 						ret = 0;
1525 					goto out;
1526 				}
1527 			}
1528 
1529 			/*
1530 			 * If a reference item already exists for this inode
1531 			 * with the same parent and name, but different index,
1532 			 * drop it and the corresponding directory index entries
1533 			 * from the parent before adding the new reference item
1534 			 * and dir index entries, otherwise we would fail with
1535 			 * -EEXIST returned from btrfs_add_link() below.
1536 			 */
1537 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1538 						     name, namelen);
1539 			if (ret > 0) {
1540 				ret = btrfs_unlink_inode(trans, root,
1541 							 BTRFS_I(dir),
1542 							 BTRFS_I(inode),
1543 							 name, namelen);
1544 				/*
1545 				 * If we dropped the link count to 0, bump it so
1546 				 * that later the iput() on the inode will not
1547 				 * free it. We will fixup the link count later.
1548 				 */
1549 				if (!ret && inode->i_nlink == 0)
1550 					inc_nlink(inode);
1551 				/*
1552 				 * Whenever we need to check if a name exists or
1553 				 * not, we check the subvolume tree. So after an
1554 				 * unlink we must run delayed items, so that future
1555 				 * checks for a name during log replay see that the
1556 				 * name does not exists anymore.
1557 				 */
1558 				if (!ret)
1559 					ret = btrfs_run_delayed_items(trans);
1560 			}
1561 			if (ret < 0)
1562 				goto out;
1563 
1564 			/* insert our name */
1565 			ret = add_link(trans, root, dir, inode, name, namelen,
1566 				       ref_index);
1567 			if (ret)
1568 				goto out;
1569 
1570 			btrfs_update_inode(trans, root, inode);
1571 		}
1572 		/* Else, ret == 1, we already have a perfect match, we're done. */
1573 
1574 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1575 		kfree(name);
1576 		name = NULL;
1577 		if (log_ref_ver) {
1578 			iput(dir);
1579 			dir = NULL;
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * Before we overwrite the inode reference item in the subvolume tree
1585 	 * with the item from the log tree, we must unlink all names from the
1586 	 * parent directory that are in the subvolume's tree inode reference
1587 	 * item, otherwise we end up with an inconsistent subvolume tree where
1588 	 * dir index entries exist for a name but there is no inode reference
1589 	 * item with the same name.
1590 	 */
1591 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1592 				    key);
1593 	if (ret)
1594 		goto out;
1595 
1596 	/* finally write the back reference in the inode */
1597 	ret = overwrite_item(trans, root, path, eb, slot, key);
1598 out:
1599 	btrfs_release_path(path);
1600 	kfree(name);
1601 	iput(dir);
1602 	iput(inode);
1603 	return ret;
1604 }
1605 
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 ino)1606 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1607 			      struct btrfs_root *root, u64 ino)
1608 {
1609 	int ret;
1610 
1611 	ret = btrfs_insert_orphan_item(trans, root, ino);
1612 	if (ret == -EEXIST)
1613 		ret = 0;
1614 
1615 	return ret;
1616 }
1617 
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1618 static int count_inode_extrefs(struct btrfs_root *root,
1619 		struct btrfs_inode *inode, struct btrfs_path *path)
1620 {
1621 	int ret = 0;
1622 	int name_len;
1623 	unsigned int nlink = 0;
1624 	u32 item_size;
1625 	u32 cur_offset = 0;
1626 	u64 inode_objectid = btrfs_ino(inode);
1627 	u64 offset = 0;
1628 	unsigned long ptr;
1629 	struct btrfs_inode_extref *extref;
1630 	struct extent_buffer *leaf;
1631 
1632 	while (1) {
1633 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1634 					    &extref, &offset);
1635 		if (ret)
1636 			break;
1637 
1638 		leaf = path->nodes[0];
1639 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1640 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1641 		cur_offset = 0;
1642 
1643 		while (cur_offset < item_size) {
1644 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1645 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1646 
1647 			nlink++;
1648 
1649 			cur_offset += name_len + sizeof(*extref);
1650 		}
1651 
1652 		offset++;
1653 		btrfs_release_path(path);
1654 	}
1655 	btrfs_release_path(path);
1656 
1657 	if (ret < 0 && ret != -ENOENT)
1658 		return ret;
1659 	return nlink;
1660 }
1661 
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1662 static int count_inode_refs(struct btrfs_root *root,
1663 			struct btrfs_inode *inode, struct btrfs_path *path)
1664 {
1665 	int ret;
1666 	struct btrfs_key key;
1667 	unsigned int nlink = 0;
1668 	unsigned long ptr;
1669 	unsigned long ptr_end;
1670 	int name_len;
1671 	u64 ino = btrfs_ino(inode);
1672 
1673 	key.objectid = ino;
1674 	key.type = BTRFS_INODE_REF_KEY;
1675 	key.offset = (u64)-1;
1676 
1677 	while (1) {
1678 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1679 		if (ret < 0)
1680 			break;
1681 		if (ret > 0) {
1682 			if (path->slots[0] == 0)
1683 				break;
1684 			path->slots[0]--;
1685 		}
1686 process_slot:
1687 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1688 				      path->slots[0]);
1689 		if (key.objectid != ino ||
1690 		    key.type != BTRFS_INODE_REF_KEY)
1691 			break;
1692 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1693 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1694 						   path->slots[0]);
1695 		while (ptr < ptr_end) {
1696 			struct btrfs_inode_ref *ref;
1697 
1698 			ref = (struct btrfs_inode_ref *)ptr;
1699 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1700 							    ref);
1701 			ptr = (unsigned long)(ref + 1) + name_len;
1702 			nlink++;
1703 		}
1704 
1705 		if (key.offset == 0)
1706 			break;
1707 		if (path->slots[0] > 0) {
1708 			path->slots[0]--;
1709 			goto process_slot;
1710 		}
1711 		key.offset--;
1712 		btrfs_release_path(path);
1713 	}
1714 	btrfs_release_path(path);
1715 
1716 	return nlink;
1717 }
1718 
1719 /*
1720  * There are a few corners where the link count of the file can't
1721  * be properly maintained during replay.  So, instead of adding
1722  * lots of complexity to the log code, we just scan the backrefs
1723  * for any file that has been through replay.
1724  *
1725  * The scan will update the link count on the inode to reflect the
1726  * number of back refs found.  If it goes down to zero, the iput
1727  * will free the inode.
1728  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1729 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1730 					   struct btrfs_root *root,
1731 					   struct inode *inode)
1732 {
1733 	struct btrfs_path *path;
1734 	int ret;
1735 	u64 nlink = 0;
1736 	u64 ino = btrfs_ino(BTRFS_I(inode));
1737 
1738 	path = btrfs_alloc_path();
1739 	if (!path)
1740 		return -ENOMEM;
1741 
1742 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1743 	if (ret < 0)
1744 		goto out;
1745 
1746 	nlink = ret;
1747 
1748 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1749 	if (ret < 0)
1750 		goto out;
1751 
1752 	nlink += ret;
1753 
1754 	ret = 0;
1755 
1756 	if (nlink != inode->i_nlink) {
1757 		set_nlink(inode, nlink);
1758 		btrfs_update_inode(trans, root, inode);
1759 	}
1760 	BTRFS_I(inode)->index_cnt = (u64)-1;
1761 
1762 	if (inode->i_nlink == 0) {
1763 		if (S_ISDIR(inode->i_mode)) {
1764 			ret = replay_dir_deletes(trans, root, NULL, path,
1765 						 ino, 1);
1766 			if (ret)
1767 				goto out;
1768 		}
1769 		ret = insert_orphan_item(trans, root, ino);
1770 	}
1771 
1772 out:
1773 	btrfs_free_path(path);
1774 	return ret;
1775 }
1776 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1777 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1778 					    struct btrfs_root *root,
1779 					    struct btrfs_path *path)
1780 {
1781 	int ret;
1782 	struct btrfs_key key;
1783 	struct inode *inode;
1784 
1785 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1786 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1787 	key.offset = (u64)-1;
1788 	while (1) {
1789 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1790 		if (ret < 0)
1791 			break;
1792 
1793 		if (ret == 1) {
1794 			ret = 0;
1795 			if (path->slots[0] == 0)
1796 				break;
1797 			path->slots[0]--;
1798 		}
1799 
1800 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1801 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1802 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1803 			break;
1804 
1805 		ret = btrfs_del_item(trans, root, path);
1806 		if (ret)
1807 			break;
1808 
1809 		btrfs_release_path(path);
1810 		inode = read_one_inode(root, key.offset);
1811 		if (!inode) {
1812 			ret = -EIO;
1813 			break;
1814 		}
1815 
1816 		ret = fixup_inode_link_count(trans, root, inode);
1817 		iput(inode);
1818 		if (ret)
1819 			break;
1820 
1821 		/*
1822 		 * fixup on a directory may create new entries,
1823 		 * make sure we always look for the highset possible
1824 		 * offset
1825 		 */
1826 		key.offset = (u64)-1;
1827 	}
1828 	btrfs_release_path(path);
1829 	return ret;
1830 }
1831 
1832 
1833 /*
1834  * record a given inode in the fixup dir so we can check its link
1835  * count when replay is done.  The link count is incremented here
1836  * so the inode won't go away until we check it
1837  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1838 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1839 				      struct btrfs_root *root,
1840 				      struct btrfs_path *path,
1841 				      u64 objectid)
1842 {
1843 	struct btrfs_key key;
1844 	int ret = 0;
1845 	struct inode *inode;
1846 
1847 	inode = read_one_inode(root, objectid);
1848 	if (!inode)
1849 		return -EIO;
1850 
1851 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1852 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1853 	key.offset = objectid;
1854 
1855 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1856 
1857 	btrfs_release_path(path);
1858 	if (ret == 0) {
1859 		if (!inode->i_nlink)
1860 			set_nlink(inode, 1);
1861 		else
1862 			inc_nlink(inode);
1863 		ret = btrfs_update_inode(trans, root, inode);
1864 	} else if (ret == -EEXIST) {
1865 		ret = 0;
1866 	}
1867 	iput(inode);
1868 
1869 	return ret;
1870 }
1871 
1872 /*
1873  * when replaying the log for a directory, we only insert names
1874  * for inodes that actually exist.  This means an fsync on a directory
1875  * does not implicitly fsync all the new files in it
1876  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1877 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1878 				    struct btrfs_root *root,
1879 				    u64 dirid, u64 index,
1880 				    char *name, int name_len,
1881 				    struct btrfs_key *location)
1882 {
1883 	struct inode *inode;
1884 	struct inode *dir;
1885 	int ret;
1886 
1887 	inode = read_one_inode(root, location->objectid);
1888 	if (!inode)
1889 		return -ENOENT;
1890 
1891 	dir = read_one_inode(root, dirid);
1892 	if (!dir) {
1893 		iput(inode);
1894 		return -EIO;
1895 	}
1896 
1897 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1898 			name_len, 1, index);
1899 
1900 	/* FIXME, put inode into FIXUP list */
1901 
1902 	iput(inode);
1903 	iput(dir);
1904 	return ret;
1905 }
1906 
1907 /*
1908  * take a single entry in a log directory item and replay it into
1909  * the subvolume.
1910  *
1911  * if a conflicting item exists in the subdirectory already,
1912  * the inode it points to is unlinked and put into the link count
1913  * fix up tree.
1914  *
1915  * If a name from the log points to a file or directory that does
1916  * not exist in the FS, it is skipped.  fsyncs on directories
1917  * do not force down inodes inside that directory, just changes to the
1918  * names or unlinks in a directory.
1919  *
1920  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1921  * non-existing inode) and 1 if the name was replayed.
1922  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1923 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1924 				    struct btrfs_root *root,
1925 				    struct btrfs_path *path,
1926 				    struct extent_buffer *eb,
1927 				    struct btrfs_dir_item *di,
1928 				    struct btrfs_key *key)
1929 {
1930 	char *name;
1931 	int name_len;
1932 	struct btrfs_dir_item *dst_di;
1933 	struct btrfs_key found_key;
1934 	struct btrfs_key log_key;
1935 	struct inode *dir;
1936 	u8 log_type;
1937 	bool exists;
1938 	int ret;
1939 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1940 	bool name_added = false;
1941 
1942 	dir = read_one_inode(root, key->objectid);
1943 	if (!dir)
1944 		return -EIO;
1945 
1946 	name_len = btrfs_dir_name_len(eb, di);
1947 	name = kmalloc(name_len, GFP_NOFS);
1948 	if (!name) {
1949 		ret = -ENOMEM;
1950 		goto out;
1951 	}
1952 
1953 	log_type = btrfs_dir_type(eb, di);
1954 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1955 		   name_len);
1956 
1957 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1958 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1959 	btrfs_release_path(path);
1960 	if (ret < 0)
1961 		goto out;
1962 	exists = (ret == 0);
1963 	ret = 0;
1964 
1965 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1966 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1967 				       name, name_len, 1);
1968 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1969 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1970 						     key->objectid,
1971 						     key->offset, name,
1972 						     name_len, 1);
1973 	} else {
1974 		/* Corruption */
1975 		ret = -EINVAL;
1976 		goto out;
1977 	}
1978 
1979 	if (dst_di == ERR_PTR(-ENOENT))
1980 		dst_di = NULL;
1981 
1982 	if (IS_ERR(dst_di)) {
1983 		ret = PTR_ERR(dst_di);
1984 		goto out;
1985 	} else if (!dst_di) {
1986 		/* we need a sequence number to insert, so we only
1987 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1988 		 */
1989 		if (key->type != BTRFS_DIR_INDEX_KEY)
1990 			goto out;
1991 		goto insert;
1992 	}
1993 
1994 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1995 	/* the existing item matches the logged item */
1996 	if (found_key.objectid == log_key.objectid &&
1997 	    found_key.type == log_key.type &&
1998 	    found_key.offset == log_key.offset &&
1999 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2000 		update_size = false;
2001 		goto out;
2002 	}
2003 
2004 	/*
2005 	 * don't drop the conflicting directory entry if the inode
2006 	 * for the new entry doesn't exist
2007 	 */
2008 	if (!exists)
2009 		goto out;
2010 
2011 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2012 	if (ret)
2013 		goto out;
2014 
2015 	if (key->type == BTRFS_DIR_INDEX_KEY)
2016 		goto insert;
2017 out:
2018 	btrfs_release_path(path);
2019 	if (!ret && update_size) {
2020 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2021 		ret = btrfs_update_inode(trans, root, dir);
2022 	}
2023 	kfree(name);
2024 	iput(dir);
2025 	if (!ret && name_added)
2026 		ret = 1;
2027 	return ret;
2028 
2029 insert:
2030 	/*
2031 	 * Check if the inode reference exists in the log for the given name,
2032 	 * inode and parent inode
2033 	 */
2034 	found_key.objectid = log_key.objectid;
2035 	found_key.type = BTRFS_INODE_REF_KEY;
2036 	found_key.offset = key->objectid;
2037 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2038 	if (ret < 0) {
2039 	        goto out;
2040 	} else if (ret) {
2041 	        /* The dentry will be added later. */
2042 	        ret = 0;
2043 	        update_size = false;
2044 	        goto out;
2045 	}
2046 
2047 	found_key.objectid = log_key.objectid;
2048 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2049 	found_key.offset = key->objectid;
2050 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2051 			     name_len);
2052 	if (ret < 0) {
2053 		goto out;
2054 	} else if (ret) {
2055 		/* The dentry will be added later. */
2056 		ret = 0;
2057 		update_size = false;
2058 		goto out;
2059 	}
2060 	btrfs_release_path(path);
2061 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2062 			      name, name_len, &log_key);
2063 	if (ret && ret != -ENOENT && ret != -EEXIST)
2064 		goto out;
2065 	if (!ret)
2066 		name_added = true;
2067 	update_size = false;
2068 	ret = 0;
2069 	goto out;
2070 }
2071 
2072 /*
2073  * find all the names in a directory item and reconcile them into
2074  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2075  * one name in a directory item, but the same code gets used for
2076  * both directory index types
2077  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2078 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2079 					struct btrfs_root *root,
2080 					struct btrfs_path *path,
2081 					struct extent_buffer *eb, int slot,
2082 					struct btrfs_key *key)
2083 {
2084 	int ret = 0;
2085 	u32 item_size = btrfs_item_size_nr(eb, slot);
2086 	struct btrfs_dir_item *di;
2087 	int name_len;
2088 	unsigned long ptr;
2089 	unsigned long ptr_end;
2090 	struct btrfs_path *fixup_path = NULL;
2091 
2092 	ptr = btrfs_item_ptr_offset(eb, slot);
2093 	ptr_end = ptr + item_size;
2094 	while (ptr < ptr_end) {
2095 		di = (struct btrfs_dir_item *)ptr;
2096 		name_len = btrfs_dir_name_len(eb, di);
2097 		ret = replay_one_name(trans, root, path, eb, di, key);
2098 		if (ret < 0)
2099 			break;
2100 		ptr = (unsigned long)(di + 1);
2101 		ptr += name_len;
2102 
2103 		/*
2104 		 * If this entry refers to a non-directory (directories can not
2105 		 * have a link count > 1) and it was added in the transaction
2106 		 * that was not committed, make sure we fixup the link count of
2107 		 * the inode it the entry points to. Otherwise something like
2108 		 * the following would result in a directory pointing to an
2109 		 * inode with a wrong link that does not account for this dir
2110 		 * entry:
2111 		 *
2112 		 * mkdir testdir
2113 		 * touch testdir/foo
2114 		 * touch testdir/bar
2115 		 * sync
2116 		 *
2117 		 * ln testdir/bar testdir/bar_link
2118 		 * ln testdir/foo testdir/foo_link
2119 		 * xfs_io -c "fsync" testdir/bar
2120 		 *
2121 		 * <power failure>
2122 		 *
2123 		 * mount fs, log replay happens
2124 		 *
2125 		 * File foo would remain with a link count of 1 when it has two
2126 		 * entries pointing to it in the directory testdir. This would
2127 		 * make it impossible to ever delete the parent directory has
2128 		 * it would result in stale dentries that can never be deleted.
2129 		 */
2130 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2131 			struct btrfs_key di_key;
2132 
2133 			if (!fixup_path) {
2134 				fixup_path = btrfs_alloc_path();
2135 				if (!fixup_path) {
2136 					ret = -ENOMEM;
2137 					break;
2138 				}
2139 			}
2140 
2141 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2142 			ret = link_to_fixup_dir(trans, root, fixup_path,
2143 						di_key.objectid);
2144 			if (ret)
2145 				break;
2146 		}
2147 		ret = 0;
2148 	}
2149 	btrfs_free_path(fixup_path);
2150 	return ret;
2151 }
2152 
2153 /*
2154  * directory replay has two parts.  There are the standard directory
2155  * items in the log copied from the subvolume, and range items
2156  * created in the log while the subvolume was logged.
2157  *
2158  * The range items tell us which parts of the key space the log
2159  * is authoritative for.  During replay, if a key in the subvolume
2160  * directory is in a logged range item, but not actually in the log
2161  * that means it was deleted from the directory before the fsync
2162  * and should be removed.
2163  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)2164 static noinline int find_dir_range(struct btrfs_root *root,
2165 				   struct btrfs_path *path,
2166 				   u64 dirid, int key_type,
2167 				   u64 *start_ret, u64 *end_ret)
2168 {
2169 	struct btrfs_key key;
2170 	u64 found_end;
2171 	struct btrfs_dir_log_item *item;
2172 	int ret;
2173 	int nritems;
2174 
2175 	if (*start_ret == (u64)-1)
2176 		return 1;
2177 
2178 	key.objectid = dirid;
2179 	key.type = key_type;
2180 	key.offset = *start_ret;
2181 
2182 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2183 	if (ret < 0)
2184 		goto out;
2185 	if (ret > 0) {
2186 		if (path->slots[0] == 0)
2187 			goto out;
2188 		path->slots[0]--;
2189 	}
2190 	if (ret != 0)
2191 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2192 
2193 	if (key.type != key_type || key.objectid != dirid) {
2194 		ret = 1;
2195 		goto next;
2196 	}
2197 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2198 			      struct btrfs_dir_log_item);
2199 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2200 
2201 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2202 		ret = 0;
2203 		*start_ret = key.offset;
2204 		*end_ret = found_end;
2205 		goto out;
2206 	}
2207 	ret = 1;
2208 next:
2209 	/* check the next slot in the tree to see if it is a valid item */
2210 	nritems = btrfs_header_nritems(path->nodes[0]);
2211 	path->slots[0]++;
2212 	if (path->slots[0] >= nritems) {
2213 		ret = btrfs_next_leaf(root, path);
2214 		if (ret)
2215 			goto out;
2216 	}
2217 
2218 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2219 
2220 	if (key.type != key_type || key.objectid != dirid) {
2221 		ret = 1;
2222 		goto out;
2223 	}
2224 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2225 			      struct btrfs_dir_log_item);
2226 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2227 	*start_ret = key.offset;
2228 	*end_ret = found_end;
2229 	ret = 0;
2230 out:
2231 	btrfs_release_path(path);
2232 	return ret;
2233 }
2234 
2235 /*
2236  * this looks for a given directory item in the log.  If the directory
2237  * item is not in the log, the item is removed and the inode it points
2238  * to is unlinked
2239  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2240 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2241 				      struct btrfs_root *root,
2242 				      struct btrfs_root *log,
2243 				      struct btrfs_path *path,
2244 				      struct btrfs_path *log_path,
2245 				      struct inode *dir,
2246 				      struct btrfs_key *dir_key)
2247 {
2248 	int ret;
2249 	struct extent_buffer *eb;
2250 	int slot;
2251 	u32 item_size;
2252 	struct btrfs_dir_item *di;
2253 	struct btrfs_dir_item *log_di;
2254 	int name_len;
2255 	unsigned long ptr;
2256 	unsigned long ptr_end;
2257 	char *name;
2258 	struct inode *inode;
2259 	struct btrfs_key location;
2260 
2261 again:
2262 	eb = path->nodes[0];
2263 	slot = path->slots[0];
2264 	item_size = btrfs_item_size_nr(eb, slot);
2265 	ptr = btrfs_item_ptr_offset(eb, slot);
2266 	ptr_end = ptr + item_size;
2267 	while (ptr < ptr_end) {
2268 		di = (struct btrfs_dir_item *)ptr;
2269 		name_len = btrfs_dir_name_len(eb, di);
2270 		name = kmalloc(name_len, GFP_NOFS);
2271 		if (!name) {
2272 			ret = -ENOMEM;
2273 			goto out;
2274 		}
2275 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2276 				  name_len);
2277 		log_di = NULL;
2278 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2279 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2280 						       dir_key->objectid,
2281 						       name, name_len, 0);
2282 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2283 			log_di = btrfs_lookup_dir_index_item(trans, log,
2284 						     log_path,
2285 						     dir_key->objectid,
2286 						     dir_key->offset,
2287 						     name, name_len, 0);
2288 		}
2289 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2290 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2291 			btrfs_release_path(path);
2292 			btrfs_release_path(log_path);
2293 			inode = read_one_inode(root, location.objectid);
2294 			if (!inode) {
2295 				kfree(name);
2296 				return -EIO;
2297 			}
2298 
2299 			ret = link_to_fixup_dir(trans, root,
2300 						path, location.objectid);
2301 			if (ret) {
2302 				kfree(name);
2303 				iput(inode);
2304 				goto out;
2305 			}
2306 
2307 			inc_nlink(inode);
2308 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2309 					BTRFS_I(inode), name, name_len);
2310 			if (!ret)
2311 				ret = btrfs_run_delayed_items(trans);
2312 			kfree(name);
2313 			iput(inode);
2314 			if (ret)
2315 				goto out;
2316 
2317 			/* there might still be more names under this key
2318 			 * check and repeat if required
2319 			 */
2320 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2321 						0, 0);
2322 			if (ret == 0)
2323 				goto again;
2324 			ret = 0;
2325 			goto out;
2326 		} else if (IS_ERR(log_di)) {
2327 			kfree(name);
2328 			return PTR_ERR(log_di);
2329 		}
2330 		btrfs_release_path(log_path);
2331 		kfree(name);
2332 
2333 		ptr = (unsigned long)(di + 1);
2334 		ptr += name_len;
2335 	}
2336 	ret = 0;
2337 out:
2338 	btrfs_release_path(path);
2339 	btrfs_release_path(log_path);
2340 	return ret;
2341 }
2342 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2343 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2344 			      struct btrfs_root *root,
2345 			      struct btrfs_root *log,
2346 			      struct btrfs_path *path,
2347 			      const u64 ino)
2348 {
2349 	struct btrfs_key search_key;
2350 	struct btrfs_path *log_path;
2351 	int i;
2352 	int nritems;
2353 	int ret;
2354 
2355 	log_path = btrfs_alloc_path();
2356 	if (!log_path)
2357 		return -ENOMEM;
2358 
2359 	search_key.objectid = ino;
2360 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2361 	search_key.offset = 0;
2362 again:
2363 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2364 	if (ret < 0)
2365 		goto out;
2366 process_leaf:
2367 	nritems = btrfs_header_nritems(path->nodes[0]);
2368 	for (i = path->slots[0]; i < nritems; i++) {
2369 		struct btrfs_key key;
2370 		struct btrfs_dir_item *di;
2371 		struct btrfs_dir_item *log_di;
2372 		u32 total_size;
2373 		u32 cur;
2374 
2375 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2376 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2377 			ret = 0;
2378 			goto out;
2379 		}
2380 
2381 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2382 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2383 		cur = 0;
2384 		while (cur < total_size) {
2385 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2386 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2387 			u32 this_len = sizeof(*di) + name_len + data_len;
2388 			char *name;
2389 
2390 			name = kmalloc(name_len, GFP_NOFS);
2391 			if (!name) {
2392 				ret = -ENOMEM;
2393 				goto out;
2394 			}
2395 			read_extent_buffer(path->nodes[0], name,
2396 					   (unsigned long)(di + 1), name_len);
2397 
2398 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2399 						    name, name_len, 0);
2400 			btrfs_release_path(log_path);
2401 			if (!log_di) {
2402 				/* Doesn't exist in log tree, so delete it. */
2403 				btrfs_release_path(path);
2404 				di = btrfs_lookup_xattr(trans, root, path, ino,
2405 							name, name_len, -1);
2406 				kfree(name);
2407 				if (IS_ERR(di)) {
2408 					ret = PTR_ERR(di);
2409 					goto out;
2410 				}
2411 				ASSERT(di);
2412 				ret = btrfs_delete_one_dir_name(trans, root,
2413 								path, di);
2414 				if (ret)
2415 					goto out;
2416 				btrfs_release_path(path);
2417 				search_key = key;
2418 				goto again;
2419 			}
2420 			kfree(name);
2421 			if (IS_ERR(log_di)) {
2422 				ret = PTR_ERR(log_di);
2423 				goto out;
2424 			}
2425 			cur += this_len;
2426 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2427 		}
2428 	}
2429 	ret = btrfs_next_leaf(root, path);
2430 	if (ret > 0)
2431 		ret = 0;
2432 	else if (ret == 0)
2433 		goto process_leaf;
2434 out:
2435 	btrfs_free_path(log_path);
2436 	btrfs_release_path(path);
2437 	return ret;
2438 }
2439 
2440 
2441 /*
2442  * deletion replay happens before we copy any new directory items
2443  * out of the log or out of backreferences from inodes.  It
2444  * scans the log to find ranges of keys that log is authoritative for,
2445  * and then scans the directory to find items in those ranges that are
2446  * not present in the log.
2447  *
2448  * Anything we don't find in the log is unlinked and removed from the
2449  * directory.
2450  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2451 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2452 				       struct btrfs_root *root,
2453 				       struct btrfs_root *log,
2454 				       struct btrfs_path *path,
2455 				       u64 dirid, int del_all)
2456 {
2457 	u64 range_start;
2458 	u64 range_end;
2459 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2460 	int ret = 0;
2461 	struct btrfs_key dir_key;
2462 	struct btrfs_key found_key;
2463 	struct btrfs_path *log_path;
2464 	struct inode *dir;
2465 
2466 	dir_key.objectid = dirid;
2467 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2468 	log_path = btrfs_alloc_path();
2469 	if (!log_path)
2470 		return -ENOMEM;
2471 
2472 	dir = read_one_inode(root, dirid);
2473 	/* it isn't an error if the inode isn't there, that can happen
2474 	 * because we replay the deletes before we copy in the inode item
2475 	 * from the log
2476 	 */
2477 	if (!dir) {
2478 		btrfs_free_path(log_path);
2479 		return 0;
2480 	}
2481 again:
2482 	range_start = 0;
2483 	range_end = 0;
2484 	while (1) {
2485 		if (del_all)
2486 			range_end = (u64)-1;
2487 		else {
2488 			ret = find_dir_range(log, path, dirid, key_type,
2489 					     &range_start, &range_end);
2490 			if (ret < 0)
2491 				goto out;
2492 			else if (ret > 0)
2493 				break;
2494 		}
2495 
2496 		dir_key.offset = range_start;
2497 		while (1) {
2498 			int nritems;
2499 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2500 						0, 0);
2501 			if (ret < 0)
2502 				goto out;
2503 
2504 			nritems = btrfs_header_nritems(path->nodes[0]);
2505 			if (path->slots[0] >= nritems) {
2506 				ret = btrfs_next_leaf(root, path);
2507 				if (ret == 1)
2508 					break;
2509 				else if (ret < 0)
2510 					goto out;
2511 			}
2512 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2513 					      path->slots[0]);
2514 			if (found_key.objectid != dirid ||
2515 			    found_key.type != dir_key.type)
2516 				goto next_type;
2517 
2518 			if (found_key.offset > range_end)
2519 				break;
2520 
2521 			ret = check_item_in_log(trans, root, log, path,
2522 						log_path, dir,
2523 						&found_key);
2524 			if (ret)
2525 				goto out;
2526 			if (found_key.offset == (u64)-1)
2527 				break;
2528 			dir_key.offset = found_key.offset + 1;
2529 		}
2530 		btrfs_release_path(path);
2531 		if (range_end == (u64)-1)
2532 			break;
2533 		range_start = range_end + 1;
2534 	}
2535 
2536 next_type:
2537 	ret = 0;
2538 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2539 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2540 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2541 		btrfs_release_path(path);
2542 		goto again;
2543 	}
2544 out:
2545 	btrfs_release_path(path);
2546 	btrfs_free_path(log_path);
2547 	iput(dir);
2548 	return ret;
2549 }
2550 
2551 /*
2552  * the process_func used to replay items from the log tree.  This
2553  * gets called in two different stages.  The first stage just looks
2554  * for inodes and makes sure they are all copied into the subvolume.
2555  *
2556  * The second stage copies all the other item types from the log into
2557  * the subvolume.  The two stage approach is slower, but gets rid of
2558  * lots of complexity around inodes referencing other inodes that exist
2559  * only in the log (references come from either directory items or inode
2560  * back refs).
2561  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2562 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2563 			     struct walk_control *wc, u64 gen, int level)
2564 {
2565 	int nritems;
2566 	struct btrfs_path *path;
2567 	struct btrfs_root *root = wc->replay_dest;
2568 	struct btrfs_key key;
2569 	int i;
2570 	int ret;
2571 
2572 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2573 	if (ret)
2574 		return ret;
2575 
2576 	level = btrfs_header_level(eb);
2577 
2578 	if (level != 0)
2579 		return 0;
2580 
2581 	path = btrfs_alloc_path();
2582 	if (!path)
2583 		return -ENOMEM;
2584 
2585 	nritems = btrfs_header_nritems(eb);
2586 	for (i = 0; i < nritems; i++) {
2587 		btrfs_item_key_to_cpu(eb, &key, i);
2588 
2589 		/* inode keys are done during the first stage */
2590 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2591 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2592 			struct btrfs_inode_item *inode_item;
2593 			u32 mode;
2594 
2595 			inode_item = btrfs_item_ptr(eb, i,
2596 					    struct btrfs_inode_item);
2597 			/*
2598 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2599 			 * and never got linked before the fsync, skip it, as
2600 			 * replaying it is pointless since it would be deleted
2601 			 * later. We skip logging tmpfiles, but it's always
2602 			 * possible we are replaying a log created with a kernel
2603 			 * that used to log tmpfiles.
2604 			 */
2605 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2606 				wc->ignore_cur_inode = true;
2607 				continue;
2608 			} else {
2609 				wc->ignore_cur_inode = false;
2610 			}
2611 			ret = replay_xattr_deletes(wc->trans, root, log,
2612 						   path, key.objectid);
2613 			if (ret)
2614 				break;
2615 			mode = btrfs_inode_mode(eb, inode_item);
2616 			if (S_ISDIR(mode)) {
2617 				ret = replay_dir_deletes(wc->trans,
2618 					 root, log, path, key.objectid, 0);
2619 				if (ret)
2620 					break;
2621 			}
2622 			ret = overwrite_item(wc->trans, root, path,
2623 					     eb, i, &key);
2624 			if (ret)
2625 				break;
2626 
2627 			/*
2628 			 * Before replaying extents, truncate the inode to its
2629 			 * size. We need to do it now and not after log replay
2630 			 * because before an fsync we can have prealloc extents
2631 			 * added beyond the inode's i_size. If we did it after,
2632 			 * through orphan cleanup for example, we would drop
2633 			 * those prealloc extents just after replaying them.
2634 			 */
2635 			if (S_ISREG(mode)) {
2636 				struct inode *inode;
2637 				u64 from;
2638 
2639 				inode = read_one_inode(root, key.objectid);
2640 				if (!inode) {
2641 					ret = -EIO;
2642 					break;
2643 				}
2644 				from = ALIGN(i_size_read(inode),
2645 					     root->fs_info->sectorsize);
2646 				ret = btrfs_drop_extents(wc->trans, root, inode,
2647 							 from, (u64)-1, 1);
2648 				if (!ret) {
2649 					/* Update the inode's nbytes. */
2650 					ret = btrfs_update_inode(wc->trans,
2651 								 root, inode);
2652 				}
2653 				iput(inode);
2654 				if (ret)
2655 					break;
2656 			}
2657 
2658 			ret = link_to_fixup_dir(wc->trans, root,
2659 						path, key.objectid);
2660 			if (ret)
2661 				break;
2662 		}
2663 
2664 		if (wc->ignore_cur_inode)
2665 			continue;
2666 
2667 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2668 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2669 			ret = replay_one_dir_item(wc->trans, root, path,
2670 						  eb, i, &key);
2671 			if (ret)
2672 				break;
2673 		}
2674 
2675 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2676 			continue;
2677 
2678 		/* these keys are simply copied */
2679 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2680 			ret = overwrite_item(wc->trans, root, path,
2681 					     eb, i, &key);
2682 			if (ret)
2683 				break;
2684 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2685 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2686 			ret = add_inode_ref(wc->trans, root, log, path,
2687 					    eb, i, &key);
2688 			if (ret && ret != -ENOENT)
2689 				break;
2690 			ret = 0;
2691 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2692 			ret = replay_one_extent(wc->trans, root, path,
2693 						eb, i, &key);
2694 			if (ret)
2695 				break;
2696 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2697 			ret = replay_one_dir_item(wc->trans, root, path,
2698 						  eb, i, &key);
2699 			if (ret)
2700 				break;
2701 		}
2702 	}
2703 	btrfs_free_path(path);
2704 	return ret;
2705 }
2706 
2707 /*
2708  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2709  */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2710 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2711 {
2712 	struct btrfs_block_group *cache;
2713 
2714 	cache = btrfs_lookup_block_group(fs_info, start);
2715 	if (!cache) {
2716 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2717 		return;
2718 	}
2719 
2720 	spin_lock(&cache->space_info->lock);
2721 	spin_lock(&cache->lock);
2722 	cache->reserved -= fs_info->nodesize;
2723 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2724 	spin_unlock(&cache->lock);
2725 	spin_unlock(&cache->space_info->lock);
2726 
2727 	btrfs_put_block_group(cache);
2728 }
2729 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2730 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2731 				   struct btrfs_root *root,
2732 				   struct btrfs_path *path, int *level,
2733 				   struct walk_control *wc)
2734 {
2735 	struct btrfs_fs_info *fs_info = root->fs_info;
2736 	u64 bytenr;
2737 	u64 ptr_gen;
2738 	struct extent_buffer *next;
2739 	struct extent_buffer *cur;
2740 	u32 blocksize;
2741 	int ret = 0;
2742 
2743 	while (*level > 0) {
2744 		struct btrfs_key first_key;
2745 
2746 		cur = path->nodes[*level];
2747 
2748 		WARN_ON(btrfs_header_level(cur) != *level);
2749 
2750 		if (path->slots[*level] >=
2751 		    btrfs_header_nritems(cur))
2752 			break;
2753 
2754 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2755 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2756 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2757 		blocksize = fs_info->nodesize;
2758 
2759 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2760 		if (IS_ERR(next))
2761 			return PTR_ERR(next);
2762 
2763 		if (*level == 1) {
2764 			ret = wc->process_func(root, next, wc, ptr_gen,
2765 					       *level - 1);
2766 			if (ret) {
2767 				free_extent_buffer(next);
2768 				return ret;
2769 			}
2770 
2771 			path->slots[*level]++;
2772 			if (wc->free) {
2773 				ret = btrfs_read_buffer(next, ptr_gen,
2774 							*level - 1, &first_key);
2775 				if (ret) {
2776 					free_extent_buffer(next);
2777 					return ret;
2778 				}
2779 
2780 				if (trans) {
2781 					btrfs_tree_lock(next);
2782 					btrfs_set_lock_blocking_write(next);
2783 					btrfs_clean_tree_block(next);
2784 					btrfs_wait_tree_block_writeback(next);
2785 					btrfs_tree_unlock(next);
2786 					ret = btrfs_pin_reserved_extent(trans,
2787 							bytenr, blocksize);
2788 					if (ret) {
2789 						free_extent_buffer(next);
2790 						return ret;
2791 					}
2792 				} else {
2793 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2794 						clear_extent_buffer_dirty(next);
2795 					unaccount_log_buffer(fs_info, bytenr);
2796 				}
2797 			}
2798 			free_extent_buffer(next);
2799 			continue;
2800 		}
2801 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2802 		if (ret) {
2803 			free_extent_buffer(next);
2804 			return ret;
2805 		}
2806 
2807 		if (path->nodes[*level-1])
2808 			free_extent_buffer(path->nodes[*level-1]);
2809 		path->nodes[*level-1] = next;
2810 		*level = btrfs_header_level(next);
2811 		path->slots[*level] = 0;
2812 		cond_resched();
2813 	}
2814 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2815 
2816 	cond_resched();
2817 	return 0;
2818 }
2819 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2820 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2821 				 struct btrfs_root *root,
2822 				 struct btrfs_path *path, int *level,
2823 				 struct walk_control *wc)
2824 {
2825 	struct btrfs_fs_info *fs_info = root->fs_info;
2826 	int i;
2827 	int slot;
2828 	int ret;
2829 
2830 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2831 		slot = path->slots[i];
2832 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2833 			path->slots[i]++;
2834 			*level = i;
2835 			WARN_ON(*level == 0);
2836 			return 0;
2837 		} else {
2838 			ret = wc->process_func(root, path->nodes[*level], wc,
2839 				 btrfs_header_generation(path->nodes[*level]),
2840 				 *level);
2841 			if (ret)
2842 				return ret;
2843 
2844 			if (wc->free) {
2845 				struct extent_buffer *next;
2846 
2847 				next = path->nodes[*level];
2848 
2849 				if (trans) {
2850 					btrfs_tree_lock(next);
2851 					btrfs_set_lock_blocking_write(next);
2852 					btrfs_clean_tree_block(next);
2853 					btrfs_wait_tree_block_writeback(next);
2854 					btrfs_tree_unlock(next);
2855 					ret = btrfs_pin_reserved_extent(trans,
2856 						     path->nodes[*level]->start,
2857 						     path->nodes[*level]->len);
2858 					if (ret)
2859 						return ret;
2860 				} else {
2861 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2862 						clear_extent_buffer_dirty(next);
2863 
2864 					unaccount_log_buffer(fs_info,
2865 						path->nodes[*level]->start);
2866 				}
2867 			}
2868 			free_extent_buffer(path->nodes[*level]);
2869 			path->nodes[*level] = NULL;
2870 			*level = i + 1;
2871 		}
2872 	}
2873 	return 1;
2874 }
2875 
2876 /*
2877  * drop the reference count on the tree rooted at 'snap'.  This traverses
2878  * the tree freeing any blocks that have a ref count of zero after being
2879  * decremented.
2880  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2881 static int walk_log_tree(struct btrfs_trans_handle *trans,
2882 			 struct btrfs_root *log, struct walk_control *wc)
2883 {
2884 	struct btrfs_fs_info *fs_info = log->fs_info;
2885 	int ret = 0;
2886 	int wret;
2887 	int level;
2888 	struct btrfs_path *path;
2889 	int orig_level;
2890 
2891 	path = btrfs_alloc_path();
2892 	if (!path)
2893 		return -ENOMEM;
2894 
2895 	level = btrfs_header_level(log->node);
2896 	orig_level = level;
2897 	path->nodes[level] = log->node;
2898 	atomic_inc(&log->node->refs);
2899 	path->slots[level] = 0;
2900 
2901 	while (1) {
2902 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2903 		if (wret > 0)
2904 			break;
2905 		if (wret < 0) {
2906 			ret = wret;
2907 			goto out;
2908 		}
2909 
2910 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2911 		if (wret > 0)
2912 			break;
2913 		if (wret < 0) {
2914 			ret = wret;
2915 			goto out;
2916 		}
2917 	}
2918 
2919 	/* was the root node processed? if not, catch it here */
2920 	if (path->nodes[orig_level]) {
2921 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2922 			 btrfs_header_generation(path->nodes[orig_level]),
2923 			 orig_level);
2924 		if (ret)
2925 			goto out;
2926 		if (wc->free) {
2927 			struct extent_buffer *next;
2928 
2929 			next = path->nodes[orig_level];
2930 
2931 			if (trans) {
2932 				btrfs_tree_lock(next);
2933 				btrfs_set_lock_blocking_write(next);
2934 				btrfs_clean_tree_block(next);
2935 				btrfs_wait_tree_block_writeback(next);
2936 				btrfs_tree_unlock(next);
2937 				ret = btrfs_pin_reserved_extent(trans,
2938 						next->start, next->len);
2939 				if (ret)
2940 					goto out;
2941 			} else {
2942 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2943 					clear_extent_buffer_dirty(next);
2944 				unaccount_log_buffer(fs_info, next->start);
2945 			}
2946 		}
2947 	}
2948 
2949 out:
2950 	btrfs_free_path(path);
2951 	return ret;
2952 }
2953 
2954 /*
2955  * helper function to update the item for a given subvolumes log root
2956  * in the tree of log roots
2957  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2958 static int update_log_root(struct btrfs_trans_handle *trans,
2959 			   struct btrfs_root *log,
2960 			   struct btrfs_root_item *root_item)
2961 {
2962 	struct btrfs_fs_info *fs_info = log->fs_info;
2963 	int ret;
2964 
2965 	if (log->log_transid == 1) {
2966 		/* insert root item on the first sync */
2967 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2968 				&log->root_key, root_item);
2969 	} else {
2970 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2971 				&log->root_key, root_item);
2972 	}
2973 	return ret;
2974 }
2975 
wait_log_commit(struct btrfs_root * root,int transid)2976 static void wait_log_commit(struct btrfs_root *root, int transid)
2977 {
2978 	DEFINE_WAIT(wait);
2979 	int index = transid % 2;
2980 
2981 	/*
2982 	 * we only allow two pending log transactions at a time,
2983 	 * so we know that if ours is more than 2 older than the
2984 	 * current transaction, we're done
2985 	 */
2986 	for (;;) {
2987 		prepare_to_wait(&root->log_commit_wait[index],
2988 				&wait, TASK_UNINTERRUPTIBLE);
2989 
2990 		if (!(root->log_transid_committed < transid &&
2991 		      atomic_read(&root->log_commit[index])))
2992 			break;
2993 
2994 		mutex_unlock(&root->log_mutex);
2995 		schedule();
2996 		mutex_lock(&root->log_mutex);
2997 	}
2998 	finish_wait(&root->log_commit_wait[index], &wait);
2999 }
3000 
wait_for_writer(struct btrfs_root * root)3001 static void wait_for_writer(struct btrfs_root *root)
3002 {
3003 	DEFINE_WAIT(wait);
3004 
3005 	for (;;) {
3006 		prepare_to_wait(&root->log_writer_wait, &wait,
3007 				TASK_UNINTERRUPTIBLE);
3008 		if (!atomic_read(&root->log_writers))
3009 			break;
3010 
3011 		mutex_unlock(&root->log_mutex);
3012 		schedule();
3013 		mutex_lock(&root->log_mutex);
3014 	}
3015 	finish_wait(&root->log_writer_wait, &wait);
3016 }
3017 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)3018 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3019 					struct btrfs_log_ctx *ctx)
3020 {
3021 	if (!ctx)
3022 		return;
3023 
3024 	mutex_lock(&root->log_mutex);
3025 	list_del_init(&ctx->list);
3026 	mutex_unlock(&root->log_mutex);
3027 }
3028 
3029 /*
3030  * Invoked in log mutex context, or be sure there is no other task which
3031  * can access the list.
3032  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)3033 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3034 					     int index, int error)
3035 {
3036 	struct btrfs_log_ctx *ctx;
3037 	struct btrfs_log_ctx *safe;
3038 
3039 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3040 		list_del_init(&ctx->list);
3041 		ctx->log_ret = error;
3042 	}
3043 
3044 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3045 }
3046 
3047 /*
3048  * btrfs_sync_log does sends a given tree log down to the disk and
3049  * updates the super blocks to record it.  When this call is done,
3050  * you know that any inodes previously logged are safely on disk only
3051  * if it returns 0.
3052  *
3053  * Any other return value means you need to call btrfs_commit_transaction.
3054  * Some of the edge cases for fsyncing directories that have had unlinks
3055  * or renames done in the past mean that sometimes the only safe
3056  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3057  * that has happened.
3058  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)3059 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3060 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3061 {
3062 	int index1;
3063 	int index2;
3064 	int mark;
3065 	int ret;
3066 	struct btrfs_fs_info *fs_info = root->fs_info;
3067 	struct btrfs_root *log = root->log_root;
3068 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3069 	struct btrfs_root_item new_root_item;
3070 	int log_transid = 0;
3071 	struct btrfs_log_ctx root_log_ctx;
3072 	struct blk_plug plug;
3073 
3074 	mutex_lock(&root->log_mutex);
3075 	log_transid = ctx->log_transid;
3076 	if (root->log_transid_committed >= log_transid) {
3077 		mutex_unlock(&root->log_mutex);
3078 		return ctx->log_ret;
3079 	}
3080 
3081 	index1 = log_transid % 2;
3082 	if (atomic_read(&root->log_commit[index1])) {
3083 		wait_log_commit(root, log_transid);
3084 		mutex_unlock(&root->log_mutex);
3085 		return ctx->log_ret;
3086 	}
3087 	ASSERT(log_transid == root->log_transid);
3088 	atomic_set(&root->log_commit[index1], 1);
3089 
3090 	/* wait for previous tree log sync to complete */
3091 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3092 		wait_log_commit(root, log_transid - 1);
3093 
3094 	while (1) {
3095 		int batch = atomic_read(&root->log_batch);
3096 		/* when we're on an ssd, just kick the log commit out */
3097 		if (!btrfs_test_opt(fs_info, SSD) &&
3098 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3099 			mutex_unlock(&root->log_mutex);
3100 			schedule_timeout_uninterruptible(1);
3101 			mutex_lock(&root->log_mutex);
3102 		}
3103 		wait_for_writer(root);
3104 		if (batch == atomic_read(&root->log_batch))
3105 			break;
3106 	}
3107 
3108 	/* bail out if we need to do a full commit */
3109 	if (btrfs_need_log_full_commit(trans)) {
3110 		ret = -EAGAIN;
3111 		mutex_unlock(&root->log_mutex);
3112 		goto out;
3113 	}
3114 
3115 	if (log_transid % 2 == 0)
3116 		mark = EXTENT_DIRTY;
3117 	else
3118 		mark = EXTENT_NEW;
3119 
3120 	/* we start IO on  all the marked extents here, but we don't actually
3121 	 * wait for them until later.
3122 	 */
3123 	blk_start_plug(&plug);
3124 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3125 	if (ret) {
3126 		blk_finish_plug(&plug);
3127 		btrfs_abort_transaction(trans, ret);
3128 		btrfs_set_log_full_commit(trans);
3129 		mutex_unlock(&root->log_mutex);
3130 		goto out;
3131 	}
3132 
3133 	/*
3134 	 * We _must_ update under the root->log_mutex in order to make sure we
3135 	 * have a consistent view of the log root we are trying to commit at
3136 	 * this moment.
3137 	 *
3138 	 * We _must_ copy this into a local copy, because we are not holding the
3139 	 * log_root_tree->log_mutex yet.  This is important because when we
3140 	 * commit the log_root_tree we must have a consistent view of the
3141 	 * log_root_tree when we update the super block to point at the
3142 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3143 	 * with the commit and possibly point at the new block which we may not
3144 	 * have written out.
3145 	 */
3146 	btrfs_set_root_node(&log->root_item, log->node);
3147 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3148 
3149 	root->log_transid++;
3150 	log->log_transid = root->log_transid;
3151 	root->log_start_pid = 0;
3152 	/*
3153 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3154 	 * in their headers. new modifications of the log will be written to
3155 	 * new positions. so it's safe to allow log writers to go in.
3156 	 */
3157 	mutex_unlock(&root->log_mutex);
3158 
3159 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3160 
3161 	mutex_lock(&log_root_tree->log_mutex);
3162 
3163 	index2 = log_root_tree->log_transid % 2;
3164 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3165 	root_log_ctx.log_transid = log_root_tree->log_transid;
3166 
3167 	/*
3168 	 * Now we are safe to update the log_root_tree because we're under the
3169 	 * log_mutex, and we're a current writer so we're holding the commit
3170 	 * open until we drop the log_mutex.
3171 	 */
3172 	ret = update_log_root(trans, log, &new_root_item);
3173 	if (ret) {
3174 		if (!list_empty(&root_log_ctx.list))
3175 			list_del_init(&root_log_ctx.list);
3176 
3177 		blk_finish_plug(&plug);
3178 		btrfs_set_log_full_commit(trans);
3179 
3180 		if (ret != -ENOSPC) {
3181 			btrfs_abort_transaction(trans, ret);
3182 			mutex_unlock(&log_root_tree->log_mutex);
3183 			goto out;
3184 		}
3185 		btrfs_wait_tree_log_extents(log, mark);
3186 		mutex_unlock(&log_root_tree->log_mutex);
3187 		ret = -EAGAIN;
3188 		goto out;
3189 	}
3190 
3191 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3192 		blk_finish_plug(&plug);
3193 		list_del_init(&root_log_ctx.list);
3194 		mutex_unlock(&log_root_tree->log_mutex);
3195 		ret = root_log_ctx.log_ret;
3196 		goto out;
3197 	}
3198 
3199 	index2 = root_log_ctx.log_transid % 2;
3200 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3201 		blk_finish_plug(&plug);
3202 		ret = btrfs_wait_tree_log_extents(log, mark);
3203 		wait_log_commit(log_root_tree,
3204 				root_log_ctx.log_transid);
3205 		mutex_unlock(&log_root_tree->log_mutex);
3206 		if (!ret)
3207 			ret = root_log_ctx.log_ret;
3208 		goto out;
3209 	}
3210 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3211 	atomic_set(&log_root_tree->log_commit[index2], 1);
3212 
3213 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3214 		wait_log_commit(log_root_tree,
3215 				root_log_ctx.log_transid - 1);
3216 	}
3217 
3218 	/*
3219 	 * now that we've moved on to the tree of log tree roots,
3220 	 * check the full commit flag again
3221 	 */
3222 	if (btrfs_need_log_full_commit(trans)) {
3223 		blk_finish_plug(&plug);
3224 		btrfs_wait_tree_log_extents(log, mark);
3225 		mutex_unlock(&log_root_tree->log_mutex);
3226 		ret = -EAGAIN;
3227 		goto out_wake_log_root;
3228 	}
3229 
3230 	ret = btrfs_write_marked_extents(fs_info,
3231 					 &log_root_tree->dirty_log_pages,
3232 					 EXTENT_DIRTY | EXTENT_NEW);
3233 	blk_finish_plug(&plug);
3234 	if (ret) {
3235 		btrfs_set_log_full_commit(trans);
3236 		btrfs_abort_transaction(trans, ret);
3237 		mutex_unlock(&log_root_tree->log_mutex);
3238 		goto out_wake_log_root;
3239 	}
3240 	ret = btrfs_wait_tree_log_extents(log, mark);
3241 	if (!ret)
3242 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3243 						  EXTENT_NEW | EXTENT_DIRTY);
3244 	if (ret) {
3245 		btrfs_set_log_full_commit(trans);
3246 		mutex_unlock(&log_root_tree->log_mutex);
3247 		goto out_wake_log_root;
3248 	}
3249 
3250 	btrfs_set_super_log_root(fs_info->super_for_commit,
3251 				 log_root_tree->node->start);
3252 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3253 				       btrfs_header_level(log_root_tree->node));
3254 
3255 	log_root_tree->log_transid++;
3256 	mutex_unlock(&log_root_tree->log_mutex);
3257 
3258 	/*
3259 	 * Nobody else is going to jump in and write the ctree
3260 	 * super here because the log_commit atomic below is protecting
3261 	 * us.  We must be called with a transaction handle pinning
3262 	 * the running transaction open, so a full commit can't hop
3263 	 * in and cause problems either.
3264 	 */
3265 	ret = write_all_supers(fs_info, 1);
3266 	if (ret) {
3267 		btrfs_set_log_full_commit(trans);
3268 		btrfs_abort_transaction(trans, ret);
3269 		goto out_wake_log_root;
3270 	}
3271 
3272 	mutex_lock(&root->log_mutex);
3273 	if (root->last_log_commit < log_transid)
3274 		root->last_log_commit = log_transid;
3275 	mutex_unlock(&root->log_mutex);
3276 
3277 out_wake_log_root:
3278 	mutex_lock(&log_root_tree->log_mutex);
3279 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3280 
3281 	log_root_tree->log_transid_committed++;
3282 	atomic_set(&log_root_tree->log_commit[index2], 0);
3283 	mutex_unlock(&log_root_tree->log_mutex);
3284 
3285 	/*
3286 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3287 	 * all the updates above are seen by the woken threads. It might not be
3288 	 * necessary, but proving that seems to be hard.
3289 	 */
3290 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3291 out:
3292 	mutex_lock(&root->log_mutex);
3293 	btrfs_remove_all_log_ctxs(root, index1, ret);
3294 	root->log_transid_committed++;
3295 	atomic_set(&root->log_commit[index1], 0);
3296 	mutex_unlock(&root->log_mutex);
3297 
3298 	/*
3299 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3300 	 * all the updates above are seen by the woken threads. It might not be
3301 	 * necessary, but proving that seems to be hard.
3302 	 */
3303 	cond_wake_up(&root->log_commit_wait[index1]);
3304 	return ret;
3305 }
3306 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3307 static void free_log_tree(struct btrfs_trans_handle *trans,
3308 			  struct btrfs_root *log)
3309 {
3310 	int ret;
3311 	struct walk_control wc = {
3312 		.free = 1,
3313 		.process_func = process_one_buffer
3314 	};
3315 
3316 	ret = walk_log_tree(trans, log, &wc);
3317 	if (ret) {
3318 		if (trans)
3319 			btrfs_abort_transaction(trans, ret);
3320 		else
3321 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3322 	}
3323 
3324 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3325 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3326 	extent_io_tree_release(&log->log_csum_range);
3327 	btrfs_put_root(log);
3328 }
3329 
3330 /*
3331  * free all the extents used by the tree log.  This should be called
3332  * at commit time of the full transaction
3333  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3334 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3335 {
3336 	if (root->log_root) {
3337 		free_log_tree(trans, root->log_root);
3338 		root->log_root = NULL;
3339 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3340 	}
3341 	return 0;
3342 }
3343 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3344 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3345 			     struct btrfs_fs_info *fs_info)
3346 {
3347 	if (fs_info->log_root_tree) {
3348 		free_log_tree(trans, fs_info->log_root_tree);
3349 		fs_info->log_root_tree = NULL;
3350 	}
3351 	return 0;
3352 }
3353 
3354 /*
3355  * Check if an inode was logged in the current transaction. We can't always rely
3356  * on an inode's logged_trans value, because it's an in-memory only field and
3357  * therefore not persisted. This means that its value is lost if the inode gets
3358  * evicted and loaded again from disk (in which case it has a value of 0, and
3359  * certainly it is smaller then any possible transaction ID), when that happens
3360  * the full_sync flag is set in the inode's runtime flags, so on that case we
3361  * assume eviction happened and ignore the logged_trans value, assuming the
3362  * worst case, that the inode was logged before in the current transaction.
3363  */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3364 static bool inode_logged(struct btrfs_trans_handle *trans,
3365 			 struct btrfs_inode *inode)
3366 {
3367 	if (inode->logged_trans == trans->transid)
3368 		return true;
3369 
3370 	if (inode->last_trans == trans->transid &&
3371 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3372 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3373 		return true;
3374 
3375 	return false;
3376 }
3377 
3378 /*
3379  * If both a file and directory are logged, and unlinks or renames are
3380  * mixed in, we have a few interesting corners:
3381  *
3382  * create file X in dir Y
3383  * link file X to X.link in dir Y
3384  * fsync file X
3385  * unlink file X but leave X.link
3386  * fsync dir Y
3387  *
3388  * After a crash we would expect only X.link to exist.  But file X
3389  * didn't get fsync'd again so the log has back refs for X and X.link.
3390  *
3391  * We solve this by removing directory entries and inode backrefs from the
3392  * log when a file that was logged in the current transaction is
3393  * unlinked.  Any later fsync will include the updated log entries, and
3394  * we'll be able to reconstruct the proper directory items from backrefs.
3395  *
3396  * This optimizations allows us to avoid relogging the entire inode
3397  * or the entire directory.
3398  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * dir,u64 index)3399 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3400 				 struct btrfs_root *root,
3401 				 const char *name, int name_len,
3402 				 struct btrfs_inode *dir, u64 index)
3403 {
3404 	struct btrfs_root *log;
3405 	struct btrfs_dir_item *di;
3406 	struct btrfs_path *path;
3407 	int ret;
3408 	int err = 0;
3409 	int bytes_del = 0;
3410 	u64 dir_ino = btrfs_ino(dir);
3411 
3412 	if (!inode_logged(trans, dir))
3413 		return 0;
3414 
3415 	ret = join_running_log_trans(root);
3416 	if (ret)
3417 		return 0;
3418 
3419 	mutex_lock(&dir->log_mutex);
3420 
3421 	log = root->log_root;
3422 	path = btrfs_alloc_path();
3423 	if (!path) {
3424 		err = -ENOMEM;
3425 		goto out_unlock;
3426 	}
3427 
3428 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3429 				   name, name_len, -1);
3430 	if (IS_ERR(di)) {
3431 		err = PTR_ERR(di);
3432 		goto fail;
3433 	}
3434 	if (di) {
3435 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3436 		bytes_del += name_len;
3437 		if (ret) {
3438 			err = ret;
3439 			goto fail;
3440 		}
3441 	}
3442 	btrfs_release_path(path);
3443 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3444 					 index, name, name_len, -1);
3445 	if (IS_ERR(di)) {
3446 		err = PTR_ERR(di);
3447 		goto fail;
3448 	}
3449 	if (di) {
3450 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3451 		bytes_del += name_len;
3452 		if (ret) {
3453 			err = ret;
3454 			goto fail;
3455 		}
3456 	}
3457 
3458 	/* update the directory size in the log to reflect the names
3459 	 * we have removed
3460 	 */
3461 	if (bytes_del) {
3462 		struct btrfs_key key;
3463 
3464 		key.objectid = dir_ino;
3465 		key.offset = 0;
3466 		key.type = BTRFS_INODE_ITEM_KEY;
3467 		btrfs_release_path(path);
3468 
3469 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3470 		if (ret < 0) {
3471 			err = ret;
3472 			goto fail;
3473 		}
3474 		if (ret == 0) {
3475 			struct btrfs_inode_item *item;
3476 			u64 i_size;
3477 
3478 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3479 					      struct btrfs_inode_item);
3480 			i_size = btrfs_inode_size(path->nodes[0], item);
3481 			if (i_size > bytes_del)
3482 				i_size -= bytes_del;
3483 			else
3484 				i_size = 0;
3485 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3486 			btrfs_mark_buffer_dirty(path->nodes[0]);
3487 		} else
3488 			ret = 0;
3489 		btrfs_release_path(path);
3490 	}
3491 fail:
3492 	btrfs_free_path(path);
3493 out_unlock:
3494 	mutex_unlock(&dir->log_mutex);
3495 	if (err == -ENOSPC) {
3496 		btrfs_set_log_full_commit(trans);
3497 		err = 0;
3498 	} else if (err < 0 && err != -ENOENT) {
3499 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3500 		btrfs_abort_transaction(trans, err);
3501 	}
3502 
3503 	btrfs_end_log_trans(root);
3504 
3505 	return err;
3506 }
3507 
3508 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * inode,u64 dirid)3509 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3510 			       struct btrfs_root *root,
3511 			       const char *name, int name_len,
3512 			       struct btrfs_inode *inode, u64 dirid)
3513 {
3514 	struct btrfs_root *log;
3515 	u64 index;
3516 	int ret;
3517 
3518 	if (!inode_logged(trans, inode))
3519 		return 0;
3520 
3521 	ret = join_running_log_trans(root);
3522 	if (ret)
3523 		return 0;
3524 	log = root->log_root;
3525 	mutex_lock(&inode->log_mutex);
3526 
3527 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3528 				  dirid, &index);
3529 	mutex_unlock(&inode->log_mutex);
3530 	if (ret == -ENOSPC) {
3531 		btrfs_set_log_full_commit(trans);
3532 		ret = 0;
3533 	} else if (ret < 0 && ret != -ENOENT)
3534 		btrfs_abort_transaction(trans, ret);
3535 	btrfs_end_log_trans(root);
3536 
3537 	return ret;
3538 }
3539 
3540 /*
3541  * creates a range item in the log for 'dirid'.  first_offset and
3542  * last_offset tell us which parts of the key space the log should
3543  * be considered authoritative for.
3544  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3545 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3546 				       struct btrfs_root *log,
3547 				       struct btrfs_path *path,
3548 				       int key_type, u64 dirid,
3549 				       u64 first_offset, u64 last_offset)
3550 {
3551 	int ret;
3552 	struct btrfs_key key;
3553 	struct btrfs_dir_log_item *item;
3554 
3555 	key.objectid = dirid;
3556 	key.offset = first_offset;
3557 	if (key_type == BTRFS_DIR_ITEM_KEY)
3558 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3559 	else
3560 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3561 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3562 	if (ret)
3563 		return ret;
3564 
3565 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3566 			      struct btrfs_dir_log_item);
3567 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3568 	btrfs_mark_buffer_dirty(path->nodes[0]);
3569 	btrfs_release_path(path);
3570 	return 0;
3571 }
3572 
3573 /*
3574  * log all the items included in the current transaction for a given
3575  * directory.  This also creates the range items in the log tree required
3576  * to replay anything deleted before the fsync
3577  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3578 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3579 			  struct btrfs_root *root, struct btrfs_inode *inode,
3580 			  struct btrfs_path *path,
3581 			  struct btrfs_path *dst_path, int key_type,
3582 			  struct btrfs_log_ctx *ctx,
3583 			  u64 min_offset, u64 *last_offset_ret)
3584 {
3585 	struct btrfs_key min_key;
3586 	struct btrfs_root *log = root->log_root;
3587 	struct extent_buffer *src;
3588 	int err = 0;
3589 	int ret;
3590 	int i;
3591 	int nritems;
3592 	u64 first_offset = min_offset;
3593 	u64 last_offset = (u64)-1;
3594 	u64 ino = btrfs_ino(inode);
3595 
3596 	log = root->log_root;
3597 
3598 	min_key.objectid = ino;
3599 	min_key.type = key_type;
3600 	min_key.offset = min_offset;
3601 
3602 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3603 
3604 	/*
3605 	 * we didn't find anything from this transaction, see if there
3606 	 * is anything at all
3607 	 */
3608 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3609 		min_key.objectid = ino;
3610 		min_key.type = key_type;
3611 		min_key.offset = (u64)-1;
3612 		btrfs_release_path(path);
3613 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3614 		if (ret < 0) {
3615 			btrfs_release_path(path);
3616 			return ret;
3617 		}
3618 		ret = btrfs_previous_item(root, path, ino, key_type);
3619 
3620 		/* if ret == 0 there are items for this type,
3621 		 * create a range to tell us the last key of this type.
3622 		 * otherwise, there are no items in this directory after
3623 		 * *min_offset, and we create a range to indicate that.
3624 		 */
3625 		if (ret == 0) {
3626 			struct btrfs_key tmp;
3627 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3628 					      path->slots[0]);
3629 			if (key_type == tmp.type)
3630 				first_offset = max(min_offset, tmp.offset) + 1;
3631 		}
3632 		goto done;
3633 	}
3634 
3635 	/* go backward to find any previous key */
3636 	ret = btrfs_previous_item(root, path, ino, key_type);
3637 	if (ret == 0) {
3638 		struct btrfs_key tmp;
3639 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3640 		if (key_type == tmp.type) {
3641 			first_offset = tmp.offset;
3642 			ret = overwrite_item(trans, log, dst_path,
3643 					     path->nodes[0], path->slots[0],
3644 					     &tmp);
3645 			if (ret) {
3646 				err = ret;
3647 				goto done;
3648 			}
3649 		}
3650 	}
3651 	btrfs_release_path(path);
3652 
3653 	/*
3654 	 * Find the first key from this transaction again.  See the note for
3655 	 * log_new_dir_dentries, if we're logging a directory recursively we
3656 	 * won't be holding its i_mutex, which means we can modify the directory
3657 	 * while we're logging it.  If we remove an entry between our first
3658 	 * search and this search we'll not find the key again and can just
3659 	 * bail.
3660 	 */
3661 search:
3662 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3663 	if (ret != 0)
3664 		goto done;
3665 
3666 	/*
3667 	 * we have a block from this transaction, log every item in it
3668 	 * from our directory
3669 	 */
3670 	while (1) {
3671 		struct btrfs_key tmp;
3672 		src = path->nodes[0];
3673 		nritems = btrfs_header_nritems(src);
3674 		for (i = path->slots[0]; i < nritems; i++) {
3675 			struct btrfs_dir_item *di;
3676 
3677 			btrfs_item_key_to_cpu(src, &min_key, i);
3678 
3679 			if (min_key.objectid != ino || min_key.type != key_type)
3680 				goto done;
3681 
3682 			if (need_resched()) {
3683 				btrfs_release_path(path);
3684 				cond_resched();
3685 				goto search;
3686 			}
3687 
3688 			ret = overwrite_item(trans, log, dst_path, src, i,
3689 					     &min_key);
3690 			if (ret) {
3691 				err = ret;
3692 				goto done;
3693 			}
3694 
3695 			/*
3696 			 * We must make sure that when we log a directory entry,
3697 			 * the corresponding inode, after log replay, has a
3698 			 * matching link count. For example:
3699 			 *
3700 			 * touch foo
3701 			 * mkdir mydir
3702 			 * sync
3703 			 * ln foo mydir/bar
3704 			 * xfs_io -c "fsync" mydir
3705 			 * <crash>
3706 			 * <mount fs and log replay>
3707 			 *
3708 			 * Would result in a fsync log that when replayed, our
3709 			 * file inode would have a link count of 1, but we get
3710 			 * two directory entries pointing to the same inode.
3711 			 * After removing one of the names, it would not be
3712 			 * possible to remove the other name, which resulted
3713 			 * always in stale file handle errors, and would not
3714 			 * be possible to rmdir the parent directory, since
3715 			 * its i_size could never decrement to the value
3716 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3717 			 */
3718 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3719 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3720 			if (ctx &&
3721 			    (btrfs_dir_transid(src, di) == trans->transid ||
3722 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3723 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3724 				ctx->log_new_dentries = true;
3725 		}
3726 		path->slots[0] = nritems;
3727 
3728 		/*
3729 		 * look ahead to the next item and see if it is also
3730 		 * from this directory and from this transaction
3731 		 */
3732 		ret = btrfs_next_leaf(root, path);
3733 		if (ret) {
3734 			if (ret == 1)
3735 				last_offset = (u64)-1;
3736 			else
3737 				err = ret;
3738 			goto done;
3739 		}
3740 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3741 		if (tmp.objectid != ino || tmp.type != key_type) {
3742 			last_offset = (u64)-1;
3743 			goto done;
3744 		}
3745 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3746 			ret = overwrite_item(trans, log, dst_path,
3747 					     path->nodes[0], path->slots[0],
3748 					     &tmp);
3749 			if (ret)
3750 				err = ret;
3751 			else
3752 				last_offset = tmp.offset;
3753 			goto done;
3754 		}
3755 	}
3756 done:
3757 	btrfs_release_path(path);
3758 	btrfs_release_path(dst_path);
3759 
3760 	if (err == 0) {
3761 		*last_offset_ret = last_offset;
3762 		/*
3763 		 * insert the log range keys to indicate where the log
3764 		 * is valid
3765 		 */
3766 		ret = insert_dir_log_key(trans, log, path, key_type,
3767 					 ino, first_offset, last_offset);
3768 		if (ret)
3769 			err = ret;
3770 	}
3771 	return err;
3772 }
3773 
3774 /*
3775  * logging directories is very similar to logging inodes, We find all the items
3776  * from the current transaction and write them to the log.
3777  *
3778  * The recovery code scans the directory in the subvolume, and if it finds a
3779  * key in the range logged that is not present in the log tree, then it means
3780  * that dir entry was unlinked during the transaction.
3781  *
3782  * In order for that scan to work, we must include one key smaller than
3783  * the smallest logged by this transaction and one key larger than the largest
3784  * key logged by this transaction.
3785  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3786 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3787 			  struct btrfs_root *root, struct btrfs_inode *inode,
3788 			  struct btrfs_path *path,
3789 			  struct btrfs_path *dst_path,
3790 			  struct btrfs_log_ctx *ctx)
3791 {
3792 	u64 min_key;
3793 	u64 max_key;
3794 	int ret;
3795 	int key_type = BTRFS_DIR_ITEM_KEY;
3796 
3797 again:
3798 	min_key = 0;
3799 	max_key = 0;
3800 	while (1) {
3801 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3802 				ctx, min_key, &max_key);
3803 		if (ret)
3804 			return ret;
3805 		if (max_key == (u64)-1)
3806 			break;
3807 		min_key = max_key + 1;
3808 	}
3809 
3810 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3811 		key_type = BTRFS_DIR_INDEX_KEY;
3812 		goto again;
3813 	}
3814 	return 0;
3815 }
3816 
3817 /*
3818  * a helper function to drop items from the log before we relog an
3819  * inode.  max_key_type indicates the highest item type to remove.
3820  * This cannot be run for file data extents because it does not
3821  * free the extents they point to.
3822  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3823 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3824 				  struct btrfs_root *log,
3825 				  struct btrfs_path *path,
3826 				  u64 objectid, int max_key_type)
3827 {
3828 	int ret;
3829 	struct btrfs_key key;
3830 	struct btrfs_key found_key;
3831 	int start_slot;
3832 
3833 	key.objectid = objectid;
3834 	key.type = max_key_type;
3835 	key.offset = (u64)-1;
3836 
3837 	while (1) {
3838 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3839 		BUG_ON(ret == 0); /* Logic error */
3840 		if (ret < 0)
3841 			break;
3842 
3843 		if (path->slots[0] == 0)
3844 			break;
3845 
3846 		path->slots[0]--;
3847 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3848 				      path->slots[0]);
3849 
3850 		if (found_key.objectid != objectid)
3851 			break;
3852 
3853 		found_key.offset = 0;
3854 		found_key.type = 0;
3855 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3856 		if (ret < 0)
3857 			break;
3858 
3859 		ret = btrfs_del_items(trans, log, path, start_slot,
3860 				      path->slots[0] - start_slot + 1);
3861 		/*
3862 		 * If start slot isn't 0 then we don't need to re-search, we've
3863 		 * found the last guy with the objectid in this tree.
3864 		 */
3865 		if (ret || start_slot != 0)
3866 			break;
3867 		btrfs_release_path(path);
3868 	}
3869 	btrfs_release_path(path);
3870 	if (ret > 0)
3871 		ret = 0;
3872 	return ret;
3873 }
3874 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3875 static void fill_inode_item(struct btrfs_trans_handle *trans,
3876 			    struct extent_buffer *leaf,
3877 			    struct btrfs_inode_item *item,
3878 			    struct inode *inode, int log_inode_only,
3879 			    u64 logged_isize)
3880 {
3881 	struct btrfs_map_token token;
3882 
3883 	btrfs_init_map_token(&token, leaf);
3884 
3885 	if (log_inode_only) {
3886 		/* set the generation to zero so the recover code
3887 		 * can tell the difference between an logging
3888 		 * just to say 'this inode exists' and a logging
3889 		 * to say 'update this inode with these values'
3890 		 */
3891 		btrfs_set_token_inode_generation(&token, item, 0);
3892 		btrfs_set_token_inode_size(&token, item, logged_isize);
3893 	} else {
3894 		btrfs_set_token_inode_generation(&token, item,
3895 						 BTRFS_I(inode)->generation);
3896 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3897 	}
3898 
3899 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3900 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3901 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3902 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3903 
3904 	btrfs_set_token_timespec_sec(&token, &item->atime,
3905 				     inode->i_atime.tv_sec);
3906 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3907 				      inode->i_atime.tv_nsec);
3908 
3909 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3910 				     inode->i_mtime.tv_sec);
3911 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3912 				      inode->i_mtime.tv_nsec);
3913 
3914 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3915 				     inode->i_ctime.tv_sec);
3916 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3917 				      inode->i_ctime.tv_nsec);
3918 
3919 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3920 
3921 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3922 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3923 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3924 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3925 	btrfs_set_token_inode_block_group(&token, item, 0);
3926 }
3927 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode)3928 static int log_inode_item(struct btrfs_trans_handle *trans,
3929 			  struct btrfs_root *log, struct btrfs_path *path,
3930 			  struct btrfs_inode *inode)
3931 {
3932 	struct btrfs_inode_item *inode_item;
3933 	int ret;
3934 
3935 	ret = btrfs_insert_empty_item(trans, log, path,
3936 				      &inode->location, sizeof(*inode_item));
3937 	if (ret && ret != -EEXIST)
3938 		return ret;
3939 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3940 				    struct btrfs_inode_item);
3941 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3942 			0, 0);
3943 	btrfs_release_path(path);
3944 	return 0;
3945 }
3946 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)3947 static int log_csums(struct btrfs_trans_handle *trans,
3948 		     struct btrfs_inode *inode,
3949 		     struct btrfs_root *log_root,
3950 		     struct btrfs_ordered_sum *sums)
3951 {
3952 	const u64 lock_end = sums->bytenr + sums->len - 1;
3953 	struct extent_state *cached_state = NULL;
3954 	int ret;
3955 
3956 	/*
3957 	 * If this inode was not used for reflink operations in the current
3958 	 * transaction with new extents, then do the fast path, no need to
3959 	 * worry about logging checksum items with overlapping ranges.
3960 	 */
3961 	if (inode->last_reflink_trans < trans->transid)
3962 		return btrfs_csum_file_blocks(trans, log_root, sums);
3963 
3964 	/*
3965 	 * Serialize logging for checksums. This is to avoid racing with the
3966 	 * same checksum being logged by another task that is logging another
3967 	 * file which happens to refer to the same extent as well. Such races
3968 	 * can leave checksum items in the log with overlapping ranges.
3969 	 */
3970 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3971 			       lock_end, &cached_state);
3972 	if (ret)
3973 		return ret;
3974 	/*
3975 	 * Due to extent cloning, we might have logged a csum item that covers a
3976 	 * subrange of a cloned extent, and later we can end up logging a csum
3977 	 * item for a larger subrange of the same extent or the entire range.
3978 	 * This would leave csum items in the log tree that cover the same range
3979 	 * and break the searches for checksums in the log tree, resulting in
3980 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3981 	 * trim and adjust) any existing csum items in the log for this range.
3982 	 */
3983 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3984 	if (!ret)
3985 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
3986 
3987 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3988 			     &cached_state);
3989 
3990 	return ret;
3991 }
3992 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)3993 static noinline int copy_items(struct btrfs_trans_handle *trans,
3994 			       struct btrfs_inode *inode,
3995 			       struct btrfs_path *dst_path,
3996 			       struct btrfs_path *src_path,
3997 			       int start_slot, int nr, int inode_only,
3998 			       u64 logged_isize)
3999 {
4000 	struct btrfs_fs_info *fs_info = trans->fs_info;
4001 	unsigned long src_offset;
4002 	unsigned long dst_offset;
4003 	struct btrfs_root *log = inode->root->log_root;
4004 	struct btrfs_file_extent_item *extent;
4005 	struct btrfs_inode_item *inode_item;
4006 	struct extent_buffer *src = src_path->nodes[0];
4007 	int ret;
4008 	struct btrfs_key *ins_keys;
4009 	u32 *ins_sizes;
4010 	char *ins_data;
4011 	int i;
4012 	struct list_head ordered_sums;
4013 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4014 
4015 	INIT_LIST_HEAD(&ordered_sums);
4016 
4017 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4018 			   nr * sizeof(u32), GFP_NOFS);
4019 	if (!ins_data)
4020 		return -ENOMEM;
4021 
4022 	ins_sizes = (u32 *)ins_data;
4023 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4024 
4025 	for (i = 0; i < nr; i++) {
4026 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4027 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4028 	}
4029 	ret = btrfs_insert_empty_items(trans, log, dst_path,
4030 				       ins_keys, ins_sizes, nr);
4031 	if (ret) {
4032 		kfree(ins_data);
4033 		return ret;
4034 	}
4035 
4036 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4037 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4038 						   dst_path->slots[0]);
4039 
4040 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4041 
4042 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4043 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4044 						    dst_path->slots[0],
4045 						    struct btrfs_inode_item);
4046 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4047 					&inode->vfs_inode,
4048 					inode_only == LOG_INODE_EXISTS,
4049 					logged_isize);
4050 		} else {
4051 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4052 					   src_offset, ins_sizes[i]);
4053 		}
4054 
4055 		/* take a reference on file data extents so that truncates
4056 		 * or deletes of this inode don't have to relog the inode
4057 		 * again
4058 		 */
4059 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4060 		    !skip_csum) {
4061 			int found_type;
4062 			extent = btrfs_item_ptr(src, start_slot + i,
4063 						struct btrfs_file_extent_item);
4064 
4065 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4066 				continue;
4067 
4068 			found_type = btrfs_file_extent_type(src, extent);
4069 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4070 				u64 ds, dl, cs, cl;
4071 				ds = btrfs_file_extent_disk_bytenr(src,
4072 								extent);
4073 				/* ds == 0 is a hole */
4074 				if (ds == 0)
4075 					continue;
4076 
4077 				dl = btrfs_file_extent_disk_num_bytes(src,
4078 								extent);
4079 				cs = btrfs_file_extent_offset(src, extent);
4080 				cl = btrfs_file_extent_num_bytes(src,
4081 								extent);
4082 				if (btrfs_file_extent_compression(src,
4083 								  extent)) {
4084 					cs = 0;
4085 					cl = dl;
4086 				}
4087 
4088 				ret = btrfs_lookup_csums_range(
4089 						fs_info->csum_root,
4090 						ds + cs, ds + cs + cl - 1,
4091 						&ordered_sums, 0);
4092 				if (ret)
4093 					break;
4094 			}
4095 		}
4096 	}
4097 
4098 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4099 	btrfs_release_path(dst_path);
4100 	kfree(ins_data);
4101 
4102 	/*
4103 	 * we have to do this after the loop above to avoid changing the
4104 	 * log tree while trying to change the log tree.
4105 	 */
4106 	while (!list_empty(&ordered_sums)) {
4107 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4108 						   struct btrfs_ordered_sum,
4109 						   list);
4110 		if (!ret)
4111 			ret = log_csums(trans, inode, log, sums);
4112 		list_del(&sums->list);
4113 		kfree(sums);
4114 	}
4115 
4116 	return ret;
4117 }
4118 
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4119 static int extent_cmp(void *priv, const struct list_head *a,
4120 		      const struct list_head *b)
4121 {
4122 	struct extent_map *em1, *em2;
4123 
4124 	em1 = list_entry(a, struct extent_map, list);
4125 	em2 = list_entry(b, struct extent_map, list);
4126 
4127 	if (em1->start < em2->start)
4128 		return -1;
4129 	else if (em1->start > em2->start)
4130 		return 1;
4131 	return 0;
4132 }
4133 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4134 static int log_extent_csums(struct btrfs_trans_handle *trans,
4135 			    struct btrfs_inode *inode,
4136 			    struct btrfs_root *log_root,
4137 			    const struct extent_map *em,
4138 			    struct btrfs_log_ctx *ctx)
4139 {
4140 	struct btrfs_ordered_extent *ordered;
4141 	u64 csum_offset;
4142 	u64 csum_len;
4143 	u64 mod_start = em->mod_start;
4144 	u64 mod_len = em->mod_len;
4145 	LIST_HEAD(ordered_sums);
4146 	int ret = 0;
4147 
4148 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4149 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4150 	    em->block_start == EXTENT_MAP_HOLE)
4151 		return 0;
4152 
4153 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4154 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4155 		const u64 mod_end = mod_start + mod_len;
4156 		struct btrfs_ordered_sum *sums;
4157 
4158 		if (mod_len == 0)
4159 			break;
4160 
4161 		if (ordered_end <= mod_start)
4162 			continue;
4163 		if (mod_end <= ordered->file_offset)
4164 			break;
4165 
4166 		/*
4167 		 * We are going to copy all the csums on this ordered extent, so
4168 		 * go ahead and adjust mod_start and mod_len in case this ordered
4169 		 * extent has already been logged.
4170 		 */
4171 		if (ordered->file_offset > mod_start) {
4172 			if (ordered_end >= mod_end)
4173 				mod_len = ordered->file_offset - mod_start;
4174 			/*
4175 			 * If we have this case
4176 			 *
4177 			 * |--------- logged extent ---------|
4178 			 *       |----- ordered extent ----|
4179 			 *
4180 			 * Just don't mess with mod_start and mod_len, we'll
4181 			 * just end up logging more csums than we need and it
4182 			 * will be ok.
4183 			 */
4184 		} else {
4185 			if (ordered_end < mod_end) {
4186 				mod_len = mod_end - ordered_end;
4187 				mod_start = ordered_end;
4188 			} else {
4189 				mod_len = 0;
4190 			}
4191 		}
4192 
4193 		/*
4194 		 * To keep us from looping for the above case of an ordered
4195 		 * extent that falls inside of the logged extent.
4196 		 */
4197 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4198 			continue;
4199 
4200 		list_for_each_entry(sums, &ordered->list, list) {
4201 			ret = log_csums(trans, inode, log_root, sums);
4202 			if (ret)
4203 				return ret;
4204 		}
4205 	}
4206 
4207 	/* We're done, found all csums in the ordered extents. */
4208 	if (mod_len == 0)
4209 		return 0;
4210 
4211 	/* If we're compressed we have to save the entire range of csums. */
4212 	if (em->compress_type) {
4213 		csum_offset = 0;
4214 		csum_len = max(em->block_len, em->orig_block_len);
4215 	} else {
4216 		csum_offset = mod_start - em->start;
4217 		csum_len = mod_len;
4218 	}
4219 
4220 	/* block start is already adjusted for the file extent offset. */
4221 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4222 				       em->block_start + csum_offset,
4223 				       em->block_start + csum_offset +
4224 				       csum_len - 1, &ordered_sums, 0);
4225 	if (ret)
4226 		return ret;
4227 
4228 	while (!list_empty(&ordered_sums)) {
4229 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4230 						   struct btrfs_ordered_sum,
4231 						   list);
4232 		if (!ret)
4233 			ret = log_csums(trans, inode, log_root, sums);
4234 		list_del(&sums->list);
4235 		kfree(sums);
4236 	}
4237 
4238 	return ret;
4239 }
4240 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4241 static int log_one_extent(struct btrfs_trans_handle *trans,
4242 			  struct btrfs_inode *inode, struct btrfs_root *root,
4243 			  const struct extent_map *em,
4244 			  struct btrfs_path *path,
4245 			  struct btrfs_log_ctx *ctx)
4246 {
4247 	struct btrfs_root *log = root->log_root;
4248 	struct btrfs_file_extent_item *fi;
4249 	struct extent_buffer *leaf;
4250 	struct btrfs_map_token token;
4251 	struct btrfs_key key;
4252 	u64 extent_offset = em->start - em->orig_start;
4253 	u64 block_len;
4254 	int ret;
4255 	int extent_inserted = 0;
4256 
4257 	ret = log_extent_csums(trans, inode, log, em, ctx);
4258 	if (ret)
4259 		return ret;
4260 
4261 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4262 				   em->start + em->len, NULL, 0, 1,
4263 				   sizeof(*fi), &extent_inserted);
4264 	if (ret)
4265 		return ret;
4266 
4267 	if (!extent_inserted) {
4268 		key.objectid = btrfs_ino(inode);
4269 		key.type = BTRFS_EXTENT_DATA_KEY;
4270 		key.offset = em->start;
4271 
4272 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4273 					      sizeof(*fi));
4274 		if (ret)
4275 			return ret;
4276 	}
4277 	leaf = path->nodes[0];
4278 	btrfs_init_map_token(&token, leaf);
4279 	fi = btrfs_item_ptr(leaf, path->slots[0],
4280 			    struct btrfs_file_extent_item);
4281 
4282 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4283 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4284 		btrfs_set_token_file_extent_type(&token, fi,
4285 						 BTRFS_FILE_EXTENT_PREALLOC);
4286 	else
4287 		btrfs_set_token_file_extent_type(&token, fi,
4288 						 BTRFS_FILE_EXTENT_REG);
4289 
4290 	block_len = max(em->block_len, em->orig_block_len);
4291 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4292 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4293 							em->block_start);
4294 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4295 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4296 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4297 							em->block_start -
4298 							extent_offset);
4299 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4300 	} else {
4301 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4302 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4303 	}
4304 
4305 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4306 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4307 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4308 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4309 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4310 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4311 	btrfs_mark_buffer_dirty(leaf);
4312 
4313 	btrfs_release_path(path);
4314 
4315 	return ret;
4316 }
4317 
4318 /*
4319  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4320  * lose them after doing a full/fast fsync and replaying the log. We scan the
4321  * subvolume's root instead of iterating the inode's extent map tree because
4322  * otherwise we can log incorrect extent items based on extent map conversion.
4323  * That can happen due to the fact that extent maps are merged when they
4324  * are not in the extent map tree's list of modified extents.
4325  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4326 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4327 				      struct btrfs_inode *inode,
4328 				      struct btrfs_path *path)
4329 {
4330 	struct btrfs_root *root = inode->root;
4331 	struct btrfs_key key;
4332 	const u64 i_size = i_size_read(&inode->vfs_inode);
4333 	const u64 ino = btrfs_ino(inode);
4334 	struct btrfs_path *dst_path = NULL;
4335 	bool dropped_extents = false;
4336 	u64 truncate_offset = i_size;
4337 	struct extent_buffer *leaf;
4338 	int slot;
4339 	int ins_nr = 0;
4340 	int start_slot;
4341 	int ret;
4342 
4343 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4344 		return 0;
4345 
4346 	key.objectid = ino;
4347 	key.type = BTRFS_EXTENT_DATA_KEY;
4348 	key.offset = i_size;
4349 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4350 	if (ret < 0)
4351 		goto out;
4352 
4353 	/*
4354 	 * We must check if there is a prealloc extent that starts before the
4355 	 * i_size and crosses the i_size boundary. This is to ensure later we
4356 	 * truncate down to the end of that extent and not to the i_size, as
4357 	 * otherwise we end up losing part of the prealloc extent after a log
4358 	 * replay and with an implicit hole if there is another prealloc extent
4359 	 * that starts at an offset beyond i_size.
4360 	 */
4361 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4362 	if (ret < 0)
4363 		goto out;
4364 
4365 	if (ret == 0) {
4366 		struct btrfs_file_extent_item *ei;
4367 
4368 		leaf = path->nodes[0];
4369 		slot = path->slots[0];
4370 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4371 
4372 		if (btrfs_file_extent_type(leaf, ei) ==
4373 		    BTRFS_FILE_EXTENT_PREALLOC) {
4374 			u64 extent_end;
4375 
4376 			btrfs_item_key_to_cpu(leaf, &key, slot);
4377 			extent_end = key.offset +
4378 				btrfs_file_extent_num_bytes(leaf, ei);
4379 
4380 			if (extent_end > i_size)
4381 				truncate_offset = extent_end;
4382 		}
4383 	} else {
4384 		ret = 0;
4385 	}
4386 
4387 	while (true) {
4388 		leaf = path->nodes[0];
4389 		slot = path->slots[0];
4390 
4391 		if (slot >= btrfs_header_nritems(leaf)) {
4392 			if (ins_nr > 0) {
4393 				ret = copy_items(trans, inode, dst_path, path,
4394 						 start_slot, ins_nr, 1, 0);
4395 				if (ret < 0)
4396 					goto out;
4397 				ins_nr = 0;
4398 			}
4399 			ret = btrfs_next_leaf(root, path);
4400 			if (ret < 0)
4401 				goto out;
4402 			if (ret > 0) {
4403 				ret = 0;
4404 				break;
4405 			}
4406 			continue;
4407 		}
4408 
4409 		btrfs_item_key_to_cpu(leaf, &key, slot);
4410 		if (key.objectid > ino)
4411 			break;
4412 		if (WARN_ON_ONCE(key.objectid < ino) ||
4413 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4414 		    key.offset < i_size) {
4415 			path->slots[0]++;
4416 			continue;
4417 		}
4418 		if (!dropped_extents) {
4419 			/*
4420 			 * Avoid logging extent items logged in past fsync calls
4421 			 * and leading to duplicate keys in the log tree.
4422 			 */
4423 			do {
4424 				ret = btrfs_truncate_inode_items(trans,
4425 							 root->log_root,
4426 							 &inode->vfs_inode,
4427 							 truncate_offset,
4428 							 BTRFS_EXTENT_DATA_KEY);
4429 			} while (ret == -EAGAIN);
4430 			if (ret)
4431 				goto out;
4432 			dropped_extents = true;
4433 		}
4434 		if (ins_nr == 0)
4435 			start_slot = slot;
4436 		ins_nr++;
4437 		path->slots[0]++;
4438 		if (!dst_path) {
4439 			dst_path = btrfs_alloc_path();
4440 			if (!dst_path) {
4441 				ret = -ENOMEM;
4442 				goto out;
4443 			}
4444 		}
4445 	}
4446 	if (ins_nr > 0)
4447 		ret = copy_items(trans, inode, dst_path, path,
4448 				 start_slot, ins_nr, 1, 0);
4449 out:
4450 	btrfs_release_path(path);
4451 	btrfs_free_path(dst_path);
4452 	return ret;
4453 }
4454 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4455 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4456 				     struct btrfs_root *root,
4457 				     struct btrfs_inode *inode,
4458 				     struct btrfs_path *path,
4459 				     struct btrfs_log_ctx *ctx)
4460 {
4461 	struct btrfs_ordered_extent *ordered;
4462 	struct btrfs_ordered_extent *tmp;
4463 	struct extent_map *em, *n;
4464 	struct list_head extents;
4465 	struct extent_map_tree *tree = &inode->extent_tree;
4466 	u64 test_gen;
4467 	int ret = 0;
4468 	int num = 0;
4469 
4470 	INIT_LIST_HEAD(&extents);
4471 
4472 	write_lock(&tree->lock);
4473 	test_gen = root->fs_info->last_trans_committed;
4474 
4475 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4476 		list_del_init(&em->list);
4477 		/*
4478 		 * Just an arbitrary number, this can be really CPU intensive
4479 		 * once we start getting a lot of extents, and really once we
4480 		 * have a bunch of extents we just want to commit since it will
4481 		 * be faster.
4482 		 */
4483 		if (++num > 32768) {
4484 			list_del_init(&tree->modified_extents);
4485 			ret = -EFBIG;
4486 			goto process;
4487 		}
4488 
4489 		if (em->generation <= test_gen)
4490 			continue;
4491 
4492 		/* We log prealloc extents beyond eof later. */
4493 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4494 		    em->start >= i_size_read(&inode->vfs_inode))
4495 			continue;
4496 
4497 		/* Need a ref to keep it from getting evicted from cache */
4498 		refcount_inc(&em->refs);
4499 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4500 		list_add_tail(&em->list, &extents);
4501 		num++;
4502 	}
4503 
4504 	list_sort(NULL, &extents, extent_cmp);
4505 process:
4506 	while (!list_empty(&extents)) {
4507 		em = list_entry(extents.next, struct extent_map, list);
4508 
4509 		list_del_init(&em->list);
4510 
4511 		/*
4512 		 * If we had an error we just need to delete everybody from our
4513 		 * private list.
4514 		 */
4515 		if (ret) {
4516 			clear_em_logging(tree, em);
4517 			free_extent_map(em);
4518 			continue;
4519 		}
4520 
4521 		write_unlock(&tree->lock);
4522 
4523 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4524 		write_lock(&tree->lock);
4525 		clear_em_logging(tree, em);
4526 		free_extent_map(em);
4527 	}
4528 	WARN_ON(!list_empty(&extents));
4529 	write_unlock(&tree->lock);
4530 
4531 	btrfs_release_path(path);
4532 	if (!ret)
4533 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4534 	if (ret)
4535 		return ret;
4536 
4537 	/*
4538 	 * We have logged all extents successfully, now make sure the commit of
4539 	 * the current transaction waits for the ordered extents to complete
4540 	 * before it commits and wipes out the log trees, otherwise we would
4541 	 * lose data if an ordered extents completes after the transaction
4542 	 * commits and a power failure happens after the transaction commit.
4543 	 */
4544 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4545 		list_del_init(&ordered->log_list);
4546 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4547 
4548 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4549 			spin_lock_irq(&inode->ordered_tree.lock);
4550 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4551 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4552 				atomic_inc(&trans->transaction->pending_ordered);
4553 			}
4554 			spin_unlock_irq(&inode->ordered_tree.lock);
4555 		}
4556 		btrfs_put_ordered_extent(ordered);
4557 	}
4558 
4559 	return 0;
4560 }
4561 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4562 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4563 			     struct btrfs_path *path, u64 *size_ret)
4564 {
4565 	struct btrfs_key key;
4566 	int ret;
4567 
4568 	key.objectid = btrfs_ino(inode);
4569 	key.type = BTRFS_INODE_ITEM_KEY;
4570 	key.offset = 0;
4571 
4572 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4573 	if (ret < 0) {
4574 		return ret;
4575 	} else if (ret > 0) {
4576 		*size_ret = 0;
4577 	} else {
4578 		struct btrfs_inode_item *item;
4579 
4580 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4581 				      struct btrfs_inode_item);
4582 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4583 		/*
4584 		 * If the in-memory inode's i_size is smaller then the inode
4585 		 * size stored in the btree, return the inode's i_size, so
4586 		 * that we get a correct inode size after replaying the log
4587 		 * when before a power failure we had a shrinking truncate
4588 		 * followed by addition of a new name (rename / new hard link).
4589 		 * Otherwise return the inode size from the btree, to avoid
4590 		 * data loss when replaying a log due to previously doing a
4591 		 * write that expands the inode's size and logging a new name
4592 		 * immediately after.
4593 		 */
4594 		if (*size_ret > inode->vfs_inode.i_size)
4595 			*size_ret = inode->vfs_inode.i_size;
4596 	}
4597 
4598 	btrfs_release_path(path);
4599 	return 0;
4600 }
4601 
4602 /*
4603  * At the moment we always log all xattrs. This is to figure out at log replay
4604  * time which xattrs must have their deletion replayed. If a xattr is missing
4605  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4606  * because if a xattr is deleted, the inode is fsynced and a power failure
4607  * happens, causing the log to be replayed the next time the fs is mounted,
4608  * we want the xattr to not exist anymore (same behaviour as other filesystems
4609  * with a journal, ext3/4, xfs, f2fs, etc).
4610  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4611 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4612 				struct btrfs_root *root,
4613 				struct btrfs_inode *inode,
4614 				struct btrfs_path *path,
4615 				struct btrfs_path *dst_path)
4616 {
4617 	int ret;
4618 	struct btrfs_key key;
4619 	const u64 ino = btrfs_ino(inode);
4620 	int ins_nr = 0;
4621 	int start_slot = 0;
4622 	bool found_xattrs = false;
4623 
4624 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4625 		return 0;
4626 
4627 	key.objectid = ino;
4628 	key.type = BTRFS_XATTR_ITEM_KEY;
4629 	key.offset = 0;
4630 
4631 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4632 	if (ret < 0)
4633 		return ret;
4634 
4635 	while (true) {
4636 		int slot = path->slots[0];
4637 		struct extent_buffer *leaf = path->nodes[0];
4638 		int nritems = btrfs_header_nritems(leaf);
4639 
4640 		if (slot >= nritems) {
4641 			if (ins_nr > 0) {
4642 				ret = copy_items(trans, inode, dst_path, path,
4643 						 start_slot, ins_nr, 1, 0);
4644 				if (ret < 0)
4645 					return ret;
4646 				ins_nr = 0;
4647 			}
4648 			ret = btrfs_next_leaf(root, path);
4649 			if (ret < 0)
4650 				return ret;
4651 			else if (ret > 0)
4652 				break;
4653 			continue;
4654 		}
4655 
4656 		btrfs_item_key_to_cpu(leaf, &key, slot);
4657 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4658 			break;
4659 
4660 		if (ins_nr == 0)
4661 			start_slot = slot;
4662 		ins_nr++;
4663 		path->slots[0]++;
4664 		found_xattrs = true;
4665 		cond_resched();
4666 	}
4667 	if (ins_nr > 0) {
4668 		ret = copy_items(trans, inode, dst_path, path,
4669 				 start_slot, ins_nr, 1, 0);
4670 		if (ret < 0)
4671 			return ret;
4672 	}
4673 
4674 	if (!found_xattrs)
4675 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4676 
4677 	return 0;
4678 }
4679 
4680 /*
4681  * When using the NO_HOLES feature if we punched a hole that causes the
4682  * deletion of entire leafs or all the extent items of the first leaf (the one
4683  * that contains the inode item and references) we may end up not processing
4684  * any extents, because there are no leafs with a generation matching the
4685  * current transaction that have extent items for our inode. So we need to find
4686  * if any holes exist and then log them. We also need to log holes after any
4687  * truncate operation that changes the inode's size.
4688  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)4689 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4690 			   struct btrfs_root *root,
4691 			   struct btrfs_inode *inode,
4692 			   struct btrfs_path *path)
4693 {
4694 	struct btrfs_fs_info *fs_info = root->fs_info;
4695 	struct btrfs_key key;
4696 	const u64 ino = btrfs_ino(inode);
4697 	const u64 i_size = i_size_read(&inode->vfs_inode);
4698 	u64 prev_extent_end = 0;
4699 	int ret;
4700 
4701 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4702 		return 0;
4703 
4704 	key.objectid = ino;
4705 	key.type = BTRFS_EXTENT_DATA_KEY;
4706 	key.offset = 0;
4707 
4708 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4709 	if (ret < 0)
4710 		return ret;
4711 
4712 	while (true) {
4713 		struct extent_buffer *leaf = path->nodes[0];
4714 
4715 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4716 			ret = btrfs_next_leaf(root, path);
4717 			if (ret < 0)
4718 				return ret;
4719 			if (ret > 0) {
4720 				ret = 0;
4721 				break;
4722 			}
4723 			leaf = path->nodes[0];
4724 		}
4725 
4726 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4727 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4728 			break;
4729 
4730 		/* We have a hole, log it. */
4731 		if (prev_extent_end < key.offset) {
4732 			const u64 hole_len = key.offset - prev_extent_end;
4733 
4734 			/*
4735 			 * Release the path to avoid deadlocks with other code
4736 			 * paths that search the root while holding locks on
4737 			 * leafs from the log root.
4738 			 */
4739 			btrfs_release_path(path);
4740 			ret = btrfs_insert_file_extent(trans, root->log_root,
4741 						       ino, prev_extent_end, 0,
4742 						       0, hole_len, 0, hole_len,
4743 						       0, 0, 0);
4744 			if (ret < 0)
4745 				return ret;
4746 
4747 			/*
4748 			 * Search for the same key again in the root. Since it's
4749 			 * an extent item and we are holding the inode lock, the
4750 			 * key must still exist. If it doesn't just emit warning
4751 			 * and return an error to fall back to a transaction
4752 			 * commit.
4753 			 */
4754 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4755 			if (ret < 0)
4756 				return ret;
4757 			if (WARN_ON(ret > 0))
4758 				return -ENOENT;
4759 			leaf = path->nodes[0];
4760 		}
4761 
4762 		prev_extent_end = btrfs_file_extent_end(path);
4763 		path->slots[0]++;
4764 		cond_resched();
4765 	}
4766 
4767 	if (prev_extent_end < i_size) {
4768 		u64 hole_len;
4769 
4770 		btrfs_release_path(path);
4771 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4772 		ret = btrfs_insert_file_extent(trans, root->log_root,
4773 					       ino, prev_extent_end, 0, 0,
4774 					       hole_len, 0, hole_len,
4775 					       0, 0, 0);
4776 		if (ret < 0)
4777 			return ret;
4778 	}
4779 
4780 	return 0;
4781 }
4782 
4783 /*
4784  * When we are logging a new inode X, check if it doesn't have a reference that
4785  * matches the reference from some other inode Y created in a past transaction
4786  * and that was renamed in the current transaction. If we don't do this, then at
4787  * log replay time we can lose inode Y (and all its files if it's a directory):
4788  *
4789  * mkdir /mnt/x
4790  * echo "hello world" > /mnt/x/foobar
4791  * sync
4792  * mv /mnt/x /mnt/y
4793  * mkdir /mnt/x                 # or touch /mnt/x
4794  * xfs_io -c fsync /mnt/x
4795  * <power fail>
4796  * mount fs, trigger log replay
4797  *
4798  * After the log replay procedure, we would lose the first directory and all its
4799  * files (file foobar).
4800  * For the case where inode Y is not a directory we simply end up losing it:
4801  *
4802  * echo "123" > /mnt/foo
4803  * sync
4804  * mv /mnt/foo /mnt/bar
4805  * echo "abc" > /mnt/foo
4806  * xfs_io -c fsync /mnt/foo
4807  * <power fail>
4808  *
4809  * We also need this for cases where a snapshot entry is replaced by some other
4810  * entry (file or directory) otherwise we end up with an unreplayable log due to
4811  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4812  * if it were a regular entry:
4813  *
4814  * mkdir /mnt/x
4815  * btrfs subvolume snapshot /mnt /mnt/x/snap
4816  * btrfs subvolume delete /mnt/x/snap
4817  * rmdir /mnt/x
4818  * mkdir /mnt/x
4819  * fsync /mnt/x or fsync some new file inside it
4820  * <power fail>
4821  *
4822  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4823  * the same transaction.
4824  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)4825 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4826 					 const int slot,
4827 					 const struct btrfs_key *key,
4828 					 struct btrfs_inode *inode,
4829 					 u64 *other_ino, u64 *other_parent)
4830 {
4831 	int ret;
4832 	struct btrfs_path *search_path;
4833 	char *name = NULL;
4834 	u32 name_len = 0;
4835 	u32 item_size = btrfs_item_size_nr(eb, slot);
4836 	u32 cur_offset = 0;
4837 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4838 
4839 	search_path = btrfs_alloc_path();
4840 	if (!search_path)
4841 		return -ENOMEM;
4842 	search_path->search_commit_root = 1;
4843 	search_path->skip_locking = 1;
4844 
4845 	while (cur_offset < item_size) {
4846 		u64 parent;
4847 		u32 this_name_len;
4848 		u32 this_len;
4849 		unsigned long name_ptr;
4850 		struct btrfs_dir_item *di;
4851 
4852 		if (key->type == BTRFS_INODE_REF_KEY) {
4853 			struct btrfs_inode_ref *iref;
4854 
4855 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4856 			parent = key->offset;
4857 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4858 			name_ptr = (unsigned long)(iref + 1);
4859 			this_len = sizeof(*iref) + this_name_len;
4860 		} else {
4861 			struct btrfs_inode_extref *extref;
4862 
4863 			extref = (struct btrfs_inode_extref *)(ptr +
4864 							       cur_offset);
4865 			parent = btrfs_inode_extref_parent(eb, extref);
4866 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4867 			name_ptr = (unsigned long)&extref->name;
4868 			this_len = sizeof(*extref) + this_name_len;
4869 		}
4870 
4871 		if (this_name_len > name_len) {
4872 			char *new_name;
4873 
4874 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4875 			if (!new_name) {
4876 				ret = -ENOMEM;
4877 				goto out;
4878 			}
4879 			name_len = this_name_len;
4880 			name = new_name;
4881 		}
4882 
4883 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4884 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4885 				parent, name, this_name_len, 0);
4886 		if (di && !IS_ERR(di)) {
4887 			struct btrfs_key di_key;
4888 
4889 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4890 						  di, &di_key);
4891 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4892 				if (di_key.objectid != key->objectid) {
4893 					ret = 1;
4894 					*other_ino = di_key.objectid;
4895 					*other_parent = parent;
4896 				} else {
4897 					ret = 0;
4898 				}
4899 			} else {
4900 				ret = -EAGAIN;
4901 			}
4902 			goto out;
4903 		} else if (IS_ERR(di)) {
4904 			ret = PTR_ERR(di);
4905 			goto out;
4906 		}
4907 		btrfs_release_path(search_path);
4908 
4909 		cur_offset += this_len;
4910 	}
4911 	ret = 0;
4912 out:
4913 	btrfs_free_path(search_path);
4914 	kfree(name);
4915 	return ret;
4916 }
4917 
4918 struct btrfs_ino_list {
4919 	u64 ino;
4920 	u64 parent;
4921 	struct list_head list;
4922 };
4923 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx,u64 ino,u64 parent)4924 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4925 				  struct btrfs_root *root,
4926 				  struct btrfs_path *path,
4927 				  struct btrfs_log_ctx *ctx,
4928 				  u64 ino, u64 parent)
4929 {
4930 	struct btrfs_ino_list *ino_elem;
4931 	LIST_HEAD(inode_list);
4932 	int ret = 0;
4933 
4934 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4935 	if (!ino_elem)
4936 		return -ENOMEM;
4937 	ino_elem->ino = ino;
4938 	ino_elem->parent = parent;
4939 	list_add_tail(&ino_elem->list, &inode_list);
4940 
4941 	while (!list_empty(&inode_list)) {
4942 		struct btrfs_fs_info *fs_info = root->fs_info;
4943 		struct btrfs_key key;
4944 		struct inode *inode;
4945 
4946 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4947 					    list);
4948 		ino = ino_elem->ino;
4949 		parent = ino_elem->parent;
4950 		list_del(&ino_elem->list);
4951 		kfree(ino_elem);
4952 		if (ret)
4953 			continue;
4954 
4955 		btrfs_release_path(path);
4956 
4957 		inode = btrfs_iget(fs_info->sb, ino, root);
4958 		/*
4959 		 * If the other inode that had a conflicting dir entry was
4960 		 * deleted in the current transaction, we need to log its parent
4961 		 * directory.
4962 		 */
4963 		if (IS_ERR(inode)) {
4964 			ret = PTR_ERR(inode);
4965 			if (ret == -ENOENT) {
4966 				inode = btrfs_iget(fs_info->sb, parent, root);
4967 				if (IS_ERR(inode)) {
4968 					ret = PTR_ERR(inode);
4969 				} else {
4970 					ret = btrfs_log_inode(trans, root,
4971 						      BTRFS_I(inode),
4972 						      LOG_OTHER_INODE_ALL,
4973 						      ctx);
4974 					btrfs_add_delayed_iput(inode);
4975 				}
4976 			}
4977 			continue;
4978 		}
4979 		/*
4980 		 * If the inode was already logged skip it - otherwise we can
4981 		 * hit an infinite loop. Example:
4982 		 *
4983 		 * From the commit root (previous transaction) we have the
4984 		 * following inodes:
4985 		 *
4986 		 * inode 257 a directory
4987 		 * inode 258 with references "zz" and "zz_link" on inode 257
4988 		 * inode 259 with reference "a" on inode 257
4989 		 *
4990 		 * And in the current (uncommitted) transaction we have:
4991 		 *
4992 		 * inode 257 a directory, unchanged
4993 		 * inode 258 with references "a" and "a2" on inode 257
4994 		 * inode 259 with reference "zz_link" on inode 257
4995 		 * inode 261 with reference "zz" on inode 257
4996 		 *
4997 		 * When logging inode 261 the following infinite loop could
4998 		 * happen if we don't skip already logged inodes:
4999 		 *
5000 		 * - we detect inode 258 as a conflicting inode, with inode 261
5001 		 *   on reference "zz", and log it;
5002 		 *
5003 		 * - we detect inode 259 as a conflicting inode, with inode 258
5004 		 *   on reference "a", and log it;
5005 		 *
5006 		 * - we detect inode 258 as a conflicting inode, with inode 259
5007 		 *   on reference "zz_link", and log it - again! After this we
5008 		 *   repeat the above steps forever.
5009 		 */
5010 		spin_lock(&BTRFS_I(inode)->lock);
5011 		/*
5012 		 * Check the inode's logged_trans only instead of
5013 		 * btrfs_inode_in_log(). This is because the last_log_commit of
5014 		 * the inode is not updated when we only log that it exists and
5015 		 * it has the full sync bit set (see btrfs_log_inode()).
5016 		 */
5017 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5018 			spin_unlock(&BTRFS_I(inode)->lock);
5019 			btrfs_add_delayed_iput(inode);
5020 			continue;
5021 		}
5022 		spin_unlock(&BTRFS_I(inode)->lock);
5023 		/*
5024 		 * We are safe logging the other inode without acquiring its
5025 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5026 		 * are safe against concurrent renames of the other inode as
5027 		 * well because during a rename we pin the log and update the
5028 		 * log with the new name before we unpin it.
5029 		 */
5030 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5031 				      LOG_OTHER_INODE, ctx);
5032 		if (ret) {
5033 			btrfs_add_delayed_iput(inode);
5034 			continue;
5035 		}
5036 
5037 		key.objectid = ino;
5038 		key.type = BTRFS_INODE_REF_KEY;
5039 		key.offset = 0;
5040 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5041 		if (ret < 0) {
5042 			btrfs_add_delayed_iput(inode);
5043 			continue;
5044 		}
5045 
5046 		while (true) {
5047 			struct extent_buffer *leaf = path->nodes[0];
5048 			int slot = path->slots[0];
5049 			u64 other_ino = 0;
5050 			u64 other_parent = 0;
5051 
5052 			if (slot >= btrfs_header_nritems(leaf)) {
5053 				ret = btrfs_next_leaf(root, path);
5054 				if (ret < 0) {
5055 					break;
5056 				} else if (ret > 0) {
5057 					ret = 0;
5058 					break;
5059 				}
5060 				continue;
5061 			}
5062 
5063 			btrfs_item_key_to_cpu(leaf, &key, slot);
5064 			if (key.objectid != ino ||
5065 			    (key.type != BTRFS_INODE_REF_KEY &&
5066 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5067 				ret = 0;
5068 				break;
5069 			}
5070 
5071 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5072 					BTRFS_I(inode), &other_ino,
5073 					&other_parent);
5074 			if (ret < 0)
5075 				break;
5076 			if (ret > 0) {
5077 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5078 				if (!ino_elem) {
5079 					ret = -ENOMEM;
5080 					break;
5081 				}
5082 				ino_elem->ino = other_ino;
5083 				ino_elem->parent = other_parent;
5084 				list_add_tail(&ino_elem->list, &inode_list);
5085 				ret = 0;
5086 			}
5087 			path->slots[0]++;
5088 		}
5089 		btrfs_add_delayed_iput(inode);
5090 	}
5091 
5092 	return ret;
5093 }
5094 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const bool recursive_logging,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5095 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5096 				   struct btrfs_inode *inode,
5097 				   struct btrfs_key *min_key,
5098 				   const struct btrfs_key *max_key,
5099 				   struct btrfs_path *path,
5100 				   struct btrfs_path *dst_path,
5101 				   const u64 logged_isize,
5102 				   const bool recursive_logging,
5103 				   const int inode_only,
5104 				   struct btrfs_log_ctx *ctx,
5105 				   bool *need_log_inode_item)
5106 {
5107 	const u64 i_size = i_size_read(&inode->vfs_inode);
5108 	struct btrfs_root *root = inode->root;
5109 	int ins_start_slot = 0;
5110 	int ins_nr = 0;
5111 	int ret;
5112 
5113 	while (1) {
5114 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5115 		if (ret < 0)
5116 			return ret;
5117 		if (ret > 0) {
5118 			ret = 0;
5119 			break;
5120 		}
5121 again:
5122 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5123 		if (min_key->objectid != max_key->objectid)
5124 			break;
5125 		if (min_key->type > max_key->type)
5126 			break;
5127 
5128 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5129 			*need_log_inode_item = false;
5130 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5131 			   min_key->offset >= i_size) {
5132 			/*
5133 			 * Extents at and beyond eof are logged with
5134 			 * btrfs_log_prealloc_extents().
5135 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5136 			 * and no keys greater than that, so bail out.
5137 			 */
5138 			break;
5139 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5140 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5141 			   inode->generation == trans->transid &&
5142 			   !recursive_logging) {
5143 			u64 other_ino = 0;
5144 			u64 other_parent = 0;
5145 
5146 			ret = btrfs_check_ref_name_override(path->nodes[0],
5147 					path->slots[0], min_key, inode,
5148 					&other_ino, &other_parent);
5149 			if (ret < 0) {
5150 				return ret;
5151 			} else if (ret > 0 && ctx &&
5152 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5153 				if (ins_nr > 0) {
5154 					ins_nr++;
5155 				} else {
5156 					ins_nr = 1;
5157 					ins_start_slot = path->slots[0];
5158 				}
5159 				ret = copy_items(trans, inode, dst_path, path,
5160 						 ins_start_slot, ins_nr,
5161 						 inode_only, logged_isize);
5162 				if (ret < 0)
5163 					return ret;
5164 				ins_nr = 0;
5165 
5166 				ret = log_conflicting_inodes(trans, root, path,
5167 						ctx, other_ino, other_parent);
5168 				if (ret)
5169 					return ret;
5170 				btrfs_release_path(path);
5171 				goto next_key;
5172 			}
5173 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5174 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5175 			if (ins_nr == 0)
5176 				goto next_slot;
5177 			ret = copy_items(trans, inode, dst_path, path,
5178 					 ins_start_slot,
5179 					 ins_nr, inode_only, logged_isize);
5180 			if (ret < 0)
5181 				return ret;
5182 			ins_nr = 0;
5183 			goto next_slot;
5184 		}
5185 
5186 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5187 			ins_nr++;
5188 			goto next_slot;
5189 		} else if (!ins_nr) {
5190 			ins_start_slot = path->slots[0];
5191 			ins_nr = 1;
5192 			goto next_slot;
5193 		}
5194 
5195 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5196 				 ins_nr, inode_only, logged_isize);
5197 		if (ret < 0)
5198 			return ret;
5199 		ins_nr = 1;
5200 		ins_start_slot = path->slots[0];
5201 next_slot:
5202 		path->slots[0]++;
5203 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5204 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5205 					      path->slots[0]);
5206 			goto again;
5207 		}
5208 		if (ins_nr) {
5209 			ret = copy_items(trans, inode, dst_path, path,
5210 					 ins_start_slot, ins_nr, inode_only,
5211 					 logged_isize);
5212 			if (ret < 0)
5213 				return ret;
5214 			ins_nr = 0;
5215 		}
5216 		btrfs_release_path(path);
5217 next_key:
5218 		if (min_key->offset < (u64)-1) {
5219 			min_key->offset++;
5220 		} else if (min_key->type < max_key->type) {
5221 			min_key->type++;
5222 			min_key->offset = 0;
5223 		} else {
5224 			break;
5225 		}
5226 	}
5227 	if (ins_nr) {
5228 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5229 				 ins_nr, inode_only, logged_isize);
5230 		if (ret)
5231 			return ret;
5232 	}
5233 
5234 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5235 		/*
5236 		 * Release the path because otherwise we might attempt to double
5237 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5238 		 */
5239 		btrfs_release_path(path);
5240 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5241 	}
5242 
5243 	return ret;
5244 }
5245 
5246 /* log a single inode in the tree log.
5247  * At least one parent directory for this inode must exist in the tree
5248  * or be logged already.
5249  *
5250  * Any items from this inode changed by the current transaction are copied
5251  * to the log tree.  An extra reference is taken on any extents in this
5252  * file, allowing us to avoid a whole pile of corner cases around logging
5253  * blocks that have been removed from the tree.
5254  *
5255  * See LOG_INODE_ALL and related defines for a description of what inode_only
5256  * does.
5257  *
5258  * This handles both files and directories.
5259  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)5260 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5261 			   struct btrfs_root *root, struct btrfs_inode *inode,
5262 			   int inode_only,
5263 			   struct btrfs_log_ctx *ctx)
5264 {
5265 	struct btrfs_path *path;
5266 	struct btrfs_path *dst_path;
5267 	struct btrfs_key min_key;
5268 	struct btrfs_key max_key;
5269 	struct btrfs_root *log = root->log_root;
5270 	int err = 0;
5271 	int ret = 0;
5272 	bool fast_search = false;
5273 	u64 ino = btrfs_ino(inode);
5274 	struct extent_map_tree *em_tree = &inode->extent_tree;
5275 	u64 logged_isize = 0;
5276 	bool need_log_inode_item = true;
5277 	bool xattrs_logged = false;
5278 	bool recursive_logging = false;
5279 
5280 	path = btrfs_alloc_path();
5281 	if (!path)
5282 		return -ENOMEM;
5283 	dst_path = btrfs_alloc_path();
5284 	if (!dst_path) {
5285 		btrfs_free_path(path);
5286 		return -ENOMEM;
5287 	}
5288 
5289 	min_key.objectid = ino;
5290 	min_key.type = BTRFS_INODE_ITEM_KEY;
5291 	min_key.offset = 0;
5292 
5293 	max_key.objectid = ino;
5294 
5295 
5296 	/* today the code can only do partial logging of directories */
5297 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5298 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5299 		       &inode->runtime_flags) &&
5300 	     inode_only >= LOG_INODE_EXISTS))
5301 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5302 	else
5303 		max_key.type = (u8)-1;
5304 	max_key.offset = (u64)-1;
5305 
5306 	/*
5307 	 * Only run delayed items if we are a directory. We want to make sure
5308 	 * all directory indexes hit the fs/subvolume tree so we can find them
5309 	 * and figure out which index ranges have to be logged.
5310 	 *
5311 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5312 	 * as we want to make sure an up to date version is in the subvolume
5313 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5314 	 * it to the log tree. For a non full sync, we always log the inode item
5315 	 * based on the in-memory struct btrfs_inode which is always up to date.
5316 	 */
5317 	if (S_ISDIR(inode->vfs_inode.i_mode))
5318 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5319 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5320 		ret = btrfs_commit_inode_delayed_inode(inode);
5321 
5322 	if (ret) {
5323 		btrfs_free_path(path);
5324 		btrfs_free_path(dst_path);
5325 		return ret;
5326 	}
5327 
5328 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5329 		recursive_logging = true;
5330 		if (inode_only == LOG_OTHER_INODE)
5331 			inode_only = LOG_INODE_EXISTS;
5332 		else
5333 			inode_only = LOG_INODE_ALL;
5334 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5335 	} else {
5336 		mutex_lock(&inode->log_mutex);
5337 	}
5338 
5339 	/*
5340 	 * For symlinks, we must always log their content, which is stored in an
5341 	 * inline extent, otherwise we could end up with an empty symlink after
5342 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
5343 	 * one attempts to create an empty symlink).
5344 	 * We don't need to worry about flushing delalloc, because when we create
5345 	 * the inline extent when the symlink is created (we never have delalloc
5346 	 * for symlinks).
5347 	 */
5348 	if (S_ISLNK(inode->vfs_inode.i_mode))
5349 		inode_only = LOG_INODE_ALL;
5350 
5351 	/*
5352 	 * a brute force approach to making sure we get the most uptodate
5353 	 * copies of everything.
5354 	 */
5355 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5356 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5357 
5358 		if (inode_only == LOG_INODE_EXISTS)
5359 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5360 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5361 	} else {
5362 		if (inode_only == LOG_INODE_EXISTS) {
5363 			/*
5364 			 * Make sure the new inode item we write to the log has
5365 			 * the same isize as the current one (if it exists).
5366 			 * This is necessary to prevent data loss after log
5367 			 * replay, and also to prevent doing a wrong expanding
5368 			 * truncate - for e.g. create file, write 4K into offset
5369 			 * 0, fsync, write 4K into offset 4096, add hard link,
5370 			 * fsync some other file (to sync log), power fail - if
5371 			 * we use the inode's current i_size, after log replay
5372 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5373 			 * (zeroes), as if an expanding truncate happened,
5374 			 * instead of getting a file of 4Kb only.
5375 			 */
5376 			err = logged_inode_size(log, inode, path, &logged_isize);
5377 			if (err)
5378 				goto out_unlock;
5379 		}
5380 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5381 			     &inode->runtime_flags)) {
5382 			if (inode_only == LOG_INODE_EXISTS) {
5383 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5384 				ret = drop_objectid_items(trans, log, path, ino,
5385 							  max_key.type);
5386 			} else {
5387 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5388 					  &inode->runtime_flags);
5389 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5390 					  &inode->runtime_flags);
5391 				while(1) {
5392 					ret = btrfs_truncate_inode_items(trans,
5393 						log, &inode->vfs_inode, 0, 0);
5394 					if (ret != -EAGAIN)
5395 						break;
5396 				}
5397 			}
5398 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5399 					      &inode->runtime_flags) ||
5400 			   inode_only == LOG_INODE_EXISTS) {
5401 			if (inode_only == LOG_INODE_ALL)
5402 				fast_search = true;
5403 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5404 			ret = drop_objectid_items(trans, log, path, ino,
5405 						  max_key.type);
5406 		} else {
5407 			if (inode_only == LOG_INODE_ALL)
5408 				fast_search = true;
5409 			goto log_extents;
5410 		}
5411 
5412 	}
5413 	if (ret) {
5414 		err = ret;
5415 		goto out_unlock;
5416 	}
5417 
5418 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5419 				      path, dst_path, logged_isize,
5420 				      recursive_logging, inode_only, ctx,
5421 				      &need_log_inode_item);
5422 	if (err)
5423 		goto out_unlock;
5424 
5425 	btrfs_release_path(path);
5426 	btrfs_release_path(dst_path);
5427 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5428 	if (err)
5429 		goto out_unlock;
5430 	xattrs_logged = true;
5431 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5432 		btrfs_release_path(path);
5433 		btrfs_release_path(dst_path);
5434 		err = btrfs_log_holes(trans, root, inode, path);
5435 		if (err)
5436 			goto out_unlock;
5437 	}
5438 log_extents:
5439 	btrfs_release_path(path);
5440 	btrfs_release_path(dst_path);
5441 	if (need_log_inode_item) {
5442 		err = log_inode_item(trans, log, dst_path, inode);
5443 		if (!err && !xattrs_logged) {
5444 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5445 						   dst_path);
5446 			btrfs_release_path(path);
5447 		}
5448 		if (err)
5449 			goto out_unlock;
5450 	}
5451 	if (fast_search) {
5452 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5453 						ctx);
5454 		if (ret) {
5455 			err = ret;
5456 			goto out_unlock;
5457 		}
5458 	} else if (inode_only == LOG_INODE_ALL) {
5459 		struct extent_map *em, *n;
5460 
5461 		write_lock(&em_tree->lock);
5462 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5463 			list_del_init(&em->list);
5464 		write_unlock(&em_tree->lock);
5465 	}
5466 
5467 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5468 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5469 					ctx);
5470 		if (ret) {
5471 			err = ret;
5472 			goto out_unlock;
5473 		}
5474 	}
5475 
5476 	/*
5477 	 * If we are logging that an ancestor inode exists as part of logging a
5478 	 * new name from a link or rename operation, don't mark the inode as
5479 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5480 	 * the fsync considers the inode in the log and doesn't sync the log,
5481 	 * resulting in the ancestor missing after a power failure unless the
5482 	 * log was synced as part of an fsync against any other unrelated inode.
5483 	 * So keep it simple for this case and just don't flag the ancestors as
5484 	 * logged.
5485 	 */
5486 	if (!ctx ||
5487 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5488 	      &inode->vfs_inode != ctx->inode)) {
5489 		spin_lock(&inode->lock);
5490 		inode->logged_trans = trans->transid;
5491 		/*
5492 		 * Don't update last_log_commit if we logged that an inode exists
5493 		 * after it was loaded to memory (full_sync bit set).
5494 		 * This is to prevent data loss when we do a write to the inode,
5495 		 * then the inode gets evicted after all delalloc was flushed,
5496 		 * then we log it exists (due to a rename for example) and then
5497 		 * fsync it. This last fsync would do nothing (not logging the
5498 		 * extents previously written).
5499 		 */
5500 		if (inode_only != LOG_INODE_EXISTS ||
5501 		    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5502 			inode->last_log_commit = inode->last_sub_trans;
5503 		spin_unlock(&inode->lock);
5504 	}
5505 out_unlock:
5506 	mutex_unlock(&inode->log_mutex);
5507 
5508 	btrfs_free_path(path);
5509 	btrfs_free_path(dst_path);
5510 	return err;
5511 }
5512 
5513 /*
5514  * Check if we must fallback to a transaction commit when logging an inode.
5515  * This must be called after logging the inode and is used only in the context
5516  * when fsyncing an inode requires the need to log some other inode - in which
5517  * case we can't lock the i_mutex of each other inode we need to log as that
5518  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5519  * log inodes up or down in the hierarchy) or rename operations for example. So
5520  * we take the log_mutex of the inode after we have logged it and then check for
5521  * its last_unlink_trans value - this is safe because any task setting
5522  * last_unlink_trans must take the log_mutex and it must do this before it does
5523  * the actual unlink operation, so if we do this check before a concurrent task
5524  * sets last_unlink_trans it means we've logged a consistent version/state of
5525  * all the inode items, otherwise we are not sure and must do a transaction
5526  * commit (the concurrent task might have only updated last_unlink_trans before
5527  * we logged the inode or it might have also done the unlink).
5528  */
btrfs_must_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5529 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5530 					  struct btrfs_inode *inode)
5531 {
5532 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5533 	bool ret = false;
5534 
5535 	mutex_lock(&inode->log_mutex);
5536 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5537 		/*
5538 		 * Make sure any commits to the log are forced to be full
5539 		 * commits.
5540 		 */
5541 		btrfs_set_log_full_commit(trans);
5542 		ret = true;
5543 	}
5544 	mutex_unlock(&inode->log_mutex);
5545 
5546 	return ret;
5547 }
5548 
5549 /*
5550  * follow the dentry parent pointers up the chain and see if any
5551  * of the directories in it require a full commit before they can
5552  * be logged.  Returns zero if nothing special needs to be done or 1 if
5553  * a full commit is required.
5554  */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)5555 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5556 					       struct btrfs_inode *inode,
5557 					       struct dentry *parent,
5558 					       struct super_block *sb,
5559 					       u64 last_committed)
5560 {
5561 	int ret = 0;
5562 	struct dentry *old_parent = NULL;
5563 
5564 	/*
5565 	 * for regular files, if its inode is already on disk, we don't
5566 	 * have to worry about the parents at all.  This is because
5567 	 * we can use the last_unlink_trans field to record renames
5568 	 * and other fun in this file.
5569 	 */
5570 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5571 	    inode->generation <= last_committed &&
5572 	    inode->last_unlink_trans <= last_committed)
5573 		goto out;
5574 
5575 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5576 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5577 			goto out;
5578 		inode = BTRFS_I(d_inode(parent));
5579 	}
5580 
5581 	while (1) {
5582 		if (btrfs_must_commit_transaction(trans, inode)) {
5583 			ret = 1;
5584 			break;
5585 		}
5586 
5587 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5588 			break;
5589 
5590 		if (IS_ROOT(parent)) {
5591 			inode = BTRFS_I(d_inode(parent));
5592 			if (btrfs_must_commit_transaction(trans, inode))
5593 				ret = 1;
5594 			break;
5595 		}
5596 
5597 		parent = dget_parent(parent);
5598 		dput(old_parent);
5599 		old_parent = parent;
5600 		inode = BTRFS_I(d_inode(parent));
5601 
5602 	}
5603 	dput(old_parent);
5604 out:
5605 	return ret;
5606 }
5607 
5608 struct btrfs_dir_list {
5609 	u64 ino;
5610 	struct list_head list;
5611 };
5612 
5613 /*
5614  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5615  * details about the why it is needed.
5616  * This is a recursive operation - if an existing dentry corresponds to a
5617  * directory, that directory's new entries are logged too (same behaviour as
5618  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5619  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5620  * complains about the following circular lock dependency / possible deadlock:
5621  *
5622  *        CPU0                                        CPU1
5623  *        ----                                        ----
5624  * lock(&type->i_mutex_dir_key#3/2);
5625  *                                            lock(sb_internal#2);
5626  *                                            lock(&type->i_mutex_dir_key#3/2);
5627  * lock(&sb->s_type->i_mutex_key#14);
5628  *
5629  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5630  * sb_start_intwrite() in btrfs_start_transaction().
5631  * Not locking i_mutex of the inodes is still safe because:
5632  *
5633  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5634  *    that while logging the inode new references (names) are added or removed
5635  *    from the inode, leaving the logged inode item with a link count that does
5636  *    not match the number of logged inode reference items. This is fine because
5637  *    at log replay time we compute the real number of links and correct the
5638  *    link count in the inode item (see replay_one_buffer() and
5639  *    link_to_fixup_dir());
5640  *
5641  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5642  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5643  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5644  *    has a size that doesn't match the sum of the lengths of all the logged
5645  *    names. This does not result in a problem because if a dir_item key is
5646  *    logged but its matching dir_index key is not logged, at log replay time we
5647  *    don't use it to replay the respective name (see replay_one_name()). On the
5648  *    other hand if only the dir_index key ends up being logged, the respective
5649  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5650  *    keys created (see replay_one_name()).
5651  *    The directory's inode item with a wrong i_size is not a problem as well,
5652  *    since we don't use it at log replay time to set the i_size in the inode
5653  *    item of the fs/subvol tree (see overwrite_item()).
5654  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5655 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5656 				struct btrfs_root *root,
5657 				struct btrfs_inode *start_inode,
5658 				struct btrfs_log_ctx *ctx)
5659 {
5660 	struct btrfs_fs_info *fs_info = root->fs_info;
5661 	struct btrfs_root *log = root->log_root;
5662 	struct btrfs_path *path;
5663 	LIST_HEAD(dir_list);
5664 	struct btrfs_dir_list *dir_elem;
5665 	int ret = 0;
5666 
5667 	path = btrfs_alloc_path();
5668 	if (!path)
5669 		return -ENOMEM;
5670 
5671 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5672 	if (!dir_elem) {
5673 		btrfs_free_path(path);
5674 		return -ENOMEM;
5675 	}
5676 	dir_elem->ino = btrfs_ino(start_inode);
5677 	list_add_tail(&dir_elem->list, &dir_list);
5678 
5679 	while (!list_empty(&dir_list)) {
5680 		struct extent_buffer *leaf;
5681 		struct btrfs_key min_key;
5682 		int nritems;
5683 		int i;
5684 
5685 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5686 					    list);
5687 		if (ret)
5688 			goto next_dir_inode;
5689 
5690 		min_key.objectid = dir_elem->ino;
5691 		min_key.type = BTRFS_DIR_ITEM_KEY;
5692 		min_key.offset = 0;
5693 again:
5694 		btrfs_release_path(path);
5695 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5696 		if (ret < 0) {
5697 			goto next_dir_inode;
5698 		} else if (ret > 0) {
5699 			ret = 0;
5700 			goto next_dir_inode;
5701 		}
5702 
5703 process_leaf:
5704 		leaf = path->nodes[0];
5705 		nritems = btrfs_header_nritems(leaf);
5706 		for (i = path->slots[0]; i < nritems; i++) {
5707 			struct btrfs_dir_item *di;
5708 			struct btrfs_key di_key;
5709 			struct inode *di_inode;
5710 			struct btrfs_dir_list *new_dir_elem;
5711 			int log_mode = LOG_INODE_EXISTS;
5712 			int type;
5713 
5714 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5715 			if (min_key.objectid != dir_elem->ino ||
5716 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5717 				goto next_dir_inode;
5718 
5719 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5720 			type = btrfs_dir_type(leaf, di);
5721 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5722 			    type != BTRFS_FT_DIR)
5723 				continue;
5724 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5725 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5726 				continue;
5727 
5728 			btrfs_release_path(path);
5729 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5730 			if (IS_ERR(di_inode)) {
5731 				ret = PTR_ERR(di_inode);
5732 				goto next_dir_inode;
5733 			}
5734 
5735 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5736 				btrfs_add_delayed_iput(di_inode);
5737 				break;
5738 			}
5739 
5740 			ctx->log_new_dentries = false;
5741 			if (type == BTRFS_FT_DIR)
5742 				log_mode = LOG_INODE_ALL;
5743 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5744 					      log_mode, ctx);
5745 			if (!ret &&
5746 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5747 				ret = 1;
5748 			btrfs_add_delayed_iput(di_inode);
5749 			if (ret)
5750 				goto next_dir_inode;
5751 			if (ctx->log_new_dentries) {
5752 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5753 						       GFP_NOFS);
5754 				if (!new_dir_elem) {
5755 					ret = -ENOMEM;
5756 					goto next_dir_inode;
5757 				}
5758 				new_dir_elem->ino = di_key.objectid;
5759 				list_add_tail(&new_dir_elem->list, &dir_list);
5760 			}
5761 			break;
5762 		}
5763 		if (i == nritems) {
5764 			ret = btrfs_next_leaf(log, path);
5765 			if (ret < 0) {
5766 				goto next_dir_inode;
5767 			} else if (ret > 0) {
5768 				ret = 0;
5769 				goto next_dir_inode;
5770 			}
5771 			goto process_leaf;
5772 		}
5773 		if (min_key.offset < (u64)-1) {
5774 			min_key.offset++;
5775 			goto again;
5776 		}
5777 next_dir_inode:
5778 		list_del(&dir_elem->list);
5779 		kfree(dir_elem);
5780 	}
5781 
5782 	btrfs_free_path(path);
5783 	return ret;
5784 }
5785 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)5786 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5787 				 struct btrfs_inode *inode,
5788 				 struct btrfs_log_ctx *ctx)
5789 {
5790 	struct btrfs_fs_info *fs_info = trans->fs_info;
5791 	int ret;
5792 	struct btrfs_path *path;
5793 	struct btrfs_key key;
5794 	struct btrfs_root *root = inode->root;
5795 	const u64 ino = btrfs_ino(inode);
5796 
5797 	path = btrfs_alloc_path();
5798 	if (!path)
5799 		return -ENOMEM;
5800 	path->skip_locking = 1;
5801 	path->search_commit_root = 1;
5802 
5803 	key.objectid = ino;
5804 	key.type = BTRFS_INODE_REF_KEY;
5805 	key.offset = 0;
5806 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5807 	if (ret < 0)
5808 		goto out;
5809 
5810 	while (true) {
5811 		struct extent_buffer *leaf = path->nodes[0];
5812 		int slot = path->slots[0];
5813 		u32 cur_offset = 0;
5814 		u32 item_size;
5815 		unsigned long ptr;
5816 
5817 		if (slot >= btrfs_header_nritems(leaf)) {
5818 			ret = btrfs_next_leaf(root, path);
5819 			if (ret < 0)
5820 				goto out;
5821 			else if (ret > 0)
5822 				break;
5823 			continue;
5824 		}
5825 
5826 		btrfs_item_key_to_cpu(leaf, &key, slot);
5827 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5828 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5829 			break;
5830 
5831 		item_size = btrfs_item_size_nr(leaf, slot);
5832 		ptr = btrfs_item_ptr_offset(leaf, slot);
5833 		while (cur_offset < item_size) {
5834 			struct btrfs_key inode_key;
5835 			struct inode *dir_inode;
5836 
5837 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5838 			inode_key.offset = 0;
5839 
5840 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5841 				struct btrfs_inode_extref *extref;
5842 
5843 				extref = (struct btrfs_inode_extref *)
5844 					(ptr + cur_offset);
5845 				inode_key.objectid = btrfs_inode_extref_parent(
5846 					leaf, extref);
5847 				cur_offset += sizeof(*extref);
5848 				cur_offset += btrfs_inode_extref_name_len(leaf,
5849 					extref);
5850 			} else {
5851 				inode_key.objectid = key.offset;
5852 				cur_offset = item_size;
5853 			}
5854 
5855 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5856 					       root);
5857 			/*
5858 			 * If the parent inode was deleted, return an error to
5859 			 * fallback to a transaction commit. This is to prevent
5860 			 * getting an inode that was moved from one parent A to
5861 			 * a parent B, got its former parent A deleted and then
5862 			 * it got fsync'ed, from existing at both parents after
5863 			 * a log replay (and the old parent still existing).
5864 			 * Example:
5865 			 *
5866 			 * mkdir /mnt/A
5867 			 * mkdir /mnt/B
5868 			 * touch /mnt/B/bar
5869 			 * sync
5870 			 * mv /mnt/B/bar /mnt/A/bar
5871 			 * mv -T /mnt/A /mnt/B
5872 			 * fsync /mnt/B/bar
5873 			 * <power fail>
5874 			 *
5875 			 * If we ignore the old parent B which got deleted,
5876 			 * after a log replay we would have file bar linked
5877 			 * at both parents and the old parent B would still
5878 			 * exist.
5879 			 */
5880 			if (IS_ERR(dir_inode)) {
5881 				ret = PTR_ERR(dir_inode);
5882 				goto out;
5883 			}
5884 
5885 			if (ctx)
5886 				ctx->log_new_dentries = false;
5887 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5888 					      LOG_INODE_ALL, ctx);
5889 			if (!ret &&
5890 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5891 				ret = 1;
5892 			if (!ret && ctx && ctx->log_new_dentries)
5893 				ret = log_new_dir_dentries(trans, root,
5894 						   BTRFS_I(dir_inode), ctx);
5895 			btrfs_add_delayed_iput(dir_inode);
5896 			if (ret)
5897 				goto out;
5898 		}
5899 		path->slots[0]++;
5900 	}
5901 	ret = 0;
5902 out:
5903 	btrfs_free_path(path);
5904 	return ret;
5905 }
5906 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5907 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5908 			     struct btrfs_root *root,
5909 			     struct btrfs_path *path,
5910 			     struct btrfs_log_ctx *ctx)
5911 {
5912 	struct btrfs_key found_key;
5913 
5914 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5915 
5916 	while (true) {
5917 		struct btrfs_fs_info *fs_info = root->fs_info;
5918 		const u64 last_committed = fs_info->last_trans_committed;
5919 		struct extent_buffer *leaf = path->nodes[0];
5920 		int slot = path->slots[0];
5921 		struct btrfs_key search_key;
5922 		struct inode *inode;
5923 		u64 ino;
5924 		int ret = 0;
5925 
5926 		btrfs_release_path(path);
5927 
5928 		ino = found_key.offset;
5929 
5930 		search_key.objectid = found_key.offset;
5931 		search_key.type = BTRFS_INODE_ITEM_KEY;
5932 		search_key.offset = 0;
5933 		inode = btrfs_iget(fs_info->sb, ino, root);
5934 		if (IS_ERR(inode))
5935 			return PTR_ERR(inode);
5936 
5937 		if (BTRFS_I(inode)->generation > last_committed)
5938 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5939 					      LOG_INODE_EXISTS, ctx);
5940 		btrfs_add_delayed_iput(inode);
5941 		if (ret)
5942 			return ret;
5943 
5944 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5945 			break;
5946 
5947 		search_key.type = BTRFS_INODE_REF_KEY;
5948 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5949 		if (ret < 0)
5950 			return ret;
5951 
5952 		leaf = path->nodes[0];
5953 		slot = path->slots[0];
5954 		if (slot >= btrfs_header_nritems(leaf)) {
5955 			ret = btrfs_next_leaf(root, path);
5956 			if (ret < 0)
5957 				return ret;
5958 			else if (ret > 0)
5959 				return -ENOENT;
5960 			leaf = path->nodes[0];
5961 			slot = path->slots[0];
5962 		}
5963 
5964 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5965 		if (found_key.objectid != search_key.objectid ||
5966 		    found_key.type != BTRFS_INODE_REF_KEY)
5967 			return -ENOENT;
5968 	}
5969 	return 0;
5970 }
5971 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)5972 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5973 				  struct btrfs_inode *inode,
5974 				  struct dentry *parent,
5975 				  struct btrfs_log_ctx *ctx)
5976 {
5977 	struct btrfs_root *root = inode->root;
5978 	struct btrfs_fs_info *fs_info = root->fs_info;
5979 	struct dentry *old_parent = NULL;
5980 	struct super_block *sb = inode->vfs_inode.i_sb;
5981 	int ret = 0;
5982 
5983 	while (true) {
5984 		if (!parent || d_really_is_negative(parent) ||
5985 		    sb != parent->d_sb)
5986 			break;
5987 
5988 		inode = BTRFS_I(d_inode(parent));
5989 		if (root != inode->root)
5990 			break;
5991 
5992 		if (inode->generation > fs_info->last_trans_committed) {
5993 			ret = btrfs_log_inode(trans, root, inode,
5994 					      LOG_INODE_EXISTS, ctx);
5995 			if (ret)
5996 				break;
5997 		}
5998 		if (IS_ROOT(parent))
5999 			break;
6000 
6001 		parent = dget_parent(parent);
6002 		dput(old_parent);
6003 		old_parent = parent;
6004 	}
6005 	dput(old_parent);
6006 
6007 	return ret;
6008 }
6009 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6010 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6011 				 struct btrfs_inode *inode,
6012 				 struct dentry *parent,
6013 				 struct btrfs_log_ctx *ctx)
6014 {
6015 	struct btrfs_root *root = inode->root;
6016 	const u64 ino = btrfs_ino(inode);
6017 	struct btrfs_path *path;
6018 	struct btrfs_key search_key;
6019 	int ret;
6020 
6021 	/*
6022 	 * For a single hard link case, go through a fast path that does not
6023 	 * need to iterate the fs/subvolume tree.
6024 	 */
6025 	if (inode->vfs_inode.i_nlink < 2)
6026 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6027 
6028 	path = btrfs_alloc_path();
6029 	if (!path)
6030 		return -ENOMEM;
6031 
6032 	search_key.objectid = ino;
6033 	search_key.type = BTRFS_INODE_REF_KEY;
6034 	search_key.offset = 0;
6035 again:
6036 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6037 	if (ret < 0)
6038 		goto out;
6039 	if (ret == 0)
6040 		path->slots[0]++;
6041 
6042 	while (true) {
6043 		struct extent_buffer *leaf = path->nodes[0];
6044 		int slot = path->slots[0];
6045 		struct btrfs_key found_key;
6046 
6047 		if (slot >= btrfs_header_nritems(leaf)) {
6048 			ret = btrfs_next_leaf(root, path);
6049 			if (ret < 0)
6050 				goto out;
6051 			else if (ret > 0)
6052 				break;
6053 			continue;
6054 		}
6055 
6056 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6057 		if (found_key.objectid != ino ||
6058 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6059 			break;
6060 
6061 		/*
6062 		 * Don't deal with extended references because they are rare
6063 		 * cases and too complex to deal with (we would need to keep
6064 		 * track of which subitem we are processing for each item in
6065 		 * this loop, etc). So just return some error to fallback to
6066 		 * a transaction commit.
6067 		 */
6068 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6069 			ret = -EMLINK;
6070 			goto out;
6071 		}
6072 
6073 		/*
6074 		 * Logging ancestors needs to do more searches on the fs/subvol
6075 		 * tree, so it releases the path as needed to avoid deadlocks.
6076 		 * Keep track of the last inode ref key and resume from that key
6077 		 * after logging all new ancestors for the current hard link.
6078 		 */
6079 		memcpy(&search_key, &found_key, sizeof(search_key));
6080 
6081 		ret = log_new_ancestors(trans, root, path, ctx);
6082 		if (ret)
6083 			goto out;
6084 		btrfs_release_path(path);
6085 		goto again;
6086 	}
6087 	ret = 0;
6088 out:
6089 	btrfs_free_path(path);
6090 	return ret;
6091 }
6092 
6093 /*
6094  * helper function around btrfs_log_inode to make sure newly created
6095  * parent directories also end up in the log.  A minimal inode and backref
6096  * only logging is done of any parent directories that are older than
6097  * the last committed transaction
6098  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)6099 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6100 				  struct btrfs_inode *inode,
6101 				  struct dentry *parent,
6102 				  int inode_only,
6103 				  struct btrfs_log_ctx *ctx)
6104 {
6105 	struct btrfs_root *root = inode->root;
6106 	struct btrfs_fs_info *fs_info = root->fs_info;
6107 	struct super_block *sb;
6108 	int ret = 0;
6109 	u64 last_committed = fs_info->last_trans_committed;
6110 	bool log_dentries = false;
6111 
6112 	sb = inode->vfs_inode.i_sb;
6113 
6114 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6115 		ret = 1;
6116 		goto end_no_trans;
6117 	}
6118 
6119 	/*
6120 	 * The prev transaction commit doesn't complete, we need do
6121 	 * full commit by ourselves.
6122 	 */
6123 	if (fs_info->last_trans_log_full_commit >
6124 	    fs_info->last_trans_committed) {
6125 		ret = 1;
6126 		goto end_no_trans;
6127 	}
6128 
6129 	if (btrfs_root_refs(&root->root_item) == 0) {
6130 		ret = 1;
6131 		goto end_no_trans;
6132 	}
6133 
6134 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6135 			last_committed);
6136 	if (ret)
6137 		goto end_no_trans;
6138 
6139 	/*
6140 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6141 	 * (since logging them is pointless, a link count of 0 means they
6142 	 * will never be accessible).
6143 	 */
6144 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6145 	     list_empty(&ctx->ordered_extents)) ||
6146 	    inode->vfs_inode.i_nlink == 0) {
6147 		ret = BTRFS_NO_LOG_SYNC;
6148 		goto end_no_trans;
6149 	}
6150 
6151 	ret = start_log_trans(trans, root, ctx);
6152 	if (ret)
6153 		goto end_no_trans;
6154 
6155 	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6156 	if (ret)
6157 		goto end_trans;
6158 
6159 	/*
6160 	 * for regular files, if its inode is already on disk, we don't
6161 	 * have to worry about the parents at all.  This is because
6162 	 * we can use the last_unlink_trans field to record renames
6163 	 * and other fun in this file.
6164 	 */
6165 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6166 	    inode->generation <= last_committed &&
6167 	    inode->last_unlink_trans <= last_committed) {
6168 		ret = 0;
6169 		goto end_trans;
6170 	}
6171 
6172 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6173 		log_dentries = true;
6174 
6175 	/*
6176 	 * On unlink we must make sure all our current and old parent directory
6177 	 * inodes are fully logged. This is to prevent leaving dangling
6178 	 * directory index entries in directories that were our parents but are
6179 	 * not anymore. Not doing this results in old parent directory being
6180 	 * impossible to delete after log replay (rmdir will always fail with
6181 	 * error -ENOTEMPTY).
6182 	 *
6183 	 * Example 1:
6184 	 *
6185 	 * mkdir testdir
6186 	 * touch testdir/foo
6187 	 * ln testdir/foo testdir/bar
6188 	 * sync
6189 	 * unlink testdir/bar
6190 	 * xfs_io -c fsync testdir/foo
6191 	 * <power failure>
6192 	 * mount fs, triggers log replay
6193 	 *
6194 	 * If we don't log the parent directory (testdir), after log replay the
6195 	 * directory still has an entry pointing to the file inode using the bar
6196 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6197 	 * the file inode has a link count of 1.
6198 	 *
6199 	 * Example 2:
6200 	 *
6201 	 * mkdir testdir
6202 	 * touch foo
6203 	 * ln foo testdir/foo2
6204 	 * ln foo testdir/foo3
6205 	 * sync
6206 	 * unlink testdir/foo3
6207 	 * xfs_io -c fsync foo
6208 	 * <power failure>
6209 	 * mount fs, triggers log replay
6210 	 *
6211 	 * Similar as the first example, after log replay the parent directory
6212 	 * testdir still has an entry pointing to the inode file with name foo3
6213 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6214 	 * and has a link count of 2.
6215 	 */
6216 	if (inode->last_unlink_trans > last_committed) {
6217 		ret = btrfs_log_all_parents(trans, inode, ctx);
6218 		if (ret)
6219 			goto end_trans;
6220 	}
6221 
6222 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6223 	if (ret)
6224 		goto end_trans;
6225 
6226 	if (log_dentries)
6227 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6228 	else
6229 		ret = 0;
6230 end_trans:
6231 	if (ret < 0) {
6232 		btrfs_set_log_full_commit(trans);
6233 		ret = 1;
6234 	}
6235 
6236 	if (ret)
6237 		btrfs_remove_log_ctx(root, ctx);
6238 	btrfs_end_log_trans(root);
6239 end_no_trans:
6240 	return ret;
6241 }
6242 
6243 /*
6244  * it is not safe to log dentry if the chunk root has added new
6245  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6246  * If this returns 1, you must commit the transaction to safely get your
6247  * data on disk.
6248  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)6249 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6250 			  struct dentry *dentry,
6251 			  struct btrfs_log_ctx *ctx)
6252 {
6253 	struct dentry *parent = dget_parent(dentry);
6254 	int ret;
6255 
6256 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6257 				     LOG_INODE_ALL, ctx);
6258 	dput(parent);
6259 
6260 	return ret;
6261 }
6262 
6263 /*
6264  * should be called during mount to recover any replay any log trees
6265  * from the FS
6266  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)6267 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6268 {
6269 	int ret;
6270 	struct btrfs_path *path;
6271 	struct btrfs_trans_handle *trans;
6272 	struct btrfs_key key;
6273 	struct btrfs_key found_key;
6274 	struct btrfs_root *log;
6275 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6276 	struct walk_control wc = {
6277 		.process_func = process_one_buffer,
6278 		.stage = LOG_WALK_PIN_ONLY,
6279 	};
6280 
6281 	path = btrfs_alloc_path();
6282 	if (!path)
6283 		return -ENOMEM;
6284 
6285 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6286 
6287 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6288 	if (IS_ERR(trans)) {
6289 		ret = PTR_ERR(trans);
6290 		goto error;
6291 	}
6292 
6293 	wc.trans = trans;
6294 	wc.pin = 1;
6295 
6296 	ret = walk_log_tree(trans, log_root_tree, &wc);
6297 	if (ret) {
6298 		btrfs_handle_fs_error(fs_info, ret,
6299 			"Failed to pin buffers while recovering log root tree.");
6300 		goto error;
6301 	}
6302 
6303 again:
6304 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6305 	key.offset = (u64)-1;
6306 	key.type = BTRFS_ROOT_ITEM_KEY;
6307 
6308 	while (1) {
6309 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6310 
6311 		if (ret < 0) {
6312 			btrfs_handle_fs_error(fs_info, ret,
6313 				    "Couldn't find tree log root.");
6314 			goto error;
6315 		}
6316 		if (ret > 0) {
6317 			if (path->slots[0] == 0)
6318 				break;
6319 			path->slots[0]--;
6320 		}
6321 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6322 				      path->slots[0]);
6323 		btrfs_release_path(path);
6324 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6325 			break;
6326 
6327 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6328 		if (IS_ERR(log)) {
6329 			ret = PTR_ERR(log);
6330 			btrfs_handle_fs_error(fs_info, ret,
6331 				    "Couldn't read tree log root.");
6332 			goto error;
6333 		}
6334 
6335 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6336 						   true);
6337 		if (IS_ERR(wc.replay_dest)) {
6338 			ret = PTR_ERR(wc.replay_dest);
6339 
6340 			/*
6341 			 * We didn't find the subvol, likely because it was
6342 			 * deleted.  This is ok, simply skip this log and go to
6343 			 * the next one.
6344 			 *
6345 			 * We need to exclude the root because we can't have
6346 			 * other log replays overwriting this log as we'll read
6347 			 * it back in a few more times.  This will keep our
6348 			 * block from being modified, and we'll just bail for
6349 			 * each subsequent pass.
6350 			 */
6351 			if (ret == -ENOENT)
6352 				ret = btrfs_pin_extent_for_log_replay(trans,
6353 							log->node->start,
6354 							log->node->len);
6355 			btrfs_put_root(log);
6356 
6357 			if (!ret)
6358 				goto next;
6359 			btrfs_handle_fs_error(fs_info, ret,
6360 				"Couldn't read target root for tree log recovery.");
6361 			goto error;
6362 		}
6363 
6364 		wc.replay_dest->log_root = log;
6365 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6366 		ret = walk_log_tree(trans, log, &wc);
6367 
6368 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6369 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6370 						      path);
6371 		}
6372 
6373 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6374 			struct btrfs_root *root = wc.replay_dest;
6375 
6376 			btrfs_release_path(path);
6377 
6378 			/*
6379 			 * We have just replayed everything, and the highest
6380 			 * objectid of fs roots probably has changed in case
6381 			 * some inode_item's got replayed.
6382 			 *
6383 			 * root->objectid_mutex is not acquired as log replay
6384 			 * could only happen during mount.
6385 			 */
6386 			ret = btrfs_find_highest_objectid(root,
6387 						  &root->highest_objectid);
6388 		}
6389 
6390 		wc.replay_dest->log_root = NULL;
6391 		btrfs_put_root(wc.replay_dest);
6392 		btrfs_put_root(log);
6393 
6394 		if (ret)
6395 			goto error;
6396 next:
6397 		if (found_key.offset == 0)
6398 			break;
6399 		key.offset = found_key.offset - 1;
6400 	}
6401 	btrfs_release_path(path);
6402 
6403 	/* step one is to pin it all, step two is to replay just inodes */
6404 	if (wc.pin) {
6405 		wc.pin = 0;
6406 		wc.process_func = replay_one_buffer;
6407 		wc.stage = LOG_WALK_REPLAY_INODES;
6408 		goto again;
6409 	}
6410 	/* step three is to replay everything */
6411 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6412 		wc.stage++;
6413 		goto again;
6414 	}
6415 
6416 	btrfs_free_path(path);
6417 
6418 	/* step 4: commit the transaction, which also unpins the blocks */
6419 	ret = btrfs_commit_transaction(trans);
6420 	if (ret)
6421 		return ret;
6422 
6423 	log_root_tree->log_root = NULL;
6424 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6425 	btrfs_put_root(log_root_tree);
6426 
6427 	return 0;
6428 error:
6429 	if (wc.trans)
6430 		btrfs_end_transaction(wc.trans);
6431 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6432 	btrfs_free_path(path);
6433 	return ret;
6434 }
6435 
6436 /*
6437  * there are some corner cases where we want to force a full
6438  * commit instead of allowing a directory to be logged.
6439  *
6440  * They revolve around files there were unlinked from the directory, and
6441  * this function updates the parent directory so that a full commit is
6442  * properly done if it is fsync'd later after the unlinks are done.
6443  *
6444  * Must be called before the unlink operations (updates to the subvolume tree,
6445  * inodes, etc) are done.
6446  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)6447 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6448 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6449 			     int for_rename)
6450 {
6451 	/*
6452 	 * when we're logging a file, if it hasn't been renamed
6453 	 * or unlinked, and its inode is fully committed on disk,
6454 	 * we don't have to worry about walking up the directory chain
6455 	 * to log its parents.
6456 	 *
6457 	 * So, we use the last_unlink_trans field to put this transid
6458 	 * into the file.  When the file is logged we check it and
6459 	 * don't log the parents if the file is fully on disk.
6460 	 */
6461 	mutex_lock(&inode->log_mutex);
6462 	inode->last_unlink_trans = trans->transid;
6463 	mutex_unlock(&inode->log_mutex);
6464 
6465 	/*
6466 	 * if this directory was already logged any new
6467 	 * names for this file/dir will get recorded
6468 	 */
6469 	if (dir->logged_trans == trans->transid)
6470 		return;
6471 
6472 	/*
6473 	 * if the inode we're about to unlink was logged,
6474 	 * the log will be properly updated for any new names
6475 	 */
6476 	if (inode->logged_trans == trans->transid)
6477 		return;
6478 
6479 	/*
6480 	 * when renaming files across directories, if the directory
6481 	 * there we're unlinking from gets fsync'd later on, there's
6482 	 * no way to find the destination directory later and fsync it
6483 	 * properly.  So, we have to be conservative and force commits
6484 	 * so the new name gets discovered.
6485 	 */
6486 	if (for_rename)
6487 		goto record;
6488 
6489 	/* we can safely do the unlink without any special recording */
6490 	return;
6491 
6492 record:
6493 	mutex_lock(&dir->log_mutex);
6494 	dir->last_unlink_trans = trans->transid;
6495 	mutex_unlock(&dir->log_mutex);
6496 }
6497 
6498 /*
6499  * Make sure that if someone attempts to fsync the parent directory of a deleted
6500  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6501  * that after replaying the log tree of the parent directory's root we will not
6502  * see the snapshot anymore and at log replay time we will not see any log tree
6503  * corresponding to the deleted snapshot's root, which could lead to replaying
6504  * it after replaying the log tree of the parent directory (which would replay
6505  * the snapshot delete operation).
6506  *
6507  * Must be called before the actual snapshot destroy operation (updates to the
6508  * parent root and tree of tree roots trees, etc) are done.
6509  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)6510 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6511 				   struct btrfs_inode *dir)
6512 {
6513 	mutex_lock(&dir->log_mutex);
6514 	dir->last_unlink_trans = trans->transid;
6515 	mutex_unlock(&dir->log_mutex);
6516 }
6517 
6518 /*
6519  * Call this after adding a new name for a file and it will properly
6520  * update the log to reflect the new name.
6521  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_inode * old_dir,struct dentry * parent)6522 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6523 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6524 			struct dentry *parent)
6525 {
6526 	struct btrfs_log_ctx ctx;
6527 
6528 	/*
6529 	 * this will force the logging code to walk the dentry chain
6530 	 * up for the file
6531 	 */
6532 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6533 		inode->last_unlink_trans = trans->transid;
6534 
6535 	/*
6536 	 * if this inode hasn't been logged and directory we're renaming it
6537 	 * from hasn't been logged, we don't need to log it
6538 	 */
6539 	if (!inode_logged(trans, inode) &&
6540 	    (!old_dir || !inode_logged(trans, old_dir)))
6541 		return;
6542 
6543 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6544 	ctx.logging_new_name = true;
6545 	/*
6546 	 * We don't care about the return value. If we fail to log the new name
6547 	 * then we know the next attempt to sync the log will fallback to a full
6548 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6549 	 * we don't need to worry about getting a log committed that has an
6550 	 * inconsistent state after a rename operation.
6551 	 */
6552 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6553 }
6554 
6555