• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * USB RX handling
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  *   * Redistributions of source code must retain the above copyright
13  *     notice, this list of conditions and the following disclaimer.
14  *   * Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in
16  *     the documentation and/or other materials provided with the
17  *     distribution.
18  *   * Neither the name of Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived
20  *     from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Intel Corporation <linux-wimax@intel.com>
36  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37  *  - Initial implementation
38  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39  *  - Use skb_clone(), break up processing in chunks
40  *  - Split transport/device specific
41  *  - Make buffer size dynamic to exert less memory pressure
42  *
43  *
44  * This handles the RX path on USB.
45  *
46  * When a notification is received that says 'there is RX data ready',
47  * we call i2400mu_rx_kick(); that wakes up the RX kthread, which
48  * reads a buffer from USB and passes it to i2400m_rx() in the generic
49  * handling code. The RX buffer has an specific format that is
50  * described in rx.c.
51  *
52  * We use a kernel thread in a loop because:
53  *
54  *  - we want to be able to call the USB power management get/put
55  *    functions (blocking) before each transaction.
56  *
57  *  - We might get a lot of notifications and we don't want to submit
58  *    a zillion reads; by serializing, we are throttling.
59  *
60  *  - RX data processing can get heavy enough so that it is not
61  *    appropriate for doing it in the USB callback; thus we run it in a
62  *    process context.
63  *
64  * We provide a read buffer of an arbitrary size (short of a page); if
65  * the callback reports -EOVERFLOW, it means it was too small, so we
66  * just double the size and retry (being careful to append, as
67  * sometimes the device provided some data). Every now and then we
68  * check if the average packet size is smaller than the current packet
69  * size and if so, we halve it. At the end, the size of the
70  * preallocated buffer should be following the average received
71  * transaction size, adapting dynamically to it.
72  *
73  * ROADMAP
74  *
75  * i2400mu_rx_kick()		   Called from notif.c when we get a
76  *   			           'data ready' notification
77  * i2400mu_rxd()                   Kernel RX daemon
78  *   i2400mu_rx()                  Receive USB data
79  *   i2400m_rx()                   Send data to generic i2400m RX handling
80  *
81  * i2400mu_rx_setup()              called from i2400mu_bus_dev_start()
82  *
83  * i2400mu_rx_release()            called from i2400mu_bus_dev_stop()
84  */
85 #include <linux/workqueue.h>
86 #include <linux/slab.h>
87 #include <linux/usb.h>
88 #include "i2400m-usb.h"
89 
90 
91 #define D_SUBMODULE rx
92 #include "usb-debug-levels.h"
93 
94 /*
95  * Dynamic RX size
96  *
97  * We can't let the rx_size be a multiple of 512 bytes (the RX
98  * endpoint's max packet size). On some USB host controllers (we
99  * haven't been able to fully characterize which), if the device is
100  * about to send (for example) X bytes and we only post a buffer to
101  * receive n*512, it will fail to mark that as babble (so that
102  * i2400mu_rx() [case -EOVERFLOW] can resize the buffer and get the
103  * rest).
104  *
105  * So on growing or shrinking, if it is a multiple of the
106  * maxpacketsize, we remove some (instead of incresing some, so in a
107  * buddy allocator we try to waste less space).
108  *
109  * Note we also need a hook for this on i2400mu_rx() -- when we do the
110  * first read, we are sure we won't hit this spot because
111  * i240mm->rx_size has been set properly. However, if we have to
112  * double because of -EOVERFLOW, when we launch the read to get the
113  * rest of the data, we *have* to make sure that also is not a
114  * multiple of the max_pkt_size.
115  */
116 
117 static
i2400mu_rx_size_grow(struct i2400mu * i2400mu)118 size_t i2400mu_rx_size_grow(struct i2400mu *i2400mu)
119 {
120 	struct device *dev = &i2400mu->usb_iface->dev;
121 	size_t rx_size;
122 	const size_t max_pkt_size = 512;
123 
124 	rx_size = 2 * i2400mu->rx_size;
125 	if (rx_size % max_pkt_size == 0) {
126 		rx_size -= 8;
127 		d_printf(1, dev,
128 			 "RX: expected size grew to %zu [adjusted -8] "
129 			 "from %zu\n",
130 			 rx_size, i2400mu->rx_size);
131 	} else
132 		d_printf(1, dev,
133 			 "RX: expected size grew to %zu from %zu\n",
134 			 rx_size, i2400mu->rx_size);
135 	return rx_size;
136 }
137 
138 
139 static
i2400mu_rx_size_maybe_shrink(struct i2400mu * i2400mu)140 void i2400mu_rx_size_maybe_shrink(struct i2400mu *i2400mu)
141 {
142 	const size_t max_pkt_size = 512;
143 	struct device *dev = &i2400mu->usb_iface->dev;
144 
145 	if (unlikely(i2400mu->rx_size_cnt >= 100
146 		     && i2400mu->rx_size_auto_shrink)) {
147 		size_t avg_rx_size =
148 			i2400mu->rx_size_acc / i2400mu->rx_size_cnt;
149 		size_t new_rx_size = i2400mu->rx_size / 2;
150 		if (avg_rx_size < new_rx_size) {
151 			if (new_rx_size % max_pkt_size == 0) {
152 				new_rx_size -= 8;
153 				d_printf(1, dev,
154 					 "RX: expected size shrank to %zu "
155 					 "[adjusted -8] from %zu\n",
156 					 new_rx_size, i2400mu->rx_size);
157 			} else
158 				d_printf(1, dev,
159 					 "RX: expected size shrank to %zu "
160 					 "from %zu\n",
161 					 new_rx_size, i2400mu->rx_size);
162 			i2400mu->rx_size = new_rx_size;
163 			i2400mu->rx_size_cnt = 0;
164 			i2400mu->rx_size_acc = i2400mu->rx_size;
165 		}
166 	}
167 }
168 
169 /*
170  * Receive a message with payloads from the USB bus into an skb
171  *
172  * @i2400mu: USB device descriptor
173  * @rx_skb: skb where to place the received message
174  *
175  * Deals with all the USB-specifics of receiving, dynamically
176  * increasing the buffer size if so needed. Returns the payload in the
177  * skb, ready to process. On a zero-length packet, we retry.
178  *
179  * On soft USB errors, we retry (until they become too frequent and
180  * then are promoted to hard); on hard USB errors, we reset the
181  * device. On other errors (skb realloacation, we just drop it and
182  * hope for the next invocation to solve it).
183  *
184  * Returns: pointer to the skb if ok, ERR_PTR on error.
185  *   NOTE: this function might realloc the skb (if it is too small),
186  *   so always update with the one returned.
187  *   ERR_PTR() is < 0 on error.
188  *   Will return NULL if it cannot reallocate -- this can be
189  *   considered a transient retryable error.
190  */
191 static
i2400mu_rx(struct i2400mu * i2400mu,struct sk_buff * rx_skb)192 struct sk_buff *i2400mu_rx(struct i2400mu *i2400mu, struct sk_buff *rx_skb)
193 {
194 	int result = 0;
195 	struct device *dev = &i2400mu->usb_iface->dev;
196 	int usb_pipe, read_size, rx_size, do_autopm;
197 	struct usb_endpoint_descriptor *epd;
198 	const size_t max_pkt_size = 512;
199 
200 	d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
201 	do_autopm = atomic_read(&i2400mu->do_autopm);
202 	result = do_autopm ?
203 		usb_autopm_get_interface(i2400mu->usb_iface) : 0;
204 	if (result < 0) {
205 		dev_err(dev, "RX: can't get autopm: %d\n", result);
206 		do_autopm = 0;
207 	}
208 	epd = usb_get_epd(i2400mu->usb_iface, i2400mu->endpoint_cfg.bulk_in);
209 	usb_pipe = usb_rcvbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress);
210 retry:
211 	rx_size = skb_end_pointer(rx_skb) - rx_skb->data - rx_skb->len;
212 	if (unlikely(rx_size % max_pkt_size == 0)) {
213 		rx_size -= 8;
214 		d_printf(1, dev, "RX: rx_size adapted to %d [-8]\n", rx_size);
215 	}
216 	result = usb_bulk_msg(
217 		i2400mu->usb_dev, usb_pipe, rx_skb->data + rx_skb->len,
218 		rx_size, &read_size, 200);
219 	usb_mark_last_busy(i2400mu->usb_dev);
220 	switch (result) {
221 	case 0:
222 		if (read_size == 0)
223 			goto retry;	/* ZLP, just resubmit */
224 		skb_put(rx_skb, read_size);
225 		break;
226 	case -EPIPE:
227 		/*
228 		 * Stall -- maybe the device is choking with our
229 		 * requests. Clear it and give it some time. If they
230 		 * happen to often, it might be another symptom, so we
231 		 * reset.
232 		 *
233 		 * No error handling for usb_clear_halt(0; if it
234 		 * works, the retry works; if it fails, this switch
235 		 * does the error handling for us.
236 		 */
237 		if (edc_inc(&i2400mu->urb_edc,
238 			    10 * EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
239 			dev_err(dev, "BM-CMD: too many stalls in "
240 				"URB; resetting device\n");
241 			goto do_reset;
242 		}
243 		usb_clear_halt(i2400mu->usb_dev, usb_pipe);
244 		msleep(10);	/* give the device some time */
245 		goto retry;
246 	case -EINVAL:			/* while removing driver */
247 	case -ENODEV:			/* dev disconnect ... */
248 	case -ENOENT:			/* just ignore it */
249 	case -ESHUTDOWN:
250 	case -ECONNRESET:
251 		break;
252 	case -EOVERFLOW: {		/* too small, reallocate */
253 		struct sk_buff *new_skb;
254 		rx_size = i2400mu_rx_size_grow(i2400mu);
255 		if (rx_size <= (1 << 16))	/* cap it */
256 			i2400mu->rx_size = rx_size;
257 		else if (printk_ratelimit()) {
258 			dev_err(dev, "BUG? rx_size up to %d\n", rx_size);
259 			result = -EINVAL;
260 			goto out;
261 		}
262 		skb_put(rx_skb, read_size);
263 		new_skb = skb_copy_expand(rx_skb, 0, rx_size - rx_skb->len,
264 					  GFP_KERNEL);
265 		if (new_skb == NULL) {
266 			kfree_skb(rx_skb);
267 			rx_skb = NULL;
268 			goto out;	/* drop it...*/
269 		}
270 		kfree_skb(rx_skb);
271 		rx_skb = new_skb;
272 		i2400mu->rx_size_cnt = 0;
273 		i2400mu->rx_size_acc = i2400mu->rx_size;
274 		d_printf(1, dev, "RX: size changed to %d, received %d, "
275 			 "copied %d, capacity %ld\n",
276 			 rx_size, read_size, rx_skb->len,
277 			 (long) skb_end_offset(new_skb));
278 		goto retry;
279 	}
280 		/* In most cases, it happens due to the hardware scheduling a
281 		 * read when there was no data - unfortunately, we have no way
282 		 * to tell this timeout from a USB timeout. So we just ignore
283 		 * it. */
284 	case -ETIMEDOUT:
285 		dev_err(dev, "RX: timeout: %d\n", result);
286 		result = 0;
287 		break;
288 	default:			/* Any error */
289 		if (edc_inc(&i2400mu->urb_edc,
290 			    EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME))
291 			goto error_reset;
292 		dev_err(dev, "RX: error receiving URB: %d, retrying\n", result);
293 		goto retry;
294 	}
295 out:
296 	if (do_autopm)
297 		usb_autopm_put_interface(i2400mu->usb_iface);
298 	d_fnend(4, dev, "(i2400mu %p) = %p\n", i2400mu, rx_skb);
299 	return rx_skb;
300 
301 error_reset:
302 	dev_err(dev, "RX: maximum errors in URB exceeded; "
303 		"resetting device\n");
304 do_reset:
305 	usb_queue_reset_device(i2400mu->usb_iface);
306 	rx_skb = ERR_PTR(result);
307 	goto out;
308 }
309 
310 
311 /*
312  * Kernel thread for USB reception of data
313  *
314  * This thread waits for a kick; once kicked, it will allocate an skb
315  * and receive a single message to it from USB (using
316  * i2400mu_rx()). Once received, it is passed to the generic i2400m RX
317  * code for processing.
318  *
319  * When done processing, it runs some dirty statistics to verify if
320  * the last 100 messages received were smaller than half of the
321  * current RX buffer size. In that case, the RX buffer size is
322  * halved. This will helps lowering the pressure on the memory
323  * allocator.
324  *
325  * Hard errors force the thread to exit.
326  */
327 static
i2400mu_rxd(void * _i2400mu)328 int i2400mu_rxd(void *_i2400mu)
329 {
330 	int result = 0;
331 	struct i2400mu *i2400mu = _i2400mu;
332 	struct i2400m *i2400m = &i2400mu->i2400m;
333 	struct device *dev = &i2400mu->usb_iface->dev;
334 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
335 	size_t pending;
336 	int rx_size;
337 	struct sk_buff *rx_skb;
338 	unsigned long flags;
339 
340 	d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
341 	spin_lock_irqsave(&i2400m->rx_lock, flags);
342 	BUG_ON(i2400mu->rx_kthread != NULL);
343 	i2400mu->rx_kthread = current;
344 	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
345 	while (1) {
346 		d_printf(2, dev, "RX: waiting for messages\n");
347 		pending = 0;
348 		wait_event_interruptible(
349 			i2400mu->rx_wq,
350 			(kthread_should_stop()	/* check this first! */
351 			 || (pending = atomic_read(&i2400mu->rx_pending_count)))
352 			);
353 		if (kthread_should_stop())
354 			break;
355 		if (pending == 0)
356 			continue;
357 		rx_size = i2400mu->rx_size;
358 		d_printf(2, dev, "RX: reading up to %d bytes\n", rx_size);
359 		rx_skb = __netdev_alloc_skb(net_dev, rx_size, GFP_KERNEL);
360 		if (rx_skb == NULL) {
361 			dev_err(dev, "RX: can't allocate skb [%d bytes]\n",
362 				rx_size);
363 			msleep(50);	/* give it some time? */
364 			continue;
365 		}
366 
367 		/* Receive the message with the payloads */
368 		rx_skb = i2400mu_rx(i2400mu, rx_skb);
369 		result = PTR_ERR(rx_skb);
370 		if (IS_ERR(rx_skb))
371 			goto out;
372 		atomic_dec(&i2400mu->rx_pending_count);
373 		if (rx_skb == NULL || rx_skb->len == 0) {
374 			/* some "ignorable" condition */
375 			kfree_skb(rx_skb);
376 			continue;
377 		}
378 
379 		/* Deliver the message to the generic i2400m code */
380 		i2400mu->rx_size_cnt++;
381 		i2400mu->rx_size_acc += rx_skb->len;
382 		result = i2400m_rx(i2400m, rx_skb);
383 		if (result == -EIO
384 		    && edc_inc(&i2400mu->urb_edc,
385 			       EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
386 			goto error_reset;
387 		}
388 
389 		/* Maybe adjust RX buffer size */
390 		i2400mu_rx_size_maybe_shrink(i2400mu);
391 	}
392 	result = 0;
393 out:
394 	spin_lock_irqsave(&i2400m->rx_lock, flags);
395 	i2400mu->rx_kthread = NULL;
396 	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
397 	d_fnend(4, dev, "(i2400mu %p) = %d\n", i2400mu, result);
398 	return result;
399 
400 error_reset:
401 	dev_err(dev, "RX: maximum errors in received buffer exceeded; "
402 		"resetting device\n");
403 	usb_queue_reset_device(i2400mu->usb_iface);
404 	goto out;
405 }
406 
407 
408 /*
409  * Start reading from the device
410  *
411  * @i2400m: device instance
412  *
413  * Notify the RX thread that there is data pending.
414  */
i2400mu_rx_kick(struct i2400mu * i2400mu)415 void i2400mu_rx_kick(struct i2400mu *i2400mu)
416 {
417 	struct i2400m *i2400m = &i2400mu->i2400m;
418 	struct device *dev = &i2400mu->usb_iface->dev;
419 
420 	d_fnstart(3, dev, "(i2400mu %p)\n", i2400m);
421 	atomic_inc(&i2400mu->rx_pending_count);
422 	wake_up_all(&i2400mu->rx_wq);
423 	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
424 }
425 
426 
i2400mu_rx_setup(struct i2400mu * i2400mu)427 int i2400mu_rx_setup(struct i2400mu *i2400mu)
428 {
429 	int result = 0;
430 	struct i2400m *i2400m = &i2400mu->i2400m;
431 	struct device *dev = &i2400mu->usb_iface->dev;
432 	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
433 	struct task_struct *kthread;
434 
435 	kthread = kthread_run(i2400mu_rxd, i2400mu, "%s-rx",
436 			      wimax_dev->name);
437 	/* the kthread function sets i2400mu->rx_thread */
438 	if (IS_ERR(kthread)) {
439 		result = PTR_ERR(kthread);
440 		dev_err(dev, "RX: cannot start thread: %d\n", result);
441 	}
442 	return result;
443 }
444 
445 
i2400mu_rx_release(struct i2400mu * i2400mu)446 void i2400mu_rx_release(struct i2400mu *i2400mu)
447 {
448 	unsigned long flags;
449 	struct i2400m *i2400m = &i2400mu->i2400m;
450 	struct device *dev = i2400m_dev(i2400m);
451 	struct task_struct *kthread;
452 
453 	spin_lock_irqsave(&i2400m->rx_lock, flags);
454 	kthread = i2400mu->rx_kthread;
455 	i2400mu->rx_kthread = NULL;
456 	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
457 	if (kthread)
458 		kthread_stop(kthread);
459 	else
460 		d_printf(1, dev, "RX: kthread had already exited\n");
461 }
462 
463