1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
6
7 #include <linux/types.h>
8 #include <asm/byteorder.h>
9 #include <linux/io.h>
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include "qed.h"
20 #include "qed_hsi.h"
21 #include "qed_hw.h"
22 #include "qed_init_ops.h"
23 #include "qed_int.h"
24 #include "qed_mcp.h"
25 #include "qed_reg_addr.h"
26 #include "qed_sp.h"
27 #include "qed_sriov.h"
28 #include "qed_vf.h"
29
30 struct qed_pi_info {
31 qed_int_comp_cb_t comp_cb;
32 void *cookie;
33 };
34
35 struct qed_sb_sp_info {
36 struct qed_sb_info sb_info;
37
38 /* per protocol index data */
39 struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
40 };
41
42 enum qed_attention_type {
43 QED_ATTN_TYPE_ATTN,
44 QED_ATTN_TYPE_PARITY,
45 };
46
47 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
48 ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
49
50 struct aeu_invert_reg_bit {
51 char bit_name[30];
52
53 #define ATTENTION_PARITY (1 << 0)
54
55 #define ATTENTION_LENGTH_MASK (0x00000ff0)
56 #define ATTENTION_LENGTH_SHIFT (4)
57 #define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \
58 ATTENTION_LENGTH_SHIFT)
59 #define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT)
60 #define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY)
61 #define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \
62 ATTENTION_PARITY)
63
64 /* Multiple bits start with this offset */
65 #define ATTENTION_OFFSET_MASK (0x000ff000)
66 #define ATTENTION_OFFSET_SHIFT (12)
67
68 #define ATTENTION_BB_MASK (0x00700000)
69 #define ATTENTION_BB_SHIFT (20)
70 #define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT)
71 #define ATTENTION_BB_DIFFERENT BIT(23)
72
73 #define ATTENTION_CLEAR_ENABLE BIT(28)
74 unsigned int flags;
75
76 /* Callback to call if attention will be triggered */
77 int (*cb)(struct qed_hwfn *p_hwfn);
78
79 enum block_id block_index;
80 };
81
82 struct aeu_invert_reg {
83 struct aeu_invert_reg_bit bits[32];
84 };
85
86 #define MAX_ATTN_GRPS (8)
87 #define NUM_ATTN_REGS (9)
88
89 /* Specific HW attention callbacks */
qed_mcp_attn_cb(struct qed_hwfn * p_hwfn)90 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
91 {
92 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
93
94 /* This might occur on certain instances; Log it once then mask it */
95 DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
96 tmp);
97 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
98 0xffffffff);
99
100 return 0;
101 }
102
103 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1)
104 #define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1)
105 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0)
106 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf)
107 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1)
108 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1)
109 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5)
110 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff)
111 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6)
112 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf)
113 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14)
114 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff)
115 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18)
qed_pswhst_attn_cb(struct qed_hwfn * p_hwfn)116 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
117 {
118 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
119 PSWHST_REG_INCORRECT_ACCESS_VALID);
120
121 if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
122 u32 addr, data, length;
123
124 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
125 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
126 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
127 PSWHST_REG_INCORRECT_ACCESS_DATA);
128 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
130
131 DP_INFO(p_hwfn->cdev,
132 "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
133 addr, length,
134 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
135 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
136 (u8) GET_FIELD(data,
137 ATTENTION_INCORRECT_ACCESS_VF_VALID),
138 (u8) GET_FIELD(data,
139 ATTENTION_INCORRECT_ACCESS_CLIENT),
140 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
141 (u8) GET_FIELD(data,
142 ATTENTION_INCORRECT_ACCESS_BYTE_EN),
143 data);
144 }
145
146 return 0;
147 }
148
149 #define QED_GRC_ATTENTION_VALID_BIT (1 << 0)
150 #define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff)
151 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
152 #define QED_GRC_ATTENTION_RDWR_BIT (1 << 23)
153 #define QED_GRC_ATTENTION_MASTER_MASK (0xf)
154 #define QED_GRC_ATTENTION_MASTER_SHIFT (24)
155 #define QED_GRC_ATTENTION_PF_MASK (0xf)
156 #define QED_GRC_ATTENTION_PF_SHIFT (0)
157 #define QED_GRC_ATTENTION_VF_MASK (0xff)
158 #define QED_GRC_ATTENTION_VF_SHIFT (4)
159 #define QED_GRC_ATTENTION_PRIV_MASK (0x3)
160 #define QED_GRC_ATTENTION_PRIV_SHIFT (14)
161 #define QED_GRC_ATTENTION_PRIV_VF (0)
attn_master_to_str(u8 master)162 static const char *attn_master_to_str(u8 master)
163 {
164 switch (master) {
165 case 1: return "PXP";
166 case 2: return "MCP";
167 case 3: return "MSDM";
168 case 4: return "PSDM";
169 case 5: return "YSDM";
170 case 6: return "USDM";
171 case 7: return "TSDM";
172 case 8: return "XSDM";
173 case 9: return "DBU";
174 case 10: return "DMAE";
175 default:
176 return "Unknown";
177 }
178 }
179
qed_grc_attn_cb(struct qed_hwfn * p_hwfn)180 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
181 {
182 u32 tmp, tmp2;
183
184 /* We've already cleared the timeout interrupt register, so we learn
185 * of interrupts via the validity register
186 */
187 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
188 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
189 if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
190 goto out;
191
192 /* Read the GRC timeout information */
193 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
194 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
195 tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
196 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
197
198 DP_INFO(p_hwfn->cdev,
199 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
200 tmp2, tmp,
201 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
202 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
203 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
204 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
205 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
206 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
207 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
208
209 out:
210 /* Regardles of anything else, clean the validity bit */
211 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
212 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
213 return 0;
214 }
215
216 #define PGLUE_ATTENTION_VALID (1 << 29)
217 #define PGLUE_ATTENTION_RD_VALID (1 << 26)
218 #define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf)
219 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
220 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1)
221 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19)
222 #define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff)
223 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
224 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1)
225 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21)
226 #define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1)
227 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22)
228 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1)
229 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23)
230 #define PGLUE_ATTENTION_ICPL_VALID (1 << 23)
231 #define PGLUE_ATTENTION_ZLR_VALID (1 << 25)
232 #define PGLUE_ATTENTION_ILT_VALID (1 << 23)
233
qed_pglueb_rbc_attn_handler(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool hw_init)234 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
235 bool hw_init)
236 {
237 char msg[256];
238 u32 tmp;
239
240 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
241 if (tmp & PGLUE_ATTENTION_VALID) {
242 u32 addr_lo, addr_hi, details;
243
244 addr_lo = qed_rd(p_hwfn, p_ptt,
245 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
246 addr_hi = qed_rd(p_hwfn, p_ptt,
247 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
248 details = qed_rd(p_hwfn, p_ptt,
249 PGLUE_B_REG_TX_ERR_WR_DETAILS);
250
251 snprintf(msg, sizeof(msg),
252 "Illegal write by chip to [%08x:%08x] blocked.\n"
253 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
254 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]",
255 addr_hi, addr_lo, details,
256 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
257 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
258 !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID),
259 tmp,
260 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR),
261 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME),
262 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN));
263
264 if (hw_init)
265 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
266 else
267 DP_NOTICE(p_hwfn, "%s\n", msg);
268 }
269
270 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
271 if (tmp & PGLUE_ATTENTION_RD_VALID) {
272 u32 addr_lo, addr_hi, details;
273
274 addr_lo = qed_rd(p_hwfn, p_ptt,
275 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
276 addr_hi = qed_rd(p_hwfn, p_ptt,
277 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
278 details = qed_rd(p_hwfn, p_ptt,
279 PGLUE_B_REG_TX_ERR_RD_DETAILS);
280
281 DP_NOTICE(p_hwfn,
282 "Illegal read by chip from [%08x:%08x] blocked.\n"
283 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
284 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
285 addr_hi, addr_lo, details,
286 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
287 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
288 GET_FIELD(details,
289 PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
290 tmp,
291 GET_FIELD(tmp,
292 PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
293 GET_FIELD(tmp,
294 PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
295 GET_FIELD(tmp,
296 PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
297 }
298
299 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
300 if (tmp & PGLUE_ATTENTION_ICPL_VALID) {
301 snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp);
302
303 if (hw_init)
304 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
305 else
306 DP_NOTICE(p_hwfn, "%s\n", msg);
307 }
308
309 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
310 if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
311 u32 addr_hi, addr_lo;
312
313 addr_lo = qed_rd(p_hwfn, p_ptt,
314 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
315 addr_hi = qed_rd(p_hwfn, p_ptt,
316 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
317
318 DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
319 tmp, addr_hi, addr_lo);
320 }
321
322 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
323 if (tmp & PGLUE_ATTENTION_ILT_VALID) {
324 u32 addr_hi, addr_lo, details;
325
326 addr_lo = qed_rd(p_hwfn, p_ptt,
327 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
328 addr_hi = qed_rd(p_hwfn, p_ptt,
329 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
330 details = qed_rd(p_hwfn, p_ptt,
331 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
332
333 DP_NOTICE(p_hwfn,
334 "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
335 details, tmp, addr_hi, addr_lo);
336 }
337
338 /* Clear the indications */
339 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
340
341 return 0;
342 }
343
qed_pglueb_rbc_attn_cb(struct qed_hwfn * p_hwfn)344 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
345 {
346 return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
347 }
348
qed_fw_assertion(struct qed_hwfn * p_hwfn)349 static int qed_fw_assertion(struct qed_hwfn *p_hwfn)
350 {
351 qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT,
352 "FW assertion!\n");
353
354 return -EINVAL;
355 }
356
qed_general_attention_35(struct qed_hwfn * p_hwfn)357 static int qed_general_attention_35(struct qed_hwfn *p_hwfn)
358 {
359 DP_INFO(p_hwfn, "General attention 35!\n");
360
361 return 0;
362 }
363
364 #define QED_DORQ_ATTENTION_REASON_MASK (0xfffff)
365 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
366 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
367 #define QED_DORQ_ATTENTION_SIZE_MASK (0x7f)
368 #define QED_DORQ_ATTENTION_SIZE_SHIFT (16)
369
370 #define QED_DB_REC_COUNT 1000
371 #define QED_DB_REC_INTERVAL 100
372
qed_db_rec_flush_queue(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)373 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
374 struct qed_ptt *p_ptt)
375 {
376 u32 count = QED_DB_REC_COUNT;
377 u32 usage = 1;
378
379 /* Flush any pending (e)dpms as they may never arrive */
380 qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
381
382 /* wait for usage to zero or count to run out. This is necessary since
383 * EDPM doorbell transactions can take multiple 64b cycles, and as such
384 * can "split" over the pci. Possibly, the doorbell drop can happen with
385 * half an EDPM in the queue and other half dropped. Another EDPM
386 * doorbell to the same address (from doorbell recovery mechanism or
387 * from the doorbelling entity) could have first half dropped and second
388 * half interpreted as continuation of the first. To prevent such
389 * malformed doorbells from reaching the device, flush the queue before
390 * releasing the overflow sticky indication.
391 */
392 while (count-- && usage) {
393 usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
394 udelay(QED_DB_REC_INTERVAL);
395 }
396
397 /* should have been depleted by now */
398 if (usage) {
399 DP_NOTICE(p_hwfn->cdev,
400 "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
401 QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
402 return -EBUSY;
403 }
404
405 return 0;
406 }
407
qed_db_rec_handler(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)408 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
409 {
410 u32 attn_ovfl, cur_ovfl;
411 int rc;
412
413 attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
414 &p_hwfn->db_recovery_info.overflow);
415 cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
416 if (!cur_ovfl && !attn_ovfl)
417 return 0;
418
419 DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
420 attn_ovfl, cur_ovfl);
421
422 if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
423 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
424 if (rc)
425 return rc;
426 }
427
428 /* Release overflow sticky indication (stop silently dropping everything) */
429 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
430
431 /* Repeat all last doorbells (doorbell drop recovery) */
432 qed_db_recovery_execute(p_hwfn);
433
434 return 0;
435 }
436
qed_dorq_attn_overflow(struct qed_hwfn * p_hwfn)437 static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
438 {
439 struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
440 u32 overflow;
441 int rc;
442
443 overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
444 if (!overflow)
445 goto out;
446
447 /* Run PF doorbell recovery in next periodic handler */
448 set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
449
450 if (!p_hwfn->db_bar_no_edpm) {
451 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
452 if (rc)
453 goto out;
454 }
455
456 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
457 out:
458 /* Schedule the handler even if overflow was not detected */
459 qed_periodic_db_rec_start(p_hwfn);
460 }
461
qed_dorq_attn_int_sts(struct qed_hwfn * p_hwfn)462 static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
463 {
464 u32 int_sts, first_drop_reason, details, address, all_drops_reason;
465 struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
466
467 /* int_sts may be zero since all PFs were interrupted for doorbell
468 * overflow but another one already handled it. Can abort here. If
469 * This PF also requires overflow recovery we will be interrupted again.
470 * The masked almost full indication may also be set. Ignoring.
471 */
472 int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
473 if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
474 return 0;
475
476 DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
477
478 /* check if db_drop or overflow happened */
479 if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
480 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
481 /* Obtain data about db drop/overflow */
482 first_drop_reason = qed_rd(p_hwfn, p_ptt,
483 DORQ_REG_DB_DROP_REASON) &
484 QED_DORQ_ATTENTION_REASON_MASK;
485 details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
486 address = qed_rd(p_hwfn, p_ptt,
487 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
488 all_drops_reason = qed_rd(p_hwfn, p_ptt,
489 DORQ_REG_DB_DROP_DETAILS_REASON);
490
491 /* Log info */
492 DP_NOTICE(p_hwfn->cdev,
493 "Doorbell drop occurred\n"
494 "Address\t\t0x%08x\t(second BAR address)\n"
495 "FID\t\t0x%04x\t\t(Opaque FID)\n"
496 "Size\t\t0x%04x\t\t(in bytes)\n"
497 "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
498 "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
499 address,
500 GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
501 GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
502 first_drop_reason, all_drops_reason);
503
504 /* Clear the doorbell drop details and prepare for next drop */
505 qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
506
507 /* Mark interrupt as handled (note: even if drop was due to a different
508 * reason than overflow we mark as handled)
509 */
510 qed_wr(p_hwfn,
511 p_ptt,
512 DORQ_REG_INT_STS_WR,
513 DORQ_REG_INT_STS_DB_DROP |
514 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
515
516 /* If there are no indications other than drop indications, success */
517 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
518 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
519 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
520 return 0;
521 }
522
523 /* Some other indication was present - non recoverable */
524 DP_INFO(p_hwfn, "DORQ fatal attention\n");
525
526 return -EINVAL;
527 }
528
qed_dorq_attn_cb(struct qed_hwfn * p_hwfn)529 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
530 {
531 p_hwfn->db_recovery_info.dorq_attn = true;
532 qed_dorq_attn_overflow(p_hwfn);
533
534 return qed_dorq_attn_int_sts(p_hwfn);
535 }
536
qed_dorq_attn_handler(struct qed_hwfn * p_hwfn)537 static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
538 {
539 if (p_hwfn->db_recovery_info.dorq_attn)
540 goto out;
541
542 /* Call DORQ callback if the attention was missed */
543 qed_dorq_attn_cb(p_hwfn);
544 out:
545 p_hwfn->db_recovery_info.dorq_attn = false;
546 }
547
548 /* Instead of major changes to the data-structure, we have a some 'special'
549 * identifiers for sources that changed meaning between adapters.
550 */
551 enum aeu_invert_reg_special_type {
552 AEU_INVERT_REG_SPECIAL_CNIG_0,
553 AEU_INVERT_REG_SPECIAL_CNIG_1,
554 AEU_INVERT_REG_SPECIAL_CNIG_2,
555 AEU_INVERT_REG_SPECIAL_CNIG_3,
556 AEU_INVERT_REG_SPECIAL_MAX,
557 };
558
559 static struct aeu_invert_reg_bit
560 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
561 {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
562 {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
563 {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
564 {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
565 };
566
567 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
568 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
569 {
570 { /* After Invert 1 */
571 {"GPIO0 function%d",
572 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
573 }
574 },
575
576 {
577 { /* After Invert 2 */
578 {"PGLUE config_space", ATTENTION_SINGLE,
579 NULL, MAX_BLOCK_ID},
580 {"PGLUE misc_flr", ATTENTION_SINGLE,
581 NULL, MAX_BLOCK_ID},
582 {"PGLUE B RBC", ATTENTION_PAR_INT,
583 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
584 {"PGLUE misc_mctp", ATTENTION_SINGLE,
585 NULL, MAX_BLOCK_ID},
586 {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
587 {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
588 {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
589 {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
590 (1 << ATTENTION_OFFSET_SHIFT),
591 NULL, MAX_BLOCK_ID},
592 {"PCIE glue/PXP VPD %d",
593 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
594 }
595 },
596
597 {
598 { /* After Invert 3 */
599 {"General Attention %d",
600 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
601 }
602 },
603
604 {
605 { /* After Invert 4 */
606 {"General Attention 32", ATTENTION_SINGLE |
607 ATTENTION_CLEAR_ENABLE, qed_fw_assertion,
608 MAX_BLOCK_ID},
609 {"General Attention %d",
610 (2 << ATTENTION_LENGTH_SHIFT) |
611 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
612 {"General Attention 35", ATTENTION_SINGLE |
613 ATTENTION_CLEAR_ENABLE, qed_general_attention_35,
614 MAX_BLOCK_ID},
615 {"NWS Parity",
616 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
617 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
618 NULL, BLOCK_NWS},
619 {"NWS Interrupt",
620 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
621 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
622 NULL, BLOCK_NWS},
623 {"NWM Parity",
624 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
625 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
626 NULL, BLOCK_NWM},
627 {"NWM Interrupt",
628 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
629 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
630 NULL, BLOCK_NWM},
631 {"MCP CPU", ATTENTION_SINGLE,
632 qed_mcp_attn_cb, MAX_BLOCK_ID},
633 {"MCP Watchdog timer", ATTENTION_SINGLE,
634 NULL, MAX_BLOCK_ID},
635 {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
636 {"AVS stop status ready", ATTENTION_SINGLE,
637 NULL, MAX_BLOCK_ID},
638 {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
639 {"MSTAT per-path", ATTENTION_PAR_INT,
640 NULL, MAX_BLOCK_ID},
641 {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
642 NULL, MAX_BLOCK_ID},
643 {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
644 {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
645 {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
646 {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
647 {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
648 }
649 },
650
651 {
652 { /* After Invert 5 */
653 {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
654 {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
655 {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
656 {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
657 {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
658 {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
659 {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
660 {"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM},
661 {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
662 {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
663 {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
664 {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
665 {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
666 {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
667 {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
668 {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
669 }
670 },
671
672 {
673 { /* After Invert 6 */
674 {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
675 {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
676 {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
677 {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
678 {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
679 {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
680 {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
681 {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
682 {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
683 {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
684 {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
685 {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
686 {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
687 {"DORQ", ATTENTION_PAR_INT,
688 qed_dorq_attn_cb, BLOCK_DORQ},
689 {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
690 {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
691 }
692 },
693
694 {
695 { /* After Invert 7 */
696 {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
697 {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
698 {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
699 {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
700 {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
701 {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
702 {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
703 {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
704 {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
705 {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
706 {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
707 {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
708 {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
709 {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
710 {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
711 {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
712 {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
713 }
714 },
715
716 {
717 { /* After Invert 8 */
718 {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
719 NULL, BLOCK_PSWRQ2},
720 {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
721 {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
722 NULL, BLOCK_PSWWR2},
723 {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
724 {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
725 NULL, BLOCK_PSWRD2},
726 {"PSWHST", ATTENTION_PAR_INT,
727 qed_pswhst_attn_cb, BLOCK_PSWHST},
728 {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
729 NULL, BLOCK_PSWHST2},
730 {"GRC", ATTENTION_PAR_INT,
731 qed_grc_attn_cb, BLOCK_GRC},
732 {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
733 {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
734 {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
735 {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
736 {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
737 {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
738 {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
739 {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
740 {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
741 {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
742 NULL, BLOCK_PGLCS},
743 {"PERST_B assertion", ATTENTION_SINGLE,
744 NULL, MAX_BLOCK_ID},
745 {"PERST_B deassertion", ATTENTION_SINGLE,
746 NULL, MAX_BLOCK_ID},
747 {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
748 NULL, MAX_BLOCK_ID},
749 }
750 },
751
752 {
753 { /* After Invert 9 */
754 {"MCP Latched memory", ATTENTION_PAR,
755 NULL, MAX_BLOCK_ID},
756 {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
757 NULL, MAX_BLOCK_ID},
758 {"MCP Latched ump_tx", ATTENTION_PAR,
759 NULL, MAX_BLOCK_ID},
760 {"MCP Latched scratchpad", ATTENTION_PAR,
761 NULL, MAX_BLOCK_ID},
762 {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
763 NULL, MAX_BLOCK_ID},
764 }
765 },
766 };
767
768 static struct aeu_invert_reg_bit *
qed_int_aeu_translate(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_bit)769 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
770 struct aeu_invert_reg_bit *p_bit)
771 {
772 if (!QED_IS_BB(p_hwfn->cdev))
773 return p_bit;
774
775 if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
776 return p_bit;
777
778 return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
779 ATTENTION_BB_SHIFT];
780 }
781
qed_int_is_parity_flag(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_bit)782 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
783 struct aeu_invert_reg_bit *p_bit)
784 {
785 return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
786 ATTENTION_PARITY);
787 }
788
789 #define ATTN_STATE_BITS (0xfff)
790 #define ATTN_BITS_MASKABLE (0x3ff)
791 struct qed_sb_attn_info {
792 /* Virtual & Physical address of the SB */
793 struct atten_status_block *sb_attn;
794 dma_addr_t sb_phys;
795
796 /* Last seen running index */
797 u16 index;
798
799 /* A mask of the AEU bits resulting in a parity error */
800 u32 parity_mask[NUM_ATTN_REGS];
801
802 /* A pointer to the attention description structure */
803 struct aeu_invert_reg *p_aeu_desc;
804
805 /* Previously asserted attentions, which are still unasserted */
806 u16 known_attn;
807
808 /* Cleanup address for the link's general hw attention */
809 u32 mfw_attn_addr;
810 };
811
qed_attn_update_idx(struct qed_hwfn * p_hwfn,struct qed_sb_attn_info * p_sb_desc)812 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
813 struct qed_sb_attn_info *p_sb_desc)
814 {
815 u16 rc = 0, index;
816
817 index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
818 if (p_sb_desc->index != index) {
819 p_sb_desc->index = index;
820 rc = QED_SB_ATT_IDX;
821 }
822
823 return rc;
824 }
825
826 /**
827 * qed_int_assertion() - Handle asserted attention bits.
828 *
829 * @p_hwfn: HW device data.
830 * @asserted_bits: Newly asserted bits.
831 *
832 * Return: Zero value.
833 */
qed_int_assertion(struct qed_hwfn * p_hwfn,u16 asserted_bits)834 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
835 {
836 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
837 u32 igu_mask;
838
839 /* Mask the source of the attention in the IGU */
840 igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
841 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
842 igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
843 igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
844 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
845
846 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
847 "inner known ATTN state: 0x%04x --> 0x%04x\n",
848 sb_attn_sw->known_attn,
849 sb_attn_sw->known_attn | asserted_bits);
850 sb_attn_sw->known_attn |= asserted_bits;
851
852 /* Handle MCP events */
853 if (asserted_bits & 0x100) {
854 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
855 /* Clean the MCP attention */
856 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
857 sb_attn_sw->mfw_attn_addr, 0);
858 }
859
860 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
861 GTT_BAR0_MAP_REG_IGU_CMD +
862 ((IGU_CMD_ATTN_BIT_SET_UPPER -
863 IGU_CMD_INT_ACK_BASE) << 3),
864 (u32)asserted_bits);
865
866 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
867 asserted_bits);
868
869 return 0;
870 }
871
qed_int_attn_print(struct qed_hwfn * p_hwfn,enum block_id id,enum dbg_attn_type type,bool b_clear)872 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
873 enum block_id id,
874 enum dbg_attn_type type, bool b_clear)
875 {
876 struct dbg_attn_block_result attn_results;
877 enum dbg_status status;
878
879 memset(&attn_results, 0, sizeof(attn_results));
880
881 status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
882 b_clear, &attn_results);
883 if (status != DBG_STATUS_OK)
884 DP_NOTICE(p_hwfn,
885 "Failed to parse attention information [status: %s]\n",
886 qed_dbg_get_status_str(status));
887 else
888 qed_dbg_parse_attn(p_hwfn, &attn_results);
889 }
890
891 /**
892 * qed_int_deassertion_aeu_bit() - Handles the effects of a single
893 * cause of the attention.
894 *
895 * @p_hwfn: HW device data.
896 * @p_aeu: Descriptor of an AEU bit which caused the attention.
897 * @aeu_en_reg: Register offset of the AEU enable reg. which configured
898 * this bit to this group.
899 * @p_bit_name: AEU bit description for logging purposes.
900 * @bitmask: Index of this bit in the aeu_en_reg.
901 *
902 * Return: Zero on success, negative errno otherwise.
903 */
904 static int
qed_int_deassertion_aeu_bit(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_aeu,u32 aeu_en_reg,const char * p_bit_name,u32 bitmask)905 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
906 struct aeu_invert_reg_bit *p_aeu,
907 u32 aeu_en_reg,
908 const char *p_bit_name, u32 bitmask)
909 {
910 bool b_fatal = false;
911 int rc = -EINVAL;
912 u32 val;
913
914 DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
915 p_bit_name, bitmask);
916
917 /* Call callback before clearing the interrupt status */
918 if (p_aeu->cb) {
919 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
920 p_bit_name);
921 rc = p_aeu->cb(p_hwfn);
922 }
923
924 if (rc)
925 b_fatal = true;
926
927 /* Print HW block interrupt registers */
928 if (p_aeu->block_index != MAX_BLOCK_ID)
929 qed_int_attn_print(p_hwfn, p_aeu->block_index,
930 ATTN_TYPE_INTERRUPT, !b_fatal);
931
932 /* Reach assertion if attention is fatal */
933 if (b_fatal)
934 qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN,
935 "`%s': Fatal attention\n",
936 p_bit_name);
937 else /* If the attention is benign, no need to prevent it */
938 goto out;
939
940 /* Prevent this Attention from being asserted in the future */
941 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
942 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
943 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
944 p_bit_name);
945
946 out:
947 return rc;
948 }
949
950 /**
951 * qed_int_deassertion_parity() - Handle a single parity AEU source.
952 *
953 * @p_hwfn: HW device data.
954 * @p_aeu: Descriptor of an AEU bit which caused the parity.
955 * @aeu_en_reg: Address of the AEU enable register.
956 * @bit_index: Index (0-31) of an AEU bit.
957 */
qed_int_deassertion_parity(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_aeu,u32 aeu_en_reg,u8 bit_index)958 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
959 struct aeu_invert_reg_bit *p_aeu,
960 u32 aeu_en_reg, u8 bit_index)
961 {
962 u32 block_id = p_aeu->block_index, mask, val;
963
964 DP_NOTICE(p_hwfn->cdev,
965 "%s parity attention is set [address 0x%08x, bit %d]\n",
966 p_aeu->bit_name, aeu_en_reg, bit_index);
967
968 if (block_id != MAX_BLOCK_ID) {
969 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
970
971 /* In BB, there's a single parity bit for several blocks */
972 if (block_id == BLOCK_BTB) {
973 qed_int_attn_print(p_hwfn, BLOCK_OPTE,
974 ATTN_TYPE_PARITY, false);
975 qed_int_attn_print(p_hwfn, BLOCK_MCP,
976 ATTN_TYPE_PARITY, false);
977 }
978 }
979
980 /* Prevent this parity error from being re-asserted */
981 mask = ~BIT(bit_index);
982 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
983 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
984 DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
985 p_aeu->bit_name);
986 }
987
988 /**
989 * qed_int_deassertion() - Handle deassertion of previously asserted
990 * attentions.
991 *
992 * @p_hwfn: HW device data.
993 * @deasserted_bits: newly deasserted bits.
994 *
995 * Return: Zero value.
996 */
qed_int_deassertion(struct qed_hwfn * p_hwfn,u16 deasserted_bits)997 static int qed_int_deassertion(struct qed_hwfn *p_hwfn,
998 u16 deasserted_bits)
999 {
1000 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1001 u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1002 u8 i, j, k, bit_idx;
1003 int rc = 0;
1004
1005 /* Read the attention registers in the AEU */
1006 for (i = 0; i < NUM_ATTN_REGS; i++) {
1007 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1008 MISC_REG_AEU_AFTER_INVERT_1_IGU +
1009 i * 0x4);
1010 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1011 "Deasserted bits [%d]: %08x\n",
1012 i, aeu_inv_arr[i]);
1013 }
1014
1015 /* Find parity attentions first */
1016 for (i = 0; i < NUM_ATTN_REGS; i++) {
1017 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1018 u32 parities;
1019
1020 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1021 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1022
1023 /* Skip register in which no parity bit is currently set */
1024 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1025 if (!parities)
1026 continue;
1027
1028 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1029 struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1030
1031 if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1032 !!(parities & BIT(bit_idx)))
1033 qed_int_deassertion_parity(p_hwfn, p_bit,
1034 aeu_en, bit_idx);
1035
1036 bit_idx += ATTENTION_LENGTH(p_bit->flags);
1037 }
1038 }
1039
1040 /* Find non-parity cause for attention and act */
1041 for (k = 0; k < MAX_ATTN_GRPS; k++) {
1042 struct aeu_invert_reg_bit *p_aeu;
1043
1044 /* Handle only groups whose attention is currently deasserted */
1045 if (!(deasserted_bits & (1 << k)))
1046 continue;
1047
1048 for (i = 0; i < NUM_ATTN_REGS; i++) {
1049 u32 bits;
1050
1051 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1052 i * sizeof(u32) +
1053 k * sizeof(u32) * NUM_ATTN_REGS;
1054
1055 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1056 bits = aeu_inv_arr[i] & en;
1057
1058 /* Skip if no bit from this group is currently set */
1059 if (!bits)
1060 continue;
1061
1062 /* Find all set bits from current register which belong
1063 * to current group, making them responsible for the
1064 * previous assertion.
1065 */
1066 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1067 long unsigned int bitmask;
1068 u8 bit, bit_len;
1069
1070 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1071 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1072
1073 bit = bit_idx;
1074 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1075 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1076 /* Skip Parity */
1077 bit++;
1078 bit_len--;
1079 }
1080
1081 bitmask = bits & (((1 << bit_len) - 1) << bit);
1082 bitmask >>= bit;
1083
1084 if (bitmask) {
1085 u32 flags = p_aeu->flags;
1086 char bit_name[30];
1087 u8 num;
1088
1089 num = (u8)find_first_bit(&bitmask,
1090 bit_len);
1091
1092 /* Some bits represent more than a
1093 * a single interrupt. Correctly print
1094 * their name.
1095 */
1096 if (ATTENTION_LENGTH(flags) > 2 ||
1097 ((flags & ATTENTION_PAR_INT) &&
1098 ATTENTION_LENGTH(flags) > 1))
1099 snprintf(bit_name, 30,
1100 p_aeu->bit_name, num);
1101 else
1102 strlcpy(bit_name,
1103 p_aeu->bit_name, 30);
1104
1105 /* We now need to pass bitmask in its
1106 * correct position.
1107 */
1108 bitmask <<= bit;
1109
1110 /* Handle source of the attention */
1111 qed_int_deassertion_aeu_bit(p_hwfn,
1112 p_aeu,
1113 aeu_en,
1114 bit_name,
1115 bitmask);
1116 }
1117
1118 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1119 }
1120 }
1121 }
1122
1123 /* Handle missed DORQ attention */
1124 qed_dorq_attn_handler(p_hwfn);
1125
1126 /* Clear IGU indication for the deasserted bits */
1127 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1128 GTT_BAR0_MAP_REG_IGU_CMD +
1129 ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1130 IGU_CMD_INT_ACK_BASE) << 3),
1131 ~((u32)deasserted_bits));
1132
1133 /* Unmask deasserted attentions in IGU */
1134 aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1135 aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1136 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1137
1138 /* Clear deassertion from inner state */
1139 sb_attn_sw->known_attn &= ~deasserted_bits;
1140
1141 return rc;
1142 }
1143
qed_int_attentions(struct qed_hwfn * p_hwfn)1144 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1145 {
1146 struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1147 struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1148 u32 attn_bits = 0, attn_acks = 0;
1149 u16 asserted_bits, deasserted_bits;
1150 __le16 index;
1151 int rc = 0;
1152
1153 /* Read current attention bits/acks - safeguard against attentions
1154 * by guaranting work on a synchronized timeframe
1155 */
1156 do {
1157 index = p_sb_attn->sb_index;
1158 /* finish reading index before the loop condition */
1159 dma_rmb();
1160 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1161 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1162 } while (index != p_sb_attn->sb_index);
1163 p_sb_attn->sb_index = index;
1164
1165 /* Attention / Deassertion are meaningful (and in correct state)
1166 * only when they differ and consistent with known state - deassertion
1167 * when previous attention & current ack, and assertion when current
1168 * attention with no previous attention
1169 */
1170 asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1171 ~p_sb_attn_sw->known_attn;
1172 deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1173 p_sb_attn_sw->known_attn;
1174
1175 if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1176 DP_INFO(p_hwfn,
1177 "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1178 index, attn_bits, attn_acks, asserted_bits,
1179 deasserted_bits, p_sb_attn_sw->known_attn);
1180 } else if (asserted_bits == 0x100) {
1181 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1182 "MFW indication via attention\n");
1183 } else {
1184 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1185 "MFW indication [deassertion]\n");
1186 }
1187
1188 if (asserted_bits) {
1189 rc = qed_int_assertion(p_hwfn, asserted_bits);
1190 if (rc)
1191 return rc;
1192 }
1193
1194 if (deasserted_bits)
1195 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1196
1197 return rc;
1198 }
1199
qed_sb_ack_attn(struct qed_hwfn * p_hwfn,void __iomem * igu_addr,u32 ack_cons)1200 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1201 void __iomem *igu_addr, u32 ack_cons)
1202 {
1203 u32 igu_ack;
1204
1205 igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1206 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1207 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1208 (IGU_SEG_ACCESS_ATTN <<
1209 IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1210
1211 DIRECT_REG_WR(igu_addr, igu_ack);
1212
1213 /* Both segments (interrupts & acks) are written to same place address;
1214 * Need to guarantee all commands will be received (in-order) by HW.
1215 */
1216 barrier();
1217 }
1218
qed_int_sp_dpc(struct tasklet_struct * t)1219 void qed_int_sp_dpc(struct tasklet_struct *t)
1220 {
1221 struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc);
1222 struct qed_pi_info *pi_info = NULL;
1223 struct qed_sb_attn_info *sb_attn;
1224 struct qed_sb_info *sb_info;
1225 int arr_size;
1226 u16 rc = 0;
1227
1228 if (!p_hwfn->p_sp_sb) {
1229 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1230 return;
1231 }
1232
1233 sb_info = &p_hwfn->p_sp_sb->sb_info;
1234 arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1235 if (!sb_info) {
1236 DP_ERR(p_hwfn->cdev,
1237 "Status block is NULL - cannot ack interrupts\n");
1238 return;
1239 }
1240
1241 if (!p_hwfn->p_sb_attn) {
1242 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1243 return;
1244 }
1245 sb_attn = p_hwfn->p_sb_attn;
1246
1247 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1248 p_hwfn, p_hwfn->my_id);
1249
1250 /* Disable ack for def status block. Required both for msix +
1251 * inta in non-mask mode, in inta does no harm.
1252 */
1253 qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1254
1255 /* Gather Interrupts/Attentions information */
1256 if (!sb_info->sb_virt) {
1257 DP_ERR(p_hwfn->cdev,
1258 "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1259 } else {
1260 u32 tmp_index = sb_info->sb_ack;
1261
1262 rc = qed_sb_update_sb_idx(sb_info);
1263 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1264 "Interrupt indices: 0x%08x --> 0x%08x\n",
1265 tmp_index, sb_info->sb_ack);
1266 }
1267
1268 if (!sb_attn || !sb_attn->sb_attn) {
1269 DP_ERR(p_hwfn->cdev,
1270 "Attentions Status block is NULL - cannot check for new attentions!\n");
1271 } else {
1272 u16 tmp_index = sb_attn->index;
1273
1274 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1275 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1276 "Attention indices: 0x%08x --> 0x%08x\n",
1277 tmp_index, sb_attn->index);
1278 }
1279
1280 /* Check if we expect interrupts at this time. if not just ack them */
1281 if (!(rc & QED_SB_EVENT_MASK)) {
1282 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1283 return;
1284 }
1285
1286 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1287 if (!p_hwfn->p_dpc_ptt) {
1288 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1289 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1290 return;
1291 }
1292
1293 if (rc & QED_SB_ATT_IDX)
1294 qed_int_attentions(p_hwfn);
1295
1296 if (rc & QED_SB_IDX) {
1297 int pi;
1298
1299 /* Look for a free index */
1300 for (pi = 0; pi < arr_size; pi++) {
1301 pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1302 if (pi_info->comp_cb)
1303 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1304 }
1305 }
1306
1307 if (sb_attn && (rc & QED_SB_ATT_IDX))
1308 /* This should be done before the interrupts are enabled,
1309 * since otherwise a new attention will be generated.
1310 */
1311 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1312
1313 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1314 }
1315
qed_int_sb_attn_free(struct qed_hwfn * p_hwfn)1316 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1317 {
1318 struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1319
1320 if (!p_sb)
1321 return;
1322
1323 if (p_sb->sb_attn)
1324 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1325 SB_ATTN_ALIGNED_SIZE(p_hwfn),
1326 p_sb->sb_attn, p_sb->sb_phys);
1327 kfree(p_sb);
1328 p_hwfn->p_sb_attn = NULL;
1329 }
1330
qed_int_sb_attn_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1331 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1332 struct qed_ptt *p_ptt)
1333 {
1334 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1335
1336 memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1337
1338 sb_info->index = 0;
1339 sb_info->known_attn = 0;
1340
1341 /* Configure Attention Status Block in IGU */
1342 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1343 lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1344 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1345 upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1346 }
1347
qed_int_sb_attn_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,void * sb_virt_addr,dma_addr_t sb_phy_addr)1348 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1349 struct qed_ptt *p_ptt,
1350 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1351 {
1352 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1353 int i, j, k;
1354
1355 sb_info->sb_attn = sb_virt_addr;
1356 sb_info->sb_phys = sb_phy_addr;
1357
1358 /* Set the pointer to the AEU descriptors */
1359 sb_info->p_aeu_desc = aeu_descs;
1360
1361 /* Calculate Parity Masks */
1362 memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1363 for (i = 0; i < NUM_ATTN_REGS; i++) {
1364 /* j is array index, k is bit index */
1365 for (j = 0, k = 0; k < 32; j++) {
1366 struct aeu_invert_reg_bit *p_aeu;
1367
1368 p_aeu = &aeu_descs[i].bits[j];
1369 if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1370 sb_info->parity_mask[i] |= 1 << k;
1371
1372 k += ATTENTION_LENGTH(p_aeu->flags);
1373 }
1374 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1375 "Attn Mask [Reg %d]: 0x%08x\n",
1376 i, sb_info->parity_mask[i]);
1377 }
1378
1379 /* Set the address of cleanup for the mcp attention */
1380 sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1381 MISC_REG_AEU_GENERAL_ATTN_0;
1382
1383 qed_int_sb_attn_setup(p_hwfn, p_ptt);
1384 }
1385
qed_int_sb_attn_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1386 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1387 struct qed_ptt *p_ptt)
1388 {
1389 struct qed_dev *cdev = p_hwfn->cdev;
1390 struct qed_sb_attn_info *p_sb;
1391 dma_addr_t p_phys = 0;
1392 void *p_virt;
1393
1394 /* SB struct */
1395 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1396 if (!p_sb)
1397 return -ENOMEM;
1398
1399 /* SB ring */
1400 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1401 SB_ATTN_ALIGNED_SIZE(p_hwfn),
1402 &p_phys, GFP_KERNEL);
1403
1404 if (!p_virt) {
1405 kfree(p_sb);
1406 return -ENOMEM;
1407 }
1408
1409 /* Attention setup */
1410 p_hwfn->p_sb_attn = p_sb;
1411 qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1412
1413 return 0;
1414 }
1415
1416 /* coalescing timeout = timeset << (timer_res + 1) */
1417 #define QED_CAU_DEF_RX_USECS 24
1418 #define QED_CAU_DEF_TX_USECS 48
1419
qed_init_cau_sb_entry(struct qed_hwfn * p_hwfn,struct cau_sb_entry * p_sb_entry,u8 pf_id,u16 vf_number,u8 vf_valid)1420 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1421 struct cau_sb_entry *p_sb_entry,
1422 u8 pf_id, u16 vf_number, u8 vf_valid)
1423 {
1424 struct qed_dev *cdev = p_hwfn->cdev;
1425 u32 cau_state, params = 0, data = 0;
1426 u8 timer_res;
1427
1428 memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1429
1430 SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1431 SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1432 SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1433 SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1434 SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1435
1436 cau_state = CAU_HC_DISABLE_STATE;
1437
1438 if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1439 cau_state = CAU_HC_ENABLE_STATE;
1440 if (!cdev->rx_coalesce_usecs)
1441 cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1442 if (!cdev->tx_coalesce_usecs)
1443 cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1444 }
1445
1446 /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1447 if (cdev->rx_coalesce_usecs <= 0x7F)
1448 timer_res = 0;
1449 else if (cdev->rx_coalesce_usecs <= 0xFF)
1450 timer_res = 1;
1451 else
1452 timer_res = 2;
1453
1454 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1455
1456 if (cdev->tx_coalesce_usecs <= 0x7F)
1457 timer_res = 0;
1458 else if (cdev->tx_coalesce_usecs <= 0xFF)
1459 timer_res = 1;
1460 else
1461 timer_res = 2;
1462
1463 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1464 p_sb_entry->params = cpu_to_le32(params);
1465
1466 SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state);
1467 SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state);
1468 p_sb_entry->data = cpu_to_le32(data);
1469 }
1470
qed_int_cau_conf_pi(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,u32 pi_index,enum qed_coalescing_fsm coalescing_fsm,u8 timeset)1471 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1472 struct qed_ptt *p_ptt,
1473 u16 igu_sb_id,
1474 u32 pi_index,
1475 enum qed_coalescing_fsm coalescing_fsm,
1476 u8 timeset)
1477 {
1478 u32 sb_offset, pi_offset;
1479 u32 prod = 0;
1480
1481 if (IS_VF(p_hwfn->cdev))
1482 return;
1483
1484 SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1485 if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1486 SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0);
1487 else
1488 SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1);
1489
1490 sb_offset = igu_sb_id * PIS_PER_SB_E4;
1491 pi_offset = sb_offset + pi_index;
1492
1493 if (p_hwfn->hw_init_done)
1494 qed_wr(p_hwfn, p_ptt,
1495 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod);
1496 else
1497 STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1498 prod);
1499 }
1500
qed_int_cau_conf_sb(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,dma_addr_t sb_phys,u16 igu_sb_id,u16 vf_number,u8 vf_valid)1501 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1502 struct qed_ptt *p_ptt,
1503 dma_addr_t sb_phys,
1504 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1505 {
1506 struct cau_sb_entry sb_entry;
1507
1508 qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1509 vf_number, vf_valid);
1510
1511 if (p_hwfn->hw_init_done) {
1512 /* Wide-bus, initialize via DMAE */
1513 u64 phys_addr = (u64)sb_phys;
1514
1515 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1516 CAU_REG_SB_ADDR_MEMORY +
1517 igu_sb_id * sizeof(u64), 2, NULL);
1518 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1519 CAU_REG_SB_VAR_MEMORY +
1520 igu_sb_id * sizeof(u64), 2, NULL);
1521 } else {
1522 /* Initialize Status Block Address */
1523 STORE_RT_REG_AGG(p_hwfn,
1524 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1525 igu_sb_id * 2,
1526 sb_phys);
1527
1528 STORE_RT_REG_AGG(p_hwfn,
1529 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1530 igu_sb_id * 2,
1531 sb_entry);
1532 }
1533
1534 /* Configure pi coalescing if set */
1535 if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1536 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1537 u8 timeset, timer_res;
1538 u8 i;
1539
1540 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1541 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1542 timer_res = 0;
1543 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1544 timer_res = 1;
1545 else
1546 timer_res = 2;
1547 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1548 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1549 QED_COAL_RX_STATE_MACHINE, timeset);
1550
1551 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1552 timer_res = 0;
1553 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1554 timer_res = 1;
1555 else
1556 timer_res = 2;
1557 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1558 for (i = 0; i < num_tc; i++) {
1559 qed_int_cau_conf_pi(p_hwfn, p_ptt,
1560 igu_sb_id, TX_PI(i),
1561 QED_COAL_TX_STATE_MACHINE,
1562 timeset);
1563 }
1564 }
1565 }
1566
qed_int_sb_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_sb_info * sb_info)1567 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1568 struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1569 {
1570 /* zero status block and ack counter */
1571 sb_info->sb_ack = 0;
1572 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1573
1574 if (IS_PF(p_hwfn->cdev))
1575 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1576 sb_info->igu_sb_id, 0, 0);
1577 }
1578
qed_get_igu_free_sb(struct qed_hwfn * p_hwfn,bool b_is_pf)1579 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1580 {
1581 struct qed_igu_block *p_block;
1582 u16 igu_id;
1583
1584 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1585 igu_id++) {
1586 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1587
1588 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1589 !(p_block->status & QED_IGU_STATUS_FREE))
1590 continue;
1591
1592 if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1593 return p_block;
1594 }
1595
1596 return NULL;
1597 }
1598
qed_get_pf_igu_sb_id(struct qed_hwfn * p_hwfn,u16 vector_id)1599 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1600 {
1601 struct qed_igu_block *p_block;
1602 u16 igu_id;
1603
1604 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1605 igu_id++) {
1606 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1607
1608 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1609 !p_block->is_pf ||
1610 p_block->vector_number != vector_id)
1611 continue;
1612
1613 return igu_id;
1614 }
1615
1616 return QED_SB_INVALID_IDX;
1617 }
1618
qed_get_igu_sb_id(struct qed_hwfn * p_hwfn,u16 sb_id)1619 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1620 {
1621 u16 igu_sb_id;
1622
1623 /* Assuming continuous set of IGU SBs dedicated for given PF */
1624 if (sb_id == QED_SP_SB_ID)
1625 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1626 else if (IS_PF(p_hwfn->cdev))
1627 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1628 else
1629 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1630
1631 if (sb_id == QED_SP_SB_ID)
1632 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1633 "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1634 else
1635 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1636 "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1637
1638 return igu_sb_id;
1639 }
1640
qed_int_sb_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_sb_info * sb_info,void * sb_virt_addr,dma_addr_t sb_phy_addr,u16 sb_id)1641 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1642 struct qed_ptt *p_ptt,
1643 struct qed_sb_info *sb_info,
1644 void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1645 {
1646 sb_info->sb_virt = sb_virt_addr;
1647 sb_info->sb_phys = sb_phy_addr;
1648
1649 sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1650
1651 if (sb_id != QED_SP_SB_ID) {
1652 if (IS_PF(p_hwfn->cdev)) {
1653 struct qed_igu_info *p_info;
1654 struct qed_igu_block *p_block;
1655
1656 p_info = p_hwfn->hw_info.p_igu_info;
1657 p_block = &p_info->entry[sb_info->igu_sb_id];
1658
1659 p_block->sb_info = sb_info;
1660 p_block->status &= ~QED_IGU_STATUS_FREE;
1661 p_info->usage.free_cnt--;
1662 } else {
1663 qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1664 }
1665 }
1666
1667 sb_info->cdev = p_hwfn->cdev;
1668
1669 /* The igu address will hold the absolute address that needs to be
1670 * written to for a specific status block
1671 */
1672 if (IS_PF(p_hwfn->cdev)) {
1673 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1674 GTT_BAR0_MAP_REG_IGU_CMD +
1675 (sb_info->igu_sb_id << 3);
1676 } else {
1677 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1678 PXP_VF_BAR0_START_IGU +
1679 ((IGU_CMD_INT_ACK_BASE +
1680 sb_info->igu_sb_id) << 3);
1681 }
1682
1683 sb_info->flags |= QED_SB_INFO_INIT;
1684
1685 qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1686
1687 return 0;
1688 }
1689
qed_int_sb_release(struct qed_hwfn * p_hwfn,struct qed_sb_info * sb_info,u16 sb_id)1690 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1691 struct qed_sb_info *sb_info, u16 sb_id)
1692 {
1693 struct qed_igu_block *p_block;
1694 struct qed_igu_info *p_info;
1695
1696 if (!sb_info)
1697 return 0;
1698
1699 /* zero status block and ack counter */
1700 sb_info->sb_ack = 0;
1701 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1702
1703 if (IS_VF(p_hwfn->cdev)) {
1704 qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1705 return 0;
1706 }
1707
1708 p_info = p_hwfn->hw_info.p_igu_info;
1709 p_block = &p_info->entry[sb_info->igu_sb_id];
1710
1711 /* Vector 0 is reserved to Default SB */
1712 if (!p_block->vector_number) {
1713 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1714 return -EINVAL;
1715 }
1716
1717 /* Lose reference to client's SB info, and fix counters */
1718 p_block->sb_info = NULL;
1719 p_block->status |= QED_IGU_STATUS_FREE;
1720 p_info->usage.free_cnt++;
1721
1722 return 0;
1723 }
1724
qed_int_sp_sb_free(struct qed_hwfn * p_hwfn)1725 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1726 {
1727 struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1728
1729 if (!p_sb)
1730 return;
1731
1732 if (p_sb->sb_info.sb_virt)
1733 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1734 SB_ALIGNED_SIZE(p_hwfn),
1735 p_sb->sb_info.sb_virt,
1736 p_sb->sb_info.sb_phys);
1737 kfree(p_sb);
1738 p_hwfn->p_sp_sb = NULL;
1739 }
1740
qed_int_sp_sb_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1741 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1742 {
1743 struct qed_sb_sp_info *p_sb;
1744 dma_addr_t p_phys = 0;
1745 void *p_virt;
1746
1747 /* SB struct */
1748 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1749 if (!p_sb)
1750 return -ENOMEM;
1751
1752 /* SB ring */
1753 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1754 SB_ALIGNED_SIZE(p_hwfn),
1755 &p_phys, GFP_KERNEL);
1756 if (!p_virt) {
1757 kfree(p_sb);
1758 return -ENOMEM;
1759 }
1760
1761 /* Status Block setup */
1762 p_hwfn->p_sp_sb = p_sb;
1763 qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1764 p_phys, QED_SP_SB_ID);
1765
1766 memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1767
1768 return 0;
1769 }
1770
qed_int_register_cb(struct qed_hwfn * p_hwfn,qed_int_comp_cb_t comp_cb,void * cookie,u8 * sb_idx,__le16 ** p_fw_cons)1771 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1772 qed_int_comp_cb_t comp_cb,
1773 void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1774 {
1775 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1776 int rc = -ENOMEM;
1777 u8 pi;
1778
1779 /* Look for a free index */
1780 for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1781 if (p_sp_sb->pi_info_arr[pi].comp_cb)
1782 continue;
1783
1784 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1785 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1786 *sb_idx = pi;
1787 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1788 rc = 0;
1789 break;
1790 }
1791
1792 return rc;
1793 }
1794
qed_int_unregister_cb(struct qed_hwfn * p_hwfn,u8 pi)1795 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1796 {
1797 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1798
1799 if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1800 return -ENOMEM;
1801
1802 p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1803 p_sp_sb->pi_info_arr[pi].cookie = NULL;
1804
1805 return 0;
1806 }
1807
qed_int_get_sp_sb_id(struct qed_hwfn * p_hwfn)1808 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1809 {
1810 return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1811 }
1812
qed_int_igu_enable_int(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,enum qed_int_mode int_mode)1813 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1814 struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1815 {
1816 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1817
1818 p_hwfn->cdev->int_mode = int_mode;
1819 switch (p_hwfn->cdev->int_mode) {
1820 case QED_INT_MODE_INTA:
1821 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1822 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1823 break;
1824
1825 case QED_INT_MODE_MSI:
1826 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1827 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1828 break;
1829
1830 case QED_INT_MODE_MSIX:
1831 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1832 break;
1833 case QED_INT_MODE_POLL:
1834 break;
1835 }
1836
1837 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1838 }
1839
qed_int_igu_enable_attn(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1840 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1841 struct qed_ptt *p_ptt)
1842 {
1843
1844 /* Configure AEU signal change to produce attentions */
1845 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1846 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1847 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1848 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1849
1850 /* Unmask AEU signals toward IGU */
1851 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1852 }
1853
1854 int
qed_int_igu_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,enum qed_int_mode int_mode)1855 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1856 struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1857 {
1858 int rc = 0;
1859
1860 qed_int_igu_enable_attn(p_hwfn, p_ptt);
1861
1862 if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1863 rc = qed_slowpath_irq_req(p_hwfn);
1864 if (rc) {
1865 DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1866 return -EINVAL;
1867 }
1868 p_hwfn->b_int_requested = true;
1869 }
1870 /* Enable interrupt Generation */
1871 qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1872 p_hwfn->b_int_enabled = 1;
1873
1874 return rc;
1875 }
1876
qed_int_igu_disable_int(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1877 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1878 {
1879 p_hwfn->b_int_enabled = 0;
1880
1881 if (IS_VF(p_hwfn->cdev))
1882 return;
1883
1884 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1885 }
1886
1887 #define IGU_CLEANUP_SLEEP_LENGTH (1000)
qed_int_igu_cleanup_sb(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,bool cleanup_set,u16 opaque_fid)1888 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1889 struct qed_ptt *p_ptt,
1890 u16 igu_sb_id,
1891 bool cleanup_set, u16 opaque_fid)
1892 {
1893 u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1894 u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1895 u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1896
1897 /* Set the data field */
1898 SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1899 SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1900 SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1901
1902 /* Set the control register */
1903 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1904 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1905 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1906
1907 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1908
1909 barrier();
1910
1911 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1912
1913 /* calculate where to read the status bit from */
1914 sb_bit = 1 << (igu_sb_id % 32);
1915 sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1916
1917 sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1918
1919 /* Now wait for the command to complete */
1920 do {
1921 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1922
1923 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1924 break;
1925
1926 usleep_range(5000, 10000);
1927 } while (--sleep_cnt);
1928
1929 if (!sleep_cnt)
1930 DP_NOTICE(p_hwfn,
1931 "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1932 val, igu_sb_id);
1933 }
1934
qed_int_igu_init_pure_rt_single(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,u16 opaque,bool b_set)1935 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1936 struct qed_ptt *p_ptt,
1937 u16 igu_sb_id, u16 opaque, bool b_set)
1938 {
1939 struct qed_igu_block *p_block;
1940 int pi, i;
1941
1942 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1943 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1944 "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1945 igu_sb_id,
1946 p_block->function_id,
1947 p_block->is_pf, p_block->vector_number);
1948
1949 /* Set */
1950 if (b_set)
1951 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1952
1953 /* Clear */
1954 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1955
1956 /* Wait for the IGU SB to cleanup */
1957 for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1958 u32 val;
1959
1960 val = qed_rd(p_hwfn, p_ptt,
1961 IGU_REG_WRITE_DONE_PENDING +
1962 ((igu_sb_id / 32) * 4));
1963 if (val & BIT((igu_sb_id % 32)))
1964 usleep_range(10, 20);
1965 else
1966 break;
1967 }
1968 if (i == IGU_CLEANUP_SLEEP_LENGTH)
1969 DP_NOTICE(p_hwfn,
1970 "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1971 igu_sb_id);
1972
1973 /* Clear the CAU for the SB */
1974 for (pi = 0; pi < 12; pi++)
1975 qed_wr(p_hwfn, p_ptt,
1976 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1977 }
1978
qed_int_igu_init_pure_rt(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool b_set,bool b_slowpath)1979 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1980 struct qed_ptt *p_ptt,
1981 bool b_set, bool b_slowpath)
1982 {
1983 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1984 struct qed_igu_block *p_block;
1985 u16 igu_sb_id = 0;
1986 u32 val = 0;
1987
1988 val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1989 val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1990 val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1991 qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1992
1993 for (igu_sb_id = 0;
1994 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1995 p_block = &p_info->entry[igu_sb_id];
1996
1997 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1998 !p_block->is_pf ||
1999 (p_block->status & QED_IGU_STATUS_DSB))
2000 continue;
2001
2002 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2003 p_hwfn->hw_info.opaque_fid,
2004 b_set);
2005 }
2006
2007 if (b_slowpath)
2008 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2009 p_info->igu_dsb_id,
2010 p_hwfn->hw_info.opaque_fid,
2011 b_set);
2012 }
2013
qed_int_igu_reset_cam(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2014 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2015 {
2016 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2017 struct qed_igu_block *p_block;
2018 int pf_sbs, vf_sbs;
2019 u16 igu_sb_id;
2020 u32 val, rval;
2021
2022 if (!RESC_NUM(p_hwfn, QED_SB)) {
2023 p_info->b_allow_pf_vf_change = false;
2024 } else {
2025 /* Use the numbers the MFW have provided -
2026 * don't forget MFW accounts for the default SB as well.
2027 */
2028 p_info->b_allow_pf_vf_change = true;
2029
2030 if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2031 DP_INFO(p_hwfn,
2032 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2033 RESC_NUM(p_hwfn, QED_SB) - 1,
2034 p_info->usage.cnt);
2035 p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2036 }
2037
2038 if (IS_PF_SRIOV(p_hwfn)) {
2039 u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2040
2041 if (vfs != p_info->usage.iov_cnt)
2042 DP_VERBOSE(p_hwfn,
2043 NETIF_MSG_INTR,
2044 "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2045 p_info->usage.iov_cnt, vfs);
2046
2047 /* At this point we know how many SBs we have totally
2048 * in IGU + number of PF SBs. So we can validate that
2049 * we'd have sufficient for VF.
2050 */
2051 if (vfs > p_info->usage.free_cnt +
2052 p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2053 DP_NOTICE(p_hwfn,
2054 "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2055 p_info->usage.free_cnt +
2056 p_info->usage.free_cnt_iov,
2057 p_info->usage.cnt, vfs);
2058 return -EINVAL;
2059 }
2060
2061 /* Currently cap the number of VFs SBs by the
2062 * number of VFs.
2063 */
2064 p_info->usage.iov_cnt = vfs;
2065 }
2066 }
2067
2068 /* Mark all SBs as free, now in the right PF/VFs division */
2069 p_info->usage.free_cnt = p_info->usage.cnt;
2070 p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2071 p_info->usage.orig = p_info->usage.cnt;
2072 p_info->usage.iov_orig = p_info->usage.iov_cnt;
2073
2074 /* We now proceed to re-configure the IGU cam to reflect the initial
2075 * configuration. We can start with the Default SB.
2076 */
2077 pf_sbs = p_info->usage.cnt;
2078 vf_sbs = p_info->usage.iov_cnt;
2079
2080 for (igu_sb_id = p_info->igu_dsb_id;
2081 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2082 p_block = &p_info->entry[igu_sb_id];
2083 val = 0;
2084
2085 if (!(p_block->status & QED_IGU_STATUS_VALID))
2086 continue;
2087
2088 if (p_block->status & QED_IGU_STATUS_DSB) {
2089 p_block->function_id = p_hwfn->rel_pf_id;
2090 p_block->is_pf = 1;
2091 p_block->vector_number = 0;
2092 p_block->status = QED_IGU_STATUS_VALID |
2093 QED_IGU_STATUS_PF |
2094 QED_IGU_STATUS_DSB;
2095 } else if (pf_sbs) {
2096 pf_sbs--;
2097 p_block->function_id = p_hwfn->rel_pf_id;
2098 p_block->is_pf = 1;
2099 p_block->vector_number = p_info->usage.cnt - pf_sbs;
2100 p_block->status = QED_IGU_STATUS_VALID |
2101 QED_IGU_STATUS_PF |
2102 QED_IGU_STATUS_FREE;
2103 } else if (vf_sbs) {
2104 p_block->function_id =
2105 p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2106 p_info->usage.iov_cnt - vf_sbs;
2107 p_block->is_pf = 0;
2108 p_block->vector_number = 0;
2109 p_block->status = QED_IGU_STATUS_VALID |
2110 QED_IGU_STATUS_FREE;
2111 vf_sbs--;
2112 } else {
2113 p_block->function_id = 0;
2114 p_block->is_pf = 0;
2115 p_block->vector_number = 0;
2116 }
2117
2118 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2119 p_block->function_id);
2120 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2121 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2122 p_block->vector_number);
2123
2124 /* VF entries would be enabled when VF is initializaed */
2125 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2126
2127 rval = qed_rd(p_hwfn, p_ptt,
2128 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2129
2130 if (rval != val) {
2131 qed_wr(p_hwfn, p_ptt,
2132 IGU_REG_MAPPING_MEMORY +
2133 sizeof(u32) * igu_sb_id, val);
2134
2135 DP_VERBOSE(p_hwfn,
2136 NETIF_MSG_INTR,
2137 "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2138 igu_sb_id,
2139 p_block->function_id,
2140 p_block->is_pf,
2141 p_block->vector_number, rval, val);
2142 }
2143 }
2144
2145 return 0;
2146 }
2147
qed_int_igu_read_cam_block(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id)2148 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2149 struct qed_ptt *p_ptt, u16 igu_sb_id)
2150 {
2151 u32 val = qed_rd(p_hwfn, p_ptt,
2152 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2153 struct qed_igu_block *p_block;
2154
2155 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2156
2157 /* Fill the block information */
2158 p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2159 p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2160 p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2161 p_block->igu_sb_id = igu_sb_id;
2162 }
2163
qed_int_igu_read_cam(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2164 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2165 {
2166 struct qed_igu_info *p_igu_info;
2167 struct qed_igu_block *p_block;
2168 u32 min_vf = 0, max_vf = 0;
2169 u16 igu_sb_id;
2170
2171 p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2172 if (!p_hwfn->hw_info.p_igu_info)
2173 return -ENOMEM;
2174
2175 p_igu_info = p_hwfn->hw_info.p_igu_info;
2176
2177 /* Distinguish between existent and non-existent default SB */
2178 p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2179
2180 /* Find the range of VF ids whose SB belong to this PF */
2181 if (p_hwfn->cdev->p_iov_info) {
2182 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2183
2184 min_vf = p_iov->first_vf_in_pf;
2185 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2186 }
2187
2188 for (igu_sb_id = 0;
2189 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2190 /* Read current entry; Notice it might not belong to this PF */
2191 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2192 p_block = &p_igu_info->entry[igu_sb_id];
2193
2194 if ((p_block->is_pf) &&
2195 (p_block->function_id == p_hwfn->rel_pf_id)) {
2196 p_block->status = QED_IGU_STATUS_PF |
2197 QED_IGU_STATUS_VALID |
2198 QED_IGU_STATUS_FREE;
2199
2200 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2201 p_igu_info->usage.cnt++;
2202 } else if (!(p_block->is_pf) &&
2203 (p_block->function_id >= min_vf) &&
2204 (p_block->function_id < max_vf)) {
2205 /* Available for VFs of this PF */
2206 p_block->status = QED_IGU_STATUS_VALID |
2207 QED_IGU_STATUS_FREE;
2208
2209 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2210 p_igu_info->usage.iov_cnt++;
2211 }
2212
2213 /* Mark the First entry belonging to the PF or its VFs
2214 * as the default SB [we'll reset IGU prior to first usage].
2215 */
2216 if ((p_block->status & QED_IGU_STATUS_VALID) &&
2217 (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2218 p_igu_info->igu_dsb_id = igu_sb_id;
2219 p_block->status |= QED_IGU_STATUS_DSB;
2220 }
2221
2222 /* limit number of prints by having each PF print only its
2223 * entries with the exception of PF0 which would print
2224 * everything.
2225 */
2226 if ((p_block->status & QED_IGU_STATUS_VALID) ||
2227 (p_hwfn->abs_pf_id == 0)) {
2228 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2229 "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2230 igu_sb_id, p_block->function_id,
2231 p_block->is_pf, p_block->vector_number);
2232 }
2233 }
2234
2235 if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2236 DP_NOTICE(p_hwfn,
2237 "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2238 p_igu_info->igu_dsb_id);
2239 return -EINVAL;
2240 }
2241
2242 /* All non default SB are considered free at this point */
2243 p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2244 p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2245
2246 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2247 "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2248 p_igu_info->igu_dsb_id,
2249 p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2250
2251 return 0;
2252 }
2253
2254 /**
2255 * qed_int_igu_init_rt() - Initialize IGU runtime registers.
2256 *
2257 * @p_hwfn: HW device data.
2258 */
qed_int_igu_init_rt(struct qed_hwfn * p_hwfn)2259 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2260 {
2261 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2262
2263 STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2264 }
2265
qed_int_igu_read_sisr_reg(struct qed_hwfn * p_hwfn)2266 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2267 {
2268 u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2269 IGU_CMD_INT_ACK_BASE;
2270 u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2271 IGU_CMD_INT_ACK_BASE;
2272 u32 intr_status_hi = 0, intr_status_lo = 0;
2273 u64 intr_status = 0;
2274
2275 intr_status_lo = REG_RD(p_hwfn,
2276 GTT_BAR0_MAP_REG_IGU_CMD +
2277 lsb_igu_cmd_addr * 8);
2278 intr_status_hi = REG_RD(p_hwfn,
2279 GTT_BAR0_MAP_REG_IGU_CMD +
2280 msb_igu_cmd_addr * 8);
2281 intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2282
2283 return intr_status;
2284 }
2285
qed_int_sp_dpc_setup(struct qed_hwfn * p_hwfn)2286 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2287 {
2288 tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc);
2289 p_hwfn->b_sp_dpc_enabled = true;
2290 }
2291
qed_int_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2292 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2293 {
2294 int rc = 0;
2295
2296 rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2297 if (rc)
2298 return rc;
2299
2300 rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2301
2302 return rc;
2303 }
2304
qed_int_free(struct qed_hwfn * p_hwfn)2305 void qed_int_free(struct qed_hwfn *p_hwfn)
2306 {
2307 qed_int_sp_sb_free(p_hwfn);
2308 qed_int_sb_attn_free(p_hwfn);
2309 }
2310
qed_int_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2311 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2312 {
2313 qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2314 qed_int_sb_attn_setup(p_hwfn, p_ptt);
2315 qed_int_sp_dpc_setup(p_hwfn);
2316 }
2317
qed_int_get_num_sbs(struct qed_hwfn * p_hwfn,struct qed_sb_cnt_info * p_sb_cnt_info)2318 void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
2319 struct qed_sb_cnt_info *p_sb_cnt_info)
2320 {
2321 struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2322
2323 if (!info || !p_sb_cnt_info)
2324 return;
2325
2326 memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2327 }
2328
qed_int_disable_post_isr_release(struct qed_dev * cdev)2329 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2330 {
2331 int i;
2332
2333 for_each_hwfn(cdev, i)
2334 cdev->hwfns[i].b_int_requested = false;
2335 }
2336
qed_int_attn_clr_enable(struct qed_dev * cdev,bool clr_enable)2337 void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable)
2338 {
2339 cdev->attn_clr_en = clr_enable;
2340 }
2341
qed_int_set_timer_res(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 timer_res,u16 sb_id,bool tx)2342 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2343 u8 timer_res, u16 sb_id, bool tx)
2344 {
2345 struct cau_sb_entry sb_entry;
2346 u32 params;
2347 int rc;
2348
2349 if (!p_hwfn->hw_init_done) {
2350 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2351 return -EINVAL;
2352 }
2353
2354 rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2355 sb_id * sizeof(u64),
2356 (u64)(uintptr_t)&sb_entry, 2, NULL);
2357 if (rc) {
2358 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2359 return rc;
2360 }
2361
2362 params = le32_to_cpu(sb_entry.params);
2363
2364 if (tx)
2365 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2366 else
2367 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2368
2369 sb_entry.params = cpu_to_le32(params);
2370
2371 rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2372 (u64)(uintptr_t)&sb_entry,
2373 CAU_REG_SB_VAR_MEMORY +
2374 sb_id * sizeof(u64), 2, NULL);
2375 if (rc) {
2376 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2377 return rc;
2378 }
2379
2380 return rc;
2381 }
2382