• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
3 
4 #include <linux/clk.h>
5 #include <linux/interrupt.h>
6 #include <linux/io.h>
7 #include <linux/log2.h>
8 #include <linux/module.h>
9 #include <linux/platform_device.h>
10 #include <linux/pm_opp.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/qcom-geni-se.h>
13 #include <linux/spi/spi.h>
14 #include <linux/spinlock.h>
15 
16 /* SPI SE specific registers and respective register fields */
17 #define SE_SPI_CPHA		0x224
18 #define CPHA			BIT(0)
19 
20 #define SE_SPI_LOOPBACK		0x22c
21 #define LOOPBACK_ENABLE		0x1
22 #define NORMAL_MODE		0x0
23 #define LOOPBACK_MSK		GENMASK(1, 0)
24 
25 #define SE_SPI_CPOL		0x230
26 #define CPOL			BIT(2)
27 
28 #define SE_SPI_DEMUX_OUTPUT_INV	0x24c
29 #define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
30 
31 #define SE_SPI_DEMUX_SEL	0x250
32 #define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
33 
34 #define SE_SPI_TRANS_CFG	0x25c
35 #define CS_TOGGLE		BIT(0)
36 
37 #define SE_SPI_WORD_LEN		0x268
38 #define WORD_LEN_MSK		GENMASK(9, 0)
39 #define MIN_WORD_LEN		4
40 
41 #define SE_SPI_TX_TRANS_LEN	0x26c
42 #define SE_SPI_RX_TRANS_LEN	0x270
43 #define TRANS_LEN_MSK		GENMASK(23, 0)
44 
45 #define SE_SPI_PRE_POST_CMD_DLY	0x274
46 
47 #define SE_SPI_DELAY_COUNTERS	0x278
48 #define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
49 #define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
50 #define SPI_CS_CLK_DELAY_SHFT		10
51 
52 /* M_CMD OP codes for SPI */
53 #define SPI_TX_ONLY		1
54 #define SPI_RX_ONLY		2
55 #define SPI_TX_RX		7
56 #define SPI_CS_ASSERT		8
57 #define SPI_CS_DEASSERT		9
58 #define SPI_SCK_ONLY		10
59 /* M_CMD params for SPI */
60 #define SPI_PRE_CMD_DELAY	BIT(0)
61 #define TIMESTAMP_BEFORE	BIT(1)
62 #define FRAGMENTATION		BIT(2)
63 #define TIMESTAMP_AFTER		BIT(3)
64 #define POST_CMD_DELAY		BIT(4)
65 
66 struct spi_geni_master {
67 	struct geni_se se;
68 	struct device *dev;
69 	u32 tx_fifo_depth;
70 	u32 fifo_width_bits;
71 	u32 tx_wm;
72 	u32 last_mode;
73 	unsigned long cur_speed_hz;
74 	unsigned long cur_sclk_hz;
75 	unsigned int cur_bits_per_word;
76 	unsigned int tx_rem_bytes;
77 	unsigned int rx_rem_bytes;
78 	const struct spi_transfer *cur_xfer;
79 	struct completion cs_done;
80 	struct completion cancel_done;
81 	struct completion abort_done;
82 	unsigned int oversampling;
83 	spinlock_t lock;
84 	int irq;
85 	bool cs_flag;
86 	bool abort_failed;
87 };
88 
get_spi_clk_cfg(unsigned int speed_hz,struct spi_geni_master * mas,unsigned int * clk_idx,unsigned int * clk_div)89 static int get_spi_clk_cfg(unsigned int speed_hz,
90 			struct spi_geni_master *mas,
91 			unsigned int *clk_idx,
92 			unsigned int *clk_div)
93 {
94 	unsigned long sclk_freq;
95 	unsigned int actual_hz;
96 	int ret;
97 
98 	ret = geni_se_clk_freq_match(&mas->se,
99 				speed_hz * mas->oversampling,
100 				clk_idx, &sclk_freq, false);
101 	if (ret) {
102 		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
103 							ret, speed_hz);
104 		return ret;
105 	}
106 
107 	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
108 	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
109 
110 	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
111 				actual_hz, sclk_freq, *clk_idx, *clk_div);
112 	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
113 	if (ret)
114 		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
115 	else
116 		mas->cur_sclk_hz = sclk_freq;
117 
118 	return ret;
119 }
120 
handle_fifo_timeout(struct spi_master * spi,struct spi_message * msg)121 static void handle_fifo_timeout(struct spi_master *spi,
122 				struct spi_message *msg)
123 {
124 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
125 	unsigned long time_left;
126 	struct geni_se *se = &mas->se;
127 
128 	spin_lock_irq(&mas->lock);
129 	reinit_completion(&mas->cancel_done);
130 	writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
131 	mas->cur_xfer = NULL;
132 	geni_se_cancel_m_cmd(se);
133 	spin_unlock_irq(&mas->lock);
134 
135 	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
136 	if (time_left)
137 		return;
138 
139 	spin_lock_irq(&mas->lock);
140 	reinit_completion(&mas->abort_done);
141 	geni_se_abort_m_cmd(se);
142 	spin_unlock_irq(&mas->lock);
143 
144 	time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
145 	if (!time_left) {
146 		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
147 
148 		/*
149 		 * No need for a lock since SPI core has a lock and we never
150 		 * access this from an interrupt.
151 		 */
152 		mas->abort_failed = true;
153 	}
154 }
155 
spi_geni_is_abort_still_pending(struct spi_geni_master * mas)156 static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
157 {
158 	struct geni_se *se = &mas->se;
159 	u32 m_irq, m_irq_en;
160 
161 	if (!mas->abort_failed)
162 		return false;
163 
164 	/*
165 	 * The only known case where a transfer times out and then a cancel
166 	 * times out then an abort times out is if something is blocking our
167 	 * interrupt handler from running.  Avoid starting any new transfers
168 	 * until that sorts itself out.
169 	 */
170 	spin_lock_irq(&mas->lock);
171 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
172 	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
173 	spin_unlock_irq(&mas->lock);
174 
175 	if (m_irq & m_irq_en) {
176 		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
177 			m_irq & m_irq_en);
178 		return true;
179 	}
180 
181 	/*
182 	 * If we're here the problem resolved itself so no need to check more
183 	 * on future transfers.
184 	 */
185 	mas->abort_failed = false;
186 
187 	return false;
188 }
189 
spi_geni_set_cs(struct spi_device * slv,bool set_flag)190 static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
191 {
192 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
193 	struct spi_master *spi = dev_get_drvdata(mas->dev);
194 	struct geni_se *se = &mas->se;
195 	unsigned long time_left;
196 
197 	if (!(slv->mode & SPI_CS_HIGH))
198 		set_flag = !set_flag;
199 
200 	if (set_flag == mas->cs_flag)
201 		return;
202 
203 	pm_runtime_get_sync(mas->dev);
204 
205 	if (spi_geni_is_abort_still_pending(mas)) {
206 		dev_err(mas->dev, "Can't set chip select\n");
207 		goto exit;
208 	}
209 
210 	mas->cs_flag = set_flag;
211 
212 	spin_lock_irq(&mas->lock);
213 	reinit_completion(&mas->cs_done);
214 	if (set_flag)
215 		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
216 	else
217 		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
218 	spin_unlock_irq(&mas->lock);
219 
220 	time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
221 	if (!time_left)
222 		handle_fifo_timeout(spi, NULL);
223 
224 exit:
225 	pm_runtime_put(mas->dev);
226 }
227 
spi_setup_word_len(struct spi_geni_master * mas,u16 mode,unsigned int bits_per_word)228 static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
229 					unsigned int bits_per_word)
230 {
231 	unsigned int pack_words;
232 	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
233 	struct geni_se *se = &mas->se;
234 	u32 word_len;
235 
236 	/*
237 	 * If bits_per_word isn't a byte aligned value, set the packing to be
238 	 * 1 SPI word per FIFO word.
239 	 */
240 	if (!(mas->fifo_width_bits % bits_per_word))
241 		pack_words = mas->fifo_width_bits / bits_per_word;
242 	else
243 		pack_words = 1;
244 	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
245 								true, true);
246 	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
247 	writel(word_len, se->base + SE_SPI_WORD_LEN);
248 }
249 
geni_spi_set_clock_and_bw(struct spi_geni_master * mas,unsigned long clk_hz)250 static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
251 					unsigned long clk_hz)
252 {
253 	u32 clk_sel, m_clk_cfg, idx, div;
254 	struct geni_se *se = &mas->se;
255 	int ret;
256 
257 	if (clk_hz == mas->cur_speed_hz)
258 		return 0;
259 
260 	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
261 	if (ret) {
262 		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
263 		return ret;
264 	}
265 
266 	/*
267 	 * SPI core clock gets configured with the requested frequency
268 	 * or the frequency closer to the requested frequency.
269 	 * For that reason requested frequency is stored in the
270 	 * cur_speed_hz and referred in the consecutive transfer instead
271 	 * of calling clk_get_rate() API.
272 	 */
273 	mas->cur_speed_hz = clk_hz;
274 
275 	clk_sel = idx & CLK_SEL_MSK;
276 	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
277 	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
278 	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
279 
280 	/* Set BW quota for CPU as driver supports FIFO mode only. */
281 	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
282 	ret = geni_icc_set_bw(se);
283 	if (ret)
284 		return ret;
285 
286 	return 0;
287 }
288 
setup_fifo_params(struct spi_device * spi_slv,struct spi_master * spi)289 static int setup_fifo_params(struct spi_device *spi_slv,
290 					struct spi_master *spi)
291 {
292 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
293 	struct geni_se *se = &mas->se;
294 	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
295 	u32 demux_sel;
296 
297 	if (mas->last_mode != spi_slv->mode) {
298 		if (spi_slv->mode & SPI_LOOP)
299 			loopback_cfg = LOOPBACK_ENABLE;
300 
301 		if (spi_slv->mode & SPI_CPOL)
302 			cpol = CPOL;
303 
304 		if (spi_slv->mode & SPI_CPHA)
305 			cpha = CPHA;
306 
307 		if (spi_slv->mode & SPI_CS_HIGH)
308 			demux_output_inv = BIT(spi_slv->chip_select);
309 
310 		demux_sel = spi_slv->chip_select;
311 		mas->cur_bits_per_word = spi_slv->bits_per_word;
312 
313 		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
314 		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
315 		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
316 		writel(cpha, se->base + SE_SPI_CPHA);
317 		writel(cpol, se->base + SE_SPI_CPOL);
318 		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
319 
320 		mas->last_mode = spi_slv->mode;
321 	}
322 
323 	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
324 }
325 
spi_geni_prepare_message(struct spi_master * spi,struct spi_message * spi_msg)326 static int spi_geni_prepare_message(struct spi_master *spi,
327 					struct spi_message *spi_msg)
328 {
329 	int ret;
330 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
331 
332 	if (spi_geni_is_abort_still_pending(mas))
333 		return -EBUSY;
334 
335 	ret = setup_fifo_params(spi_msg->spi, spi);
336 	if (ret)
337 		dev_err(mas->dev, "Couldn't select mode %d\n", ret);
338 	return ret;
339 }
340 
spi_geni_init(struct spi_geni_master * mas)341 static int spi_geni_init(struct spi_geni_master *mas)
342 {
343 	struct geni_se *se = &mas->se;
344 	unsigned int proto, major, minor, ver;
345 	u32 spi_tx_cfg;
346 
347 	pm_runtime_get_sync(mas->dev);
348 
349 	proto = geni_se_read_proto(se);
350 	if (proto != GENI_SE_SPI) {
351 		dev_err(mas->dev, "Invalid proto %d\n", proto);
352 		pm_runtime_put(mas->dev);
353 		return -ENXIO;
354 	}
355 	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
356 
357 	/* Width of Tx and Rx FIFO is same */
358 	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
359 
360 	/*
361 	 * Hardware programming guide suggests to configure
362 	 * RX FIFO RFR level to fifo_depth-2.
363 	 */
364 	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
365 	/* Transmit an entire FIFO worth of data per IRQ */
366 	mas->tx_wm = 1;
367 	ver = geni_se_get_qup_hw_version(se);
368 	major = GENI_SE_VERSION_MAJOR(ver);
369 	minor = GENI_SE_VERSION_MINOR(ver);
370 
371 	if (major == 1 && minor == 0)
372 		mas->oversampling = 2;
373 	else
374 		mas->oversampling = 1;
375 
376 	geni_se_select_mode(se, GENI_SE_FIFO);
377 
378 	/* We always control CS manually */
379 	spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
380 	spi_tx_cfg &= ~CS_TOGGLE;
381 	writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
382 
383 	pm_runtime_put(mas->dev);
384 	return 0;
385 }
386 
geni_byte_per_fifo_word(struct spi_geni_master * mas)387 static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
388 {
389 	/*
390 	 * Calculate how many bytes we'll put in each FIFO word.  If the
391 	 * transfer words don't pack cleanly into a FIFO word we'll just put
392 	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
393 	 */
394 	if (mas->fifo_width_bits % mas->cur_bits_per_word)
395 		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
396 						       BITS_PER_BYTE));
397 
398 	return mas->fifo_width_bits / BITS_PER_BYTE;
399 }
400 
geni_spi_handle_tx(struct spi_geni_master * mas)401 static bool geni_spi_handle_tx(struct spi_geni_master *mas)
402 {
403 	struct geni_se *se = &mas->se;
404 	unsigned int max_bytes;
405 	const u8 *tx_buf;
406 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
407 	unsigned int i = 0;
408 
409 	/* Stop the watermark IRQ if nothing to send */
410 	if (!mas->cur_xfer) {
411 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
412 		return false;
413 	}
414 
415 	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
416 	if (mas->tx_rem_bytes < max_bytes)
417 		max_bytes = mas->tx_rem_bytes;
418 
419 	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
420 	while (i < max_bytes) {
421 		unsigned int j;
422 		unsigned int bytes_to_write;
423 		u32 fifo_word = 0;
424 		u8 *fifo_byte = (u8 *)&fifo_word;
425 
426 		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
427 		for (j = 0; j < bytes_to_write; j++)
428 			fifo_byte[j] = tx_buf[i++];
429 		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
430 	}
431 	mas->tx_rem_bytes -= max_bytes;
432 	if (!mas->tx_rem_bytes) {
433 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
434 		return false;
435 	}
436 	return true;
437 }
438 
geni_spi_handle_rx(struct spi_geni_master * mas)439 static void geni_spi_handle_rx(struct spi_geni_master *mas)
440 {
441 	struct geni_se *se = &mas->se;
442 	u32 rx_fifo_status;
443 	unsigned int rx_bytes;
444 	unsigned int rx_last_byte_valid;
445 	u8 *rx_buf;
446 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
447 	unsigned int i = 0;
448 
449 	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
450 	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
451 	if (rx_fifo_status & RX_LAST) {
452 		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
453 		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
454 		if (rx_last_byte_valid && rx_last_byte_valid < 4)
455 			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
456 	}
457 
458 	/* Clear out the FIFO and bail if nowhere to put it */
459 	if (!mas->cur_xfer) {
460 		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
461 			readl(se->base + SE_GENI_RX_FIFOn);
462 		return;
463 	}
464 
465 	if (mas->rx_rem_bytes < rx_bytes)
466 		rx_bytes = mas->rx_rem_bytes;
467 
468 	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
469 	while (i < rx_bytes) {
470 		u32 fifo_word = 0;
471 		u8 *fifo_byte = (u8 *)&fifo_word;
472 		unsigned int bytes_to_read;
473 		unsigned int j;
474 
475 		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
476 		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
477 		for (j = 0; j < bytes_to_read; j++)
478 			rx_buf[i++] = fifo_byte[j];
479 	}
480 	mas->rx_rem_bytes -= rx_bytes;
481 }
482 
setup_fifo_xfer(struct spi_transfer * xfer,struct spi_geni_master * mas,u16 mode,struct spi_master * spi)483 static void setup_fifo_xfer(struct spi_transfer *xfer,
484 				struct spi_geni_master *mas,
485 				u16 mode, struct spi_master *spi)
486 {
487 	u32 m_cmd = 0;
488 	u32 len;
489 	struct geni_se *se = &mas->se;
490 	int ret;
491 
492 	/*
493 	 * Ensure that our interrupt handler isn't still running from some
494 	 * prior command before we start messing with the hardware behind
495 	 * its back.  We don't need to _keep_ the lock here since we're only
496 	 * worried about racing with out interrupt handler.  The SPI core
497 	 * already handles making sure that we're not trying to do two
498 	 * transfers at once or setting a chip select and doing a transfer
499 	 * concurrently.
500 	 *
501 	 * NOTE: we actually _can't_ hold the lock here because possibly we
502 	 * might call clk_set_rate() which needs to be able to sleep.
503 	 */
504 	spin_lock_irq(&mas->lock);
505 	spin_unlock_irq(&mas->lock);
506 
507 	if (xfer->bits_per_word != mas->cur_bits_per_word) {
508 		spi_setup_word_len(mas, mode, xfer->bits_per_word);
509 		mas->cur_bits_per_word = xfer->bits_per_word;
510 	}
511 
512 	/* Speed and bits per word can be overridden per transfer */
513 	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
514 	if (ret)
515 		return;
516 
517 	mas->tx_rem_bytes = 0;
518 	mas->rx_rem_bytes = 0;
519 
520 	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
521 		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
522 	else
523 		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
524 	len &= TRANS_LEN_MSK;
525 
526 	mas->cur_xfer = xfer;
527 	if (xfer->tx_buf) {
528 		m_cmd |= SPI_TX_ONLY;
529 		mas->tx_rem_bytes = xfer->len;
530 		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
531 	}
532 
533 	if (xfer->rx_buf) {
534 		m_cmd |= SPI_RX_ONLY;
535 		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
536 		mas->rx_rem_bytes = xfer->len;
537 	}
538 
539 	/*
540 	 * Lock around right before we start the transfer since our
541 	 * interrupt could come in at any time now.
542 	 */
543 	spin_lock_irq(&mas->lock);
544 	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
545 
546 	/*
547 	 * TX_WATERMARK_REG should be set after SPI configuration and
548 	 * setting up GENI SE engine, as driver starts data transfer
549 	 * for the watermark interrupt.
550 	 */
551 	if (m_cmd & SPI_TX_ONLY) {
552 		if (geni_spi_handle_tx(mas))
553 			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
554 	}
555 	spin_unlock_irq(&mas->lock);
556 }
557 
spi_geni_transfer_one(struct spi_master * spi,struct spi_device * slv,struct spi_transfer * xfer)558 static int spi_geni_transfer_one(struct spi_master *spi,
559 				struct spi_device *slv,
560 				struct spi_transfer *xfer)
561 {
562 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
563 
564 	if (spi_geni_is_abort_still_pending(mas))
565 		return -EBUSY;
566 
567 	/* Terminate and return success for 0 byte length transfer */
568 	if (!xfer->len)
569 		return 0;
570 
571 	setup_fifo_xfer(xfer, mas, slv->mode, spi);
572 	return 1;
573 }
574 
geni_spi_isr(int irq,void * data)575 static irqreturn_t geni_spi_isr(int irq, void *data)
576 {
577 	struct spi_master *spi = data;
578 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
579 	struct geni_se *se = &mas->se;
580 	u32 m_irq;
581 
582 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
583 	if (!m_irq)
584 		return IRQ_NONE;
585 
586 	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
587 		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
588 		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
589 		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
590 
591 	spin_lock(&mas->lock);
592 
593 	if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
594 		geni_spi_handle_rx(mas);
595 
596 	if (m_irq & M_TX_FIFO_WATERMARK_EN)
597 		geni_spi_handle_tx(mas);
598 
599 	if (m_irq & M_CMD_DONE_EN) {
600 		if (mas->cur_xfer) {
601 			spi_finalize_current_transfer(spi);
602 			mas->cur_xfer = NULL;
603 			/*
604 			 * If this happens, then a CMD_DONE came before all the
605 			 * Tx buffer bytes were sent out. This is unusual, log
606 			 * this condition and disable the WM interrupt to
607 			 * prevent the system from stalling due an interrupt
608 			 * storm.
609 			 *
610 			 * If this happens when all Rx bytes haven't been
611 			 * received, log the condition. The only known time
612 			 * this can happen is if bits_per_word != 8 and some
613 			 * registers that expect xfer lengths in num spi_words
614 			 * weren't written correctly.
615 			 */
616 			if (mas->tx_rem_bytes) {
617 				writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
618 				dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
619 					mas->tx_rem_bytes, mas->cur_bits_per_word);
620 			}
621 			if (mas->rx_rem_bytes)
622 				dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
623 					mas->rx_rem_bytes, mas->cur_bits_per_word);
624 		} else {
625 			complete(&mas->cs_done);
626 		}
627 	}
628 
629 	if (m_irq & M_CMD_CANCEL_EN)
630 		complete(&mas->cancel_done);
631 	if (m_irq & M_CMD_ABORT_EN)
632 		complete(&mas->abort_done);
633 
634 	/*
635 	 * It's safe or a good idea to Ack all of our our interrupts at the
636 	 * end of the function. Specifically:
637 	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
638 	 *   clearing Acks. Clearing at the end relies on nobody else having
639 	 *   started a new transfer yet or else we could be clearing _their_
640 	 *   done bit, but everyone grabs the spinlock before starting a new
641 	 *   transfer.
642 	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
643 	 *   to be "latched level" interrupts so it's important to clear them
644 	 *   _after_ you've handled the condition and always safe to do so
645 	 *   since they'll re-assert if they're still happening.
646 	 */
647 	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
648 
649 	spin_unlock(&mas->lock);
650 
651 	return IRQ_HANDLED;
652 }
653 
spi_geni_probe(struct platform_device * pdev)654 static int spi_geni_probe(struct platform_device *pdev)
655 {
656 	int ret, irq;
657 	struct spi_master *spi;
658 	struct spi_geni_master *mas;
659 	void __iomem *base;
660 	struct clk *clk;
661 	struct device *dev = &pdev->dev;
662 
663 	irq = platform_get_irq(pdev, 0);
664 	if (irq < 0)
665 		return irq;
666 
667 	base = devm_platform_ioremap_resource(pdev, 0);
668 	if (IS_ERR(base))
669 		return PTR_ERR(base);
670 
671 	clk = devm_clk_get(dev, "se");
672 	if (IS_ERR(clk))
673 		return PTR_ERR(clk);
674 
675 	spi = devm_spi_alloc_master(dev, sizeof(*mas));
676 	if (!spi)
677 		return -ENOMEM;
678 
679 	platform_set_drvdata(pdev, spi);
680 	mas = spi_master_get_devdata(spi);
681 	mas->irq = irq;
682 	mas->dev = dev;
683 	mas->se.dev = dev;
684 	mas->se.wrapper = dev_get_drvdata(dev->parent);
685 	mas->se.base = base;
686 	mas->se.clk = clk;
687 	mas->se.opp_table = dev_pm_opp_set_clkname(&pdev->dev, "se");
688 	if (IS_ERR(mas->se.opp_table))
689 		return PTR_ERR(mas->se.opp_table);
690 	/* OPP table is optional */
691 	ret = dev_pm_opp_of_add_table(&pdev->dev);
692 	if (ret && ret != -ENODEV) {
693 		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
694 		goto put_clkname;
695 	}
696 
697 	spi->bus_num = -1;
698 	spi->dev.of_node = dev->of_node;
699 	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
700 	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
701 	spi->num_chipselect = 4;
702 	spi->max_speed_hz = 50000000;
703 	spi->prepare_message = spi_geni_prepare_message;
704 	spi->transfer_one = spi_geni_transfer_one;
705 	spi->auto_runtime_pm = true;
706 	spi->handle_err = handle_fifo_timeout;
707 	spi->set_cs = spi_geni_set_cs;
708 
709 	init_completion(&mas->cs_done);
710 	init_completion(&mas->cancel_done);
711 	init_completion(&mas->abort_done);
712 	spin_lock_init(&mas->lock);
713 	pm_runtime_use_autosuspend(&pdev->dev);
714 	pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
715 	pm_runtime_enable(dev);
716 
717 	ret = geni_icc_get(&mas->se, NULL);
718 	if (ret)
719 		goto spi_geni_probe_runtime_disable;
720 	/* Set the bus quota to a reasonable value for register access */
721 	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
722 	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
723 
724 	ret = geni_icc_set_bw(&mas->se);
725 	if (ret)
726 		goto spi_geni_probe_runtime_disable;
727 
728 	ret = spi_geni_init(mas);
729 	if (ret)
730 		goto spi_geni_probe_runtime_disable;
731 
732 	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
733 	if (ret)
734 		goto spi_geni_probe_runtime_disable;
735 
736 	ret = spi_register_master(spi);
737 	if (ret)
738 		goto spi_geni_probe_free_irq;
739 
740 	return 0;
741 spi_geni_probe_free_irq:
742 	free_irq(mas->irq, spi);
743 spi_geni_probe_runtime_disable:
744 	pm_runtime_disable(dev);
745 	dev_pm_opp_of_remove_table(&pdev->dev);
746 put_clkname:
747 	dev_pm_opp_put_clkname(mas->se.opp_table);
748 	return ret;
749 }
750 
spi_geni_remove(struct platform_device * pdev)751 static int spi_geni_remove(struct platform_device *pdev)
752 {
753 	struct spi_master *spi = platform_get_drvdata(pdev);
754 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
755 
756 	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
757 	spi_unregister_master(spi);
758 
759 	free_irq(mas->irq, spi);
760 	pm_runtime_disable(&pdev->dev);
761 	dev_pm_opp_of_remove_table(&pdev->dev);
762 	dev_pm_opp_put_clkname(mas->se.opp_table);
763 	return 0;
764 }
765 
spi_geni_runtime_suspend(struct device * dev)766 static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
767 {
768 	struct spi_master *spi = dev_get_drvdata(dev);
769 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
770 	int ret;
771 
772 	/* Drop the performance state vote */
773 	dev_pm_opp_set_rate(dev, 0);
774 
775 	ret = geni_se_resources_off(&mas->se);
776 	if (ret)
777 		return ret;
778 
779 	return geni_icc_disable(&mas->se);
780 }
781 
spi_geni_runtime_resume(struct device * dev)782 static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
783 {
784 	struct spi_master *spi = dev_get_drvdata(dev);
785 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
786 	int ret;
787 
788 	ret = geni_icc_enable(&mas->se);
789 	if (ret)
790 		return ret;
791 
792 	ret = geni_se_resources_on(&mas->se);
793 	if (ret)
794 		return ret;
795 
796 	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
797 }
798 
spi_geni_suspend(struct device * dev)799 static int __maybe_unused spi_geni_suspend(struct device *dev)
800 {
801 	struct spi_master *spi = dev_get_drvdata(dev);
802 	int ret;
803 
804 	ret = spi_master_suspend(spi);
805 	if (ret)
806 		return ret;
807 
808 	ret = pm_runtime_force_suspend(dev);
809 	if (ret)
810 		spi_master_resume(spi);
811 
812 	return ret;
813 }
814 
spi_geni_resume(struct device * dev)815 static int __maybe_unused spi_geni_resume(struct device *dev)
816 {
817 	struct spi_master *spi = dev_get_drvdata(dev);
818 	int ret;
819 
820 	ret = pm_runtime_force_resume(dev);
821 	if (ret)
822 		return ret;
823 
824 	ret = spi_master_resume(spi);
825 	if (ret)
826 		pm_runtime_force_suspend(dev);
827 
828 	return ret;
829 }
830 
831 static const struct dev_pm_ops spi_geni_pm_ops = {
832 	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
833 					spi_geni_runtime_resume, NULL)
834 	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
835 };
836 
837 static const struct of_device_id spi_geni_dt_match[] = {
838 	{ .compatible = "qcom,geni-spi" },
839 	{}
840 };
841 MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
842 
843 static struct platform_driver spi_geni_driver = {
844 	.probe  = spi_geni_probe,
845 	.remove = spi_geni_remove,
846 	.driver = {
847 		.name = "geni_spi",
848 		.pm = &spi_geni_pm_ops,
849 		.of_match_table = spi_geni_dt_match,
850 	},
851 };
852 module_platform_driver(spi_geni_driver);
853 
854 MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
855 MODULE_LICENSE("GPL v2");
856