1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Nuvoton NPCM7xx I2C Controller driver
4 *
5 * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6 */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22
23 enum i2c_mode {
24 I2C_MASTER,
25 I2C_SLAVE,
26 };
27
28 /*
29 * External I2C Interface driver xfer indication values, which indicate status
30 * of the bus.
31 */
32 enum i2c_state_ind {
33 I2C_NO_STATUS_IND = 0,
34 I2C_SLAVE_RCV_IND,
35 I2C_SLAVE_XMIT_IND,
36 I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 I2C_SLAVE_RESTART_IND,
38 I2C_SLAVE_DONE_IND,
39 I2C_MASTER_DONE_IND,
40 I2C_NACK_IND,
41 I2C_BUS_ERR_IND,
42 I2C_WAKE_UP_IND,
43 I2C_BLOCK_BYTES_ERR_IND,
44 I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46
47 /*
48 * Operation type values (used to define the operation currently running)
49 * module is interrupt driven, on each interrupt the current operation is
50 * checked to see if the module is currently reading or writing.
51 */
52 enum i2c_oper {
53 I2C_NO_OPER = 0,
54 I2C_WRITE_OPER,
55 I2C_READ_OPER,
56 };
57
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 I2C_BANK_0 = 0,
61 I2C_BANK_1,
62 };
63
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 I2C_DISABLE = 0,
67 I2C_IDLE,
68 I2C_MASTER_START,
69 I2C_SLAVE_MATCH,
70 I2C_OPER_STARTED,
71 I2C_STOP_PENDING,
72 };
73
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 I2C_SLAVE_ADDR1 = 0,
78 I2C_SLAVE_ADDR2,
79 I2C_SLAVE_ADDR3,
80 I2C_SLAVE_ADDR4,
81 I2C_SLAVE_ADDR5,
82 I2C_SLAVE_ADDR6,
83 I2C_SLAVE_ADDR7,
84 I2C_SLAVE_ADDR8,
85 I2C_SLAVE_ADDR9,
86 I2C_SLAVE_ADDR10,
87 I2C_GC_ADDR,
88 I2C_ARP_ADDR,
89 };
90 #endif
91
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL 0xE4
94 #define NPCM_I2CSEGCTL_INIT_VAL 0x0333F000
95
96 /* Common regs */
97 #define NPCM_I2CSDA 0x00
98 #define NPCM_I2CST 0x02
99 #define NPCM_I2CCST 0x04
100 #define NPCM_I2CCTL1 0x06
101 #define NPCM_I2CADDR1 0x08
102 #define NPCM_I2CCTL2 0x0A
103 #define NPCM_I2CADDR2 0x0C
104 #define NPCM_I2CCTL3 0x0E
105 #define NPCM_I2CCST2 0x18
106 #define NPCM_I2CCST3 0x19
107 #define I2C_VER 0x1F
108
109 /*BANK0 regs*/
110 #define NPCM_I2CADDR3 0x10
111 #define NPCM_I2CADDR7 0x11
112 #define NPCM_I2CADDR4 0x12
113 #define NPCM_I2CADDR8 0x13
114 #define NPCM_I2CADDR5 0x14
115 #define NPCM_I2CADDR9 0x15
116 #define NPCM_I2CADDR6 0x16
117 #define NPCM_I2CADDR10 0x17
118
119 #if IS_ENABLED(CONFIG_I2C_SLAVE)
120 /*
121 * npcm_i2caddr array:
122 * The module supports having multiple own slave addresses.
123 * Since the addr regs are sprinkled all over the address space,
124 * use this array to get the address or each register.
125 */
126 #define I2C_NUM_OWN_ADDR 2
127 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
128
129 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
130 NPCM_I2CADDR1, NPCM_I2CADDR2,
131 };
132 #endif
133
134 #define NPCM_I2CCTL4 0x1A
135 #define NPCM_I2CCTL5 0x1B
136 #define NPCM_I2CSCLLT 0x1C /* SCL Low Time */
137 #define NPCM_I2CFIF_CTL 0x1D /* FIFO Control */
138 #define NPCM_I2CSCLHT 0x1E /* SCL High Time */
139
140 /* BANK 1 regs */
141 #define NPCM_I2CFIF_CTS 0x10 /* Both FIFOs Control and Status */
142 #define NPCM_I2CTXF_CTL 0x12 /* Tx-FIFO Control */
143 #define NPCM_I2CT_OUT 0x14 /* Bus T.O. */
144 #define NPCM_I2CPEC 0x16 /* PEC Data */
145 #define NPCM_I2CTXF_STS 0x1A /* Tx-FIFO Status */
146 #define NPCM_I2CRXF_STS 0x1C /* Rx-FIFO Status */
147 #define NPCM_I2CRXF_CTL 0x1E /* Rx-FIFO Control */
148
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT BIT(0)
151 #define NPCM_I2CST_MASTER BIT(1)
152 #define NPCM_I2CST_NMATCH BIT(2)
153 #define NPCM_I2CST_STASTR BIT(3)
154 #define NPCM_I2CST_NEGACK BIT(4)
155 #define NPCM_I2CST_BER BIT(5)
156 #define NPCM_I2CST_SDAST BIT(6)
157 #define NPCM_I2CST_SLVSTP BIT(7)
158
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY BIT(0)
161 #define NPCM_I2CCST_BB BIT(1)
162 #define NPCM_I2CCST_MATCH BIT(2)
163 #define NPCM_I2CCST_GCMATCH BIT(3)
164 #define NPCM_I2CCST_TSDA BIT(4)
165 #define NPCM_I2CCST_TGSCL BIT(5)
166 #define NPCM_I2CCST_MATCHAF BIT(6)
167 #define NPCM_I2CCST_ARPMATCH BIT(7)
168
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START BIT(0)
171 #define NPCM_I2CCTL1_STOP BIT(1)
172 #define NPCM_I2CCTL1_INTEN BIT(2)
173 #define NPCM_I2CCTL1_EOBINTE BIT(3)
174 #define NPCM_I2CCTL1_ACK BIT(4)
175 #define NPCM_I2CCTL1_GCMEN BIT(5)
176 #define NPCM_I2CCTL1_NMINTE BIT(6)
177 #define NPCM_I2CCTL1_STASTRE BIT(7)
178
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS \
181 (NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
182
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A GENMASK(6, 0)
185 #define NPCM_I2CADDR_SAEN BIT(7)
186
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE BIT(0)
189 #define I2CCTL2_SCLFRQ6_0 GENMASK(7, 1)
190
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7 GENMASK(1, 0)
193 #define I2CCTL3_ARPMEN BIT(2)
194 #define I2CCTL3_IDL_START BIT(3)
195 #define I2CCTL3_400K_MODE BIT(4)
196 #define I2CCTL3_BNK_SEL BIT(5)
197 #define I2CCTL3_SDA_LVL BIT(6)
198 #define I2CCTL3_SCL_LVL BIT(7)
199
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F BIT(5)
208 #define NPCM_I2CCST2_INTSTS BIT(7)
209
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY BIT(7)
215
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE BIT(7)
219
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT GENMASK(3, 0)
222
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR BIT(7)
228
229 /* NPCM_I2CTXF_CTL reg fields */
230 #define NPCM_I2CTXF_CTL_TX_THR GENMASK(4, 0)
231 #define NPCM_I2CTXF_CTL_THR_TXIE BIT(6)
232
233 /* NPCM_I2CT_OUT reg fields */
234 #define NPCM_I2CT_OUT_TO_CKDIV GENMASK(5, 0)
235 #define NPCM_I2CT_OUT_T_OUTIE BIT(6)
236 #define NPCM_I2CT_OUT_T_OUTST BIT(7)
237
238 /* NPCM_I2CTXF_STS reg fields */
239 #define NPCM_I2CTXF_STS_TX_BYTES GENMASK(4, 0)
240 #define NPCM_I2CTXF_STS_TX_THST BIT(6)
241
242 /* NPCM_I2CRXF_STS reg fields */
243 #define NPCM_I2CRXF_STS_RX_BYTES GENMASK(4, 0)
244 #define NPCM_I2CRXF_STS_RX_THST BIT(6)
245
246 /* NPCM_I2CFIF_CTL reg fields */
247 #define NPCM_I2CFIF_CTL_FIFO_EN BIT(4)
248
249 /* NPCM_I2CRXF_CTL reg fields */
250 #define NPCM_I2CRXF_CTL_RX_THR GENMASK(4, 0)
251 #define NPCM_I2CRXF_CTL_LAST_PEC BIT(5)
252 #define NPCM_I2CRXF_CTL_THR_RXIE BIT(6)
253
254 #define I2C_HW_FIFO_SIZE 16
255
256 /* I2C_VER reg fields */
257 #define I2C_VER_VERSION GENMASK(6, 0)
258 #define I2C_VER_FIFO_EN BIT(7)
259
260 /* stall/stuck timeout in us */
261 #define DEFAULT_STALL_COUNT 25
262
263 /* SCLFRQ field position */
264 #define SCLFRQ_0_TO_6 GENMASK(6, 0)
265 #define SCLFRQ_7_TO_8 GENMASK(8, 7)
266
267 /* supported clk settings. values in Hz. */
268 #define I2C_FREQ_MIN_HZ 10000
269 #define I2C_FREQ_MAX_HZ I2C_MAX_FAST_MODE_PLUS_FREQ
270
271 /* Status of one I2C module */
272 struct npcm_i2c {
273 struct i2c_adapter adap;
274 struct device *dev;
275 unsigned char __iomem *reg;
276 spinlock_t lock; /* IRQ synchronization */
277 struct completion cmd_complete;
278 int cmd_err;
279 struct i2c_msg *msgs;
280 int msgs_num;
281 int num;
282 u32 apb_clk;
283 struct i2c_bus_recovery_info rinfo;
284 enum i2c_state state;
285 enum i2c_oper operation;
286 enum i2c_mode master_or_slave;
287 enum i2c_state_ind stop_ind;
288 u8 dest_addr;
289 u8 *rd_buf;
290 u16 rd_size;
291 u16 rd_ind;
292 u8 *wr_buf;
293 u16 wr_size;
294 u16 wr_ind;
295 bool fifo_use;
296 u16 PEC_mask; /* PEC bit mask per slave address */
297 bool PEC_use;
298 bool read_block_use;
299 unsigned long int_time_stamp;
300 unsigned long bus_freq; /* in Hz */
301 #if IS_ENABLED(CONFIG_I2C_SLAVE)
302 u8 own_slave_addr;
303 struct i2c_client *slave;
304 int slv_rd_size;
305 int slv_rd_ind;
306 int slv_wr_size;
307 int slv_wr_ind;
308 u8 slv_rd_buf[I2C_HW_FIFO_SIZE];
309 u8 slv_wr_buf[I2C_HW_FIFO_SIZE];
310 #endif
311 struct dentry *debugfs; /* debugfs device directory */
312 u64 ber_cnt;
313 u64 rec_succ_cnt;
314 u64 rec_fail_cnt;
315 u64 nack_cnt;
316 u64 timeout_cnt;
317 };
318
npcm_i2c_select_bank(struct npcm_i2c * bus,enum i2c_bank bank)319 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
320 enum i2c_bank bank)
321 {
322 u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
323
324 if (bank == I2C_BANK_0)
325 i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
326 else
327 i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
328 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
329 }
330
npcm_i2c_init_params(struct npcm_i2c * bus)331 static void npcm_i2c_init_params(struct npcm_i2c *bus)
332 {
333 bus->stop_ind = I2C_NO_STATUS_IND;
334 bus->rd_size = 0;
335 bus->wr_size = 0;
336 bus->rd_ind = 0;
337 bus->wr_ind = 0;
338 bus->read_block_use = false;
339 bus->int_time_stamp = 0;
340 bus->PEC_use = false;
341 bus->PEC_mask = 0;
342 #if IS_ENABLED(CONFIG_I2C_SLAVE)
343 if (bus->slave)
344 bus->master_or_slave = I2C_SLAVE;
345 #endif
346 }
347
npcm_i2c_wr_byte(struct npcm_i2c * bus,u8 data)348 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
349 {
350 iowrite8(data, bus->reg + NPCM_I2CSDA);
351 }
352
npcm_i2c_rd_byte(struct npcm_i2c * bus)353 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
354 {
355 return ioread8(bus->reg + NPCM_I2CSDA);
356 }
357
npcm_i2c_get_SCL(struct i2c_adapter * _adap)358 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
359 {
360 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
361
362 return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
363 }
364
npcm_i2c_get_SDA(struct i2c_adapter * _adap)365 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
366 {
367 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
368
369 return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
370 }
371
npcm_i2c_get_index(struct npcm_i2c * bus)372 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
373 {
374 if (bus->operation == I2C_READ_OPER)
375 return bus->rd_ind;
376 if (bus->operation == I2C_WRITE_OPER)
377 return bus->wr_ind;
378 return 0;
379 }
380
381 /* quick protocol (just address) */
npcm_i2c_is_quick(struct npcm_i2c * bus)382 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
383 {
384 return bus->wr_size == 0 && bus->rd_size == 0;
385 }
386
npcm_i2c_disable(struct npcm_i2c * bus)387 static void npcm_i2c_disable(struct npcm_i2c *bus)
388 {
389 u8 i2cctl2;
390
391 #if IS_ENABLED(CONFIG_I2C_SLAVE)
392 int i;
393
394 /* Slave addresses removal */
395 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
396 iowrite8(0, bus->reg + npcm_i2caddr[i]);
397
398 #endif
399 /* Disable module */
400 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
401 i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
402 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
403
404 bus->state = I2C_DISABLE;
405 }
406
npcm_i2c_enable(struct npcm_i2c * bus)407 static void npcm_i2c_enable(struct npcm_i2c *bus)
408 {
409 u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
410
411 i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
412 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
413 bus->state = I2C_IDLE;
414 }
415
416 /* enable\disable end of busy (EOB) interrupts */
npcm_i2c_eob_int(struct npcm_i2c * bus,bool enable)417 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
418 {
419 u8 val;
420
421 /* Clear EO_BUSY pending bit: */
422 val = ioread8(bus->reg + NPCM_I2CCST3);
423 val = val | NPCM_I2CCST3_EO_BUSY;
424 iowrite8(val, bus->reg + NPCM_I2CCST3);
425
426 val = ioread8(bus->reg + NPCM_I2CCTL1);
427 val &= ~NPCM_I2CCTL1_RWS;
428 if (enable)
429 val |= NPCM_I2CCTL1_EOBINTE;
430 else
431 val &= ~NPCM_I2CCTL1_EOBINTE;
432 iowrite8(val, bus->reg + NPCM_I2CCTL1);
433 }
434
npcm_i2c_tx_fifo_empty(struct npcm_i2c * bus)435 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
436 {
437 u8 tx_fifo_sts;
438
439 tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
440 /* check if TX FIFO is not empty */
441 if ((tx_fifo_sts & NPCM_I2CTXF_STS_TX_BYTES) == 0)
442 return false;
443
444 /* check if TX FIFO status bit is set: */
445 return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
446 }
447
npcm_i2c_rx_fifo_full(struct npcm_i2c * bus)448 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
449 {
450 u8 rx_fifo_sts;
451
452 rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
453 /* check if RX FIFO is not empty: */
454 if ((rx_fifo_sts & NPCM_I2CRXF_STS_RX_BYTES) == 0)
455 return false;
456
457 /* check if rx fifo full status is set: */
458 return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
459 }
460
npcm_i2c_clear_fifo_int(struct npcm_i2c * bus)461 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
462 {
463 u8 val;
464
465 val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
466 val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
467 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
468 }
469
npcm_i2c_clear_tx_fifo(struct npcm_i2c * bus)470 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
471 {
472 u8 val;
473
474 val = ioread8(bus->reg + NPCM_I2CTXF_STS);
475 val = val | NPCM_I2CTXF_STS_TX_THST;
476 iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
477 }
478
npcm_i2c_clear_rx_fifo(struct npcm_i2c * bus)479 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
480 {
481 u8 val;
482
483 val = ioread8(bus->reg + NPCM_I2CRXF_STS);
484 val = val | NPCM_I2CRXF_STS_RX_THST;
485 iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
486 }
487
npcm_i2c_int_enable(struct npcm_i2c * bus,bool enable)488 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
489 {
490 u8 val;
491
492 val = ioread8(bus->reg + NPCM_I2CCTL1);
493 val &= ~NPCM_I2CCTL1_RWS;
494 if (enable)
495 val |= NPCM_I2CCTL1_INTEN;
496 else
497 val &= ~NPCM_I2CCTL1_INTEN;
498 iowrite8(val, bus->reg + NPCM_I2CCTL1);
499 }
500
npcm_i2c_master_start(struct npcm_i2c * bus)501 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
502 {
503 u8 val;
504
505 val = ioread8(bus->reg + NPCM_I2CCTL1);
506 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
507 val |= NPCM_I2CCTL1_START;
508 iowrite8(val, bus->reg + NPCM_I2CCTL1);
509 }
510
npcm_i2c_master_stop(struct npcm_i2c * bus)511 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
512 {
513 u8 val;
514
515 /*
516 * override HW issue: I2C may fail to supply stop condition in Master
517 * Write operation.
518 * Need to delay at least 5 us from the last int, before issueing a stop
519 */
520 udelay(10); /* function called from interrupt, can't sleep */
521 val = ioread8(bus->reg + NPCM_I2CCTL1);
522 val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
523 val |= NPCM_I2CCTL1_STOP;
524 iowrite8(val, bus->reg + NPCM_I2CCTL1);
525
526 if (!bus->fifo_use)
527 return;
528
529 npcm_i2c_select_bank(bus, I2C_BANK_1);
530
531 if (bus->operation == I2C_READ_OPER)
532 npcm_i2c_clear_rx_fifo(bus);
533 else
534 npcm_i2c_clear_tx_fifo(bus);
535 npcm_i2c_clear_fifo_int(bus);
536 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
537 }
538
npcm_i2c_stall_after_start(struct npcm_i2c * bus,bool stall)539 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
540 {
541 u8 val;
542
543 val = ioread8(bus->reg + NPCM_I2CCTL1);
544 val &= ~NPCM_I2CCTL1_RWS;
545 if (stall)
546 val |= NPCM_I2CCTL1_STASTRE;
547 else
548 val &= ~NPCM_I2CCTL1_STASTRE;
549 iowrite8(val, bus->reg + NPCM_I2CCTL1);
550 }
551
npcm_i2c_nack(struct npcm_i2c * bus)552 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
553 {
554 u8 val;
555
556 val = ioread8(bus->reg + NPCM_I2CCTL1);
557 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
558 val |= NPCM_I2CCTL1_ACK;
559 iowrite8(val, bus->reg + NPCM_I2CCTL1);
560 }
561
npcm_i2c_clear_master_status(struct npcm_i2c * bus)562 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
563 {
564 u8 val;
565
566 /* Clear NEGACK, STASTR and BER bits */
567 val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
568 iowrite8(val, bus->reg + NPCM_I2CST);
569 }
570
571 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_slave_int_enable(struct npcm_i2c * bus,bool enable)572 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
573 {
574 u8 i2cctl1;
575
576 /* enable interrupt on slave match: */
577 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
578 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
579 if (enable)
580 i2cctl1 |= NPCM_I2CCTL1_NMINTE;
581 else
582 i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
583 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
584 }
585
npcm_i2c_slave_enable(struct npcm_i2c * bus,enum i2c_addr addr_type,u8 addr,bool enable)586 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
587 u8 addr, bool enable)
588 {
589 u8 i2cctl1;
590 u8 i2cctl3;
591 u8 sa_reg;
592
593 sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
594 if (addr_type == I2C_GC_ADDR) {
595 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
596 if (enable)
597 i2cctl1 |= NPCM_I2CCTL1_GCMEN;
598 else
599 i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
600 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
601 return 0;
602 } else if (addr_type == I2C_ARP_ADDR) {
603 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
604 if (enable)
605 i2cctl3 |= I2CCTL3_ARPMEN;
606 else
607 i2cctl3 &= ~I2CCTL3_ARPMEN;
608 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
609 return 0;
610 }
611 if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
612 dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
613
614 if (addr_type >= I2C_ARP_ADDR)
615 return -EFAULT;
616
617 /* Set and enable the address */
618 iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
619 npcm_i2c_slave_int_enable(bus, enable);
620
621 return 0;
622 }
623 #endif
624
npcm_i2c_reset(struct npcm_i2c * bus)625 static void npcm_i2c_reset(struct npcm_i2c *bus)
626 {
627 /*
628 * Save I2CCTL1 relevant bits. It is being cleared when the module
629 * is disabled.
630 */
631 u8 i2cctl1;
632 #if IS_ENABLED(CONFIG_I2C_SLAVE)
633 u8 addr;
634 #endif
635
636 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
637
638 npcm_i2c_disable(bus);
639 npcm_i2c_enable(bus);
640
641 /* Restore NPCM_I2CCTL1 Status */
642 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
643 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
644
645 /* Clear BB (BUS BUSY) bit */
646 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
647 iowrite8(0xFF, bus->reg + NPCM_I2CST);
648
649 /* Clear and disable EOB */
650 npcm_i2c_eob_int(bus, false);
651
652 /* Clear all fifo bits: */
653 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
654
655 #if IS_ENABLED(CONFIG_I2C_SLAVE)
656 if (bus->slave) {
657 addr = bus->slave->addr;
658 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
659 }
660 #endif
661
662 /* clear status bits for spurious interrupts */
663 npcm_i2c_clear_master_status(bus);
664
665 bus->state = I2C_IDLE;
666 }
667
npcm_i2c_is_master(struct npcm_i2c * bus)668 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
669 {
670 return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
671 }
672
npcm_i2c_callback(struct npcm_i2c * bus,enum i2c_state_ind op_status,u16 info)673 static void npcm_i2c_callback(struct npcm_i2c *bus,
674 enum i2c_state_ind op_status, u16 info)
675 {
676 struct i2c_msg *msgs;
677 int msgs_num;
678
679 msgs = bus->msgs;
680 msgs_num = bus->msgs_num;
681 /*
682 * check that transaction was not timed-out, and msgs still
683 * holds a valid value.
684 */
685 if (!msgs)
686 return;
687
688 if (completion_done(&bus->cmd_complete))
689 return;
690
691 switch (op_status) {
692 case I2C_MASTER_DONE_IND:
693 bus->cmd_err = bus->msgs_num;
694 fallthrough;
695 case I2C_BLOCK_BYTES_ERR_IND:
696 /* Master tx finished and all transmit bytes were sent */
697 if (bus->msgs) {
698 if (msgs[0].flags & I2C_M_RD)
699 msgs[0].len = info;
700 else if (msgs_num == 2 &&
701 msgs[1].flags & I2C_M_RD)
702 msgs[1].len = info;
703 }
704 if (completion_done(&bus->cmd_complete) == false)
705 complete(&bus->cmd_complete);
706 break;
707
708 case I2C_NACK_IND:
709 /* MASTER transmit got a NACK before tx all bytes */
710 bus->cmd_err = -ENXIO;
711 if (bus->master_or_slave == I2C_MASTER)
712 complete(&bus->cmd_complete);
713
714 break;
715 case I2C_BUS_ERR_IND:
716 /* Bus error */
717 bus->cmd_err = -EAGAIN;
718 if (bus->master_or_slave == I2C_MASTER)
719 complete(&bus->cmd_complete);
720
721 break;
722 case I2C_WAKE_UP_IND:
723 /* I2C wake up */
724 break;
725 default:
726 break;
727 }
728
729 bus->operation = I2C_NO_OPER;
730 #if IS_ENABLED(CONFIG_I2C_SLAVE)
731 if (bus->slave)
732 bus->master_or_slave = I2C_SLAVE;
733 #endif
734 }
735
npcm_i2c_fifo_usage(struct npcm_i2c * bus)736 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
737 {
738 if (bus->operation == I2C_WRITE_OPER)
739 return FIELD_GET(NPCM_I2CTXF_STS_TX_BYTES,
740 ioread8(bus->reg + NPCM_I2CTXF_STS));
741 if (bus->operation == I2C_READ_OPER)
742 return FIELD_GET(NPCM_I2CRXF_STS_RX_BYTES,
743 ioread8(bus->reg + NPCM_I2CRXF_STS));
744 return 0;
745 }
746
npcm_i2c_write_to_fifo_master(struct npcm_i2c * bus,u16 max_bytes)747 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
748 {
749 u8 size_free_fifo;
750
751 /*
752 * Fill the FIFO, while the FIFO is not full and there are more bytes
753 * to write
754 */
755 size_free_fifo = I2C_HW_FIFO_SIZE - npcm_i2c_fifo_usage(bus);
756 while (max_bytes-- && size_free_fifo) {
757 if (bus->wr_ind < bus->wr_size)
758 npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
759 else
760 npcm_i2c_wr_byte(bus, 0xFF);
761 size_free_fifo = I2C_HW_FIFO_SIZE - npcm_i2c_fifo_usage(bus);
762 }
763 }
764
765 /*
766 * npcm_i2c_set_fifo:
767 * configure the FIFO before using it. If nread is -1 RX FIFO will not be
768 * configured. same for nwrite
769 */
npcm_i2c_set_fifo(struct npcm_i2c * bus,int nread,int nwrite)770 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
771 {
772 u8 rxf_ctl = 0;
773
774 if (!bus->fifo_use)
775 return;
776 npcm_i2c_select_bank(bus, I2C_BANK_1);
777 npcm_i2c_clear_tx_fifo(bus);
778 npcm_i2c_clear_rx_fifo(bus);
779
780 /* configure RX FIFO */
781 if (nread > 0) {
782 rxf_ctl = min_t(int, nread, I2C_HW_FIFO_SIZE);
783
784 /* set LAST bit. if LAST is set next FIFO packet is nacked */
785 if (nread <= I2C_HW_FIFO_SIZE)
786 rxf_ctl |= NPCM_I2CRXF_CTL_LAST_PEC;
787
788 /*
789 * if we are about to read the first byte in blk rd mode,
790 * don't NACK it. If slave returns zero size HW can't NACK
791 * it immidiattly, it will read extra byte and then NACK.
792 */
793 if (bus->rd_ind == 0 && bus->read_block_use) {
794 /* set fifo to read one byte, no last: */
795 rxf_ctl = 1;
796 }
797
798 /* set fifo size: */
799 iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
800 }
801
802 /* configure TX FIFO */
803 if (nwrite > 0) {
804 if (nwrite > I2C_HW_FIFO_SIZE)
805 /* data to send is more then FIFO size. */
806 iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CTXF_CTL);
807 else
808 iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
809
810 npcm_i2c_clear_tx_fifo(bus);
811 }
812 }
813
npcm_i2c_read_fifo(struct npcm_i2c * bus,u8 bytes_in_fifo)814 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
815 {
816 u8 data;
817
818 while (bytes_in_fifo--) {
819 data = npcm_i2c_rd_byte(bus);
820 if (bus->rd_ind < bus->rd_size)
821 bus->rd_buf[bus->rd_ind++] = data;
822 }
823 }
824
npcm_i2c_master_abort(struct npcm_i2c * bus)825 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
826 {
827 /* Only current master is allowed to issue a stop condition */
828 if (!npcm_i2c_is_master(bus))
829 return;
830
831 npcm_i2c_eob_int(bus, true);
832 npcm_i2c_master_stop(bus);
833 npcm_i2c_clear_master_status(bus);
834 }
835
836 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_get_slave_addr(struct npcm_i2c * bus,enum i2c_addr addr_type)837 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
838 {
839 u8 slave_add;
840
841 if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
842 dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
843
844 slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
845
846 return slave_add;
847 }
848
npcm_i2c_remove_slave_addr(struct npcm_i2c * bus,u8 slave_add)849 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
850 {
851 int i;
852
853 /* Set the enable bit */
854 slave_add |= 0x80;
855
856 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
857 if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
858 iowrite8(0, bus->reg + npcm_i2caddr[i]);
859 }
860
861 return 0;
862 }
863
npcm_i2c_write_fifo_slave(struct npcm_i2c * bus,u16 max_bytes)864 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
865 {
866 /*
867 * Fill the FIFO, while the FIFO is not full and there are more bytes
868 * to write
869 */
870 npcm_i2c_clear_fifo_int(bus);
871 npcm_i2c_clear_tx_fifo(bus);
872 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
873 while (max_bytes-- && I2C_HW_FIFO_SIZE != npcm_i2c_fifo_usage(bus)) {
874 if (bus->slv_wr_size <= 0)
875 break;
876 bus->slv_wr_ind = bus->slv_wr_ind % I2C_HW_FIFO_SIZE;
877 npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
878 bus->slv_wr_ind++;
879 bus->slv_wr_ind = bus->slv_wr_ind % I2C_HW_FIFO_SIZE;
880 bus->slv_wr_size--;
881 }
882 }
883
npcm_i2c_read_fifo_slave(struct npcm_i2c * bus,u8 bytes_in_fifo)884 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
885 {
886 u8 data;
887
888 if (!bus->slave)
889 return;
890
891 while (bytes_in_fifo--) {
892 data = npcm_i2c_rd_byte(bus);
893
894 bus->slv_rd_ind = bus->slv_rd_ind % I2C_HW_FIFO_SIZE;
895 bus->slv_rd_buf[bus->slv_rd_ind] = data;
896 bus->slv_rd_ind++;
897
898 /* 1st byte is length in block protocol: */
899 if (bus->slv_rd_ind == 1 && bus->read_block_use)
900 bus->slv_rd_size = data + bus->PEC_use + 1;
901 }
902 }
903
npcm_i2c_slave_get_wr_buf(struct npcm_i2c * bus)904 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
905 {
906 int i;
907 u8 value;
908 int ind;
909 int ret = bus->slv_wr_ind;
910
911 /* fill a cyclic buffer */
912 for (i = 0; i < I2C_HW_FIFO_SIZE; i++) {
913 if (bus->slv_wr_size >= I2C_HW_FIFO_SIZE)
914 break;
915 if (bus->state == I2C_SLAVE_MATCH) {
916 i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
917 bus->state = I2C_OPER_STARTED;
918 } else {
919 i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
920 }
921 ind = (bus->slv_wr_ind + bus->slv_wr_size) % I2C_HW_FIFO_SIZE;
922 bus->slv_wr_buf[ind] = value;
923 bus->slv_wr_size++;
924 }
925 return I2C_HW_FIFO_SIZE - ret;
926 }
927
npcm_i2c_slave_send_rd_buf(struct npcm_i2c * bus)928 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
929 {
930 int i;
931
932 for (i = 0; i < bus->slv_rd_ind; i++)
933 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
934 &bus->slv_rd_buf[i]);
935 /*
936 * once we send bytes up, need to reset the counter of the wr buf
937 * got data from master (new offset in device), ignore wr fifo:
938 */
939 if (bus->slv_rd_ind) {
940 bus->slv_wr_size = 0;
941 bus->slv_wr_ind = 0;
942 }
943
944 bus->slv_rd_ind = 0;
945 bus->slv_rd_size = bus->adap.quirks->max_read_len;
946
947 npcm_i2c_clear_fifo_int(bus);
948 npcm_i2c_clear_rx_fifo(bus);
949 }
950
npcm_i2c_slave_receive(struct npcm_i2c * bus,u16 nread,u8 * read_data)951 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
952 u8 *read_data)
953 {
954 bus->state = I2C_OPER_STARTED;
955 bus->operation = I2C_READ_OPER;
956 bus->slv_rd_size = nread;
957 bus->slv_rd_ind = 0;
958
959 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
960 iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CRXF_CTL);
961 npcm_i2c_clear_tx_fifo(bus);
962 npcm_i2c_clear_rx_fifo(bus);
963 }
964
npcm_i2c_slave_xmit(struct npcm_i2c * bus,u16 nwrite,u8 * write_data)965 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
966 u8 *write_data)
967 {
968 if (nwrite == 0)
969 return;
970
971 bus->operation = I2C_WRITE_OPER;
972
973 /* get the next buffer */
974 npcm_i2c_slave_get_wr_buf(bus);
975 npcm_i2c_write_fifo_slave(bus, nwrite);
976 }
977
978 /*
979 * npcm_i2c_slave_wr_buf_sync:
980 * currently slave IF only supports single byte operations.
981 * in order to utilyze the npcm HW FIFO, the driver will ask for 16 bytes
982 * at a time, pack them in buffer, and then transmit them all together
983 * to the FIFO and onward to the bus.
984 * NACK on read will be once reached to bus->adap->quirks->max_read_len.
985 * sending a NACK wherever the backend requests for it is not supported.
986 * the next two functions allow reading to local buffer before writing it all
987 * to the HW FIFO.
988 */
npcm_i2c_slave_wr_buf_sync(struct npcm_i2c * bus)989 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
990 {
991 int left_in_fifo;
992
993 left_in_fifo = FIELD_GET(NPCM_I2CTXF_STS_TX_BYTES,
994 ioread8(bus->reg + NPCM_I2CTXF_STS));
995
996 /* fifo already full: */
997 if (left_in_fifo >= I2C_HW_FIFO_SIZE ||
998 bus->slv_wr_size >= I2C_HW_FIFO_SIZE)
999 return;
1000
1001 /* update the wr fifo index back to the untransmitted bytes: */
1002 bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1003 bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1004
1005 if (bus->slv_wr_ind < 0)
1006 bus->slv_wr_ind += I2C_HW_FIFO_SIZE;
1007 }
1008
npcm_i2c_slave_rd_wr(struct npcm_i2c * bus)1009 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1010 {
1011 if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1012 /*
1013 * Slave got an address match with direction bit 1 so it should
1014 * transmit data. Write till the master will NACK
1015 */
1016 bus->operation = I2C_WRITE_OPER;
1017 npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1018 bus->slv_wr_buf);
1019 } else {
1020 /*
1021 * Slave got an address match with direction bit 0 so it should
1022 * receive data.
1023 * this module does not support saying no to bytes.
1024 * it will always ACK.
1025 */
1026 bus->operation = I2C_READ_OPER;
1027 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1028 bus->stop_ind = I2C_SLAVE_RCV_IND;
1029 npcm_i2c_slave_send_rd_buf(bus);
1030 npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1031 bus->slv_rd_buf);
1032 }
1033 }
1034
npcm_i2c_int_slave_handler(struct npcm_i2c * bus)1035 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1036 {
1037 u8 val;
1038 irqreturn_t ret = IRQ_NONE;
1039 u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1040
1041 /* Slave: A NACK has occurred */
1042 if (NPCM_I2CST_NEGACK & i2cst) {
1043 bus->stop_ind = I2C_NACK_IND;
1044 npcm_i2c_slave_wr_buf_sync(bus);
1045 if (bus->fifo_use)
1046 /* clear the FIFO */
1047 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1048 bus->reg + NPCM_I2CFIF_CTS);
1049
1050 /* In slave write, NACK is OK, otherwise it is a problem */
1051 bus->stop_ind = I2C_NO_STATUS_IND;
1052 bus->operation = I2C_NO_OPER;
1053 bus->own_slave_addr = 0xFF;
1054
1055 /*
1056 * Slave has to wait for STOP to decide this is the end
1057 * of the transaction. tx is not yet considered as done
1058 */
1059 iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1060
1061 ret = IRQ_HANDLED;
1062 }
1063
1064 /* Slave mode: a Bus Error (BER) has been identified */
1065 if (NPCM_I2CST_BER & i2cst) {
1066 /*
1067 * Check whether bus arbitration or Start or Stop during data
1068 * xfer bus arbitration problem should not result in recovery
1069 */
1070 bus->stop_ind = I2C_BUS_ERR_IND;
1071
1072 /* wait for bus busy before clear fifo */
1073 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1074
1075 bus->state = I2C_IDLE;
1076
1077 /*
1078 * in BER case we might get 2 interrupts: one for slave one for
1079 * master ( for a channel which is master\slave switching)
1080 */
1081 if (completion_done(&bus->cmd_complete) == false) {
1082 bus->cmd_err = -EIO;
1083 complete(&bus->cmd_complete);
1084 }
1085 bus->own_slave_addr = 0xFF;
1086 iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1087 ret = IRQ_HANDLED;
1088 }
1089
1090 /* A Slave Stop Condition has been identified */
1091 if (NPCM_I2CST_SLVSTP & i2cst) {
1092 u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1093
1094 bus->stop_ind = I2C_SLAVE_DONE_IND;
1095
1096 if (bus->operation == I2C_READ_OPER)
1097 npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1098
1099 /* if the buffer is empty nothing will be sent */
1100 npcm_i2c_slave_send_rd_buf(bus);
1101
1102 /* Slave done transmitting or receiving */
1103 bus->stop_ind = I2C_NO_STATUS_IND;
1104
1105 /*
1106 * Note, just because we got here, it doesn't mean we through
1107 * away the wr buffer.
1108 * we keep it until the next received offset.
1109 */
1110 bus->operation = I2C_NO_OPER;
1111 bus->own_slave_addr = 0xFF;
1112 i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1113 iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1114 if (bus->fifo_use) {
1115 npcm_i2c_clear_fifo_int(bus);
1116 npcm_i2c_clear_rx_fifo(bus);
1117 npcm_i2c_clear_tx_fifo(bus);
1118
1119 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1120 bus->reg + NPCM_I2CFIF_CTS);
1121 }
1122 bus->state = I2C_IDLE;
1123 ret = IRQ_HANDLED;
1124 }
1125
1126 /* restart condition occurred and Rx-FIFO was not empty */
1127 if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1128 ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1129 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1130 bus->master_or_slave = I2C_SLAVE;
1131 if (bus->operation == I2C_READ_OPER)
1132 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1133 bus->operation = I2C_WRITE_OPER;
1134 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1135 val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1136 NPCM_I2CFIF_CTS_RXF_TXE;
1137 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1138 npcm_i2c_slave_rd_wr(bus);
1139 ret = IRQ_HANDLED;
1140 }
1141
1142 /* A Slave Address Match has been identified */
1143 if (NPCM_I2CST_NMATCH & i2cst) {
1144 u8 info = 0;
1145
1146 /* Address match automatically implies slave mode */
1147 bus->master_or_slave = I2C_SLAVE;
1148 npcm_i2c_clear_fifo_int(bus);
1149 npcm_i2c_clear_rx_fifo(bus);
1150 npcm_i2c_clear_tx_fifo(bus);
1151 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1152 iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CRXF_CTL);
1153 if (NPCM_I2CST_XMIT & i2cst) {
1154 bus->operation = I2C_WRITE_OPER;
1155 } else {
1156 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1157 &info);
1158 bus->operation = I2C_READ_OPER;
1159 }
1160 if (bus->own_slave_addr == 0xFF) {
1161 /* Check which type of address match */
1162 val = ioread8(bus->reg + NPCM_I2CCST);
1163 if (NPCM_I2CCST_MATCH & val) {
1164 u16 addr;
1165 enum i2c_addr eaddr;
1166 u8 i2ccst2;
1167 u8 i2ccst3;
1168
1169 i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1170 i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1171
1172 /*
1173 * the i2c module can response to 10 own SA.
1174 * check which one was addressed by the master.
1175 * repond to the first one.
1176 */
1177 addr = ((i2ccst3 & 0x07) << 7) |
1178 (i2ccst2 & 0x7F);
1179 info = ffs(addr);
1180 eaddr = (enum i2c_addr)info;
1181 addr = npcm_i2c_get_slave_addr(bus, eaddr);
1182 addr &= 0x7F;
1183 bus->own_slave_addr = addr;
1184 if (bus->PEC_mask & BIT(info))
1185 bus->PEC_use = true;
1186 else
1187 bus->PEC_use = false;
1188 } else {
1189 if (NPCM_I2CCST_GCMATCH & val)
1190 bus->own_slave_addr = 0;
1191 if (NPCM_I2CCST_ARPMATCH & val)
1192 bus->own_slave_addr = 0x61;
1193 }
1194 } else {
1195 /*
1196 * Slave match can happen in two options:
1197 * 1. Start, SA, read (slave read without further ado)
1198 * 2. Start, SA, read, data, restart, SA, read, ...
1199 * (slave read in fragmented mode)
1200 * 3. Start, SA, write, data, restart, SA, read, ..
1201 * (regular write-read mode)
1202 */
1203 if ((bus->state == I2C_OPER_STARTED &&
1204 bus->operation == I2C_READ_OPER &&
1205 bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1206 bus->stop_ind == I2C_SLAVE_RCV_IND) {
1207 /* slave tx after slave rx w/o STOP */
1208 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1209 }
1210 }
1211
1212 if (NPCM_I2CST_XMIT & i2cst)
1213 bus->stop_ind = I2C_SLAVE_XMIT_IND;
1214 else
1215 bus->stop_ind = I2C_SLAVE_RCV_IND;
1216 bus->state = I2C_SLAVE_MATCH;
1217 npcm_i2c_slave_rd_wr(bus);
1218 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1219 ret = IRQ_HANDLED;
1220 }
1221
1222 /* Slave SDA status is set - tx or rx */
1223 if ((NPCM_I2CST_SDAST & i2cst) ||
1224 (bus->fifo_use &&
1225 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1226 npcm_i2c_slave_rd_wr(bus);
1227 iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1228 ret = IRQ_HANDLED;
1229 } /* SDAST */
1230
1231 /*
1232 * if irq is not one of the above, make sure EOB is disabled and all
1233 * status bits are cleared.
1234 */
1235 if (ret == IRQ_NONE) {
1236 npcm_i2c_eob_int(bus, false);
1237 npcm_i2c_clear_master_status(bus);
1238 }
1239
1240 return IRQ_HANDLED;
1241 }
1242
npcm_i2c_reg_slave(struct i2c_client * client)1243 static int npcm_i2c_reg_slave(struct i2c_client *client)
1244 {
1245 unsigned long lock_flags;
1246 struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1247
1248 bus->slave = client;
1249
1250 if (!bus->slave)
1251 return -EINVAL;
1252
1253 if (client->flags & I2C_CLIENT_TEN)
1254 return -EAFNOSUPPORT;
1255
1256 spin_lock_irqsave(&bus->lock, lock_flags);
1257
1258 npcm_i2c_init_params(bus);
1259 bus->slv_rd_size = 0;
1260 bus->slv_wr_size = 0;
1261 bus->slv_rd_ind = 0;
1262 bus->slv_wr_ind = 0;
1263 if (client->flags & I2C_CLIENT_PEC)
1264 bus->PEC_use = true;
1265
1266 dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1267 client->addr, bus->PEC_use);
1268
1269 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1270 npcm_i2c_clear_fifo_int(bus);
1271 npcm_i2c_clear_rx_fifo(bus);
1272 npcm_i2c_clear_tx_fifo(bus);
1273 npcm_i2c_slave_int_enable(bus, true);
1274
1275 spin_unlock_irqrestore(&bus->lock, lock_flags);
1276 return 0;
1277 }
1278
npcm_i2c_unreg_slave(struct i2c_client * client)1279 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1280 {
1281 struct npcm_i2c *bus = client->adapter->algo_data;
1282 unsigned long lock_flags;
1283
1284 spin_lock_irqsave(&bus->lock, lock_flags);
1285 if (!bus->slave) {
1286 spin_unlock_irqrestore(&bus->lock, lock_flags);
1287 return -EINVAL;
1288 }
1289 npcm_i2c_slave_int_enable(bus, false);
1290 npcm_i2c_remove_slave_addr(bus, client->addr);
1291 bus->slave = NULL;
1292 spin_unlock_irqrestore(&bus->lock, lock_flags);
1293 return 0;
1294 }
1295 #endif /* CONFIG_I2C_SLAVE */
1296
npcm_i2c_master_fifo_read(struct npcm_i2c * bus)1297 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1298 {
1299 int rcount;
1300 int fifo_bytes;
1301 enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1302
1303 fifo_bytes = npcm_i2c_fifo_usage(bus);
1304 rcount = bus->rd_size - bus->rd_ind;
1305
1306 /*
1307 * In order not to change the RX_TRH during transaction (we found that
1308 * this might be problematic if it takes too much time to read the FIFO)
1309 * we read the data in the following way. If the number of bytes to
1310 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1311 * and in the next int we read rest of the data.
1312 */
1313 if (rcount < (2 * I2C_HW_FIFO_SIZE) && rcount > I2C_HW_FIFO_SIZE)
1314 fifo_bytes = rcount - I2C_HW_FIFO_SIZE;
1315
1316 if (rcount <= fifo_bytes) {
1317 /* last bytes are about to be read - end of tx */
1318 bus->state = I2C_STOP_PENDING;
1319 bus->stop_ind = ind;
1320 npcm_i2c_eob_int(bus, true);
1321 /* Stop should be set before reading last byte. */
1322 npcm_i2c_master_stop(bus);
1323 npcm_i2c_read_fifo(bus, fifo_bytes);
1324 } else {
1325 npcm_i2c_read_fifo(bus, fifo_bytes);
1326 rcount = bus->rd_size - bus->rd_ind;
1327 npcm_i2c_set_fifo(bus, rcount, -1);
1328 }
1329 }
1330
npcm_i2c_irq_master_handler_write(struct npcm_i2c * bus)1331 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1332 {
1333 u16 wcount;
1334
1335 if (bus->fifo_use)
1336 npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1337
1338 /* Master write operation - last byte handling */
1339 if (bus->wr_ind == bus->wr_size) {
1340 if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1341 /*
1342 * No more bytes to send (to add to the FIFO),
1343 * however the FIFO is not empty yet. It is
1344 * still in the middle of tx. Currently there's nothing
1345 * to do except for waiting to the end of the tx
1346 * We will get an int when the FIFO will get empty.
1347 */
1348 return;
1349
1350 if (bus->rd_size == 0) {
1351 /* all bytes have been written, in wr only operation */
1352 npcm_i2c_eob_int(bus, true);
1353 bus->state = I2C_STOP_PENDING;
1354 bus->stop_ind = I2C_MASTER_DONE_IND;
1355 npcm_i2c_master_stop(bus);
1356 /* Clear SDA Status bit (by writing dummy byte) */
1357 npcm_i2c_wr_byte(bus, 0xFF);
1358
1359 } else {
1360 /* last write-byte written on previous int - restart */
1361 npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1362 /* Generate repeated start upon next write to SDA */
1363 npcm_i2c_master_start(bus);
1364
1365 /*
1366 * Receiving one byte only - stall after successful
1367 * completion of send address byte. If we NACK here, and
1368 * slave doesn't ACK the address, we might
1369 * unintentionally NACK the next multi-byte read.
1370 */
1371 if (bus->rd_size == 1)
1372 npcm_i2c_stall_after_start(bus, true);
1373
1374 /* Next int will occur on read */
1375 bus->operation = I2C_READ_OPER;
1376 /* send the slave address in read direction */
1377 npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1378 }
1379 } else {
1380 /* write next byte not last byte and not slave address */
1381 if (!bus->fifo_use || bus->wr_size == 1) {
1382 npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1383 } else {
1384 wcount = bus->wr_size - bus->wr_ind;
1385 npcm_i2c_set_fifo(bus, -1, wcount);
1386 if (wcount)
1387 npcm_i2c_write_to_fifo_master(bus, wcount);
1388 }
1389 }
1390 }
1391
npcm_i2c_irq_master_handler_read(struct npcm_i2c * bus)1392 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1393 {
1394 u16 block_extra_bytes_size;
1395 u8 data;
1396
1397 /* added bytes to the packet: */
1398 block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1399
1400 /*
1401 * Perform master read, distinguishing between last byte and the rest of
1402 * the bytes. The last byte should be read when the clock is stopped
1403 */
1404 if (bus->rd_ind == 0) { /* first byte handling: */
1405 if (bus->read_block_use) {
1406 /* first byte in block protocol is the size: */
1407 data = npcm_i2c_rd_byte(bus);
1408 data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1409 bus->rd_size = data + block_extra_bytes_size;
1410 bus->rd_buf[bus->rd_ind++] = data;
1411
1412 /* clear RX FIFO interrupt status: */
1413 if (bus->fifo_use) {
1414 data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1415 data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1416 iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1417 }
1418
1419 npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1420 npcm_i2c_stall_after_start(bus, false);
1421 } else {
1422 npcm_i2c_clear_tx_fifo(bus);
1423 npcm_i2c_master_fifo_read(bus);
1424 }
1425 } else {
1426 if (bus->rd_size == block_extra_bytes_size &&
1427 bus->read_block_use) {
1428 bus->state = I2C_STOP_PENDING;
1429 bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1430 bus->cmd_err = -EIO;
1431 npcm_i2c_eob_int(bus, true);
1432 npcm_i2c_master_stop(bus);
1433 npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1434 } else {
1435 npcm_i2c_master_fifo_read(bus);
1436 }
1437 }
1438 }
1439
npcm_i2c_irq_handle_nmatch(struct npcm_i2c * bus)1440 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1441 {
1442 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1443 npcm_i2c_nack(bus);
1444 bus->stop_ind = I2C_BUS_ERR_IND;
1445 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1446 }
1447
1448 /* A NACK has occurred */
npcm_i2c_irq_handle_nack(struct npcm_i2c * bus)1449 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1450 {
1451 u8 val;
1452
1453 if (bus->nack_cnt < ULLONG_MAX)
1454 bus->nack_cnt++;
1455
1456 if (bus->fifo_use) {
1457 /*
1458 * if there are still untransmitted bytes in TX FIFO
1459 * reduce them from wr_ind
1460 */
1461 if (bus->operation == I2C_WRITE_OPER)
1462 bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1463
1464 /* clear the FIFO */
1465 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1466 }
1467
1468 /* In master write operation, got unexpected NACK */
1469 bus->stop_ind = I2C_NACK_IND;
1470 /* Only current master is allowed to issue Stop Condition */
1471 if (npcm_i2c_is_master(bus)) {
1472 /* stopping in the middle */
1473 npcm_i2c_eob_int(bus, false);
1474 npcm_i2c_master_stop(bus);
1475
1476 /* Clear SDA Status bit (by reading dummy byte) */
1477 npcm_i2c_rd_byte(bus);
1478
1479 /*
1480 * The bus is released from stall only after the SW clears
1481 * NEGACK bit. Then a Stop condition is sent.
1482 */
1483 npcm_i2c_clear_master_status(bus);
1484 readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1485 !(val & NPCM_I2CCST_BUSY), 10, 200);
1486 /* verify no status bits are still set after bus is released */
1487 npcm_i2c_clear_master_status(bus);
1488 }
1489 bus->state = I2C_IDLE;
1490
1491 /*
1492 * In Master mode, NACK should be cleared only after STOP.
1493 * In such case, the bus is released from stall only after the
1494 * software clears NACK bit. Then a Stop condition is sent.
1495 */
1496 npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1497 }
1498
1499 /* Master mode: a Bus Error has been identified */
npcm_i2c_irq_handle_ber(struct npcm_i2c * bus)1500 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1501 {
1502 if (bus->ber_cnt < ULLONG_MAX)
1503 bus->ber_cnt++;
1504 bus->stop_ind = I2C_BUS_ERR_IND;
1505 if (npcm_i2c_is_master(bus)) {
1506 npcm_i2c_master_abort(bus);
1507 } else {
1508 npcm_i2c_clear_master_status(bus);
1509
1510 /* Clear BB (BUS BUSY) bit */
1511 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1512
1513 bus->cmd_err = -EAGAIN;
1514 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1515 }
1516 bus->state = I2C_IDLE;
1517 }
1518
1519 /* EOB: a master End Of Busy (meaning STOP completed) */
npcm_i2c_irq_handle_eob(struct npcm_i2c * bus)1520 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1521 {
1522 npcm_i2c_eob_int(bus, false);
1523 bus->state = I2C_IDLE;
1524 npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1525 }
1526
1527 /* Address sent and requested stall occurred (Master mode) */
npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c * bus)1528 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1529 {
1530 if (npcm_i2c_is_quick(bus)) {
1531 bus->state = I2C_STOP_PENDING;
1532 bus->stop_ind = I2C_MASTER_DONE_IND;
1533 npcm_i2c_eob_int(bus, true);
1534 npcm_i2c_master_stop(bus);
1535 } else if ((bus->rd_size == 1) && !bus->read_block_use) {
1536 /*
1537 * Receiving one byte only - set NACK after ensuring
1538 * slave ACKed the address byte.
1539 */
1540 npcm_i2c_nack(bus);
1541 }
1542
1543 /* Reset stall-after-address-byte */
1544 npcm_i2c_stall_after_start(bus, false);
1545
1546 /* Clear stall only after setting STOP */
1547 iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1548 }
1549
1550 /* SDA status is set - TX or RX, master */
npcm_i2c_irq_handle_sda(struct npcm_i2c * bus,u8 i2cst)1551 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1552 {
1553 u8 fif_cts;
1554
1555 if (!npcm_i2c_is_master(bus))
1556 return;
1557
1558 if (bus->state == I2C_IDLE) {
1559 bus->stop_ind = I2C_WAKE_UP_IND;
1560
1561 if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1562 /*
1563 * Need to stall after successful
1564 * completion of sending address byte
1565 */
1566 npcm_i2c_stall_after_start(bus, true);
1567 else
1568 npcm_i2c_stall_after_start(bus, false);
1569
1570 /*
1571 * Receiving one byte only - stall after successful completion
1572 * of sending address byte If we NACK here, and slave doesn't
1573 * ACK the address, we might unintentionally NACK the next
1574 * multi-byte read
1575 */
1576 if (bus->wr_size == 0 && bus->rd_size == 1)
1577 npcm_i2c_stall_after_start(bus, true);
1578
1579 /* Initiate I2C master tx */
1580
1581 /* select bank 1 for FIFO regs */
1582 npcm_i2c_select_bank(bus, I2C_BANK_1);
1583
1584 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1585 fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1586
1587 /* clear FIFO and relevant status bits. */
1588 fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1589 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1590
1591 /* re-enable */
1592 fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1593 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1594
1595 /*
1596 * Configure the FIFO threshold:
1597 * according to the needed # of bytes to read.
1598 * Note: due to HW limitation can't config the rx fifo before it
1599 * got and ACK on the restart. LAST bit will not be reset unless
1600 * RX completed. It will stay set on the next tx.
1601 */
1602 if (bus->wr_size)
1603 npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1604 else
1605 npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1606
1607 bus->state = I2C_OPER_STARTED;
1608
1609 if (npcm_i2c_is_quick(bus) || bus->wr_size)
1610 npcm_i2c_wr_byte(bus, bus->dest_addr);
1611 else
1612 npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1613 /* SDA interrupt, after start\restart */
1614 } else {
1615 if (NPCM_I2CST_XMIT & i2cst) {
1616 bus->operation = I2C_WRITE_OPER;
1617 npcm_i2c_irq_master_handler_write(bus);
1618 } else {
1619 bus->operation = I2C_READ_OPER;
1620 npcm_i2c_irq_master_handler_read(bus);
1621 }
1622 }
1623 }
1624
npcm_i2c_int_master_handler(struct npcm_i2c * bus)1625 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1626 {
1627 u8 i2cst;
1628 int ret = -EIO;
1629
1630 i2cst = ioread8(bus->reg + NPCM_I2CST);
1631
1632 if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1633 npcm_i2c_irq_handle_nmatch(bus);
1634 return 0;
1635 }
1636 /* A NACK has occurred */
1637 if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1638 npcm_i2c_irq_handle_nack(bus);
1639 return 0;
1640 }
1641
1642 /* Master mode: a Bus Error has been identified */
1643 if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1644 npcm_i2c_irq_handle_ber(bus);
1645 return 0;
1646 }
1647
1648 /* EOB: a master End Of Busy (meaning STOP completed) */
1649 if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1650 ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1651 (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1652 ioread8(bus->reg + NPCM_I2CCST3)))) {
1653 npcm_i2c_irq_handle_eob(bus);
1654 return 0;
1655 }
1656
1657 /* Address sent and requested stall occurred (Master mode) */
1658 if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1659 npcm_i2c_irq_handle_stall_after_start(bus);
1660 ret = 0;
1661 }
1662
1663 /* SDA status is set - TX or RX, master */
1664 if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1665 (bus->fifo_use &&
1666 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1667 npcm_i2c_irq_handle_sda(bus, i2cst);
1668 ret = 0;
1669 }
1670
1671 return ret;
1672 }
1673
1674 /* recovery using TGCLK functionality of the module */
npcm_i2c_recovery_tgclk(struct i2c_adapter * _adap)1675 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1676 {
1677 u8 val;
1678 u8 fif_cts;
1679 bool done = false;
1680 int status = -ENOTRECOVERABLE;
1681 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1682 /* Allow 3 bytes (27 toggles) to be read from the slave: */
1683 int iter = 27;
1684
1685 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1686 dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1687 bus->num, bus->dest_addr);
1688 npcm_i2c_reset(bus);
1689 return 0;
1690 }
1691
1692 npcm_i2c_int_enable(bus, false);
1693 npcm_i2c_disable(bus);
1694 npcm_i2c_enable(bus);
1695 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1696 npcm_i2c_clear_tx_fifo(bus);
1697 npcm_i2c_clear_rx_fifo(bus);
1698 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1699 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1700 npcm_i2c_stall_after_start(bus, false);
1701
1702 /* select bank 1 for FIFO regs */
1703 npcm_i2c_select_bank(bus, I2C_BANK_1);
1704
1705 /* clear FIFO and relevant status bits. */
1706 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1707 fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1708 fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1709 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1710 npcm_i2c_set_fifo(bus, -1, 0);
1711
1712 /* Repeat the following sequence until SDA is released */
1713 do {
1714 /* Issue a single SCL toggle */
1715 iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1716 usleep_range(20, 30);
1717 /* If SDA line is inactive (high), stop */
1718 if (npcm_i2c_get_SDA(_adap)) {
1719 done = true;
1720 status = 0;
1721 }
1722 } while (!done && iter--);
1723
1724 /* If SDA line is released: send start-addr-stop, to re-sync. */
1725 if (npcm_i2c_get_SDA(_adap)) {
1726 /* Send an address byte in write direction: */
1727 npcm_i2c_wr_byte(bus, bus->dest_addr);
1728 npcm_i2c_master_start(bus);
1729 /* Wait until START condition is sent */
1730 status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1731 20, 200);
1732 /* If START condition was sent */
1733 if (npcm_i2c_is_master(bus) > 0) {
1734 usleep_range(20, 30);
1735 npcm_i2c_master_stop(bus);
1736 usleep_range(200, 500);
1737 }
1738 }
1739 npcm_i2c_reset(bus);
1740 npcm_i2c_int_enable(bus, true);
1741
1742 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1743 status = 0;
1744 else
1745 status = -ENOTRECOVERABLE;
1746 if (status) {
1747 if (bus->rec_fail_cnt < ULLONG_MAX)
1748 bus->rec_fail_cnt++;
1749 } else {
1750 if (bus->rec_succ_cnt < ULLONG_MAX)
1751 bus->rec_succ_cnt++;
1752 }
1753 return status;
1754 }
1755
1756 /* recovery using bit banging functionality of the module */
npcm_i2c_recovery_init(struct i2c_adapter * _adap)1757 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1758 {
1759 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1760 struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1761
1762 rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1763
1764 /*
1765 * npcm i2c HW allows direct reading of SCL and SDA.
1766 * However, it does not support setting SCL and SDA directly.
1767 * The recovery function can togle SCL when SDA is low (but not set)
1768 * Getter functions used internally, and can be used externaly.
1769 */
1770 rinfo->get_scl = npcm_i2c_get_SCL;
1771 rinfo->get_sda = npcm_i2c_get_SDA;
1772 _adap->bus_recovery_info = rinfo;
1773 }
1774
1775 /* SCLFRQ min/max field values */
1776 #define SCLFRQ_MIN 10
1777 #define SCLFRQ_MAX 511
1778 #define clk_coef(freq, mul) DIV_ROUND_UP((freq) * (mul), 1000000)
1779
1780 /*
1781 * npcm_i2c_init_clk: init HW timing parameters.
1782 * NPCM7XX i2c module timing parameters are depenent on module core clk (APB)
1783 * and bus frequency.
1784 * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are simetric.
1785 * 400kHz bus requires assymetric HT and LT. A different equation is recomended
1786 * by the HW designer, given core clock range (equations in comments below).
1787 *
1788 */
npcm_i2c_init_clk(struct npcm_i2c * bus,u32 bus_freq_hz)1789 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1790 {
1791 u32 k1 = 0;
1792 u32 k2 = 0;
1793 u8 dbnct = 0;
1794 u32 sclfrq = 0;
1795 u8 hldt = 7;
1796 u8 fast_mode = 0;
1797 u32 src_clk_khz;
1798 u32 bus_freq_khz;
1799
1800 src_clk_khz = bus->apb_clk / 1000;
1801 bus_freq_khz = bus_freq_hz / 1000;
1802 bus->bus_freq = bus_freq_hz;
1803
1804 /* 100KHz and below: */
1805 if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1806 sclfrq = src_clk_khz / (bus_freq_khz * 4);
1807
1808 if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1809 return -EDOM;
1810
1811 if (src_clk_khz >= 40000)
1812 hldt = 17;
1813 else if (src_clk_khz >= 12500)
1814 hldt = 15;
1815 else
1816 hldt = 7;
1817 }
1818
1819 /* 400KHz: */
1820 else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1821 sclfrq = 0;
1822 fast_mode = I2CCTL3_400K_MODE;
1823
1824 if (src_clk_khz < 7500)
1825 /* 400KHZ cannot be supported for core clock < 7.5MHz */
1826 return -EDOM;
1827
1828 else if (src_clk_khz >= 50000) {
1829 k1 = 80;
1830 k2 = 48;
1831 hldt = 12;
1832 dbnct = 7;
1833 }
1834
1835 /* Master or Slave with frequency > 25MHz */
1836 else if (src_clk_khz > 25000) {
1837 hldt = clk_coef(src_clk_khz, 300) + 7;
1838 k1 = clk_coef(src_clk_khz, 1600);
1839 k2 = clk_coef(src_clk_khz, 900);
1840 }
1841 }
1842
1843 /* 1MHz: */
1844 else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1845 sclfrq = 0;
1846 fast_mode = I2CCTL3_400K_MODE;
1847
1848 /* 1MHZ cannot be supported for core clock < 24 MHz */
1849 if (src_clk_khz < 24000)
1850 return -EDOM;
1851
1852 k1 = clk_coef(src_clk_khz, 620);
1853 k2 = clk_coef(src_clk_khz, 380);
1854
1855 /* Core clk > 40 MHz */
1856 if (src_clk_khz > 40000) {
1857 /*
1858 * Set HLDT:
1859 * SDA hold time: (HLDT-7) * T(CLK) >= 120
1860 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1861 */
1862 hldt = clk_coef(src_clk_khz, 120) + 7;
1863 } else {
1864 hldt = 7;
1865 dbnct = 2;
1866 }
1867 }
1868
1869 /* Frequency larger than 1 MHz is not supported */
1870 else
1871 return -EINVAL;
1872
1873 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1874 k1 = round_up(k1, 2);
1875 k2 = round_up(k2 + 1, 2);
1876 if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1877 k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1878 return -EDOM;
1879 }
1880
1881 /* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1882 iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1883 bus->reg + NPCM_I2CCTL2);
1884
1885 /* bits [8:7] are in I2CCTL3 reg */
1886 iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1887 bus->reg + NPCM_I2CCTL3);
1888
1889 /* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1890 npcm_i2c_select_bank(bus, I2C_BANK_0);
1891
1892 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1893 /*
1894 * Set SCL Low/High Time:
1895 * k1 = 2 * SCLLT7-0 -> Low Time = k1 / 2
1896 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1897 */
1898 iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1899 iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1900
1901 iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1902 }
1903
1904 iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1905
1906 /* Return to Bank 1, and stay there by default: */
1907 npcm_i2c_select_bank(bus, I2C_BANK_1);
1908
1909 return 0;
1910 }
1911
npcm_i2c_init_module(struct npcm_i2c * bus,enum i2c_mode mode,u32 bus_freq_hz)1912 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1913 u32 bus_freq_hz)
1914 {
1915 u8 val;
1916 int ret;
1917
1918 /* Check whether module already enabled or frequency is out of bounds */
1919 if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1920 bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1921 return -EINVAL;
1922
1923 npcm_i2c_int_enable(bus, false);
1924 npcm_i2c_disable(bus);
1925
1926 /* Configure FIFO mode : */
1927 if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1928 bus->fifo_use = true;
1929 npcm_i2c_select_bank(bus, I2C_BANK_0);
1930 val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1931 val |= NPCM_I2CFIF_CTL_FIFO_EN;
1932 iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1933 npcm_i2c_select_bank(bus, I2C_BANK_1);
1934 } else {
1935 bus->fifo_use = false;
1936 }
1937
1938 /* Configure I2C module clock frequency */
1939 ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1940 if (ret) {
1941 dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1942 return ret;
1943 }
1944
1945 /* Enable module (before configuring CTL1) */
1946 npcm_i2c_enable(bus);
1947 bus->state = I2C_IDLE;
1948 val = ioread8(bus->reg + NPCM_I2CCTL1);
1949 val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1950 iowrite8(val, bus->reg + NPCM_I2CCTL1);
1951
1952 npcm_i2c_reset(bus);
1953
1954 /* check HW is OK: SDA and SCL should be high at this point. */
1955 if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1956 dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1957 dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1958 npcm_i2c_get_SCL(&bus->adap));
1959 return -ENXIO;
1960 }
1961
1962 npcm_i2c_int_enable(bus, true);
1963 return 0;
1964 }
1965
__npcm_i2c_init(struct npcm_i2c * bus,struct platform_device * pdev)1966 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1967 {
1968 u32 clk_freq_hz;
1969 int ret;
1970
1971 /* Initialize the internal data structures */
1972 bus->state = I2C_DISABLE;
1973 bus->master_or_slave = I2C_SLAVE;
1974 bus->int_time_stamp = 0;
1975 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1976 bus->slave = NULL;
1977 #endif
1978
1979 ret = device_property_read_u32(&pdev->dev, "clock-frequency",
1980 &clk_freq_hz);
1981 if (ret) {
1982 dev_info(&pdev->dev, "Could not read clock-frequency property");
1983 clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
1984 }
1985
1986 ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
1987 if (ret) {
1988 dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
1989 return ret;
1990 }
1991
1992 return 0;
1993 }
1994
npcm_i2c_bus_irq(int irq,void * dev_id)1995 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
1996 {
1997 struct npcm_i2c *bus = dev_id;
1998
1999 if (npcm_i2c_is_master(bus))
2000 bus->master_or_slave = I2C_MASTER;
2001
2002 if (bus->master_or_slave == I2C_MASTER) {
2003 bus->int_time_stamp = jiffies;
2004 if (!npcm_i2c_int_master_handler(bus))
2005 return IRQ_HANDLED;
2006 }
2007 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2008 if (bus->slave) {
2009 bus->master_or_slave = I2C_SLAVE;
2010 if (npcm_i2c_int_slave_handler(bus))
2011 return IRQ_HANDLED;
2012 }
2013 #endif
2014 /* clear status bits for spurious interrupts */
2015 npcm_i2c_clear_master_status(bus);
2016
2017 return IRQ_HANDLED;
2018 }
2019
npcm_i2c_master_start_xmit(struct npcm_i2c * bus,u8 slave_addr,u16 nwrite,u16 nread,u8 * write_data,u8 * read_data,bool use_PEC,bool use_read_block)2020 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2021 u8 slave_addr, u16 nwrite, u16 nread,
2022 u8 *write_data, u8 *read_data,
2023 bool use_PEC, bool use_read_block)
2024 {
2025 if (bus->state != I2C_IDLE) {
2026 bus->cmd_err = -EBUSY;
2027 return false;
2028 }
2029 bus->dest_addr = slave_addr << 1;
2030 bus->wr_buf = write_data;
2031 bus->wr_size = nwrite;
2032 bus->wr_ind = 0;
2033 bus->rd_buf = read_data;
2034 bus->rd_size = nread;
2035 bus->rd_ind = 0;
2036 bus->PEC_use = 0;
2037
2038 /* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2039 if (nread)
2040 bus->PEC_use = use_PEC;
2041
2042 bus->read_block_use = use_read_block;
2043 if (nread && !nwrite)
2044 bus->operation = I2C_READ_OPER;
2045 else
2046 bus->operation = I2C_WRITE_OPER;
2047 if (bus->fifo_use) {
2048 u8 i2cfif_cts;
2049
2050 npcm_i2c_select_bank(bus, I2C_BANK_1);
2051 /* clear FIFO and relevant status bits. */
2052 i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2053 i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2054 i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2055 iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2056 }
2057
2058 bus->state = I2C_IDLE;
2059 npcm_i2c_stall_after_start(bus, true);
2060 npcm_i2c_master_start(bus);
2061 return true;
2062 }
2063
npcm_i2c_master_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)2064 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2065 int num)
2066 {
2067 struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2068 struct i2c_msg *msg0, *msg1;
2069 unsigned long time_left, flags;
2070 u16 nwrite, nread;
2071 u8 *write_data, *read_data;
2072 u8 slave_addr;
2073 unsigned long timeout;
2074 bool read_block = false;
2075 bool read_PEC = false;
2076 u8 bus_busy;
2077 unsigned long timeout_usec;
2078
2079 if (bus->state == I2C_DISABLE) {
2080 dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2081 return -EINVAL;
2082 }
2083
2084 msg0 = &msgs[0];
2085 slave_addr = msg0->addr;
2086 if (msg0->flags & I2C_M_RD) { /* read */
2087 nwrite = 0;
2088 write_data = NULL;
2089 read_data = msg0->buf;
2090 if (msg0->flags & I2C_M_RECV_LEN) {
2091 nread = 1;
2092 read_block = true;
2093 if (msg0->flags & I2C_CLIENT_PEC)
2094 read_PEC = true;
2095 } else {
2096 nread = msg0->len;
2097 }
2098 } else { /* write */
2099 nwrite = msg0->len;
2100 write_data = msg0->buf;
2101 nread = 0;
2102 read_data = NULL;
2103 if (num == 2) {
2104 msg1 = &msgs[1];
2105 read_data = msg1->buf;
2106 if (msg1->flags & I2C_M_RECV_LEN) {
2107 nread = 1;
2108 read_block = true;
2109 if (msg1->flags & I2C_CLIENT_PEC)
2110 read_PEC = true;
2111 } else {
2112 nread = msg1->len;
2113 read_block = false;
2114 }
2115 }
2116 }
2117
2118 /*
2119 * Adaptive TimeOut: estimated time in usec + 100% margin:
2120 * 2: double the timeout for clock stretching case
2121 * 9: bits per transaction (including the ack/nack)
2122 */
2123 timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2124 timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2125 if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2126 dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2127 return -EINVAL;
2128 }
2129
2130 time_left = jiffies + timeout + 1;
2131 do {
2132 /*
2133 * we must clear slave address immediately when the bus is not
2134 * busy, so we spinlock it, but we don't keep the lock for the
2135 * entire while since it is too long.
2136 */
2137 spin_lock_irqsave(&bus->lock, flags);
2138 bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2139 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2140 if (!bus_busy && bus->slave)
2141 iowrite8((bus->slave->addr & 0x7F),
2142 bus->reg + NPCM_I2CADDR1);
2143 #endif
2144 spin_unlock_irqrestore(&bus->lock, flags);
2145
2146 } while (time_is_after_jiffies(time_left) && bus_busy);
2147
2148 if (bus_busy) {
2149 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2150 npcm_i2c_reset(bus);
2151 i2c_recover_bus(adap);
2152 return -EAGAIN;
2153 }
2154
2155 npcm_i2c_init_params(bus);
2156 bus->dest_addr = slave_addr;
2157 bus->msgs = msgs;
2158 bus->msgs_num = num;
2159 bus->cmd_err = 0;
2160 bus->read_block_use = read_block;
2161
2162 reinit_completion(&bus->cmd_complete);
2163
2164 npcm_i2c_int_enable(bus, true);
2165
2166 if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2167 write_data, read_data, read_PEC,
2168 read_block)) {
2169 time_left = wait_for_completion_timeout(&bus->cmd_complete,
2170 timeout);
2171
2172 if (time_left == 0) {
2173 if (bus->timeout_cnt < ULLONG_MAX)
2174 bus->timeout_cnt++;
2175 if (bus->master_or_slave == I2C_MASTER) {
2176 i2c_recover_bus(adap);
2177 bus->cmd_err = -EIO;
2178 bus->state = I2C_IDLE;
2179 }
2180 }
2181 }
2182
2183 /* if there was BER, check if need to recover the bus: */
2184 if (bus->cmd_err == -EAGAIN)
2185 bus->cmd_err = i2c_recover_bus(adap);
2186
2187 /*
2188 * After any type of error, check if LAST bit is still set,
2189 * due to a HW issue.
2190 * It cannot be cleared without resetting the module.
2191 */
2192 else if (bus->cmd_err &&
2193 (NPCM_I2CRXF_CTL_LAST_PEC & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2194 npcm_i2c_reset(bus);
2195
2196 /* after any xfer, successful or not, stall and EOB must be disabled */
2197 npcm_i2c_stall_after_start(bus, false);
2198 npcm_i2c_eob_int(bus, false);
2199
2200 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2201 /* reenable slave if it was enabled */
2202 if (bus->slave)
2203 iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2204 bus->reg + NPCM_I2CADDR1);
2205 #else
2206 npcm_i2c_int_enable(bus, false);
2207 #endif
2208 return bus->cmd_err;
2209 }
2210
npcm_i2c_functionality(struct i2c_adapter * adap)2211 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2212 {
2213 return I2C_FUNC_I2C |
2214 I2C_FUNC_SMBUS_EMUL |
2215 I2C_FUNC_SMBUS_BLOCK_DATA |
2216 I2C_FUNC_SMBUS_PEC |
2217 I2C_FUNC_SLAVE;
2218 }
2219
2220 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2221 .max_read_len = 32768,
2222 .max_write_len = 32768,
2223 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
2224 };
2225
2226 static const struct i2c_algorithm npcm_i2c_algo = {
2227 .master_xfer = npcm_i2c_master_xfer,
2228 .functionality = npcm_i2c_functionality,
2229 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2230 .reg_slave = npcm_i2c_reg_slave,
2231 .unreg_slave = npcm_i2c_unreg_slave,
2232 #endif
2233 };
2234
2235 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2236 static struct dentry *npcm_i2c_debugfs_dir;
2237
npcm_i2c_init_debugfs(struct platform_device * pdev,struct npcm_i2c * bus)2238 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2239 struct npcm_i2c *bus)
2240 {
2241 struct dentry *d;
2242
2243 if (!npcm_i2c_debugfs_dir)
2244 return;
2245 d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2246 if (IS_ERR_OR_NULL(d))
2247 return;
2248 debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2249 debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2250 debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2251 debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2252 debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2253
2254 bus->debugfs = d;
2255 }
2256
npcm_i2c_probe_bus(struct platform_device * pdev)2257 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2258 {
2259 struct npcm_i2c *bus;
2260 struct i2c_adapter *adap;
2261 struct clk *i2c_clk;
2262 static struct regmap *gcr_regmap;
2263 static struct regmap *clk_regmap;
2264 int irq;
2265 int ret;
2266
2267 bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2268 if (!bus)
2269 return -ENOMEM;
2270
2271 bus->dev = &pdev->dev;
2272
2273 bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2274 /* core clk must be acquired to calculate module timing settings */
2275 i2c_clk = devm_clk_get(&pdev->dev, NULL);
2276 if (IS_ERR(i2c_clk))
2277 return PTR_ERR(i2c_clk);
2278 bus->apb_clk = clk_get_rate(i2c_clk);
2279
2280 gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2281 if (IS_ERR(gcr_regmap))
2282 return PTR_ERR(gcr_regmap);
2283 regmap_write(gcr_regmap, NPCM_I2CSEGCTL, NPCM_I2CSEGCTL_INIT_VAL);
2284
2285 clk_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-clk");
2286 if (IS_ERR(clk_regmap))
2287 return PTR_ERR(clk_regmap);
2288
2289 bus->reg = devm_platform_ioremap_resource(pdev, 0);
2290 if (IS_ERR(bus->reg))
2291 return PTR_ERR(bus->reg);
2292
2293 spin_lock_init(&bus->lock);
2294 init_completion(&bus->cmd_complete);
2295
2296 adap = &bus->adap;
2297 adap->owner = THIS_MODULE;
2298 adap->retries = 3;
2299 adap->timeout = msecs_to_jiffies(35);
2300 adap->algo = &npcm_i2c_algo;
2301 adap->quirks = &npcm_i2c_quirks;
2302 adap->algo_data = bus;
2303 adap->dev.parent = &pdev->dev;
2304 adap->dev.of_node = pdev->dev.of_node;
2305 adap->nr = pdev->id;
2306
2307 irq = platform_get_irq(pdev, 0);
2308 if (irq < 0)
2309 return irq;
2310
2311 ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2312 dev_name(bus->dev), bus);
2313 if (ret)
2314 return ret;
2315
2316 ret = __npcm_i2c_init(bus, pdev);
2317 if (ret)
2318 return ret;
2319
2320 npcm_i2c_recovery_init(adap);
2321
2322 i2c_set_adapdata(adap, bus);
2323
2324 snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2325 bus->num);
2326 ret = i2c_add_numbered_adapter(&bus->adap);
2327 if (ret)
2328 return ret;
2329
2330 platform_set_drvdata(pdev, bus);
2331 npcm_i2c_init_debugfs(pdev, bus);
2332 return 0;
2333 }
2334
npcm_i2c_remove_bus(struct platform_device * pdev)2335 static int npcm_i2c_remove_bus(struct platform_device *pdev)
2336 {
2337 unsigned long lock_flags;
2338 struct npcm_i2c *bus = platform_get_drvdata(pdev);
2339
2340 debugfs_remove_recursive(bus->debugfs);
2341 spin_lock_irqsave(&bus->lock, lock_flags);
2342 npcm_i2c_disable(bus);
2343 spin_unlock_irqrestore(&bus->lock, lock_flags);
2344 i2c_del_adapter(&bus->adap);
2345 return 0;
2346 }
2347
2348 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2349 { .compatible = "nuvoton,npcm750-i2c", },
2350 {}
2351 };
2352 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2353
2354 static struct platform_driver npcm_i2c_bus_driver = {
2355 .probe = npcm_i2c_probe_bus,
2356 .remove = npcm_i2c_remove_bus,
2357 .driver = {
2358 .name = "nuvoton-i2c",
2359 .of_match_table = npcm_i2c_bus_of_table,
2360 }
2361 };
2362
npcm_i2c_init(void)2363 static int __init npcm_i2c_init(void)
2364 {
2365 int ret;
2366
2367 npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2368
2369 ret = platform_driver_register(&npcm_i2c_bus_driver);
2370 if (ret) {
2371 debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2372 return ret;
2373 }
2374
2375 return 0;
2376 }
2377 module_init(npcm_i2c_init);
2378
npcm_i2c_exit(void)2379 static void __exit npcm_i2c_exit(void)
2380 {
2381 platform_driver_unregister(&npcm_i2c_bus_driver);
2382 debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2383 }
2384 module_exit(npcm_i2c_exit);
2385
2386 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2387 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2388 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2389 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2390 MODULE_LICENSE("GPL v2");
2391