1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4 */
5
6 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
7
8 #include <linux/atomic.h>
9 #include <linux/cpu_pm.h>
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/of.h>
17 #include <linux/of_irq.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/wait.h>
23
24 #include <soc/qcom/cmd-db.h>
25 #include <soc/qcom/tcs.h>
26 #include <dt-bindings/soc/qcom,rpmh-rsc.h>
27
28 #include "rpmh-internal.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "trace-rpmh.h"
32
33 #define RSC_DRV_TCS_OFFSET 672
34 #define RSC_DRV_CMD_OFFSET 20
35
36 /* DRV HW Solver Configuration Information Register */
37 #define DRV_SOLVER_CONFIG 0x04
38 #define DRV_HW_SOLVER_MASK 1
39 #define DRV_HW_SOLVER_SHIFT 24
40
41 /* DRV TCS Configuration Information Register */
42 #define DRV_PRNT_CHLD_CONFIG 0x0C
43 #define DRV_NUM_TCS_MASK 0x3F
44 #define DRV_NUM_TCS_SHIFT 6
45 #define DRV_NCPT_MASK 0x1F
46 #define DRV_NCPT_SHIFT 27
47
48 /* Offsets for common TCS Registers, one bit per TCS */
49 #define RSC_DRV_IRQ_ENABLE 0x00
50 #define RSC_DRV_IRQ_STATUS 0x04
51 #define RSC_DRV_IRQ_CLEAR 0x08 /* w/o; write 1 to clear */
52
53 /*
54 * Offsets for per TCS Registers.
55 *
56 * TCSes start at 0x10 from tcs_base and are stored one after another.
57 * Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one
58 * of the below to find a register.
59 */
60 #define RSC_DRV_CMD_WAIT_FOR_CMPL 0x10 /* 1 bit per command */
61 #define RSC_DRV_CONTROL 0x14
62 #define RSC_DRV_STATUS 0x18 /* zero if tcs is busy */
63 #define RSC_DRV_CMD_ENABLE 0x1C /* 1 bit per command */
64
65 /*
66 * Offsets for per command in a TCS.
67 *
68 * Commands (up to 16) start at 0x30 in a TCS; multiply command index
69 * by RSC_DRV_CMD_OFFSET and add one of the below to find a register.
70 */
71 #define RSC_DRV_CMD_MSGID 0x30
72 #define RSC_DRV_CMD_ADDR 0x34
73 #define RSC_DRV_CMD_DATA 0x38
74 #define RSC_DRV_CMD_STATUS 0x3C
75 #define RSC_DRV_CMD_RESP_DATA 0x40
76
77 #define TCS_AMC_MODE_ENABLE BIT(16)
78 #define TCS_AMC_MODE_TRIGGER BIT(24)
79
80 /* TCS CMD register bit mask */
81 #define CMD_MSGID_LEN 8
82 #define CMD_MSGID_RESP_REQ BIT(8)
83 #define CMD_MSGID_WRITE BIT(16)
84 #define CMD_STATUS_ISSUED BIT(8)
85 #define CMD_STATUS_COMPL BIT(16)
86
87 /*
88 * Here's a high level overview of how all the registers in RPMH work
89 * together:
90 *
91 * - The main rpmh-rsc address is the base of a register space that can
92 * be used to find overall configuration of the hardware
93 * (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
94 * space are all the TCS blocks. The offset of the TCS blocks is
95 * specified in the device tree by "qcom,tcs-offset" and used to
96 * compute tcs_base.
97 * - TCS blocks come one after another. Type, count, and order are
98 * specified by the device tree as "qcom,tcs-config".
99 * - Each TCS block has some registers, then space for up to 16 commands.
100 * Note that though address space is reserved for 16 commands, fewer
101 * might be present. See ncpt (num cmds per TCS).
102 *
103 * Here's a picture:
104 *
105 * +---------------------------------------------------+
106 * |RSC |
107 * | ctrl |
108 * | |
109 * | Drvs: |
110 * | +-----------------------------------------------+ |
111 * | |DRV0 | |
112 * | | ctrl/config | |
113 * | | IRQ | |
114 * | | | |
115 * | | TCSes: | |
116 * | | +------------------------------------------+ | |
117 * | | |TCS0 | | | | | | | | | | | | | | |
118 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
119 * | | | | | | | | | | | | | | | | | |
120 * | | +------------------------------------------+ | |
121 * | | +------------------------------------------+ | |
122 * | | |TCS1 | | | | | | | | | | | | | | |
123 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
124 * | | | | | | | | | | | | | | | | | |
125 * | | +------------------------------------------+ | |
126 * | | +------------------------------------------+ | |
127 * | | |TCS2 | | | | | | | | | | | | | | |
128 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
129 * | | | | | | | | | | | | | | | | | |
130 * | | +------------------------------------------+ | |
131 * | | ...... | |
132 * | +-----------------------------------------------+ |
133 * | +-----------------------------------------------+ |
134 * | |DRV1 | |
135 * | | (same as DRV0) | |
136 * | +-----------------------------------------------+ |
137 * | ...... |
138 * +---------------------------------------------------+
139 */
140
141 static inline void __iomem *
tcs_reg_addr(const struct rsc_drv * drv,int reg,int tcs_id)142 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
143 {
144 return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg;
145 }
146
147 static inline void __iomem *
tcs_cmd_addr(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id)148 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
149 {
150 return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id;
151 }
152
read_tcs_cmd(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id)153 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
154 int cmd_id)
155 {
156 return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
157 }
158
read_tcs_reg(const struct rsc_drv * drv,int reg,int tcs_id)159 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
160 {
161 return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
162 }
163
write_tcs_cmd(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id,u32 data)164 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
165 int cmd_id, u32 data)
166 {
167 writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
168 }
169
write_tcs_reg(const struct rsc_drv * drv,int reg,int tcs_id,u32 data)170 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
171 u32 data)
172 {
173 writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
174 }
175
write_tcs_reg_sync(const struct rsc_drv * drv,int reg,int tcs_id,u32 data)176 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
177 u32 data)
178 {
179 int i;
180
181 writel(data, tcs_reg_addr(drv, reg, tcs_id));
182
183 /*
184 * Wait until we read back the same value. Use a counter rather than
185 * ktime for timeout since this may be called after timekeeping stops.
186 */
187 for (i = 0; i < USEC_PER_SEC; i++) {
188 if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
189 return;
190 udelay(1);
191 }
192 pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
193 data, tcs_id, reg);
194 }
195
196 /**
197 * tcs_is_free() - Return if a TCS is totally free.
198 * @drv: The RSC controller.
199 * @tcs_id: The global ID of this TCS.
200 *
201 * Returns true if nobody has claimed this TCS (by setting tcs_in_use).
202 *
203 * Context: Must be called with the drv->lock held.
204 *
205 * Return: true if the given TCS is free.
206 */
tcs_is_free(struct rsc_drv * drv,int tcs_id)207 static bool tcs_is_free(struct rsc_drv *drv, int tcs_id)
208 {
209 return !test_bit(tcs_id, drv->tcs_in_use);
210 }
211
212 /**
213 * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
214 * @drv: The RSC controller.
215 * @type: SLEEP_TCS or WAKE_TCS
216 *
217 * This will clear the "slots" variable of the given tcs_group and also
218 * tell the hardware to forget about all entries.
219 *
220 * The caller must ensure that no other RPMH actions are happening when this
221 * function is called, since otherwise the device may immediately become
222 * used again even before this function exits.
223 */
tcs_invalidate(struct rsc_drv * drv,int type)224 static void tcs_invalidate(struct rsc_drv *drv, int type)
225 {
226 int m;
227 struct tcs_group *tcs = &drv->tcs[type];
228
229 /* Caller ensures nobody else is running so no lock */
230 if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
231 return;
232
233 for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
234 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0);
235 write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, m, 0);
236 }
237 bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
238 }
239
240 /**
241 * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
242 * @drv: The RSC controller.
243 *
244 * The caller must ensure that no other RPMH actions are happening when this
245 * function is called, since otherwise the device may immediately become
246 * used again even before this function exits.
247 */
rpmh_rsc_invalidate(struct rsc_drv * drv)248 void rpmh_rsc_invalidate(struct rsc_drv *drv)
249 {
250 tcs_invalidate(drv, SLEEP_TCS);
251 tcs_invalidate(drv, WAKE_TCS);
252 }
253
254 /**
255 * get_tcs_for_msg() - Get the tcs_group used to send the given message.
256 * @drv: The RSC controller.
257 * @msg: The message we want to send.
258 *
259 * This is normally pretty straightforward except if we are trying to send
260 * an ACTIVE_ONLY message but don't have any active_only TCSes.
261 *
262 * Return: A pointer to a tcs_group or an ERR_PTR.
263 */
get_tcs_for_msg(struct rsc_drv * drv,const struct tcs_request * msg)264 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
265 const struct tcs_request *msg)
266 {
267 int type;
268 struct tcs_group *tcs;
269
270 switch (msg->state) {
271 case RPMH_ACTIVE_ONLY_STATE:
272 type = ACTIVE_TCS;
273 break;
274 case RPMH_WAKE_ONLY_STATE:
275 type = WAKE_TCS;
276 break;
277 case RPMH_SLEEP_STATE:
278 type = SLEEP_TCS;
279 break;
280 default:
281 return ERR_PTR(-EINVAL);
282 }
283
284 /*
285 * If we are making an active request on a RSC that does not have a
286 * dedicated TCS for active state use, then re-purpose a wake TCS to
287 * send active votes. This is safe because we ensure any active-only
288 * transfers have finished before we use it (maybe by running from
289 * the last CPU in PM code).
290 */
291 tcs = &drv->tcs[type];
292 if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
293 tcs = &drv->tcs[WAKE_TCS];
294
295 return tcs;
296 }
297
298 /**
299 * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
300 * @drv: The RSC controller.
301 * @tcs_id: The global ID of this TCS.
302 *
303 * For ACTIVE_ONLY transfers we want to call back into the client when the
304 * transfer finishes. To do this we need the "request" that the client
305 * originally provided us. This function grabs the request that we stashed
306 * when we started the transfer.
307 *
308 * This only makes sense for ACTIVE_ONLY transfers since those are the only
309 * ones we track sending (the only ones we enable interrupts for and the only
310 * ones we call back to the client for).
311 *
312 * Return: The stashed request.
313 */
get_req_from_tcs(struct rsc_drv * drv,int tcs_id)314 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
315 int tcs_id)
316 {
317 struct tcs_group *tcs;
318 int i;
319
320 for (i = 0; i < TCS_TYPE_NR; i++) {
321 tcs = &drv->tcs[i];
322 if (tcs->mask & BIT(tcs_id))
323 return tcs->req[tcs_id - tcs->offset];
324 }
325
326 return NULL;
327 }
328
329 /**
330 * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
331 * @drv: The controller.
332 * @tcs_id: The global ID of this TCS.
333 * @trigger: If true then untrigger/retrigger. If false then just untrigger.
334 *
335 * In the normal case we only ever call with "trigger=true" to start a
336 * transfer. That will un-trigger/disable the TCS from the last transfer
337 * then trigger/enable for this transfer.
338 *
339 * If we borrowed a wake TCS for an active-only transfer we'll also call
340 * this function with "trigger=false" to just do the un-trigger/disable
341 * before using the TCS for wake purposes again.
342 *
343 * Note that the AP is only in charge of triggering active-only transfers.
344 * The AP never triggers sleep/wake values using this function.
345 */
__tcs_set_trigger(struct rsc_drv * drv,int tcs_id,bool trigger)346 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
347 {
348 u32 enable;
349
350 /*
351 * HW req: Clear the DRV_CONTROL and enable TCS again
352 * While clearing ensure that the AMC mode trigger is cleared
353 * and then the mode enable is cleared.
354 */
355 enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id);
356 enable &= ~TCS_AMC_MODE_TRIGGER;
357 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
358 enable &= ~TCS_AMC_MODE_ENABLE;
359 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
360
361 if (trigger) {
362 /* Enable the AMC mode on the TCS and then trigger the TCS */
363 enable = TCS_AMC_MODE_ENABLE;
364 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
365 enable |= TCS_AMC_MODE_TRIGGER;
366 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
367 }
368 }
369
370 /**
371 * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
372 * @drv: The controller.
373 * @tcs_id: The global ID of this TCS.
374 * @enable: If true then enable; if false then disable
375 *
376 * We only ever call this when we borrow a wake TCS for an active-only
377 * transfer. For active-only TCSes interrupts are always left enabled.
378 */
enable_tcs_irq(struct rsc_drv * drv,int tcs_id,bool enable)379 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
380 {
381 u32 data;
382
383 data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE);
384 if (enable)
385 data |= BIT(tcs_id);
386 else
387 data &= ~BIT(tcs_id);
388 writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE);
389 }
390
391 /**
392 * tcs_tx_done() - TX Done interrupt handler.
393 * @irq: The IRQ number (ignored).
394 * @p: Pointer to "struct rsc_drv".
395 *
396 * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
397 * IRQ for) when a transfer is done.
398 *
399 * Return: IRQ_HANDLED
400 */
tcs_tx_done(int irq,void * p)401 static irqreturn_t tcs_tx_done(int irq, void *p)
402 {
403 struct rsc_drv *drv = p;
404 int i, j, err = 0;
405 unsigned long irq_status;
406 const struct tcs_request *req;
407 struct tcs_cmd *cmd;
408
409 irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS);
410
411 for_each_set_bit(i, &irq_status, BITS_PER_LONG) {
412 req = get_req_from_tcs(drv, i);
413 if (!req) {
414 WARN_ON(1);
415 goto skip;
416 }
417
418 err = 0;
419 for (j = 0; j < req->num_cmds; j++) {
420 u32 sts;
421
422 cmd = &req->cmds[j];
423 sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j);
424 if (!(sts & CMD_STATUS_ISSUED) ||
425 ((req->wait_for_compl || cmd->wait) &&
426 !(sts & CMD_STATUS_COMPL))) {
427 pr_err("Incomplete request: %s: addr=%#x data=%#x",
428 drv->name, cmd->addr, cmd->data);
429 err = -EIO;
430 }
431 }
432
433 trace_rpmh_tx_done(drv, i, req, err);
434
435 /*
436 * If wake tcs was re-purposed for sending active
437 * votes, clear AMC trigger & enable modes and
438 * disable interrupt for this TCS
439 */
440 if (!drv->tcs[ACTIVE_TCS].num_tcs)
441 __tcs_set_trigger(drv, i, false);
442 skip:
443 /* Reclaim the TCS */
444 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0);
445 write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, i, 0);
446 writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR);
447 spin_lock(&drv->lock);
448 clear_bit(i, drv->tcs_in_use);
449 /*
450 * Disable interrupt for WAKE TCS to avoid being
451 * spammed with interrupts coming when the solver
452 * sends its wake votes.
453 */
454 if (!drv->tcs[ACTIVE_TCS].num_tcs)
455 enable_tcs_irq(drv, i, false);
456 spin_unlock(&drv->lock);
457 wake_up(&drv->tcs_wait);
458 if (req)
459 rpmh_tx_done(req, err);
460 }
461
462 return IRQ_HANDLED;
463 }
464
465 /**
466 * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
467 * @drv: The controller.
468 * @tcs_id: The global ID of this TCS.
469 * @cmd_id: The index within the TCS to start writing.
470 * @msg: The message we want to send, which will contain several addr/data
471 * pairs to program (but few enough that they all fit in one TCS).
472 *
473 * This is used for all types of transfers (active, sleep, and wake).
474 */
__tcs_buffer_write(struct rsc_drv * drv,int tcs_id,int cmd_id,const struct tcs_request * msg)475 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
476 const struct tcs_request *msg)
477 {
478 u32 msgid, cmd_msgid;
479 u32 cmd_enable = 0;
480 u32 cmd_complete;
481 struct tcs_cmd *cmd;
482 int i, j;
483
484 cmd_msgid = CMD_MSGID_LEN;
485 cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
486 cmd_msgid |= CMD_MSGID_WRITE;
487
488 cmd_complete = read_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id);
489
490 for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
491 cmd = &msg->cmds[i];
492 cmd_enable |= BIT(j);
493 cmd_complete |= cmd->wait << j;
494 msgid = cmd_msgid;
495 msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
496
497 write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid);
498 write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr);
499 write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data);
500 trace_rpmh_send_msg_rcuidle(drv, tcs_id, j, msgid, cmd);
501 }
502
503 write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, cmd_complete);
504 cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
505 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable);
506 }
507
508 /**
509 * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
510 * @drv: The controller.
511 * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
512 * @msg: The message we want to send, which will contain several addr/data
513 * pairs to program (but few enough that they all fit in one TCS).
514 *
515 * This will walk through the TCSes in the group and check if any of them
516 * appear to be sending to addresses referenced in the message. If it finds
517 * one it'll return -EBUSY.
518 *
519 * Only for use for active-only transfers.
520 *
521 * Must be called with the drv->lock held since that protects tcs_in_use.
522 *
523 * Return: 0 if nothing in flight or -EBUSY if we should try again later.
524 * The caller must re-enable interrupts between tries since that's
525 * the only way tcs_is_free() will ever return true and the only way
526 * RSC_DRV_CMD_ENABLE will ever be cleared.
527 */
check_for_req_inflight(struct rsc_drv * drv,struct tcs_group * tcs,const struct tcs_request * msg)528 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
529 const struct tcs_request *msg)
530 {
531 unsigned long curr_enabled;
532 u32 addr;
533 int i, j, k;
534 int tcs_id = tcs->offset;
535
536 for (i = 0; i < tcs->num_tcs; i++, tcs_id++) {
537 if (tcs_is_free(drv, tcs_id))
538 continue;
539
540 curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
541
542 for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
543 addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j);
544 for (k = 0; k < msg->num_cmds; k++) {
545 if (addr == msg->cmds[k].addr)
546 return -EBUSY;
547 }
548 }
549 }
550
551 return 0;
552 }
553
554 /**
555 * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
556 * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
557 * we borrowed it because there are zero active-only ones).
558 *
559 * Must be called with the drv->lock held since that protects tcs_in_use.
560 *
561 * Return: The first tcs that's free.
562 */
find_free_tcs(struct tcs_group * tcs)563 static int find_free_tcs(struct tcs_group *tcs)
564 {
565 int i;
566
567 for (i = 0; i < tcs->num_tcs; i++) {
568 if (tcs_is_free(tcs->drv, tcs->offset + i))
569 return tcs->offset + i;
570 }
571
572 return -EBUSY;
573 }
574
575 /**
576 * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
577 * @drv: The controller.
578 * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
579 * @msg: The data to be sent.
580 *
581 * Claims a tcs in the given tcs_group while making sure that no existing cmd
582 * is in flight that would conflict with the one in @msg.
583 *
584 * Context: Must be called with the drv->lock held since that protects
585 * tcs_in_use.
586 *
587 * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
588 * or the tcs_group is full.
589 */
claim_tcs_for_req(struct rsc_drv * drv,struct tcs_group * tcs,const struct tcs_request * msg)590 static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
591 const struct tcs_request *msg)
592 {
593 int ret;
594
595 /*
596 * The h/w does not like if we send a request to the same address,
597 * when one is already in-flight or being processed.
598 */
599 ret = check_for_req_inflight(drv, tcs, msg);
600 if (ret)
601 return ret;
602
603 return find_free_tcs(tcs);
604 }
605
606 /**
607 * rpmh_rsc_send_data() - Write / trigger active-only message.
608 * @drv: The controller.
609 * @msg: The data to be sent.
610 *
611 * NOTES:
612 * - This is only used for "ACTIVE_ONLY" since the limitations of this
613 * function don't make sense for sleep/wake cases.
614 * - To do the transfer, we will grab a whole TCS for ourselves--we don't
615 * try to share. If there are none available we'll wait indefinitely
616 * for a free one.
617 * - This function will not wait for the commands to be finished, only for
618 * data to be programmed into the RPMh. See rpmh_tx_done() which will
619 * be called when the transfer is fully complete.
620 * - This function must be called with interrupts enabled. If the hardware
621 * is busy doing someone else's transfer we need that transfer to fully
622 * finish so that we can have the hardware, and to fully finish it needs
623 * the interrupt handler to run. If the interrupts is set to run on the
624 * active CPU this can never happen if interrupts are disabled.
625 *
626 * Return: 0 on success, -EINVAL on error.
627 */
rpmh_rsc_send_data(struct rsc_drv * drv,const struct tcs_request * msg)628 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
629 {
630 struct tcs_group *tcs;
631 int tcs_id;
632 unsigned long flags;
633
634 tcs = get_tcs_for_msg(drv, msg);
635 if (IS_ERR(tcs))
636 return PTR_ERR(tcs);
637
638 spin_lock_irqsave(&drv->lock, flags);
639
640 /* Wait forever for a free tcs. It better be there eventually! */
641 wait_event_lock_irq(drv->tcs_wait,
642 (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
643 drv->lock);
644
645 tcs->req[tcs_id - tcs->offset] = msg;
646 set_bit(tcs_id, drv->tcs_in_use);
647 if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
648 /*
649 * Clear previously programmed WAKE commands in selected
650 * repurposed TCS to avoid triggering them. tcs->slots will be
651 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
652 */
653 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0);
654 write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, 0);
655 enable_tcs_irq(drv, tcs_id, true);
656 }
657 spin_unlock_irqrestore(&drv->lock, flags);
658
659 /*
660 * These two can be done after the lock is released because:
661 * - We marked "tcs_in_use" under lock.
662 * - Once "tcs_in_use" has been marked nobody else could be writing
663 * to these registers until the interrupt goes off.
664 * - The interrupt can't go off until we trigger w/ the last line
665 * of __tcs_set_trigger() below.
666 */
667 __tcs_buffer_write(drv, tcs_id, 0, msg);
668 __tcs_set_trigger(drv, tcs_id, true);
669
670 return 0;
671 }
672
673 /**
674 * find_slots() - Find a place to write the given message.
675 * @tcs: The tcs group to search.
676 * @msg: The message we want to find room for.
677 * @tcs_id: If we return 0 from the function, we return the global ID of the
678 * TCS to write to here.
679 * @cmd_id: If we return 0 from the function, we return the index of
680 * the command array of the returned TCS where the client should
681 * start writing the message.
682 *
683 * Only for use on sleep/wake TCSes since those are the only ones we maintain
684 * tcs->slots for.
685 *
686 * Return: -ENOMEM if there was no room, else 0.
687 */
find_slots(struct tcs_group * tcs,const struct tcs_request * msg,int * tcs_id,int * cmd_id)688 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
689 int *tcs_id, int *cmd_id)
690 {
691 int slot, offset;
692 int i = 0;
693
694 /* Do over, until we can fit the full payload in a single TCS */
695 do {
696 slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
697 i, msg->num_cmds, 0);
698 if (slot >= tcs->num_tcs * tcs->ncpt)
699 return -ENOMEM;
700 i += tcs->ncpt;
701 } while (slot + msg->num_cmds - 1 >= i);
702
703 bitmap_set(tcs->slots, slot, msg->num_cmds);
704
705 offset = slot / tcs->ncpt;
706 *tcs_id = offset + tcs->offset;
707 *cmd_id = slot % tcs->ncpt;
708
709 return 0;
710 }
711
712 /**
713 * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
714 * @drv: The controller.
715 * @msg: The data to be written to the controller.
716 *
717 * This should only be called for for sleep/wake state, never active-only
718 * state.
719 *
720 * The caller must ensure that no other RPMH actions are happening and the
721 * controller is idle when this function is called since it runs lockless.
722 *
723 * Return: 0 if no error; else -error.
724 */
rpmh_rsc_write_ctrl_data(struct rsc_drv * drv,const struct tcs_request * msg)725 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
726 {
727 struct tcs_group *tcs;
728 int tcs_id = 0, cmd_id = 0;
729 int ret;
730
731 tcs = get_tcs_for_msg(drv, msg);
732 if (IS_ERR(tcs))
733 return PTR_ERR(tcs);
734
735 /* find the TCS id and the command in the TCS to write to */
736 ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
737 if (!ret)
738 __tcs_buffer_write(drv, tcs_id, cmd_id, msg);
739
740 return ret;
741 }
742
743 /**
744 * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
745 * @drv: The controller
746 *
747 * Checks if any of the AMCs are busy in handling ACTIVE sets.
748 * This is called from the last cpu powering down before flushing
749 * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
750 * power collapse, so deny from the last cpu's pm notification.
751 *
752 * Context: Must be called with the drv->lock held.
753 *
754 * Return:
755 * * False - AMCs are idle
756 * * True - AMCs are busy
757 */
rpmh_rsc_ctrlr_is_busy(struct rsc_drv * drv)758 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
759 {
760 int m;
761 struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
762
763 /*
764 * If we made an active request on a RSC that does not have a
765 * dedicated TCS for active state use, then re-purposed wake TCSes
766 * should be checked for not busy, because we used wake TCSes for
767 * active requests in this case.
768 */
769 if (!tcs->num_tcs)
770 tcs = &drv->tcs[WAKE_TCS];
771
772 for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
773 if (!tcs_is_free(drv, m))
774 return true;
775 }
776
777 return false;
778 }
779
780 /**
781 * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
782 * @nfb: Pointer to the notifier block in struct rsc_drv.
783 * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
784 * @v: Unused
785 *
786 * This function is given to cpu_pm_register_notifier so we can be informed
787 * about when CPUs go down. When all CPUs go down we know no more active
788 * transfers will be started so we write sleep/wake sets. This function gets
789 * called from cpuidle code paths and also at system suspend time.
790 *
791 * If its last CPU going down and AMCs are not busy then writes cached sleep
792 * and wake messages to TCSes. The firmware then takes care of triggering
793 * them when entering deepest low power modes.
794 *
795 * Return: See cpu_pm_register_notifier()
796 */
rpmh_rsc_cpu_pm_callback(struct notifier_block * nfb,unsigned long action,void * v)797 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
798 unsigned long action, void *v)
799 {
800 struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
801 int ret = NOTIFY_OK;
802 int cpus_in_pm;
803
804 switch (action) {
805 case CPU_PM_ENTER:
806 cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
807 /*
808 * NOTE: comments for num_online_cpus() point out that it's
809 * only a snapshot so we need to be careful. It should be OK
810 * for us to use, though. It's important for us not to miss
811 * if we're the last CPU going down so it would only be a
812 * problem if a CPU went offline right after we did the check
813 * AND that CPU was not idle AND that CPU was the last non-idle
814 * CPU. That can't happen. CPUs would have to come out of idle
815 * before the CPU could go offline.
816 */
817 if (cpus_in_pm < num_online_cpus())
818 return NOTIFY_OK;
819 break;
820 case CPU_PM_ENTER_FAILED:
821 case CPU_PM_EXIT:
822 atomic_dec(&drv->cpus_in_pm);
823 return NOTIFY_OK;
824 default:
825 return NOTIFY_DONE;
826 }
827
828 /*
829 * It's likely we're on the last CPU. Grab the drv->lock and write
830 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
831 * means that if we race with another CPU coming up we are still
832 * guaranteed to be safe. If another CPU came up just after we checked
833 * and has grabbed the lock or started an active transfer then we'll
834 * notice we're busy and abort. If another CPU comes up after we start
835 * flushing it will be blocked from starting an active transfer until
836 * we're done flushing. If another CPU starts an active transfer after
837 * we release the lock we're still OK because we're no longer the last
838 * CPU.
839 */
840 if (spin_trylock(&drv->lock)) {
841 if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
842 ret = NOTIFY_BAD;
843 spin_unlock(&drv->lock);
844 } else {
845 /* Another CPU must be up */
846 return NOTIFY_OK;
847 }
848
849 if (ret == NOTIFY_BAD) {
850 /* Double-check if we're here because someone else is up */
851 if (cpus_in_pm < num_online_cpus())
852 ret = NOTIFY_OK;
853 else
854 /* We won't be called w/ CPU_PM_ENTER_FAILED */
855 atomic_dec(&drv->cpus_in_pm);
856 }
857
858 return ret;
859 }
860
rpmh_probe_tcs_config(struct platform_device * pdev,struct rsc_drv * drv,void __iomem * base)861 static int rpmh_probe_tcs_config(struct platform_device *pdev,
862 struct rsc_drv *drv, void __iomem *base)
863 {
864 struct tcs_type_config {
865 u32 type;
866 u32 n;
867 } tcs_cfg[TCS_TYPE_NR] = { { 0 } };
868 struct device_node *dn = pdev->dev.of_node;
869 u32 config, max_tcs, ncpt, offset;
870 int i, ret, n, st = 0;
871 struct tcs_group *tcs;
872
873 ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
874 if (ret)
875 return ret;
876 drv->tcs_base = base + offset;
877
878 config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG);
879
880 max_tcs = config;
881 max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
882 max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
883
884 ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
885 ncpt = ncpt >> DRV_NCPT_SHIFT;
886
887 n = of_property_count_u32_elems(dn, "qcom,tcs-config");
888 if (n != 2 * TCS_TYPE_NR)
889 return -EINVAL;
890
891 for (i = 0; i < TCS_TYPE_NR; i++) {
892 ret = of_property_read_u32_index(dn, "qcom,tcs-config",
893 i * 2, &tcs_cfg[i].type);
894 if (ret)
895 return ret;
896 if (tcs_cfg[i].type >= TCS_TYPE_NR)
897 return -EINVAL;
898
899 ret = of_property_read_u32_index(dn, "qcom,tcs-config",
900 i * 2 + 1, &tcs_cfg[i].n);
901 if (ret)
902 return ret;
903 if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
904 return -EINVAL;
905 }
906
907 for (i = 0; i < TCS_TYPE_NR; i++) {
908 tcs = &drv->tcs[tcs_cfg[i].type];
909 if (tcs->drv)
910 return -EINVAL;
911 tcs->drv = drv;
912 tcs->type = tcs_cfg[i].type;
913 tcs->num_tcs = tcs_cfg[i].n;
914 tcs->ncpt = ncpt;
915
916 if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
917 continue;
918
919 if (st + tcs->num_tcs > max_tcs ||
920 st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
921 return -EINVAL;
922
923 tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
924 tcs->offset = st;
925 st += tcs->num_tcs;
926 }
927
928 drv->num_tcs = st;
929
930 return 0;
931 }
932
rpmh_rsc_probe(struct platform_device * pdev)933 static int rpmh_rsc_probe(struct platform_device *pdev)
934 {
935 struct device_node *dn = pdev->dev.of_node;
936 struct rsc_drv *drv;
937 struct resource *res;
938 char drv_id[10] = {0};
939 int ret, irq;
940 u32 solver_config;
941 void __iomem *base;
942
943 /*
944 * Even though RPMh doesn't directly use cmd-db, all of its children
945 * do. To avoid adding this check to our children we'll do it now.
946 */
947 ret = cmd_db_ready();
948 if (ret) {
949 if (ret != -EPROBE_DEFER)
950 dev_err(&pdev->dev, "Command DB not available (%d)\n",
951 ret);
952 return ret;
953 }
954
955 drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
956 if (!drv)
957 return -ENOMEM;
958
959 ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
960 if (ret)
961 return ret;
962
963 drv->name = of_get_property(dn, "label", NULL);
964 if (!drv->name)
965 drv->name = dev_name(&pdev->dev);
966
967 snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
968 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, drv_id);
969 base = devm_ioremap_resource(&pdev->dev, res);
970 if (IS_ERR(base))
971 return PTR_ERR(base);
972
973 ret = rpmh_probe_tcs_config(pdev, drv, base);
974 if (ret)
975 return ret;
976
977 spin_lock_init(&drv->lock);
978 init_waitqueue_head(&drv->tcs_wait);
979 bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
980
981 irq = platform_get_irq(pdev, drv->id);
982 if (irq < 0)
983 return irq;
984
985 ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
986 IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
987 drv->name, drv);
988 if (ret)
989 return ret;
990
991 /*
992 * CPU PM notification are not required for controllers that support
993 * 'HW solver' mode where they can be in autonomous mode executing low
994 * power mode to power down.
995 */
996 solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG);
997 solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
998 solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
999 if (!solver_config) {
1000 drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1001 cpu_pm_register_notifier(&drv->rsc_pm);
1002 }
1003
1004 /* Enable the active TCS to send requests immediately */
1005 writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1006 drv->tcs_base + RSC_DRV_IRQ_ENABLE);
1007
1008 spin_lock_init(&drv->client.cache_lock);
1009 INIT_LIST_HEAD(&drv->client.cache);
1010 INIT_LIST_HEAD(&drv->client.batch_cache);
1011
1012 dev_set_drvdata(&pdev->dev, drv);
1013
1014 return devm_of_platform_populate(&pdev->dev);
1015 }
1016
1017 static const struct of_device_id rpmh_drv_match[] = {
1018 { .compatible = "qcom,rpmh-rsc", },
1019 { }
1020 };
1021
1022 static struct platform_driver rpmh_driver = {
1023 .probe = rpmh_rsc_probe,
1024 .driver = {
1025 .name = "rpmh",
1026 .of_match_table = rpmh_drv_match,
1027 .suppress_bind_attrs = true,
1028 },
1029 };
1030
rpmh_driver_init(void)1031 static int __init rpmh_driver_init(void)
1032 {
1033 return platform_driver_register(&rpmh_driver);
1034 }
1035 arch_initcall(rpmh_driver_init);
1036