• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Linux network driver for QLogic BR-series Converged Network Adapter.
4  */
5 /*
6  * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
7  * Copyright (c) 2014-2015 QLogic Corporation
8  * All rights reserved
9  * www.qlogic.com
10  */
11 
12 /* File for interrupt macros and functions */
13 
14 #ifndef __BNA_HW_DEFS_H__
15 #define __BNA_HW_DEFS_H__
16 
17 #include "bfi_reg.h"
18 
19 /* SW imposed limits */
20 
21 #define BFI_ENET_DEF_TXQ		1
22 #define BFI_ENET_DEF_RXP		1
23 #define BFI_ENET_DEF_UCAM		1
24 #define BFI_ENET_DEF_RITSZ		1
25 
26 #define BFI_ENET_MAX_MCAM		256
27 
28 #define BFI_INVALID_RID			-1
29 
30 #define BFI_IBIDX_SIZE			4
31 
32 #define BFI_VLAN_WORD_SHIFT		5	/* 32 bits */
33 #define BFI_VLAN_WORD_MASK		0x1F
34 #define BFI_VLAN_BLOCK_SHIFT		9	/* 512 bits */
35 #define BFI_VLAN_BMASK_ALL		0xFF
36 
37 #define BFI_COALESCING_TIMER_UNIT	5	/* 5us */
38 #define BFI_MAX_COALESCING_TIMEO	0xFF	/* in 5us units */
39 #define BFI_MAX_INTERPKT_COUNT		0xFF
40 #define BFI_MAX_INTERPKT_TIMEO		0xF	/* in 0.5us units */
41 #define BFI_TX_COALESCING_TIMEO		20	/* 20 * 5 = 100us */
42 #define BFI_TX_INTERPKT_COUNT		12	/* Pkt Cnt = 12 */
43 #define BFI_TX_INTERPKT_TIMEO		15	/* 15 * 0.5 = 7.5us */
44 #define	BFI_RX_COALESCING_TIMEO		12	/* 12 * 5 = 60us */
45 #define	BFI_RX_INTERPKT_COUNT		6	/* Pkt Cnt = 6 */
46 #define	BFI_RX_INTERPKT_TIMEO		3	/* 3 * 0.5 = 1.5us */
47 
48 #define BFI_TXQ_WI_SIZE			64	/* bytes */
49 #define BFI_RXQ_WI_SIZE			8	/* bytes */
50 #define BFI_CQ_WI_SIZE			16	/* bytes */
51 #define BFI_TX_MAX_WRR_QUOTA		0xFFF
52 
53 #define BFI_TX_MAX_VECTORS_PER_WI	4
54 #define BFI_TX_MAX_VECTORS_PER_PKT	0xFF
55 #define BFI_TX_MAX_DATA_PER_VECTOR	0xFFFF
56 #define BFI_TX_MAX_DATA_PER_PKT		0xFFFFFF
57 
58 /* Small Q buffer size */
59 #define BFI_SMALL_RXBUF_SIZE		128
60 
61 #define BFI_TX_MAX_PRIO			8
62 #define BFI_TX_PRIO_MAP_ALL		0xFF
63 
64 /*
65  *
66  * Register definitions and macros
67  *
68  */
69 
70 #define BNA_PCI_REG_CT_ADDRSZ		(0x40000)
71 
72 #define ct_reg_addr_init(_bna, _pcidev)					\
73 {									\
74 	struct bna_reg_offset reg_offset[] =				\
75 	{{HOSTFN0_INT_STATUS, HOSTFN0_INT_MSK},				\
76 	 {HOSTFN1_INT_STATUS, HOSTFN1_INT_MSK},				\
77 	 {HOSTFN2_INT_STATUS, HOSTFN2_INT_MSK},				\
78 	 {HOSTFN3_INT_STATUS, HOSTFN3_INT_MSK} };			\
79 									\
80 	(_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva +		\
81 				reg_offset[(_pcidev)->pci_func].fn_int_status;\
82 	(_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva +		\
83 				reg_offset[(_pcidev)->pci_func].fn_int_mask;\
84 }
85 
86 #define ct_bit_defn_init(_bna, _pcidev)					\
87 {									\
88 	(_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0 |		\
89 					__HFN_INT_MBOX_LPU1);		\
90 	(_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0 |		\
91 					__HFN_INT_MBOX_LPU1);		\
92 	(_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK);		\
93 	(_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK);		\
94 	(_bna)->bits.halt_status_bits = __HFN_INT_LL_HALT;		\
95 	(_bna)->bits.halt_mask_bits = __HFN_INT_LL_HALT;		\
96 }
97 
98 #define ct2_reg_addr_init(_bna, _pcidev)				\
99 {									\
100 	(_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva +		\
101 				CT2_HOSTFN_INT_STATUS;			\
102 	(_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva +		\
103 				CT2_HOSTFN_INTR_MASK;			\
104 }
105 
106 #define ct2_bit_defn_init(_bna, _pcidev)				\
107 {									\
108 	(_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0_CT2 |	\
109 					__HFN_INT_MBOX_LPU1_CT2);	\
110 	(_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0_CT2 |	\
111 					__HFN_INT_MBOX_LPU1_CT2);	\
112 	(_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK_CT2);	\
113 	(_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK_CT2);	\
114 	(_bna)->bits.halt_status_bits = __HFN_INT_CPQ_HALT_CT2;		\
115 	(_bna)->bits.halt_mask_bits = __HFN_INT_CPQ_HALT_CT2;		\
116 }
117 
118 #define bna_reg_addr_init(_bna, _pcidev)				\
119 {									\
120 	switch ((_pcidev)->device_id) {					\
121 	case PCI_DEVICE_ID_BROCADE_CT:					\
122 		ct_reg_addr_init((_bna), (_pcidev));			\
123 		ct_bit_defn_init((_bna), (_pcidev));			\
124 		break;							\
125 	case BFA_PCI_DEVICE_ID_CT2:					\
126 		ct2_reg_addr_init((_bna), (_pcidev));			\
127 		ct2_bit_defn_init((_bna), (_pcidev));			\
128 		break;							\
129 	}								\
130 }
131 
132 #define bna_port_id_get(_bna) ((_bna)->ioceth.ioc.port_id)
133 
134 /*  Interrupt related bits, flags and macros  */
135 
136 #define IB_STATUS_BITS		0x0000ffff
137 
138 #define BNA_IS_MBOX_INTR(_bna, _intr_status)				\
139 	((_intr_status) & (_bna)->bits.mbox_status_bits)
140 
141 #define BNA_IS_HALT_INTR(_bna, _intr_status)				\
142 	((_intr_status) & (_bna)->bits.halt_status_bits)
143 
144 #define BNA_IS_ERR_INTR(_bna, _intr_status)	\
145 	((_intr_status) & (_bna)->bits.error_status_bits)
146 
147 #define BNA_IS_MBOX_ERR_INTR(_bna, _intr_status)	\
148 	(BNA_IS_MBOX_INTR(_bna, _intr_status) |		\
149 	BNA_IS_ERR_INTR(_bna, _intr_status))
150 
151 #define BNA_IS_INTX_DATA_INTR(_intr_status)		\
152 		((_intr_status) & IB_STATUS_BITS)
153 
154 #define bna_halt_clear(_bna)						\
155 do {									\
156 	u32 init_halt;						\
157 	init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt);	\
158 	init_halt &= ~__FW_INIT_HALT_P;					\
159 	writel(init_halt, (_bna)->ioceth.ioc.ioc_regs.ll_halt);	\
160 	init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt);	\
161 } while (0)
162 
163 #define bna_intx_disable(_bna, _cur_mask)				\
164 {									\
165 	(_cur_mask) = readl((_bna)->regs.fn_int_mask);		\
166 	writel(0xffffffff, (_bna)->regs.fn_int_mask);		\
167 }
168 
169 #define bna_intx_enable(bna, new_mask)					\
170 	writel((new_mask), (bna)->regs.fn_int_mask)
171 #define bna_mbox_intr_disable(bna)					\
172 do {									\
173 	u32 mask;							\
174 	mask = readl((bna)->regs.fn_int_mask);				\
175 	writel((mask | (bna)->bits.mbox_mask_bits |			\
176 		(bna)->bits.error_mask_bits), (bna)->regs.fn_int_mask); \
177 	mask = readl((bna)->regs.fn_int_mask);				\
178 } while (0)
179 
180 #define bna_mbox_intr_enable(bna)					\
181 do {									\
182 	u32 mask;							\
183 	mask = readl((bna)->regs.fn_int_mask);				\
184 	writel((mask & ~((bna)->bits.mbox_mask_bits |			\
185 		(bna)->bits.error_mask_bits)), (bna)->regs.fn_int_mask);\
186 	mask = readl((bna)->regs.fn_int_mask);				\
187 } while (0)
188 
189 #define bna_intr_status_get(_bna, _status)				\
190 {									\
191 	(_status) = readl((_bna)->regs.fn_int_status);			\
192 	if (_status) {							\
193 		writel(((_status) & ~(_bna)->bits.mbox_status_bits),	\
194 			(_bna)->regs.fn_int_status);			\
195 	}								\
196 }
197 
198 /*
199  * MAX ACK EVENTS : No. of acks that can be accumulated in driver,
200  * before acking to h/w. The no. of bits is 16 in the doorbell register,
201  * however we keep this limited to 15 bits.
202  * This is because around the edge of 64K boundary (16 bits), one
203  * single poll can make the accumulated ACK counter cross the 64K boundary,
204  * causing problems, when we try to ack with a value greater than 64K.
205  * 15 bits (32K) should  be large enough to accumulate, anyways, and the max.
206  * acked events to h/w can be (32K + max poll weight) (currently 64).
207  */
208 #define BNA_IB_MAX_ACK_EVENTS		BIT(15)
209 
210 /* These macros build the data portion of the TxQ/RxQ doorbell */
211 #define BNA_DOORBELL_Q_PRD_IDX(_pi)	(0x80000000 | (_pi))
212 #define BNA_DOORBELL_Q_STOP		(0x40000000)
213 
214 /* These macros build the data portion of the IB doorbell */
215 #define BNA_DOORBELL_IB_INT_ACK(_timeout, _events)			\
216 	(0x80000000 | ((_timeout) << 16) | (_events))
217 #define BNA_DOORBELL_IB_INT_DISABLE	(0x40000000)
218 
219 /* Set the coalescing timer for the given ib */
220 #define bna_ib_coalescing_timer_set(_i_dbell, _cls_timer)		\
221 	((_i_dbell)->doorbell_ack = BNA_DOORBELL_IB_INT_ACK((_cls_timer), 0));
222 
223 /* Acks 'events' # of events for a given ib while disabling interrupts */
224 #define bna_ib_ack_disable_irq(_i_dbell, _events)			\
225 	(writel(BNA_DOORBELL_IB_INT_ACK(0, (_events)), \
226 		(_i_dbell)->doorbell_addr));
227 
228 /* Acks 'events' # of events for a given ib */
229 #define bna_ib_ack(_i_dbell, _events)					\
230 	(writel(((_i_dbell)->doorbell_ack | (_events)), \
231 		(_i_dbell)->doorbell_addr));
232 
233 #define bna_ib_start(_bna, _ib, _is_regular)				\
234 {									\
235 	u32 intx_mask;						\
236 	struct bna_ib *ib = _ib;					\
237 	if ((ib->intr_type == BNA_INTR_T_INTX)) {			\
238 		bna_intx_disable((_bna), intx_mask);			\
239 		intx_mask &= ~(ib->intr_vector);			\
240 		bna_intx_enable((_bna), intx_mask);			\
241 	}								\
242 	bna_ib_coalescing_timer_set(&ib->door_bell,			\
243 			ib->coalescing_timeo);				\
244 	if (_is_regular)						\
245 		bna_ib_ack(&ib->door_bell, 0);				\
246 }
247 
248 #define bna_ib_stop(_bna, _ib)						\
249 {									\
250 	u32 intx_mask;						\
251 	struct bna_ib *ib = _ib;					\
252 	writel(BNA_DOORBELL_IB_INT_DISABLE,				\
253 		ib->door_bell.doorbell_addr);				\
254 	if (ib->intr_type == BNA_INTR_T_INTX) {				\
255 		bna_intx_disable((_bna), intx_mask);			\
256 		intx_mask |= ib->intr_vector;				\
257 		bna_intx_enable((_bna), intx_mask);			\
258 	}								\
259 }
260 
261 #define bna_txq_prod_indx_doorbell(_tcb)				\
262 	(writel(BNA_DOORBELL_Q_PRD_IDX((_tcb)->producer_index), \
263 		(_tcb)->q_dbell));
264 
265 #define bna_rxq_prod_indx_doorbell(_rcb)				\
266 	(writel(BNA_DOORBELL_Q_PRD_IDX((_rcb)->producer_index), \
267 		(_rcb)->q_dbell));
268 
269 /* TxQ, RxQ, CQ related bits, offsets, macros */
270 
271 /* TxQ Entry Opcodes */
272 #define BNA_TXQ_WI_SEND			(0x402)	/* Single Frame Transmission */
273 #define BNA_TXQ_WI_SEND_LSO		(0x403)	/* Multi-Frame Transmission */
274 #define BNA_TXQ_WI_EXTENSION		(0x104)	/* Extension WI */
275 
276 /* TxQ Entry Control Flags */
277 #define BNA_TXQ_WI_CF_FCOE_CRC		BIT(8)
278 #define BNA_TXQ_WI_CF_IPID_MODE		BIT(5)
279 #define BNA_TXQ_WI_CF_INS_PRIO		BIT(4)
280 #define BNA_TXQ_WI_CF_INS_VLAN		BIT(3)
281 #define BNA_TXQ_WI_CF_UDP_CKSUM		BIT(2)
282 #define BNA_TXQ_WI_CF_TCP_CKSUM		BIT(1)
283 #define BNA_TXQ_WI_CF_IP_CKSUM		BIT(0)
284 
285 #define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \
286 		(((_hdr_size) << 10) | ((_offset) & 0x3FF))
287 
288 /*
289  * Completion Q defines
290  */
291 /* CQ Entry Flags */
292 #define BNA_CQ_EF_MAC_ERROR	BIT(0)
293 #define BNA_CQ_EF_FCS_ERROR	BIT(1)
294 #define BNA_CQ_EF_TOO_LONG	BIT(2)
295 #define BNA_CQ_EF_FC_CRC_OK	BIT(3)
296 
297 #define BNA_CQ_EF_RSVD1		BIT(4)
298 #define BNA_CQ_EF_L4_CKSUM_OK	BIT(5)
299 #define BNA_CQ_EF_L3_CKSUM_OK	BIT(6)
300 #define BNA_CQ_EF_HDS_HEADER	BIT(7)
301 
302 #define BNA_CQ_EF_UDP		BIT(8)
303 #define BNA_CQ_EF_TCP		BIT(9)
304 #define BNA_CQ_EF_IP_OPTIONS	BIT(10)
305 #define BNA_CQ_EF_IPV6		BIT(11)
306 
307 #define BNA_CQ_EF_IPV4		BIT(12)
308 #define BNA_CQ_EF_VLAN		BIT(13)
309 #define BNA_CQ_EF_RSS		BIT(14)
310 #define BNA_CQ_EF_RSVD2		BIT(15)
311 
312 #define BNA_CQ_EF_MCAST_MATCH   BIT(16)
313 #define BNA_CQ_EF_MCAST		BIT(17)
314 #define BNA_CQ_EF_BCAST		BIT(18)
315 #define BNA_CQ_EF_REMOTE	BIT(19)
316 
317 #define BNA_CQ_EF_LOCAL		BIT(20)
318 /* CAT2 ASIC does not use bit 21 as per the SPEC.
319  * Bit 31 is set in every end of frame completion
320  */
321 #define BNA_CQ_EF_EOP		BIT(31)
322 
323 /* Data structures */
324 
325 struct bna_reg_offset {
326 	u32 fn_int_status;
327 	u32 fn_int_mask;
328 };
329 
330 struct bna_bit_defn {
331 	u32 mbox_status_bits;
332 	u32 mbox_mask_bits;
333 	u32 error_status_bits;
334 	u32 error_mask_bits;
335 	u32 halt_status_bits;
336 	u32 halt_mask_bits;
337 };
338 
339 struct bna_reg {
340 	void __iomem *fn_int_status;
341 	void __iomem *fn_int_mask;
342 };
343 
344 /* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */
345 struct bna_dma_addr {
346 	u32		msb;
347 	u32		lsb;
348 };
349 
350 struct bna_txq_wi_vector {
351 	u16		reserved;
352 	u16		length;		/* Only 14 LSB are valid */
353 	struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */
354 };
355 
356 /*  TxQ Entry Structure
357  *
358  *  BEWARE:  Load values into this structure with correct endianness.
359  */
360 struct bna_txq_entry {
361 	union {
362 		struct {
363 			u8 reserved;
364 			u8 num_vectors;	/* number of vectors present */
365 			u16 opcode; /* Either */
366 						    /* BNA_TXQ_WI_SEND or */
367 						    /* BNA_TXQ_WI_SEND_LSO */
368 			u16 flags; /* OR of all the flags */
369 			u16 l4_hdr_size_n_offset;
370 			u16 vlan_tag;
371 			u16 lso_mss;	/* Only 14 LSB are valid */
372 			u32 frame_length;	/* Only 24 LSB are valid */
373 		} wi;
374 
375 		struct {
376 			u16 reserved;
377 			u16 opcode; /* Must be */
378 						    /* BNA_TXQ_WI_EXTENSION */
379 			u32 reserved2[3];	/* Place holder for */
380 						/* removed vector (12 bytes) */
381 		} wi_ext;
382 	} hdr;
383 	struct bna_txq_wi_vector vector[4];
384 };
385 
386 /* RxQ Entry Structure */
387 struct bna_rxq_entry {		/* Rx-Buffer */
388 	struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */
389 };
390 
391 /* CQ Entry Structure */
392 struct bna_cq_entry {
393 	u32 flags;
394 	u16 vlan_tag;
395 	u16 length;
396 	u32 rss_hash;
397 	u8 valid;
398 	u8 reserved1;
399 	u8 reserved2;
400 	u8 rxq_id;
401 };
402 
403 #endif /* __BNA_HW_DEFS_H__ */
404