1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38
39 #include <trace/events/power.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/cpuhp.h>
42
43 #include "smpboot.h"
44
45 /**
46 * cpuhp_cpu_state - Per cpu hotplug state storage
47 * @state: The current cpu state
48 * @target: The target state
49 * @thread: Pointer to the hotplug thread
50 * @should_run: Thread should execute
51 * @rollback: Perform a rollback
52 * @single: Single callback invocation
53 * @bringup: Single callback bringup or teardown selector
54 * @cb_state: The state for a single callback (install/uninstall)
55 * @result: Result of the operation
56 * @done_up: Signal completion to the issuer of the task for cpu-up
57 * @done_down: Signal completion to the issuer of the task for cpu-down
58 */
59 struct cpuhp_cpu_state {
60 enum cpuhp_state state;
61 enum cpuhp_state target;
62 enum cpuhp_state fail;
63 #ifdef CONFIG_SMP
64 struct task_struct *thread;
65 bool should_run;
66 bool rollback;
67 bool single;
68 bool bringup;
69 struct hlist_node *node;
70 struct hlist_node *last;
71 enum cpuhp_state cb_state;
72 int result;
73 struct completion done_up;
74 struct completion done_down;
75 #endif
76 };
77
78 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
79 .fail = CPUHP_INVALID,
80 };
81
82 #ifdef CONFIG_SMP
83 cpumask_t cpus_booted_once_mask;
84 #endif
85
86 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
87 static struct lockdep_map cpuhp_state_up_map =
88 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
89 static struct lockdep_map cpuhp_state_down_map =
90 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
91
92
cpuhp_lock_acquire(bool bringup)93 static inline void cpuhp_lock_acquire(bool bringup)
94 {
95 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
96 }
97
cpuhp_lock_release(bool bringup)98 static inline void cpuhp_lock_release(bool bringup)
99 {
100 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
101 }
102 #else
103
cpuhp_lock_acquire(bool bringup)104 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)105 static inline void cpuhp_lock_release(bool bringup) { }
106
107 #endif
108
109 /**
110 * cpuhp_step - Hotplug state machine step
111 * @name: Name of the step
112 * @startup: Startup function of the step
113 * @teardown: Teardown function of the step
114 * @cant_stop: Bringup/teardown can't be stopped at this step
115 */
116 struct cpuhp_step {
117 const char *name;
118 union {
119 int (*single)(unsigned int cpu);
120 int (*multi)(unsigned int cpu,
121 struct hlist_node *node);
122 } startup;
123 union {
124 int (*single)(unsigned int cpu);
125 int (*multi)(unsigned int cpu,
126 struct hlist_node *node);
127 } teardown;
128 struct hlist_head list;
129 bool cant_stop;
130 bool multi_instance;
131 };
132
133 static DEFINE_MUTEX(cpuhp_state_mutex);
134 static struct cpuhp_step cpuhp_hp_states[];
135
cpuhp_get_step(enum cpuhp_state state)136 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
137 {
138 return cpuhp_hp_states + state;
139 }
140
141 /**
142 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
143 * @cpu: The cpu for which the callback should be invoked
144 * @state: The state to do callbacks for
145 * @bringup: True if the bringup callback should be invoked
146 * @node: For multi-instance, do a single entry callback for install/remove
147 * @lastp: For multi-instance rollback, remember how far we got
148 *
149 * Called from cpu hotplug and from the state register machinery.
150 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)151 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
152 bool bringup, struct hlist_node *node,
153 struct hlist_node **lastp)
154 {
155 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
156 struct cpuhp_step *step = cpuhp_get_step(state);
157 int (*cbm)(unsigned int cpu, struct hlist_node *node);
158 int (*cb)(unsigned int cpu);
159 int ret, cnt;
160
161 if (st->fail == state) {
162 st->fail = CPUHP_INVALID;
163
164 if (!(bringup ? step->startup.single : step->teardown.single))
165 return 0;
166
167 return -EAGAIN;
168 }
169
170 if (!step->multi_instance) {
171 WARN_ON_ONCE(lastp && *lastp);
172 cb = bringup ? step->startup.single : step->teardown.single;
173 if (!cb)
174 return 0;
175 trace_cpuhp_enter(cpu, st->target, state, cb);
176 ret = cb(cpu);
177 trace_cpuhp_exit(cpu, st->state, state, ret);
178 return ret;
179 }
180 cbm = bringup ? step->startup.multi : step->teardown.multi;
181 if (!cbm)
182 return 0;
183
184 /* Single invocation for instance add/remove */
185 if (node) {
186 WARN_ON_ONCE(lastp && *lastp);
187 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
188 ret = cbm(cpu, node);
189 trace_cpuhp_exit(cpu, st->state, state, ret);
190 return ret;
191 }
192
193 /* State transition. Invoke on all instances */
194 cnt = 0;
195 hlist_for_each(node, &step->list) {
196 if (lastp && node == *lastp)
197 break;
198
199 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
200 ret = cbm(cpu, node);
201 trace_cpuhp_exit(cpu, st->state, state, ret);
202 if (ret) {
203 if (!lastp)
204 goto err;
205
206 *lastp = node;
207 return ret;
208 }
209 cnt++;
210 }
211 if (lastp)
212 *lastp = NULL;
213 return 0;
214 err:
215 /* Rollback the instances if one failed */
216 cbm = !bringup ? step->startup.multi : step->teardown.multi;
217 if (!cbm)
218 return ret;
219
220 hlist_for_each(node, &step->list) {
221 if (!cnt--)
222 break;
223
224 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
225 ret = cbm(cpu, node);
226 trace_cpuhp_exit(cpu, st->state, state, ret);
227 /*
228 * Rollback must not fail,
229 */
230 WARN_ON_ONCE(ret);
231 }
232 return ret;
233 }
234
235 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)236 static bool cpuhp_is_ap_state(enum cpuhp_state state)
237 {
238 /*
239 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
240 * purposes as that state is handled explicitly in cpu_down.
241 */
242 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
243 }
244
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)245 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
246 {
247 struct completion *done = bringup ? &st->done_up : &st->done_down;
248 wait_for_completion(done);
249 }
250
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)251 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
252 {
253 struct completion *done = bringup ? &st->done_up : &st->done_down;
254 complete(done);
255 }
256
257 /*
258 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
259 */
cpuhp_is_atomic_state(enum cpuhp_state state)260 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
261 {
262 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
263 }
264
265 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
266 static DEFINE_MUTEX(cpu_add_remove_lock);
267 bool cpuhp_tasks_frozen;
268 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
269
270 /*
271 * The following two APIs (cpu_maps_update_begin/done) must be used when
272 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
273 */
cpu_maps_update_begin(void)274 void cpu_maps_update_begin(void)
275 {
276 mutex_lock(&cpu_add_remove_lock);
277 }
278
cpu_maps_update_done(void)279 void cpu_maps_update_done(void)
280 {
281 mutex_unlock(&cpu_add_remove_lock);
282 }
283
284 /*
285 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
286 * Should always be manipulated under cpu_add_remove_lock
287 */
288 static int cpu_hotplug_disabled;
289
290 #ifdef CONFIG_HOTPLUG_CPU
291
292 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
293
cpus_read_lock(void)294 void cpus_read_lock(void)
295 {
296 percpu_down_read(&cpu_hotplug_lock);
297 }
298 EXPORT_SYMBOL_GPL(cpus_read_lock);
299
cpus_read_trylock(void)300 int cpus_read_trylock(void)
301 {
302 return percpu_down_read_trylock(&cpu_hotplug_lock);
303 }
304 EXPORT_SYMBOL_GPL(cpus_read_trylock);
305
cpus_read_unlock(void)306 void cpus_read_unlock(void)
307 {
308 percpu_up_read(&cpu_hotplug_lock);
309 }
310 EXPORT_SYMBOL_GPL(cpus_read_unlock);
311
cpus_write_lock(void)312 void cpus_write_lock(void)
313 {
314 percpu_down_write(&cpu_hotplug_lock);
315 }
316
cpus_write_unlock(void)317 void cpus_write_unlock(void)
318 {
319 percpu_up_write(&cpu_hotplug_lock);
320 }
321
lockdep_assert_cpus_held(void)322 void lockdep_assert_cpus_held(void)
323 {
324 /*
325 * We can't have hotplug operations before userspace starts running,
326 * and some init codepaths will knowingly not take the hotplug lock.
327 * This is all valid, so mute lockdep until it makes sense to report
328 * unheld locks.
329 */
330 if (system_state < SYSTEM_RUNNING)
331 return;
332
333 percpu_rwsem_assert_held(&cpu_hotplug_lock);
334 }
335
lockdep_acquire_cpus_lock(void)336 static void lockdep_acquire_cpus_lock(void)
337 {
338 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
339 }
340
lockdep_release_cpus_lock(void)341 static void lockdep_release_cpus_lock(void)
342 {
343 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
344 }
345
346 /*
347 * Wait for currently running CPU hotplug operations to complete (if any) and
348 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
349 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
350 * hotplug path before performing hotplug operations. So acquiring that lock
351 * guarantees mutual exclusion from any currently running hotplug operations.
352 */
cpu_hotplug_disable(void)353 void cpu_hotplug_disable(void)
354 {
355 cpu_maps_update_begin();
356 cpu_hotplug_disabled++;
357 cpu_maps_update_done();
358 }
359 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
360
__cpu_hotplug_enable(void)361 static void __cpu_hotplug_enable(void)
362 {
363 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
364 return;
365 cpu_hotplug_disabled--;
366 }
367
cpu_hotplug_enable(void)368 void cpu_hotplug_enable(void)
369 {
370 cpu_maps_update_begin();
371 __cpu_hotplug_enable();
372 cpu_maps_update_done();
373 }
374 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
375
376 #else
377
lockdep_acquire_cpus_lock(void)378 static void lockdep_acquire_cpus_lock(void)
379 {
380 }
381
lockdep_release_cpus_lock(void)382 static void lockdep_release_cpus_lock(void)
383 {
384 }
385
386 #endif /* CONFIG_HOTPLUG_CPU */
387
388 /*
389 * Architectures that need SMT-specific errata handling during SMT hotplug
390 * should override this.
391 */
arch_smt_update(void)392 void __weak arch_smt_update(void) { }
393
394 #ifdef CONFIG_HOTPLUG_SMT
395 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
396
cpu_smt_disable(bool force)397 void __init cpu_smt_disable(bool force)
398 {
399 if (!cpu_smt_possible())
400 return;
401
402 if (force) {
403 pr_info("SMT: Force disabled\n");
404 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
405 } else {
406 pr_info("SMT: disabled\n");
407 cpu_smt_control = CPU_SMT_DISABLED;
408 }
409 }
410
411 /*
412 * The decision whether SMT is supported can only be done after the full
413 * CPU identification. Called from architecture code.
414 */
cpu_smt_check_topology(void)415 void __init cpu_smt_check_topology(void)
416 {
417 if (!topology_smt_supported())
418 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
419 }
420
smt_cmdline_disable(char * str)421 static int __init smt_cmdline_disable(char *str)
422 {
423 cpu_smt_disable(str && !strcmp(str, "force"));
424 return 0;
425 }
426 early_param("nosmt", smt_cmdline_disable);
427
cpu_smt_allowed(unsigned int cpu)428 static inline bool cpu_smt_allowed(unsigned int cpu)
429 {
430 if (cpu_smt_control == CPU_SMT_ENABLED)
431 return true;
432
433 if (topology_is_primary_thread(cpu))
434 return true;
435
436 /*
437 * On x86 it's required to boot all logical CPUs at least once so
438 * that the init code can get a chance to set CR4.MCE on each
439 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
440 * core will shutdown the machine.
441 */
442 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
443 }
444
445 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)446 bool cpu_smt_possible(void)
447 {
448 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
449 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
450 }
451 EXPORT_SYMBOL_GPL(cpu_smt_possible);
452 #else
cpu_smt_allowed(unsigned int cpu)453 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
454 #endif
455
456 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)457 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
458 {
459 enum cpuhp_state prev_state = st->state;
460
461 st->rollback = false;
462 st->last = NULL;
463
464 st->target = target;
465 st->single = false;
466 st->bringup = st->state < target;
467
468 return prev_state;
469 }
470
471 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)472 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
473 {
474 st->rollback = true;
475
476 /*
477 * If we have st->last we need to undo partial multi_instance of this
478 * state first. Otherwise start undo at the previous state.
479 */
480 if (!st->last) {
481 if (st->bringup)
482 st->state--;
483 else
484 st->state++;
485 }
486
487 st->target = prev_state;
488 st->bringup = !st->bringup;
489 }
490
491 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)492 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
493 {
494 if (!st->single && st->state == st->target)
495 return;
496
497 st->result = 0;
498 /*
499 * Make sure the above stores are visible before should_run becomes
500 * true. Paired with the mb() above in cpuhp_thread_fun()
501 */
502 smp_mb();
503 st->should_run = true;
504 wake_up_process(st->thread);
505 wait_for_ap_thread(st, st->bringup);
506 }
507
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)508 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
509 {
510 enum cpuhp_state prev_state;
511 int ret;
512
513 prev_state = cpuhp_set_state(st, target);
514 __cpuhp_kick_ap(st);
515 if ((ret = st->result)) {
516 cpuhp_reset_state(st, prev_state);
517 __cpuhp_kick_ap(st);
518 }
519
520 return ret;
521 }
522
bringup_wait_for_ap(unsigned int cpu)523 static int bringup_wait_for_ap(unsigned int cpu)
524 {
525 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
526
527 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
528 wait_for_ap_thread(st, true);
529 if (WARN_ON_ONCE((!cpu_online(cpu))))
530 return -ECANCELED;
531
532 /* Unpark the hotplug thread of the target cpu */
533 kthread_unpark(st->thread);
534
535 /*
536 * SMT soft disabling on X86 requires to bring the CPU out of the
537 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
538 * CPU marked itself as booted_once in notify_cpu_starting() so the
539 * cpu_smt_allowed() check will now return false if this is not the
540 * primary sibling.
541 */
542 if (!cpu_smt_allowed(cpu))
543 return -ECANCELED;
544
545 if (st->target <= CPUHP_AP_ONLINE_IDLE)
546 return 0;
547
548 return cpuhp_kick_ap(st, st->target);
549 }
550
bringup_cpu(unsigned int cpu)551 static int bringup_cpu(unsigned int cpu)
552 {
553 struct task_struct *idle = idle_thread_get(cpu);
554 int ret;
555
556 /*
557 * Reset stale stack state from the last time this CPU was online.
558 */
559 scs_task_reset(idle);
560 kasan_unpoison_task_stack(idle);
561
562 /*
563 * Some architectures have to walk the irq descriptors to
564 * setup the vector space for the cpu which comes online.
565 * Prevent irq alloc/free across the bringup.
566 */
567 irq_lock_sparse();
568
569 /* Arch-specific enabling code. */
570 ret = __cpu_up(cpu, idle);
571 irq_unlock_sparse();
572 if (ret)
573 return ret;
574 return bringup_wait_for_ap(cpu);
575 }
576
finish_cpu(unsigned int cpu)577 static int finish_cpu(unsigned int cpu)
578 {
579 struct task_struct *idle = idle_thread_get(cpu);
580 struct mm_struct *mm = idle->active_mm;
581
582 /*
583 * idle_task_exit() will have switched to &init_mm, now
584 * clean up any remaining active_mm state.
585 */
586 if (mm != &init_mm)
587 idle->active_mm = &init_mm;
588 mmdrop(mm);
589 return 0;
590 }
591
592 /*
593 * Hotplug state machine related functions
594 */
595
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)596 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
597 {
598 for (st->state--; st->state > st->target; st->state--)
599 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
600 }
601
can_rollback_cpu(struct cpuhp_cpu_state * st)602 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
603 {
604 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
605 return true;
606 /*
607 * When CPU hotplug is disabled, then taking the CPU down is not
608 * possible because takedown_cpu() and the architecture and
609 * subsystem specific mechanisms are not available. So the CPU
610 * which would be completely unplugged again needs to stay around
611 * in the current state.
612 */
613 return st->state <= CPUHP_BRINGUP_CPU;
614 }
615
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)616 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
617 enum cpuhp_state target)
618 {
619 enum cpuhp_state prev_state = st->state;
620 int ret = 0;
621
622 while (st->state < target) {
623 st->state++;
624 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
625 if (ret) {
626 if (can_rollback_cpu(st)) {
627 st->target = prev_state;
628 undo_cpu_up(cpu, st);
629 }
630 break;
631 }
632 }
633 return ret;
634 }
635
636 /*
637 * The cpu hotplug threads manage the bringup and teardown of the cpus
638 */
cpuhp_create(unsigned int cpu)639 static void cpuhp_create(unsigned int cpu)
640 {
641 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
642
643 init_completion(&st->done_up);
644 init_completion(&st->done_down);
645 }
646
cpuhp_should_run(unsigned int cpu)647 static int cpuhp_should_run(unsigned int cpu)
648 {
649 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
650
651 return st->should_run;
652 }
653
654 /*
655 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
656 * callbacks when a state gets [un]installed at runtime.
657 *
658 * Each invocation of this function by the smpboot thread does a single AP
659 * state callback.
660 *
661 * It has 3 modes of operation:
662 * - single: runs st->cb_state
663 * - up: runs ++st->state, while st->state < st->target
664 * - down: runs st->state--, while st->state > st->target
665 *
666 * When complete or on error, should_run is cleared and the completion is fired.
667 */
cpuhp_thread_fun(unsigned int cpu)668 static void cpuhp_thread_fun(unsigned int cpu)
669 {
670 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
671 bool bringup = st->bringup;
672 enum cpuhp_state state;
673
674 if (WARN_ON_ONCE(!st->should_run))
675 return;
676
677 /*
678 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
679 * that if we see ->should_run we also see the rest of the state.
680 */
681 smp_mb();
682
683 /*
684 * The BP holds the hotplug lock, but we're now running on the AP,
685 * ensure that anybody asserting the lock is held, will actually find
686 * it so.
687 */
688 lockdep_acquire_cpus_lock();
689 cpuhp_lock_acquire(bringup);
690
691 if (st->single) {
692 state = st->cb_state;
693 st->should_run = false;
694 } else {
695 if (bringup) {
696 st->state++;
697 state = st->state;
698 st->should_run = (st->state < st->target);
699 WARN_ON_ONCE(st->state > st->target);
700 } else {
701 state = st->state;
702 st->state--;
703 st->should_run = (st->state > st->target);
704 WARN_ON_ONCE(st->state < st->target);
705 }
706 }
707
708 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
709
710 if (cpuhp_is_atomic_state(state)) {
711 local_irq_disable();
712 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
713 local_irq_enable();
714
715 /*
716 * STARTING/DYING must not fail!
717 */
718 WARN_ON_ONCE(st->result);
719 } else {
720 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
721 }
722
723 if (st->result) {
724 /*
725 * If we fail on a rollback, we're up a creek without no
726 * paddle, no way forward, no way back. We loose, thanks for
727 * playing.
728 */
729 WARN_ON_ONCE(st->rollback);
730 st->should_run = false;
731 }
732
733 cpuhp_lock_release(bringup);
734 lockdep_release_cpus_lock();
735
736 if (!st->should_run)
737 complete_ap_thread(st, bringup);
738 }
739
740 /* Invoke a single callback on a remote cpu */
741 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)742 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
743 struct hlist_node *node)
744 {
745 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
746 int ret;
747
748 if (!cpu_online(cpu))
749 return 0;
750
751 cpuhp_lock_acquire(false);
752 cpuhp_lock_release(false);
753
754 cpuhp_lock_acquire(true);
755 cpuhp_lock_release(true);
756
757 /*
758 * If we are up and running, use the hotplug thread. For early calls
759 * we invoke the thread function directly.
760 */
761 if (!st->thread)
762 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
763
764 st->rollback = false;
765 st->last = NULL;
766
767 st->node = node;
768 st->bringup = bringup;
769 st->cb_state = state;
770 st->single = true;
771
772 __cpuhp_kick_ap(st);
773
774 /*
775 * If we failed and did a partial, do a rollback.
776 */
777 if ((ret = st->result) && st->last) {
778 st->rollback = true;
779 st->bringup = !bringup;
780
781 __cpuhp_kick_ap(st);
782 }
783
784 /*
785 * Clean up the leftovers so the next hotplug operation wont use stale
786 * data.
787 */
788 st->node = st->last = NULL;
789 return ret;
790 }
791
cpuhp_kick_ap_work(unsigned int cpu)792 static int cpuhp_kick_ap_work(unsigned int cpu)
793 {
794 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
795 enum cpuhp_state prev_state = st->state;
796 int ret;
797
798 cpuhp_lock_acquire(false);
799 cpuhp_lock_release(false);
800
801 cpuhp_lock_acquire(true);
802 cpuhp_lock_release(true);
803
804 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
805 ret = cpuhp_kick_ap(st, st->target);
806 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
807
808 return ret;
809 }
810
811 static struct smp_hotplug_thread cpuhp_threads = {
812 .store = &cpuhp_state.thread,
813 .create = &cpuhp_create,
814 .thread_should_run = cpuhp_should_run,
815 .thread_fn = cpuhp_thread_fun,
816 .thread_comm = "cpuhp/%u",
817 .selfparking = true,
818 };
819
cpuhp_threads_init(void)820 void __init cpuhp_threads_init(void)
821 {
822 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
823 kthread_unpark(this_cpu_read(cpuhp_state.thread));
824 }
825
826 /*
827 *
828 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
829 * protected region.
830 *
831 * The operation is still serialized against concurrent CPU hotplug via
832 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
833 * serialized against other hotplug related activity like adding or
834 * removing of state callbacks and state instances, which invoke either the
835 * startup or the teardown callback of the affected state.
836 *
837 * This is required for subsystems which are unfixable vs. CPU hotplug and
838 * evade lock inversion problems by scheduling work which has to be
839 * completed _before_ cpu_up()/_cpu_down() returns.
840 *
841 * Don't even think about adding anything to this for any new code or even
842 * drivers. It's only purpose is to keep existing lock order trainwrecks
843 * working.
844 *
845 * For cpu_down() there might be valid reasons to finish cleanups which are
846 * not required to be done under cpu_hotplug_lock, but that's a different
847 * story and would be not invoked via this.
848 */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)849 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
850 {
851 /*
852 * cpusets delegate hotplug operations to a worker to "solve" the
853 * lock order problems. Wait for the worker, but only if tasks are
854 * _not_ frozen (suspend, hibernate) as that would wait forever.
855 *
856 * The wait is required because otherwise the hotplug operation
857 * returns with inconsistent state, which could even be observed in
858 * user space when a new CPU is brought up. The CPU plug uevent
859 * would be delivered and user space reacting on it would fail to
860 * move tasks to the newly plugged CPU up to the point where the
861 * work has finished because up to that point the newly plugged CPU
862 * is not assignable in cpusets/cgroups. On unplug that's not
863 * necessarily a visible issue, but it is still inconsistent state,
864 * which is the real problem which needs to be "fixed". This can't
865 * prevent the transient state between scheduling the work and
866 * returning from waiting for it.
867 */
868 if (!tasks_frozen)
869 cpuset_wait_for_hotplug();
870 }
871
872 #ifdef CONFIG_HOTPLUG_CPU
873 #ifndef arch_clear_mm_cpumask_cpu
874 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
875 #endif
876
877 /**
878 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
879 * @cpu: a CPU id
880 *
881 * This function walks all processes, finds a valid mm struct for each one and
882 * then clears a corresponding bit in mm's cpumask. While this all sounds
883 * trivial, there are various non-obvious corner cases, which this function
884 * tries to solve in a safe manner.
885 *
886 * Also note that the function uses a somewhat relaxed locking scheme, so it may
887 * be called only for an already offlined CPU.
888 */
clear_tasks_mm_cpumask(int cpu)889 void clear_tasks_mm_cpumask(int cpu)
890 {
891 struct task_struct *p;
892
893 /*
894 * This function is called after the cpu is taken down and marked
895 * offline, so its not like new tasks will ever get this cpu set in
896 * their mm mask. -- Peter Zijlstra
897 * Thus, we may use rcu_read_lock() here, instead of grabbing
898 * full-fledged tasklist_lock.
899 */
900 WARN_ON(cpu_online(cpu));
901 rcu_read_lock();
902 for_each_process(p) {
903 struct task_struct *t;
904
905 /*
906 * Main thread might exit, but other threads may still have
907 * a valid mm. Find one.
908 */
909 t = find_lock_task_mm(p);
910 if (!t)
911 continue;
912 arch_clear_mm_cpumask_cpu(cpu, t->mm);
913 task_unlock(t);
914 }
915 rcu_read_unlock();
916 }
917
918 /* Take this CPU down. */
take_cpu_down(void * _param)919 static int take_cpu_down(void *_param)
920 {
921 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
922 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
923 int err, cpu = smp_processor_id();
924 int ret;
925
926 /* Ensure this CPU doesn't handle any more interrupts. */
927 err = __cpu_disable();
928 if (err < 0)
929 return err;
930
931 /*
932 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
933 * do this step again.
934 */
935 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
936 st->state--;
937 /* Invoke the former CPU_DYING callbacks */
938 for (; st->state > target; st->state--) {
939 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
940 /*
941 * DYING must not fail!
942 */
943 WARN_ON_ONCE(ret);
944 }
945
946 /* Give up timekeeping duties */
947 tick_handover_do_timer();
948 /* Remove CPU from timer broadcasting */
949 tick_offline_cpu(cpu);
950 /* Park the stopper thread */
951 stop_machine_park(cpu);
952 return 0;
953 }
954
takedown_cpu(unsigned int cpu)955 static int takedown_cpu(unsigned int cpu)
956 {
957 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
958 int err;
959
960 /* Park the smpboot threads */
961 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
962
963 /*
964 * Prevent irq alloc/free while the dying cpu reorganizes the
965 * interrupt affinities.
966 */
967 irq_lock_sparse();
968
969 /*
970 * So now all preempt/rcu users must observe !cpu_active().
971 */
972 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
973 if (err) {
974 /* CPU refused to die */
975 irq_unlock_sparse();
976 /* Unpark the hotplug thread so we can rollback there */
977 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
978 return err;
979 }
980 BUG_ON(cpu_online(cpu));
981
982 /*
983 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
984 * all runnable tasks from the CPU, there's only the idle task left now
985 * that the migration thread is done doing the stop_machine thing.
986 *
987 * Wait for the stop thread to go away.
988 */
989 wait_for_ap_thread(st, false);
990 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
991
992 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
993 irq_unlock_sparse();
994
995 hotplug_cpu__broadcast_tick_pull(cpu);
996 /* This actually kills the CPU. */
997 __cpu_die(cpu);
998
999 tick_cleanup_dead_cpu(cpu);
1000 rcutree_migrate_callbacks(cpu);
1001 return 0;
1002 }
1003
cpuhp_complete_idle_dead(void * arg)1004 static void cpuhp_complete_idle_dead(void *arg)
1005 {
1006 struct cpuhp_cpu_state *st = arg;
1007
1008 complete_ap_thread(st, false);
1009 }
1010
cpuhp_report_idle_dead(void)1011 void cpuhp_report_idle_dead(void)
1012 {
1013 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1014
1015 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1016 rcu_report_dead(smp_processor_id());
1017 st->state = CPUHP_AP_IDLE_DEAD;
1018 /*
1019 * We cannot call complete after rcu_report_dead() so we delegate it
1020 * to an online cpu.
1021 */
1022 smp_call_function_single(cpumask_first(cpu_online_mask),
1023 cpuhp_complete_idle_dead, st, 0);
1024 }
1025
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)1026 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
1027 {
1028 for (st->state++; st->state < st->target; st->state++)
1029 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1030 }
1031
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1032 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1033 enum cpuhp_state target)
1034 {
1035 enum cpuhp_state prev_state = st->state;
1036 int ret = 0;
1037
1038 for (; st->state > target; st->state--) {
1039 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
1040 if (ret) {
1041 st->target = prev_state;
1042 if (st->state < prev_state)
1043 undo_cpu_down(cpu, st);
1044 break;
1045 }
1046 }
1047 return ret;
1048 }
1049
1050 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1051 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1052 enum cpuhp_state target)
1053 {
1054 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1055 int prev_state, ret = 0;
1056
1057 if (num_online_cpus() == 1)
1058 return -EBUSY;
1059
1060 if (!cpu_present(cpu))
1061 return -EINVAL;
1062
1063 #ifdef CONFIG_CPU_ISOLATION_OPT
1064 if (!tasks_frozen && !cpu_isolated(cpu) && num_online_uniso_cpus() == 1)
1065 return -EBUSY;
1066 #endif
1067
1068 cpus_write_lock();
1069
1070 cpuhp_tasks_frozen = tasks_frozen;
1071
1072 prev_state = cpuhp_set_state(st, target);
1073 /*
1074 * If the current CPU state is in the range of the AP hotplug thread,
1075 * then we need to kick the thread.
1076 */
1077 if (st->state > CPUHP_TEARDOWN_CPU) {
1078 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1079 ret = cpuhp_kick_ap_work(cpu);
1080 /*
1081 * The AP side has done the error rollback already. Just
1082 * return the error code..
1083 */
1084 if (ret)
1085 goto out;
1086
1087 /*
1088 * We might have stopped still in the range of the AP hotplug
1089 * thread. Nothing to do anymore.
1090 */
1091 if (st->state > CPUHP_TEARDOWN_CPU)
1092 goto out;
1093
1094 st->target = target;
1095 }
1096 /*
1097 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1098 * to do the further cleanups.
1099 */
1100 ret = cpuhp_down_callbacks(cpu, st, target);
1101 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1102 cpuhp_reset_state(st, prev_state);
1103 __cpuhp_kick_ap(st);
1104 }
1105
1106 out:
1107 cpus_write_unlock();
1108 /*
1109 * Do post unplug cleanup. This is still protected against
1110 * concurrent CPU hotplug via cpu_add_remove_lock.
1111 */
1112 lockup_detector_cleanup();
1113 arch_smt_update();
1114 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1115 return ret;
1116 }
1117
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1118 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1119 {
1120 if (cpu_hotplug_disabled)
1121 return -EBUSY;
1122 return _cpu_down(cpu, 0, target);
1123 }
1124
cpu_down(unsigned int cpu,enum cpuhp_state target)1125 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1126 {
1127 int err;
1128
1129 cpu_maps_update_begin();
1130 err = cpu_down_maps_locked(cpu, target);
1131 cpu_maps_update_done();
1132 return err;
1133 }
1134
1135 /**
1136 * cpu_device_down - Bring down a cpu device
1137 * @dev: Pointer to the cpu device to offline
1138 *
1139 * This function is meant to be used by device core cpu subsystem only.
1140 *
1141 * Other subsystems should use remove_cpu() instead.
1142 */
cpu_device_down(struct device * dev)1143 int cpu_device_down(struct device *dev)
1144 {
1145 return cpu_down(dev->id, CPUHP_OFFLINE);
1146 }
1147
remove_cpu(unsigned int cpu)1148 int remove_cpu(unsigned int cpu)
1149 {
1150 int ret;
1151
1152 lock_device_hotplug();
1153 ret = device_offline(get_cpu_device(cpu));
1154 unlock_device_hotplug();
1155
1156 return ret;
1157 }
1158 EXPORT_SYMBOL_GPL(remove_cpu);
1159
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1160 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1161 {
1162 unsigned int cpu;
1163 int error;
1164
1165 cpu_maps_update_begin();
1166
1167 /*
1168 * Make certain the cpu I'm about to reboot on is online.
1169 *
1170 * This is inline to what migrate_to_reboot_cpu() already do.
1171 */
1172 if (!cpu_online(primary_cpu))
1173 primary_cpu = cpumask_first(cpu_online_mask);
1174
1175 for_each_online_cpu(cpu) {
1176 if (cpu == primary_cpu)
1177 continue;
1178
1179 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1180 if (error) {
1181 pr_err("Failed to offline CPU%d - error=%d",
1182 cpu, error);
1183 break;
1184 }
1185 }
1186
1187 /*
1188 * Ensure all but the reboot CPU are offline.
1189 */
1190 BUG_ON(num_online_cpus() > 1);
1191
1192 /*
1193 * Make sure the CPUs won't be enabled by someone else after this
1194 * point. Kexec will reboot to a new kernel shortly resetting
1195 * everything along the way.
1196 */
1197 cpu_hotplug_disabled++;
1198
1199 cpu_maps_update_done();
1200 }
1201
1202 #else
1203 #define takedown_cpu NULL
1204 #endif /*CONFIG_HOTPLUG_CPU*/
1205
1206 /**
1207 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1208 * @cpu: cpu that just started
1209 *
1210 * It must be called by the arch code on the new cpu, before the new cpu
1211 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1212 */
notify_cpu_starting(unsigned int cpu)1213 void notify_cpu_starting(unsigned int cpu)
1214 {
1215 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1216 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1217 int ret;
1218
1219 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1220 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1221 while (st->state < target) {
1222 st->state++;
1223 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1224 /*
1225 * STARTING must not fail!
1226 */
1227 WARN_ON_ONCE(ret);
1228 }
1229 }
1230
1231 /*
1232 * Called from the idle task. Wake up the controlling task which brings the
1233 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1234 * online bringup to the hotplug thread.
1235 */
cpuhp_online_idle(enum cpuhp_state state)1236 void cpuhp_online_idle(enum cpuhp_state state)
1237 {
1238 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1239
1240 /* Happens for the boot cpu */
1241 if (state != CPUHP_AP_ONLINE_IDLE)
1242 return;
1243
1244 /*
1245 * Unpart the stopper thread before we start the idle loop (and start
1246 * scheduling); this ensures the stopper task is always available.
1247 */
1248 stop_machine_unpark(smp_processor_id());
1249
1250 st->state = CPUHP_AP_ONLINE_IDLE;
1251 complete_ap_thread(st, true);
1252 }
1253
1254 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1255 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1256 {
1257 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1258 struct task_struct *idle;
1259 int ret = 0;
1260
1261 cpus_write_lock();
1262
1263 if (!cpu_present(cpu)) {
1264 ret = -EINVAL;
1265 goto out;
1266 }
1267
1268 /*
1269 * The caller of cpu_up() might have raced with another
1270 * caller. Nothing to do.
1271 */
1272 if (st->state >= target)
1273 goto out;
1274
1275 if (st->state == CPUHP_OFFLINE) {
1276 /* Let it fail before we try to bring the cpu up */
1277 idle = idle_thread_get(cpu);
1278 if (IS_ERR(idle)) {
1279 ret = PTR_ERR(idle);
1280 goto out;
1281 }
1282 }
1283
1284 cpuhp_tasks_frozen = tasks_frozen;
1285
1286 cpuhp_set_state(st, target);
1287 /*
1288 * If the current CPU state is in the range of the AP hotplug thread,
1289 * then we need to kick the thread once more.
1290 */
1291 if (st->state > CPUHP_BRINGUP_CPU) {
1292 ret = cpuhp_kick_ap_work(cpu);
1293 /*
1294 * The AP side has done the error rollback already. Just
1295 * return the error code..
1296 */
1297 if (ret)
1298 goto out;
1299 }
1300
1301 /*
1302 * Try to reach the target state. We max out on the BP at
1303 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1304 * responsible for bringing it up to the target state.
1305 */
1306 target = min((int)target, CPUHP_BRINGUP_CPU);
1307 ret = cpuhp_up_callbacks(cpu, st, target);
1308 out:
1309 cpus_write_unlock();
1310 arch_smt_update();
1311 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1312 return ret;
1313 }
1314
cpu_up(unsigned int cpu,enum cpuhp_state target)1315 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1316 {
1317 int err = 0;
1318
1319 if (!cpu_possible(cpu)) {
1320 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1321 cpu);
1322 #if defined(CONFIG_IA64)
1323 pr_err("please check additional_cpus= boot parameter\n");
1324 #endif
1325 return -EINVAL;
1326 }
1327
1328 err = try_online_node(cpu_to_node(cpu));
1329 if (err)
1330 return err;
1331
1332 cpu_maps_update_begin();
1333
1334 if (cpu_hotplug_disabled) {
1335 err = -EBUSY;
1336 goto out;
1337 }
1338 if (!cpu_smt_allowed(cpu)) {
1339 err = -EPERM;
1340 goto out;
1341 }
1342
1343 err = _cpu_up(cpu, 0, target);
1344 out:
1345 cpu_maps_update_done();
1346 return err;
1347 }
1348
1349 /**
1350 * cpu_device_up - Bring up a cpu device
1351 * @dev: Pointer to the cpu device to online
1352 *
1353 * This function is meant to be used by device core cpu subsystem only.
1354 *
1355 * Other subsystems should use add_cpu() instead.
1356 */
cpu_device_up(struct device * dev)1357 int cpu_device_up(struct device *dev)
1358 {
1359 return cpu_up(dev->id, CPUHP_ONLINE);
1360 }
1361
add_cpu(unsigned int cpu)1362 int add_cpu(unsigned int cpu)
1363 {
1364 int ret;
1365
1366 lock_device_hotplug();
1367 ret = device_online(get_cpu_device(cpu));
1368 unlock_device_hotplug();
1369
1370 return ret;
1371 }
1372 EXPORT_SYMBOL_GPL(add_cpu);
1373
1374 /**
1375 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1376 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1377 *
1378 * On some architectures like arm64, we can hibernate on any CPU, but on
1379 * wake up the CPU we hibernated on might be offline as a side effect of
1380 * using maxcpus= for example.
1381 */
bringup_hibernate_cpu(unsigned int sleep_cpu)1382 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1383 {
1384 int ret;
1385
1386 if (!cpu_online(sleep_cpu)) {
1387 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1388 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1389 if (ret) {
1390 pr_err("Failed to bring hibernate-CPU up!\n");
1391 return ret;
1392 }
1393 }
1394 return 0;
1395 }
1396
bringup_nonboot_cpus(unsigned int setup_max_cpus)1397 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1398 {
1399 unsigned int cpu;
1400
1401 for_each_present_cpu(cpu) {
1402 if (num_online_cpus() >= setup_max_cpus)
1403 break;
1404 if (!cpu_online(cpu))
1405 cpu_up(cpu, CPUHP_ONLINE);
1406 }
1407 }
1408
1409 #ifdef CONFIG_PM_SLEEP_SMP
1410 static cpumask_var_t frozen_cpus;
1411
freeze_secondary_cpus(int primary)1412 int freeze_secondary_cpus(int primary)
1413 {
1414 int cpu, error = 0;
1415
1416 cpu_maps_update_begin();
1417 if (primary == -1) {
1418 primary = cpumask_first(cpu_online_mask);
1419 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1420 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1421 } else {
1422 if (!cpu_online(primary))
1423 primary = cpumask_first(cpu_online_mask);
1424 }
1425
1426 /*
1427 * We take down all of the non-boot CPUs in one shot to avoid races
1428 * with the userspace trying to use the CPU hotplug at the same time
1429 */
1430 cpumask_clear(frozen_cpus);
1431
1432 pr_info("Disabling non-boot CPUs ...\n");
1433 for_each_online_cpu(cpu) {
1434 if (cpu == primary)
1435 continue;
1436
1437 if (pm_wakeup_pending()) {
1438 pr_info("Wakeup pending. Abort CPU freeze\n");
1439 error = -EBUSY;
1440 break;
1441 }
1442
1443 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1444 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1445 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1446 if (!error)
1447 cpumask_set_cpu(cpu, frozen_cpus);
1448 else {
1449 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1450 break;
1451 }
1452 }
1453
1454 if (!error)
1455 BUG_ON(num_online_cpus() > 1);
1456 else
1457 pr_err("Non-boot CPUs are not disabled\n");
1458
1459 /*
1460 * Make sure the CPUs won't be enabled by someone else. We need to do
1461 * this even in case of failure as all freeze_secondary_cpus() users are
1462 * supposed to do thaw_secondary_cpus() on the failure path.
1463 */
1464 cpu_hotplug_disabled++;
1465
1466 cpu_maps_update_done();
1467 return error;
1468 }
1469
arch_thaw_secondary_cpus_begin(void)1470 void __weak arch_thaw_secondary_cpus_begin(void)
1471 {
1472 }
1473
arch_thaw_secondary_cpus_end(void)1474 void __weak arch_thaw_secondary_cpus_end(void)
1475 {
1476 }
1477
thaw_secondary_cpus(void)1478 void thaw_secondary_cpus(void)
1479 {
1480 int cpu, error;
1481
1482 /* Allow everyone to use the CPU hotplug again */
1483 cpu_maps_update_begin();
1484 __cpu_hotplug_enable();
1485 if (cpumask_empty(frozen_cpus))
1486 goto out;
1487
1488 pr_info("Enabling non-boot CPUs ...\n");
1489
1490 arch_thaw_secondary_cpus_begin();
1491
1492 for_each_cpu(cpu, frozen_cpus) {
1493 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1494 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1495 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1496 if (!error) {
1497 pr_info("CPU%d is up\n", cpu);
1498 continue;
1499 }
1500 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1501 }
1502
1503 arch_thaw_secondary_cpus_end();
1504
1505 cpumask_clear(frozen_cpus);
1506 out:
1507 cpu_maps_update_done();
1508 }
1509
alloc_frozen_cpus(void)1510 static int __init alloc_frozen_cpus(void)
1511 {
1512 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1513 return -ENOMEM;
1514 return 0;
1515 }
1516 core_initcall(alloc_frozen_cpus);
1517
1518 /*
1519 * When callbacks for CPU hotplug notifications are being executed, we must
1520 * ensure that the state of the system with respect to the tasks being frozen
1521 * or not, as reported by the notification, remains unchanged *throughout the
1522 * duration* of the execution of the callbacks.
1523 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1524 *
1525 * This synchronization is implemented by mutually excluding regular CPU
1526 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1527 * Hibernate notifications.
1528 */
1529 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1530 cpu_hotplug_pm_callback(struct notifier_block *nb,
1531 unsigned long action, void *ptr)
1532 {
1533 switch (action) {
1534
1535 case PM_SUSPEND_PREPARE:
1536 case PM_HIBERNATION_PREPARE:
1537 cpu_hotplug_disable();
1538 break;
1539
1540 case PM_POST_SUSPEND:
1541 case PM_POST_HIBERNATION:
1542 cpu_hotplug_enable();
1543 break;
1544
1545 default:
1546 return NOTIFY_DONE;
1547 }
1548
1549 return NOTIFY_OK;
1550 }
1551
1552
cpu_hotplug_pm_sync_init(void)1553 static int __init cpu_hotplug_pm_sync_init(void)
1554 {
1555 /*
1556 * cpu_hotplug_pm_callback has higher priority than x86
1557 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1558 * to disable cpu hotplug to avoid cpu hotplug race.
1559 */
1560 pm_notifier(cpu_hotplug_pm_callback, 0);
1561 return 0;
1562 }
1563 core_initcall(cpu_hotplug_pm_sync_init);
1564
1565 #endif /* CONFIG_PM_SLEEP_SMP */
1566
1567 int __boot_cpu_id;
1568
1569 #endif /* CONFIG_SMP */
1570
1571 /* Boot processor state steps */
1572 static struct cpuhp_step cpuhp_hp_states[] = {
1573 [CPUHP_OFFLINE] = {
1574 .name = "offline",
1575 .startup.single = NULL,
1576 .teardown.single = NULL,
1577 },
1578 #ifdef CONFIG_SMP
1579 [CPUHP_CREATE_THREADS]= {
1580 .name = "threads:prepare",
1581 .startup.single = smpboot_create_threads,
1582 .teardown.single = NULL,
1583 .cant_stop = true,
1584 },
1585 [CPUHP_PERF_PREPARE] = {
1586 .name = "perf:prepare",
1587 .startup.single = perf_event_init_cpu,
1588 .teardown.single = perf_event_exit_cpu,
1589 },
1590 [CPUHP_RANDOM_PREPARE] = {
1591 .name = "random:prepare",
1592 .startup.single = random_prepare_cpu,
1593 .teardown.single = NULL,
1594 },
1595 [CPUHP_WORKQUEUE_PREP] = {
1596 .name = "workqueue:prepare",
1597 .startup.single = workqueue_prepare_cpu,
1598 .teardown.single = NULL,
1599 },
1600 [CPUHP_HRTIMERS_PREPARE] = {
1601 .name = "hrtimers:prepare",
1602 .startup.single = hrtimers_prepare_cpu,
1603 .teardown.single = hrtimers_dead_cpu,
1604 },
1605 [CPUHP_SMPCFD_PREPARE] = {
1606 .name = "smpcfd:prepare",
1607 .startup.single = smpcfd_prepare_cpu,
1608 .teardown.single = smpcfd_dead_cpu,
1609 },
1610 [CPUHP_RELAY_PREPARE] = {
1611 .name = "relay:prepare",
1612 .startup.single = relay_prepare_cpu,
1613 .teardown.single = NULL,
1614 },
1615 [CPUHP_SLAB_PREPARE] = {
1616 .name = "slab:prepare",
1617 .startup.single = slab_prepare_cpu,
1618 .teardown.single = slab_dead_cpu,
1619 },
1620 [CPUHP_RCUTREE_PREP] = {
1621 .name = "RCU/tree:prepare",
1622 .startup.single = rcutree_prepare_cpu,
1623 .teardown.single = rcutree_dead_cpu,
1624 },
1625 /*
1626 * On the tear-down path, timers_dead_cpu() must be invoked
1627 * before blk_mq_queue_reinit_notify() from notify_dead(),
1628 * otherwise a RCU stall occurs.
1629 */
1630 [CPUHP_TIMERS_PREPARE] = {
1631 .name = "timers:prepare",
1632 .startup.single = timers_prepare_cpu,
1633 .teardown.single = timers_dead_cpu,
1634 },
1635 /* Kicks the plugged cpu into life */
1636 [CPUHP_BRINGUP_CPU] = {
1637 .name = "cpu:bringup",
1638 .startup.single = bringup_cpu,
1639 .teardown.single = finish_cpu,
1640 .cant_stop = true,
1641 },
1642 /* Final state before CPU kills itself */
1643 [CPUHP_AP_IDLE_DEAD] = {
1644 .name = "idle:dead",
1645 },
1646 /*
1647 * Last state before CPU enters the idle loop to die. Transient state
1648 * for synchronization.
1649 */
1650 [CPUHP_AP_OFFLINE] = {
1651 .name = "ap:offline",
1652 .cant_stop = true,
1653 },
1654 /* First state is scheduler control. Interrupts are disabled */
1655 [CPUHP_AP_SCHED_STARTING] = {
1656 .name = "sched:starting",
1657 .startup.single = sched_cpu_starting,
1658 .teardown.single = sched_cpu_dying,
1659 },
1660 [CPUHP_AP_RCUTREE_DYING] = {
1661 .name = "RCU/tree:dying",
1662 .startup.single = NULL,
1663 .teardown.single = rcutree_dying_cpu,
1664 },
1665 [CPUHP_AP_SMPCFD_DYING] = {
1666 .name = "smpcfd:dying",
1667 .startup.single = NULL,
1668 .teardown.single = smpcfd_dying_cpu,
1669 },
1670 /* Entry state on starting. Interrupts enabled from here on. Transient
1671 * state for synchronsization */
1672 [CPUHP_AP_ONLINE] = {
1673 .name = "ap:online",
1674 },
1675 /*
1676 * Handled on controll processor until the plugged processor manages
1677 * this itself.
1678 */
1679 [CPUHP_TEARDOWN_CPU] = {
1680 .name = "cpu:teardown",
1681 .startup.single = NULL,
1682 .teardown.single = takedown_cpu,
1683 .cant_stop = true,
1684 },
1685 /* Handle smpboot threads park/unpark */
1686 [CPUHP_AP_SMPBOOT_THREADS] = {
1687 .name = "smpboot/threads:online",
1688 .startup.single = smpboot_unpark_threads,
1689 .teardown.single = smpboot_park_threads,
1690 },
1691 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1692 .name = "irq/affinity:online",
1693 .startup.single = irq_affinity_online_cpu,
1694 .teardown.single = NULL,
1695 },
1696 [CPUHP_AP_PERF_ONLINE] = {
1697 .name = "perf:online",
1698 .startup.single = perf_event_init_cpu,
1699 .teardown.single = perf_event_exit_cpu,
1700 },
1701 [CPUHP_AP_WATCHDOG_ONLINE] = {
1702 .name = "lockup_detector:online",
1703 .startup.single = lockup_detector_online_cpu,
1704 .teardown.single = lockup_detector_offline_cpu,
1705 },
1706 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1707 .name = "workqueue:online",
1708 .startup.single = workqueue_online_cpu,
1709 .teardown.single = workqueue_offline_cpu,
1710 },
1711 [CPUHP_AP_RANDOM_ONLINE] = {
1712 .name = "random:online",
1713 .startup.single = random_online_cpu,
1714 .teardown.single = NULL,
1715 },
1716 [CPUHP_AP_RCUTREE_ONLINE] = {
1717 .name = "RCU/tree:online",
1718 .startup.single = rcutree_online_cpu,
1719 .teardown.single = rcutree_offline_cpu,
1720 },
1721 #endif
1722 /*
1723 * The dynamically registered state space is here
1724 */
1725
1726 #ifdef CONFIG_SMP
1727 /* Last state is scheduler control setting the cpu active */
1728 [CPUHP_AP_ACTIVE] = {
1729 .name = "sched:active",
1730 .startup.single = sched_cpu_activate,
1731 .teardown.single = sched_cpu_deactivate,
1732 },
1733 #endif
1734
1735 /* CPU is fully up and running. */
1736 [CPUHP_ONLINE] = {
1737 .name = "online",
1738 .startup.single = NULL,
1739 .teardown.single = NULL,
1740 },
1741 };
1742
1743 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1744 static int cpuhp_cb_check(enum cpuhp_state state)
1745 {
1746 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1747 return -EINVAL;
1748 return 0;
1749 }
1750
1751 /*
1752 * Returns a free for dynamic slot assignment of the Online state. The states
1753 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1754 * by having no name assigned.
1755 */
cpuhp_reserve_state(enum cpuhp_state state)1756 static int cpuhp_reserve_state(enum cpuhp_state state)
1757 {
1758 enum cpuhp_state i, end;
1759 struct cpuhp_step *step;
1760
1761 switch (state) {
1762 case CPUHP_AP_ONLINE_DYN:
1763 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1764 end = CPUHP_AP_ONLINE_DYN_END;
1765 break;
1766 case CPUHP_BP_PREPARE_DYN:
1767 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1768 end = CPUHP_BP_PREPARE_DYN_END;
1769 break;
1770 default:
1771 return -EINVAL;
1772 }
1773
1774 for (i = state; i <= end; i++, step++) {
1775 if (!step->name)
1776 return i;
1777 }
1778 WARN(1, "No more dynamic states available for CPU hotplug\n");
1779 return -ENOSPC;
1780 }
1781
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1782 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1783 int (*startup)(unsigned int cpu),
1784 int (*teardown)(unsigned int cpu),
1785 bool multi_instance)
1786 {
1787 /* (Un)Install the callbacks for further cpu hotplug operations */
1788 struct cpuhp_step *sp;
1789 int ret = 0;
1790
1791 /*
1792 * If name is NULL, then the state gets removed.
1793 *
1794 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1795 * the first allocation from these dynamic ranges, so the removal
1796 * would trigger a new allocation and clear the wrong (already
1797 * empty) state, leaving the callbacks of the to be cleared state
1798 * dangling, which causes wreckage on the next hotplug operation.
1799 */
1800 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1801 state == CPUHP_BP_PREPARE_DYN)) {
1802 ret = cpuhp_reserve_state(state);
1803 if (ret < 0)
1804 return ret;
1805 state = ret;
1806 }
1807 sp = cpuhp_get_step(state);
1808 if (name && sp->name)
1809 return -EBUSY;
1810
1811 sp->startup.single = startup;
1812 sp->teardown.single = teardown;
1813 sp->name = name;
1814 sp->multi_instance = multi_instance;
1815 INIT_HLIST_HEAD(&sp->list);
1816 return ret;
1817 }
1818
cpuhp_get_teardown_cb(enum cpuhp_state state)1819 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1820 {
1821 return cpuhp_get_step(state)->teardown.single;
1822 }
1823
1824 /*
1825 * Call the startup/teardown function for a step either on the AP or
1826 * on the current CPU.
1827 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1828 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1829 struct hlist_node *node)
1830 {
1831 struct cpuhp_step *sp = cpuhp_get_step(state);
1832 int ret;
1833
1834 /*
1835 * If there's nothing to do, we done.
1836 * Relies on the union for multi_instance.
1837 */
1838 if ((bringup && !sp->startup.single) ||
1839 (!bringup && !sp->teardown.single))
1840 return 0;
1841 /*
1842 * The non AP bound callbacks can fail on bringup. On teardown
1843 * e.g. module removal we crash for now.
1844 */
1845 #ifdef CONFIG_SMP
1846 if (cpuhp_is_ap_state(state))
1847 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1848 else
1849 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1850 #else
1851 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1852 #endif
1853 BUG_ON(ret && !bringup);
1854 return ret;
1855 }
1856
1857 /*
1858 * Called from __cpuhp_setup_state on a recoverable failure.
1859 *
1860 * Note: The teardown callbacks for rollback are not allowed to fail!
1861 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1862 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1863 struct hlist_node *node)
1864 {
1865 int cpu;
1866
1867 /* Roll back the already executed steps on the other cpus */
1868 for_each_present_cpu(cpu) {
1869 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1870 int cpustate = st->state;
1871
1872 if (cpu >= failedcpu)
1873 break;
1874
1875 /* Did we invoke the startup call on that cpu ? */
1876 if (cpustate >= state)
1877 cpuhp_issue_call(cpu, state, false, node);
1878 }
1879 }
1880
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1881 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1882 struct hlist_node *node,
1883 bool invoke)
1884 {
1885 struct cpuhp_step *sp;
1886 int cpu;
1887 int ret;
1888
1889 lockdep_assert_cpus_held();
1890
1891 sp = cpuhp_get_step(state);
1892 if (sp->multi_instance == false)
1893 return -EINVAL;
1894
1895 mutex_lock(&cpuhp_state_mutex);
1896
1897 if (!invoke || !sp->startup.multi)
1898 goto add_node;
1899
1900 /*
1901 * Try to call the startup callback for each present cpu
1902 * depending on the hotplug state of the cpu.
1903 */
1904 for_each_present_cpu(cpu) {
1905 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1906 int cpustate = st->state;
1907
1908 if (cpustate < state)
1909 continue;
1910
1911 ret = cpuhp_issue_call(cpu, state, true, node);
1912 if (ret) {
1913 if (sp->teardown.multi)
1914 cpuhp_rollback_install(cpu, state, node);
1915 goto unlock;
1916 }
1917 }
1918 add_node:
1919 ret = 0;
1920 hlist_add_head(node, &sp->list);
1921 unlock:
1922 mutex_unlock(&cpuhp_state_mutex);
1923 return ret;
1924 }
1925
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1926 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1927 bool invoke)
1928 {
1929 int ret;
1930
1931 cpus_read_lock();
1932 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1933 cpus_read_unlock();
1934 return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1937
1938 /**
1939 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1940 * @state: The state to setup
1941 * @invoke: If true, the startup function is invoked for cpus where
1942 * cpu state >= @state
1943 * @startup: startup callback function
1944 * @teardown: teardown callback function
1945 * @multi_instance: State is set up for multiple instances which get
1946 * added afterwards.
1947 *
1948 * The caller needs to hold cpus read locked while calling this function.
1949 * Returns:
1950 * On success:
1951 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1952 * 0 for all other states
1953 * On failure: proper (negative) error code
1954 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1955 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1956 const char *name, bool invoke,
1957 int (*startup)(unsigned int cpu),
1958 int (*teardown)(unsigned int cpu),
1959 bool multi_instance)
1960 {
1961 int cpu, ret = 0;
1962 bool dynstate;
1963
1964 lockdep_assert_cpus_held();
1965
1966 if (cpuhp_cb_check(state) || !name)
1967 return -EINVAL;
1968
1969 mutex_lock(&cpuhp_state_mutex);
1970
1971 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1972 multi_instance);
1973
1974 dynstate = state == CPUHP_AP_ONLINE_DYN;
1975 if (ret > 0 && dynstate) {
1976 state = ret;
1977 ret = 0;
1978 }
1979
1980 if (ret || !invoke || !startup)
1981 goto out;
1982
1983 /*
1984 * Try to call the startup callback for each present cpu
1985 * depending on the hotplug state of the cpu.
1986 */
1987 for_each_present_cpu(cpu) {
1988 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1989 int cpustate = st->state;
1990
1991 if (cpustate < state)
1992 continue;
1993
1994 ret = cpuhp_issue_call(cpu, state, true, NULL);
1995 if (ret) {
1996 if (teardown)
1997 cpuhp_rollback_install(cpu, state, NULL);
1998 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1999 goto out;
2000 }
2001 }
2002 out:
2003 mutex_unlock(&cpuhp_state_mutex);
2004 /*
2005 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2006 * dynamically allocated state in case of success.
2007 */
2008 if (!ret && dynstate)
2009 return state;
2010 return ret;
2011 }
2012 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2013
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2014 int __cpuhp_setup_state(enum cpuhp_state state,
2015 const char *name, bool invoke,
2016 int (*startup)(unsigned int cpu),
2017 int (*teardown)(unsigned int cpu),
2018 bool multi_instance)
2019 {
2020 int ret;
2021
2022 cpus_read_lock();
2023 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2024 teardown, multi_instance);
2025 cpus_read_unlock();
2026 return ret;
2027 }
2028 EXPORT_SYMBOL(__cpuhp_setup_state);
2029
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2030 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2031 struct hlist_node *node, bool invoke)
2032 {
2033 struct cpuhp_step *sp = cpuhp_get_step(state);
2034 int cpu;
2035
2036 BUG_ON(cpuhp_cb_check(state));
2037
2038 if (!sp->multi_instance)
2039 return -EINVAL;
2040
2041 cpus_read_lock();
2042 mutex_lock(&cpuhp_state_mutex);
2043
2044 if (!invoke || !cpuhp_get_teardown_cb(state))
2045 goto remove;
2046 /*
2047 * Call the teardown callback for each present cpu depending
2048 * on the hotplug state of the cpu. This function is not
2049 * allowed to fail currently!
2050 */
2051 for_each_present_cpu(cpu) {
2052 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2053 int cpustate = st->state;
2054
2055 if (cpustate >= state)
2056 cpuhp_issue_call(cpu, state, false, node);
2057 }
2058
2059 remove:
2060 hlist_del(node);
2061 mutex_unlock(&cpuhp_state_mutex);
2062 cpus_read_unlock();
2063
2064 return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2067
2068 /**
2069 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2070 * @state: The state to remove
2071 * @invoke: If true, the teardown function is invoked for cpus where
2072 * cpu state >= @state
2073 *
2074 * The caller needs to hold cpus read locked while calling this function.
2075 * The teardown callback is currently not allowed to fail. Think
2076 * about module removal!
2077 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2078 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2079 {
2080 struct cpuhp_step *sp = cpuhp_get_step(state);
2081 int cpu;
2082
2083 BUG_ON(cpuhp_cb_check(state));
2084
2085 lockdep_assert_cpus_held();
2086
2087 mutex_lock(&cpuhp_state_mutex);
2088 if (sp->multi_instance) {
2089 WARN(!hlist_empty(&sp->list),
2090 "Error: Removing state %d which has instances left.\n",
2091 state);
2092 goto remove;
2093 }
2094
2095 if (!invoke || !cpuhp_get_teardown_cb(state))
2096 goto remove;
2097
2098 /*
2099 * Call the teardown callback for each present cpu depending
2100 * on the hotplug state of the cpu. This function is not
2101 * allowed to fail currently!
2102 */
2103 for_each_present_cpu(cpu) {
2104 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2105 int cpustate = st->state;
2106
2107 if (cpustate >= state)
2108 cpuhp_issue_call(cpu, state, false, NULL);
2109 }
2110 remove:
2111 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2112 mutex_unlock(&cpuhp_state_mutex);
2113 }
2114 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2115
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2116 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2117 {
2118 cpus_read_lock();
2119 __cpuhp_remove_state_cpuslocked(state, invoke);
2120 cpus_read_unlock();
2121 }
2122 EXPORT_SYMBOL(__cpuhp_remove_state);
2123
2124 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2125 static void cpuhp_offline_cpu_device(unsigned int cpu)
2126 {
2127 struct device *dev = get_cpu_device(cpu);
2128
2129 dev->offline = true;
2130 /* Tell user space about the state change */
2131 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2132 }
2133
cpuhp_online_cpu_device(unsigned int cpu)2134 static void cpuhp_online_cpu_device(unsigned int cpu)
2135 {
2136 struct device *dev = get_cpu_device(cpu);
2137
2138 dev->offline = false;
2139 /* Tell user space about the state change */
2140 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2141 }
2142
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2143 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2144 {
2145 int cpu, ret = 0;
2146
2147 cpu_maps_update_begin();
2148 for_each_online_cpu(cpu) {
2149 if (topology_is_primary_thread(cpu))
2150 continue;
2151 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2152 if (ret)
2153 break;
2154 /*
2155 * As this needs to hold the cpu maps lock it's impossible
2156 * to call device_offline() because that ends up calling
2157 * cpu_down() which takes cpu maps lock. cpu maps lock
2158 * needs to be held as this might race against in kernel
2159 * abusers of the hotplug machinery (thermal management).
2160 *
2161 * So nothing would update device:offline state. That would
2162 * leave the sysfs entry stale and prevent onlining after
2163 * smt control has been changed to 'off' again. This is
2164 * called under the sysfs hotplug lock, so it is properly
2165 * serialized against the regular offline usage.
2166 */
2167 cpuhp_offline_cpu_device(cpu);
2168 }
2169 if (!ret)
2170 cpu_smt_control = ctrlval;
2171 cpu_maps_update_done();
2172 return ret;
2173 }
2174
cpuhp_smt_enable(void)2175 int cpuhp_smt_enable(void)
2176 {
2177 int cpu, ret = 0;
2178
2179 cpu_maps_update_begin();
2180 cpu_smt_control = CPU_SMT_ENABLED;
2181 for_each_present_cpu(cpu) {
2182 /* Skip online CPUs and CPUs on offline nodes */
2183 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2184 continue;
2185 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2186 if (ret)
2187 break;
2188 /* See comment in cpuhp_smt_disable() */
2189 cpuhp_online_cpu_device(cpu);
2190 }
2191 cpu_maps_update_done();
2192 return ret;
2193 }
2194 #endif
2195
2196 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)2197 static ssize_t show_cpuhp_state(struct device *dev,
2198 struct device_attribute *attr, char *buf)
2199 {
2200 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2201
2202 return sprintf(buf, "%d\n", st->state);
2203 }
2204 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2205
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2206 static ssize_t write_cpuhp_target(struct device *dev,
2207 struct device_attribute *attr,
2208 const char *buf, size_t count)
2209 {
2210 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2211 struct cpuhp_step *sp;
2212 int target, ret;
2213
2214 ret = kstrtoint(buf, 10, &target);
2215 if (ret)
2216 return ret;
2217
2218 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2219 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2220 return -EINVAL;
2221 #else
2222 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2223 return -EINVAL;
2224 #endif
2225
2226 ret = lock_device_hotplug_sysfs();
2227 if (ret)
2228 return ret;
2229
2230 mutex_lock(&cpuhp_state_mutex);
2231 sp = cpuhp_get_step(target);
2232 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2233 mutex_unlock(&cpuhp_state_mutex);
2234 if (ret)
2235 goto out;
2236
2237 if (st->state < target)
2238 ret = cpu_up(dev->id, target);
2239 else if (st->state > target)
2240 ret = cpu_down(dev->id, target);
2241 else if (WARN_ON(st->target != target))
2242 st->target = target;
2243 out:
2244 unlock_device_hotplug();
2245 return ret ? ret : count;
2246 }
2247
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2248 static ssize_t show_cpuhp_target(struct device *dev,
2249 struct device_attribute *attr, char *buf)
2250 {
2251 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2252
2253 return sprintf(buf, "%d\n", st->target);
2254 }
2255 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2256
2257
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2258 static ssize_t write_cpuhp_fail(struct device *dev,
2259 struct device_attribute *attr,
2260 const char *buf, size_t count)
2261 {
2262 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2263 struct cpuhp_step *sp;
2264 int fail, ret;
2265
2266 ret = kstrtoint(buf, 10, &fail);
2267 if (ret)
2268 return ret;
2269
2270 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2271 return -EINVAL;
2272
2273 /*
2274 * Cannot fail STARTING/DYING callbacks.
2275 */
2276 if (cpuhp_is_atomic_state(fail))
2277 return -EINVAL;
2278
2279 /*
2280 * Cannot fail anything that doesn't have callbacks.
2281 */
2282 mutex_lock(&cpuhp_state_mutex);
2283 sp = cpuhp_get_step(fail);
2284 if (!sp->startup.single && !sp->teardown.single)
2285 ret = -EINVAL;
2286 mutex_unlock(&cpuhp_state_mutex);
2287 if (ret)
2288 return ret;
2289
2290 st->fail = fail;
2291
2292 return count;
2293 }
2294
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2295 static ssize_t show_cpuhp_fail(struct device *dev,
2296 struct device_attribute *attr, char *buf)
2297 {
2298 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2299
2300 return sprintf(buf, "%d\n", st->fail);
2301 }
2302
2303 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2304
2305 static struct attribute *cpuhp_cpu_attrs[] = {
2306 &dev_attr_state.attr,
2307 &dev_attr_target.attr,
2308 &dev_attr_fail.attr,
2309 NULL
2310 };
2311
2312 static const struct attribute_group cpuhp_cpu_attr_group = {
2313 .attrs = cpuhp_cpu_attrs,
2314 .name = "hotplug",
2315 NULL
2316 };
2317
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2318 static ssize_t show_cpuhp_states(struct device *dev,
2319 struct device_attribute *attr, char *buf)
2320 {
2321 ssize_t cur, res = 0;
2322 int i;
2323
2324 mutex_lock(&cpuhp_state_mutex);
2325 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2326 struct cpuhp_step *sp = cpuhp_get_step(i);
2327
2328 if (sp->name) {
2329 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2330 buf += cur;
2331 res += cur;
2332 }
2333 }
2334 mutex_unlock(&cpuhp_state_mutex);
2335 return res;
2336 }
2337 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2338
2339 static struct attribute *cpuhp_cpu_root_attrs[] = {
2340 &dev_attr_states.attr,
2341 NULL
2342 };
2343
2344 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2345 .attrs = cpuhp_cpu_root_attrs,
2346 .name = "hotplug",
2347 NULL
2348 };
2349
2350 #ifdef CONFIG_HOTPLUG_SMT
2351
2352 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2353 __store_smt_control(struct device *dev, struct device_attribute *attr,
2354 const char *buf, size_t count)
2355 {
2356 int ctrlval, ret;
2357
2358 if (sysfs_streq(buf, "on"))
2359 ctrlval = CPU_SMT_ENABLED;
2360 else if (sysfs_streq(buf, "off"))
2361 ctrlval = CPU_SMT_DISABLED;
2362 else if (sysfs_streq(buf, "forceoff"))
2363 ctrlval = CPU_SMT_FORCE_DISABLED;
2364 else
2365 return -EINVAL;
2366
2367 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2368 return -EPERM;
2369
2370 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2371 return -ENODEV;
2372
2373 ret = lock_device_hotplug_sysfs();
2374 if (ret)
2375 return ret;
2376
2377 if (ctrlval != cpu_smt_control) {
2378 switch (ctrlval) {
2379 case CPU_SMT_ENABLED:
2380 ret = cpuhp_smt_enable();
2381 break;
2382 case CPU_SMT_DISABLED:
2383 case CPU_SMT_FORCE_DISABLED:
2384 ret = cpuhp_smt_disable(ctrlval);
2385 break;
2386 }
2387 }
2388
2389 unlock_device_hotplug();
2390 return ret ? ret : count;
2391 }
2392
2393 #else /* !CONFIG_HOTPLUG_SMT */
2394 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2395 __store_smt_control(struct device *dev, struct device_attribute *attr,
2396 const char *buf, size_t count)
2397 {
2398 return -ENODEV;
2399 }
2400 #endif /* CONFIG_HOTPLUG_SMT */
2401
2402 static const char *smt_states[] = {
2403 [CPU_SMT_ENABLED] = "on",
2404 [CPU_SMT_DISABLED] = "off",
2405 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2406 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2407 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2408 };
2409
2410 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2411 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2412 {
2413 const char *state = smt_states[cpu_smt_control];
2414
2415 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2416 }
2417
2418 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2419 store_smt_control(struct device *dev, struct device_attribute *attr,
2420 const char *buf, size_t count)
2421 {
2422 return __store_smt_control(dev, attr, buf, count);
2423 }
2424 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2425
2426 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2427 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2428 {
2429 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2430 }
2431 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2432
2433 static struct attribute *cpuhp_smt_attrs[] = {
2434 &dev_attr_control.attr,
2435 &dev_attr_active.attr,
2436 NULL
2437 };
2438
2439 static const struct attribute_group cpuhp_smt_attr_group = {
2440 .attrs = cpuhp_smt_attrs,
2441 .name = "smt",
2442 NULL
2443 };
2444
cpu_smt_sysfs_init(void)2445 static int __init cpu_smt_sysfs_init(void)
2446 {
2447 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2448 &cpuhp_smt_attr_group);
2449 }
2450
cpuhp_sysfs_init(void)2451 static int __init cpuhp_sysfs_init(void)
2452 {
2453 int cpu, ret;
2454
2455 ret = cpu_smt_sysfs_init();
2456 if (ret)
2457 return ret;
2458
2459 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2460 &cpuhp_cpu_root_attr_group);
2461 if (ret)
2462 return ret;
2463
2464 for_each_possible_cpu(cpu) {
2465 struct device *dev = get_cpu_device(cpu);
2466
2467 if (!dev)
2468 continue;
2469 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2470 if (ret)
2471 return ret;
2472 }
2473 return 0;
2474 }
2475 device_initcall(cpuhp_sysfs_init);
2476 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2477
2478 /*
2479 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2480 * represents all NR_CPUS bits binary values of 1<<nr.
2481 *
2482 * It is used by cpumask_of() to get a constant address to a CPU
2483 * mask value that has a single bit set only.
2484 */
2485
2486 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2487 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2488 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2489 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2490 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2491
2492 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2493
2494 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2495 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2496 #if BITS_PER_LONG > 32
2497 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2498 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2499 #endif
2500 };
2501 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2502
2503 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2504 EXPORT_SYMBOL(cpu_all_bits);
2505
2506 #ifdef CONFIG_INIT_ALL_POSSIBLE
2507 struct cpumask __cpu_possible_mask __read_mostly
2508 = {CPU_BITS_ALL};
2509 #else
2510 struct cpumask __cpu_possible_mask __read_mostly;
2511 #endif
2512 EXPORT_SYMBOL(__cpu_possible_mask);
2513
2514 struct cpumask __cpu_online_mask __read_mostly;
2515 EXPORT_SYMBOL(__cpu_online_mask);
2516
2517 struct cpumask __cpu_present_mask __read_mostly;
2518 EXPORT_SYMBOL(__cpu_present_mask);
2519
2520 struct cpumask __cpu_active_mask __read_mostly;
2521 EXPORT_SYMBOL(__cpu_active_mask);
2522
2523 #ifdef CONFIG_CPU_ISOLATION_OPT
2524 struct cpumask __cpu_isolated_mask __read_mostly;
2525 EXPORT_SYMBOL(__cpu_isolated_mask);
2526 #endif
2527
2528 atomic_t __num_online_cpus __read_mostly;
2529 EXPORT_SYMBOL(__num_online_cpus);
2530
init_cpu_present(const struct cpumask * src)2531 void init_cpu_present(const struct cpumask *src)
2532 {
2533 cpumask_copy(&__cpu_present_mask, src);
2534 }
2535
init_cpu_possible(const struct cpumask * src)2536 void init_cpu_possible(const struct cpumask *src)
2537 {
2538 cpumask_copy(&__cpu_possible_mask, src);
2539 }
2540
init_cpu_online(const struct cpumask * src)2541 void init_cpu_online(const struct cpumask *src)
2542 {
2543 cpumask_copy(&__cpu_online_mask, src);
2544 }
2545
2546 #ifdef CONFIG_CPU_ISOLATION_OPT
init_cpu_isolated(const struct cpumask * src)2547 void init_cpu_isolated(const struct cpumask *src)
2548 {
2549 cpumask_copy(&__cpu_isolated_mask, src);
2550 }
2551 #endif
2552
set_cpu_online(unsigned int cpu,bool online)2553 void set_cpu_online(unsigned int cpu, bool online)
2554 {
2555 /*
2556 * atomic_inc/dec() is required to handle the horrid abuse of this
2557 * function by the reboot and kexec code which invoke it from
2558 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2559 * regular CPU hotplug is properly serialized.
2560 *
2561 * Note, that the fact that __num_online_cpus is of type atomic_t
2562 * does not protect readers which are not serialized against
2563 * concurrent hotplug operations.
2564 */
2565 if (online) {
2566 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2567 atomic_inc(&__num_online_cpus);
2568 } else {
2569 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2570 atomic_dec(&__num_online_cpus);
2571 }
2572 }
2573
2574 /*
2575 * Activate the first processor.
2576 */
boot_cpu_init(void)2577 void __init boot_cpu_init(void)
2578 {
2579 int cpu = smp_processor_id();
2580
2581 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2582 set_cpu_online(cpu, true);
2583 set_cpu_active(cpu, true);
2584 set_cpu_present(cpu, true);
2585 set_cpu_possible(cpu, true);
2586
2587 #ifdef CONFIG_SMP
2588 __boot_cpu_id = cpu;
2589 #endif
2590 }
2591
2592 /*
2593 * Must be called _AFTER_ setting up the per_cpu areas
2594 */
boot_cpu_hotplug_init(void)2595 void __init boot_cpu_hotplug_init(void)
2596 {
2597 #ifdef CONFIG_SMP
2598 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2599 #endif
2600 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2601 }
2602
2603 /*
2604 * These are used for a global "mitigations=" cmdline option for toggling
2605 * optional CPU mitigations.
2606 */
2607 enum cpu_mitigations {
2608 CPU_MITIGATIONS_OFF,
2609 CPU_MITIGATIONS_AUTO,
2610 CPU_MITIGATIONS_AUTO_NOSMT,
2611 };
2612
2613 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2614 CPU_MITIGATIONS_AUTO;
2615
mitigations_parse_cmdline(char * arg)2616 static int __init mitigations_parse_cmdline(char *arg)
2617 {
2618 if (!strcmp(arg, "off"))
2619 cpu_mitigations = CPU_MITIGATIONS_OFF;
2620 else if (!strcmp(arg, "auto"))
2621 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2622 else if (!strcmp(arg, "auto,nosmt"))
2623 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2624 else
2625 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2626 arg);
2627
2628 return 0;
2629 }
2630 early_param("mitigations", mitigations_parse_cmdline);
2631
2632 /* mitigations=off */
cpu_mitigations_off(void)2633 bool cpu_mitigations_off(void)
2634 {
2635 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2636 }
2637 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2638
2639 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2640 bool cpu_mitigations_auto_nosmt(void)
2641 {
2642 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2643 }
2644 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2645