• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/power.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/cpuhp.h>
42 
43 #include "smpboot.h"
44 
45 /**
46  * cpuhp_cpu_state - Per cpu hotplug state storage
47  * @state:	The current cpu state
48  * @target:	The target state
49  * @thread:	Pointer to the hotplug thread
50  * @should_run:	Thread should execute
51  * @rollback:	Perform a rollback
52  * @single:	Single callback invocation
53  * @bringup:	Single callback bringup or teardown selector
54  * @cb_state:	The state for a single callback (install/uninstall)
55  * @result:	Result of the operation
56  * @done_up:	Signal completion to the issuer of the task for cpu-up
57  * @done_down:	Signal completion to the issuer of the task for cpu-down
58  */
59 struct cpuhp_cpu_state {
60 	enum cpuhp_state	state;
61 	enum cpuhp_state	target;
62 	enum cpuhp_state	fail;
63 #ifdef CONFIG_SMP
64 	struct task_struct	*thread;
65 	bool			should_run;
66 	bool			rollback;
67 	bool			single;
68 	bool			bringup;
69 	struct hlist_node	*node;
70 	struct hlist_node	*last;
71 	enum cpuhp_state	cb_state;
72 	int			result;
73 	struct completion	done_up;
74 	struct completion	done_down;
75 #endif
76 };
77 
78 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
79 	.fail = CPUHP_INVALID,
80 };
81 
82 #ifdef CONFIG_SMP
83 cpumask_t cpus_booted_once_mask;
84 #endif
85 
86 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
87 static struct lockdep_map cpuhp_state_up_map =
88 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
89 static struct lockdep_map cpuhp_state_down_map =
90 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
91 
92 
cpuhp_lock_acquire(bool bringup)93 static inline void cpuhp_lock_acquire(bool bringup)
94 {
95 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
96 }
97 
cpuhp_lock_release(bool bringup)98 static inline void cpuhp_lock_release(bool bringup)
99 {
100 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
101 }
102 #else
103 
cpuhp_lock_acquire(bool bringup)104 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)105 static inline void cpuhp_lock_release(bool bringup) { }
106 
107 #endif
108 
109 /**
110  * cpuhp_step - Hotplug state machine step
111  * @name:	Name of the step
112  * @startup:	Startup function of the step
113  * @teardown:	Teardown function of the step
114  * @cant_stop:	Bringup/teardown can't be stopped at this step
115  */
116 struct cpuhp_step {
117 	const char		*name;
118 	union {
119 		int		(*single)(unsigned int cpu);
120 		int		(*multi)(unsigned int cpu,
121 					 struct hlist_node *node);
122 	} startup;
123 	union {
124 		int		(*single)(unsigned int cpu);
125 		int		(*multi)(unsigned int cpu,
126 					 struct hlist_node *node);
127 	} teardown;
128 	struct hlist_head	list;
129 	bool			cant_stop;
130 	bool			multi_instance;
131 };
132 
133 static DEFINE_MUTEX(cpuhp_state_mutex);
134 static struct cpuhp_step cpuhp_hp_states[];
135 
cpuhp_get_step(enum cpuhp_state state)136 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
137 {
138 	return cpuhp_hp_states + state;
139 }
140 
141 /**
142  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
143  * @cpu:	The cpu for which the callback should be invoked
144  * @state:	The state to do callbacks for
145  * @bringup:	True if the bringup callback should be invoked
146  * @node:	For multi-instance, do a single entry callback for install/remove
147  * @lastp:	For multi-instance rollback, remember how far we got
148  *
149  * Called from cpu hotplug and from the state register machinery.
150  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)151 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
152 				 bool bringup, struct hlist_node *node,
153 				 struct hlist_node **lastp)
154 {
155 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
156 	struct cpuhp_step *step = cpuhp_get_step(state);
157 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
158 	int (*cb)(unsigned int cpu);
159 	int ret, cnt;
160 
161 	if (st->fail == state) {
162 		st->fail = CPUHP_INVALID;
163 
164 		if (!(bringup ? step->startup.single : step->teardown.single))
165 			return 0;
166 
167 		return -EAGAIN;
168 	}
169 
170 	if (!step->multi_instance) {
171 		WARN_ON_ONCE(lastp && *lastp);
172 		cb = bringup ? step->startup.single : step->teardown.single;
173 		if (!cb)
174 			return 0;
175 		trace_cpuhp_enter(cpu, st->target, state, cb);
176 		ret = cb(cpu);
177 		trace_cpuhp_exit(cpu, st->state, state, ret);
178 		return ret;
179 	}
180 	cbm = bringup ? step->startup.multi : step->teardown.multi;
181 	if (!cbm)
182 		return 0;
183 
184 	/* Single invocation for instance add/remove */
185 	if (node) {
186 		WARN_ON_ONCE(lastp && *lastp);
187 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
188 		ret = cbm(cpu, node);
189 		trace_cpuhp_exit(cpu, st->state, state, ret);
190 		return ret;
191 	}
192 
193 	/* State transition. Invoke on all instances */
194 	cnt = 0;
195 	hlist_for_each(node, &step->list) {
196 		if (lastp && node == *lastp)
197 			break;
198 
199 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
200 		ret = cbm(cpu, node);
201 		trace_cpuhp_exit(cpu, st->state, state, ret);
202 		if (ret) {
203 			if (!lastp)
204 				goto err;
205 
206 			*lastp = node;
207 			return ret;
208 		}
209 		cnt++;
210 	}
211 	if (lastp)
212 		*lastp = NULL;
213 	return 0;
214 err:
215 	/* Rollback the instances if one failed */
216 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
217 	if (!cbm)
218 		return ret;
219 
220 	hlist_for_each(node, &step->list) {
221 		if (!cnt--)
222 			break;
223 
224 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
225 		ret = cbm(cpu, node);
226 		trace_cpuhp_exit(cpu, st->state, state, ret);
227 		/*
228 		 * Rollback must not fail,
229 		 */
230 		WARN_ON_ONCE(ret);
231 	}
232 	return ret;
233 }
234 
235 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)236 static bool cpuhp_is_ap_state(enum cpuhp_state state)
237 {
238 	/*
239 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
240 	 * purposes as that state is handled explicitly in cpu_down.
241 	 */
242 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
243 }
244 
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)245 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
246 {
247 	struct completion *done = bringup ? &st->done_up : &st->done_down;
248 	wait_for_completion(done);
249 }
250 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)251 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
252 {
253 	struct completion *done = bringup ? &st->done_up : &st->done_down;
254 	complete(done);
255 }
256 
257 /*
258  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
259  */
cpuhp_is_atomic_state(enum cpuhp_state state)260 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
261 {
262 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
263 }
264 
265 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
266 static DEFINE_MUTEX(cpu_add_remove_lock);
267 bool cpuhp_tasks_frozen;
268 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
269 
270 /*
271  * The following two APIs (cpu_maps_update_begin/done) must be used when
272  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
273  */
cpu_maps_update_begin(void)274 void cpu_maps_update_begin(void)
275 {
276 	mutex_lock(&cpu_add_remove_lock);
277 }
278 
cpu_maps_update_done(void)279 void cpu_maps_update_done(void)
280 {
281 	mutex_unlock(&cpu_add_remove_lock);
282 }
283 
284 /*
285  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
286  * Should always be manipulated under cpu_add_remove_lock
287  */
288 static int cpu_hotplug_disabled;
289 
290 #ifdef CONFIG_HOTPLUG_CPU
291 
292 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
293 
cpus_read_lock(void)294 void cpus_read_lock(void)
295 {
296 	percpu_down_read(&cpu_hotplug_lock);
297 }
298 EXPORT_SYMBOL_GPL(cpus_read_lock);
299 
cpus_read_trylock(void)300 int cpus_read_trylock(void)
301 {
302 	return percpu_down_read_trylock(&cpu_hotplug_lock);
303 }
304 EXPORT_SYMBOL_GPL(cpus_read_trylock);
305 
cpus_read_unlock(void)306 void cpus_read_unlock(void)
307 {
308 	percpu_up_read(&cpu_hotplug_lock);
309 }
310 EXPORT_SYMBOL_GPL(cpus_read_unlock);
311 
cpus_write_lock(void)312 void cpus_write_lock(void)
313 {
314 	percpu_down_write(&cpu_hotplug_lock);
315 }
316 
cpus_write_unlock(void)317 void cpus_write_unlock(void)
318 {
319 	percpu_up_write(&cpu_hotplug_lock);
320 }
321 
lockdep_assert_cpus_held(void)322 void lockdep_assert_cpus_held(void)
323 {
324 	/*
325 	 * We can't have hotplug operations before userspace starts running,
326 	 * and some init codepaths will knowingly not take the hotplug lock.
327 	 * This is all valid, so mute lockdep until it makes sense to report
328 	 * unheld locks.
329 	 */
330 	if (system_state < SYSTEM_RUNNING)
331 		return;
332 
333 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
334 }
335 
lockdep_acquire_cpus_lock(void)336 static void lockdep_acquire_cpus_lock(void)
337 {
338 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
339 }
340 
lockdep_release_cpus_lock(void)341 static void lockdep_release_cpus_lock(void)
342 {
343 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
344 }
345 
346 /*
347  * Wait for currently running CPU hotplug operations to complete (if any) and
348  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
349  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
350  * hotplug path before performing hotplug operations. So acquiring that lock
351  * guarantees mutual exclusion from any currently running hotplug operations.
352  */
cpu_hotplug_disable(void)353 void cpu_hotplug_disable(void)
354 {
355 	cpu_maps_update_begin();
356 	cpu_hotplug_disabled++;
357 	cpu_maps_update_done();
358 }
359 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
360 
__cpu_hotplug_enable(void)361 static void __cpu_hotplug_enable(void)
362 {
363 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
364 		return;
365 	cpu_hotplug_disabled--;
366 }
367 
cpu_hotplug_enable(void)368 void cpu_hotplug_enable(void)
369 {
370 	cpu_maps_update_begin();
371 	__cpu_hotplug_enable();
372 	cpu_maps_update_done();
373 }
374 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
375 
376 #else
377 
lockdep_acquire_cpus_lock(void)378 static void lockdep_acquire_cpus_lock(void)
379 {
380 }
381 
lockdep_release_cpus_lock(void)382 static void lockdep_release_cpus_lock(void)
383 {
384 }
385 
386 #endif	/* CONFIG_HOTPLUG_CPU */
387 
388 /*
389  * Architectures that need SMT-specific errata handling during SMT hotplug
390  * should override this.
391  */
arch_smt_update(void)392 void __weak arch_smt_update(void) { }
393 
394 #ifdef CONFIG_HOTPLUG_SMT
395 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
396 
cpu_smt_disable(bool force)397 void __init cpu_smt_disable(bool force)
398 {
399 	if (!cpu_smt_possible())
400 		return;
401 
402 	if (force) {
403 		pr_info("SMT: Force disabled\n");
404 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
405 	} else {
406 		pr_info("SMT: disabled\n");
407 		cpu_smt_control = CPU_SMT_DISABLED;
408 	}
409 }
410 
411 /*
412  * The decision whether SMT is supported can only be done after the full
413  * CPU identification. Called from architecture code.
414  */
cpu_smt_check_topology(void)415 void __init cpu_smt_check_topology(void)
416 {
417 	if (!topology_smt_supported())
418 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
419 }
420 
smt_cmdline_disable(char * str)421 static int __init smt_cmdline_disable(char *str)
422 {
423 	cpu_smt_disable(str && !strcmp(str, "force"));
424 	return 0;
425 }
426 early_param("nosmt", smt_cmdline_disable);
427 
cpu_smt_allowed(unsigned int cpu)428 static inline bool cpu_smt_allowed(unsigned int cpu)
429 {
430 	if (cpu_smt_control == CPU_SMT_ENABLED)
431 		return true;
432 
433 	if (topology_is_primary_thread(cpu))
434 		return true;
435 
436 	/*
437 	 * On x86 it's required to boot all logical CPUs at least once so
438 	 * that the init code can get a chance to set CR4.MCE on each
439 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
440 	 * core will shutdown the machine.
441 	 */
442 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
443 }
444 
445 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)446 bool cpu_smt_possible(void)
447 {
448 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
449 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
450 }
451 EXPORT_SYMBOL_GPL(cpu_smt_possible);
452 #else
cpu_smt_allowed(unsigned int cpu)453 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
454 #endif
455 
456 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)457 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
458 {
459 	enum cpuhp_state prev_state = st->state;
460 
461 	st->rollback = false;
462 	st->last = NULL;
463 
464 	st->target = target;
465 	st->single = false;
466 	st->bringup = st->state < target;
467 
468 	return prev_state;
469 }
470 
471 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)472 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
473 {
474 	st->rollback = true;
475 
476 	/*
477 	 * If we have st->last we need to undo partial multi_instance of this
478 	 * state first. Otherwise start undo at the previous state.
479 	 */
480 	if (!st->last) {
481 		if (st->bringup)
482 			st->state--;
483 		else
484 			st->state++;
485 	}
486 
487 	st->target = prev_state;
488 	st->bringup = !st->bringup;
489 }
490 
491 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)492 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
493 {
494 	if (!st->single && st->state == st->target)
495 		return;
496 
497 	st->result = 0;
498 	/*
499 	 * Make sure the above stores are visible before should_run becomes
500 	 * true. Paired with the mb() above in cpuhp_thread_fun()
501 	 */
502 	smp_mb();
503 	st->should_run = true;
504 	wake_up_process(st->thread);
505 	wait_for_ap_thread(st, st->bringup);
506 }
507 
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)508 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
509 {
510 	enum cpuhp_state prev_state;
511 	int ret;
512 
513 	prev_state = cpuhp_set_state(st, target);
514 	__cpuhp_kick_ap(st);
515 	if ((ret = st->result)) {
516 		cpuhp_reset_state(st, prev_state);
517 		__cpuhp_kick_ap(st);
518 	}
519 
520 	return ret;
521 }
522 
bringup_wait_for_ap(unsigned int cpu)523 static int bringup_wait_for_ap(unsigned int cpu)
524 {
525 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
526 
527 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
528 	wait_for_ap_thread(st, true);
529 	if (WARN_ON_ONCE((!cpu_online(cpu))))
530 		return -ECANCELED;
531 
532 	/* Unpark the hotplug thread of the target cpu */
533 	kthread_unpark(st->thread);
534 
535 	/*
536 	 * SMT soft disabling on X86 requires to bring the CPU out of the
537 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
538 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
539 	 * cpu_smt_allowed() check will now return false if this is not the
540 	 * primary sibling.
541 	 */
542 	if (!cpu_smt_allowed(cpu))
543 		return -ECANCELED;
544 
545 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
546 		return 0;
547 
548 	return cpuhp_kick_ap(st, st->target);
549 }
550 
bringup_cpu(unsigned int cpu)551 static int bringup_cpu(unsigned int cpu)
552 {
553 	struct task_struct *idle = idle_thread_get(cpu);
554 	int ret;
555 
556 	/*
557 	 * Reset stale stack state from the last time this CPU was online.
558 	 */
559 	scs_task_reset(idle);
560 	kasan_unpoison_task_stack(idle);
561 
562 	/*
563 	 * Some architectures have to walk the irq descriptors to
564 	 * setup the vector space for the cpu which comes online.
565 	 * Prevent irq alloc/free across the bringup.
566 	 */
567 	irq_lock_sparse();
568 
569 	/* Arch-specific enabling code. */
570 	ret = __cpu_up(cpu, idle);
571 	irq_unlock_sparse();
572 	if (ret)
573 		return ret;
574 	return bringup_wait_for_ap(cpu);
575 }
576 
finish_cpu(unsigned int cpu)577 static int finish_cpu(unsigned int cpu)
578 {
579 	struct task_struct *idle = idle_thread_get(cpu);
580 	struct mm_struct *mm = idle->active_mm;
581 
582 	/*
583 	 * idle_task_exit() will have switched to &init_mm, now
584 	 * clean up any remaining active_mm state.
585 	 */
586 	if (mm != &init_mm)
587 		idle->active_mm = &init_mm;
588 	mmdrop(mm);
589 	return 0;
590 }
591 
592 /*
593  * Hotplug state machine related functions
594  */
595 
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)596 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
597 {
598 	for (st->state--; st->state > st->target; st->state--)
599 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
600 }
601 
can_rollback_cpu(struct cpuhp_cpu_state * st)602 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
603 {
604 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
605 		return true;
606 	/*
607 	 * When CPU hotplug is disabled, then taking the CPU down is not
608 	 * possible because takedown_cpu() and the architecture and
609 	 * subsystem specific mechanisms are not available. So the CPU
610 	 * which would be completely unplugged again needs to stay around
611 	 * in the current state.
612 	 */
613 	return st->state <= CPUHP_BRINGUP_CPU;
614 }
615 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)616 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
617 			      enum cpuhp_state target)
618 {
619 	enum cpuhp_state prev_state = st->state;
620 	int ret = 0;
621 
622 	while (st->state < target) {
623 		st->state++;
624 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
625 		if (ret) {
626 			if (can_rollback_cpu(st)) {
627 				st->target = prev_state;
628 				undo_cpu_up(cpu, st);
629 			}
630 			break;
631 		}
632 	}
633 	return ret;
634 }
635 
636 /*
637  * The cpu hotplug threads manage the bringup and teardown of the cpus
638  */
cpuhp_create(unsigned int cpu)639 static void cpuhp_create(unsigned int cpu)
640 {
641 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
642 
643 	init_completion(&st->done_up);
644 	init_completion(&st->done_down);
645 }
646 
cpuhp_should_run(unsigned int cpu)647 static int cpuhp_should_run(unsigned int cpu)
648 {
649 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
650 
651 	return st->should_run;
652 }
653 
654 /*
655  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
656  * callbacks when a state gets [un]installed at runtime.
657  *
658  * Each invocation of this function by the smpboot thread does a single AP
659  * state callback.
660  *
661  * It has 3 modes of operation:
662  *  - single: runs st->cb_state
663  *  - up:     runs ++st->state, while st->state < st->target
664  *  - down:   runs st->state--, while st->state > st->target
665  *
666  * When complete or on error, should_run is cleared and the completion is fired.
667  */
cpuhp_thread_fun(unsigned int cpu)668 static void cpuhp_thread_fun(unsigned int cpu)
669 {
670 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
671 	bool bringup = st->bringup;
672 	enum cpuhp_state state;
673 
674 	if (WARN_ON_ONCE(!st->should_run))
675 		return;
676 
677 	/*
678 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
679 	 * that if we see ->should_run we also see the rest of the state.
680 	 */
681 	smp_mb();
682 
683 	/*
684 	 * The BP holds the hotplug lock, but we're now running on the AP,
685 	 * ensure that anybody asserting the lock is held, will actually find
686 	 * it so.
687 	 */
688 	lockdep_acquire_cpus_lock();
689 	cpuhp_lock_acquire(bringup);
690 
691 	if (st->single) {
692 		state = st->cb_state;
693 		st->should_run = false;
694 	} else {
695 		if (bringup) {
696 			st->state++;
697 			state = st->state;
698 			st->should_run = (st->state < st->target);
699 			WARN_ON_ONCE(st->state > st->target);
700 		} else {
701 			state = st->state;
702 			st->state--;
703 			st->should_run = (st->state > st->target);
704 			WARN_ON_ONCE(st->state < st->target);
705 		}
706 	}
707 
708 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
709 
710 	if (cpuhp_is_atomic_state(state)) {
711 		local_irq_disable();
712 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
713 		local_irq_enable();
714 
715 		/*
716 		 * STARTING/DYING must not fail!
717 		 */
718 		WARN_ON_ONCE(st->result);
719 	} else {
720 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
721 	}
722 
723 	if (st->result) {
724 		/*
725 		 * If we fail on a rollback, we're up a creek without no
726 		 * paddle, no way forward, no way back. We loose, thanks for
727 		 * playing.
728 		 */
729 		WARN_ON_ONCE(st->rollback);
730 		st->should_run = false;
731 	}
732 
733 	cpuhp_lock_release(bringup);
734 	lockdep_release_cpus_lock();
735 
736 	if (!st->should_run)
737 		complete_ap_thread(st, bringup);
738 }
739 
740 /* Invoke a single callback on a remote cpu */
741 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)742 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
743 			 struct hlist_node *node)
744 {
745 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
746 	int ret;
747 
748 	if (!cpu_online(cpu))
749 		return 0;
750 
751 	cpuhp_lock_acquire(false);
752 	cpuhp_lock_release(false);
753 
754 	cpuhp_lock_acquire(true);
755 	cpuhp_lock_release(true);
756 
757 	/*
758 	 * If we are up and running, use the hotplug thread. For early calls
759 	 * we invoke the thread function directly.
760 	 */
761 	if (!st->thread)
762 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
763 
764 	st->rollback = false;
765 	st->last = NULL;
766 
767 	st->node = node;
768 	st->bringup = bringup;
769 	st->cb_state = state;
770 	st->single = true;
771 
772 	__cpuhp_kick_ap(st);
773 
774 	/*
775 	 * If we failed and did a partial, do a rollback.
776 	 */
777 	if ((ret = st->result) && st->last) {
778 		st->rollback = true;
779 		st->bringup = !bringup;
780 
781 		__cpuhp_kick_ap(st);
782 	}
783 
784 	/*
785 	 * Clean up the leftovers so the next hotplug operation wont use stale
786 	 * data.
787 	 */
788 	st->node = st->last = NULL;
789 	return ret;
790 }
791 
cpuhp_kick_ap_work(unsigned int cpu)792 static int cpuhp_kick_ap_work(unsigned int cpu)
793 {
794 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
795 	enum cpuhp_state prev_state = st->state;
796 	int ret;
797 
798 	cpuhp_lock_acquire(false);
799 	cpuhp_lock_release(false);
800 
801 	cpuhp_lock_acquire(true);
802 	cpuhp_lock_release(true);
803 
804 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
805 	ret = cpuhp_kick_ap(st, st->target);
806 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
807 
808 	return ret;
809 }
810 
811 static struct smp_hotplug_thread cpuhp_threads = {
812 	.store			= &cpuhp_state.thread,
813 	.create			= &cpuhp_create,
814 	.thread_should_run	= cpuhp_should_run,
815 	.thread_fn		= cpuhp_thread_fun,
816 	.thread_comm		= "cpuhp/%u",
817 	.selfparking		= true,
818 };
819 
cpuhp_threads_init(void)820 void __init cpuhp_threads_init(void)
821 {
822 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
823 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
824 }
825 
826 /*
827  *
828  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
829  * protected region.
830  *
831  * The operation is still serialized against concurrent CPU hotplug via
832  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
833  * serialized against other hotplug related activity like adding or
834  * removing of state callbacks and state instances, which invoke either the
835  * startup or the teardown callback of the affected state.
836  *
837  * This is required for subsystems which are unfixable vs. CPU hotplug and
838  * evade lock inversion problems by scheduling work which has to be
839  * completed _before_ cpu_up()/_cpu_down() returns.
840  *
841  * Don't even think about adding anything to this for any new code or even
842  * drivers. It's only purpose is to keep existing lock order trainwrecks
843  * working.
844  *
845  * For cpu_down() there might be valid reasons to finish cleanups which are
846  * not required to be done under cpu_hotplug_lock, but that's a different
847  * story and would be not invoked via this.
848  */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)849 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
850 {
851 	/*
852 	 * cpusets delegate hotplug operations to a worker to "solve" the
853 	 * lock order problems. Wait for the worker, but only if tasks are
854 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
855 	 *
856 	 * The wait is required because otherwise the hotplug operation
857 	 * returns with inconsistent state, which could even be observed in
858 	 * user space when a new CPU is brought up. The CPU plug uevent
859 	 * would be delivered and user space reacting on it would fail to
860 	 * move tasks to the newly plugged CPU up to the point where the
861 	 * work has finished because up to that point the newly plugged CPU
862 	 * is not assignable in cpusets/cgroups. On unplug that's not
863 	 * necessarily a visible issue, but it is still inconsistent state,
864 	 * which is the real problem which needs to be "fixed". This can't
865 	 * prevent the transient state between scheduling the work and
866 	 * returning from waiting for it.
867 	 */
868 	if (!tasks_frozen)
869 		cpuset_wait_for_hotplug();
870 }
871 
872 #ifdef CONFIG_HOTPLUG_CPU
873 #ifndef arch_clear_mm_cpumask_cpu
874 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
875 #endif
876 
877 /**
878  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
879  * @cpu: a CPU id
880  *
881  * This function walks all processes, finds a valid mm struct for each one and
882  * then clears a corresponding bit in mm's cpumask.  While this all sounds
883  * trivial, there are various non-obvious corner cases, which this function
884  * tries to solve in a safe manner.
885  *
886  * Also note that the function uses a somewhat relaxed locking scheme, so it may
887  * be called only for an already offlined CPU.
888  */
clear_tasks_mm_cpumask(int cpu)889 void clear_tasks_mm_cpumask(int cpu)
890 {
891 	struct task_struct *p;
892 
893 	/*
894 	 * This function is called after the cpu is taken down and marked
895 	 * offline, so its not like new tasks will ever get this cpu set in
896 	 * their mm mask. -- Peter Zijlstra
897 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
898 	 * full-fledged tasklist_lock.
899 	 */
900 	WARN_ON(cpu_online(cpu));
901 	rcu_read_lock();
902 	for_each_process(p) {
903 		struct task_struct *t;
904 
905 		/*
906 		 * Main thread might exit, but other threads may still have
907 		 * a valid mm. Find one.
908 		 */
909 		t = find_lock_task_mm(p);
910 		if (!t)
911 			continue;
912 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
913 		task_unlock(t);
914 	}
915 	rcu_read_unlock();
916 }
917 
918 /* Take this CPU down. */
take_cpu_down(void * _param)919 static int take_cpu_down(void *_param)
920 {
921 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
922 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
923 	int err, cpu = smp_processor_id();
924 	int ret;
925 
926 	/* Ensure this CPU doesn't handle any more interrupts. */
927 	err = __cpu_disable();
928 	if (err < 0)
929 		return err;
930 
931 	/*
932 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
933 	 * do this step again.
934 	 */
935 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
936 	st->state--;
937 	/* Invoke the former CPU_DYING callbacks */
938 	for (; st->state > target; st->state--) {
939 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
940 		/*
941 		 * DYING must not fail!
942 		 */
943 		WARN_ON_ONCE(ret);
944 	}
945 
946 	/* Give up timekeeping duties */
947 	tick_handover_do_timer();
948 	/* Remove CPU from timer broadcasting */
949 	tick_offline_cpu(cpu);
950 	/* Park the stopper thread */
951 	stop_machine_park(cpu);
952 	return 0;
953 }
954 
takedown_cpu(unsigned int cpu)955 static int takedown_cpu(unsigned int cpu)
956 {
957 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
958 	int err;
959 
960 	/* Park the smpboot threads */
961 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
962 
963 	/*
964 	 * Prevent irq alloc/free while the dying cpu reorganizes the
965 	 * interrupt affinities.
966 	 */
967 	irq_lock_sparse();
968 
969 	/*
970 	 * So now all preempt/rcu users must observe !cpu_active().
971 	 */
972 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
973 	if (err) {
974 		/* CPU refused to die */
975 		irq_unlock_sparse();
976 		/* Unpark the hotplug thread so we can rollback there */
977 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
978 		return err;
979 	}
980 	BUG_ON(cpu_online(cpu));
981 
982 	/*
983 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
984 	 * all runnable tasks from the CPU, there's only the idle task left now
985 	 * that the migration thread is done doing the stop_machine thing.
986 	 *
987 	 * Wait for the stop thread to go away.
988 	 */
989 	wait_for_ap_thread(st, false);
990 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
991 
992 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
993 	irq_unlock_sparse();
994 
995 	hotplug_cpu__broadcast_tick_pull(cpu);
996 	/* This actually kills the CPU. */
997 	__cpu_die(cpu);
998 
999 	tick_cleanup_dead_cpu(cpu);
1000 	rcutree_migrate_callbacks(cpu);
1001 	return 0;
1002 }
1003 
cpuhp_complete_idle_dead(void * arg)1004 static void cpuhp_complete_idle_dead(void *arg)
1005 {
1006 	struct cpuhp_cpu_state *st = arg;
1007 
1008 	complete_ap_thread(st, false);
1009 }
1010 
cpuhp_report_idle_dead(void)1011 void cpuhp_report_idle_dead(void)
1012 {
1013 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1014 
1015 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1016 	rcu_report_dead(smp_processor_id());
1017 	st->state = CPUHP_AP_IDLE_DEAD;
1018 	/*
1019 	 * We cannot call complete after rcu_report_dead() so we delegate it
1020 	 * to an online cpu.
1021 	 */
1022 	smp_call_function_single(cpumask_first(cpu_online_mask),
1023 				 cpuhp_complete_idle_dead, st, 0);
1024 }
1025 
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)1026 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
1027 {
1028 	for (st->state++; st->state < st->target; st->state++)
1029 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1030 }
1031 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1032 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1033 				enum cpuhp_state target)
1034 {
1035 	enum cpuhp_state prev_state = st->state;
1036 	int ret = 0;
1037 
1038 	for (; st->state > target; st->state--) {
1039 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
1040 		if (ret) {
1041 			st->target = prev_state;
1042 			if (st->state < prev_state)
1043 				undo_cpu_down(cpu, st);
1044 			break;
1045 		}
1046 	}
1047 	return ret;
1048 }
1049 
1050 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1051 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1052 			   enum cpuhp_state target)
1053 {
1054 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1055 	int prev_state, ret = 0;
1056 
1057 	if (num_online_cpus() == 1)
1058 		return -EBUSY;
1059 
1060 	if (!cpu_present(cpu))
1061 		return -EINVAL;
1062 
1063 #ifdef CONFIG_CPU_ISOLATION_OPT
1064 	if (!tasks_frozen && !cpu_isolated(cpu) && num_online_uniso_cpus() == 1)
1065 		return -EBUSY;
1066 #endif
1067 
1068 	cpus_write_lock();
1069 
1070 	cpuhp_tasks_frozen = tasks_frozen;
1071 
1072 	prev_state = cpuhp_set_state(st, target);
1073 	/*
1074 	 * If the current CPU state is in the range of the AP hotplug thread,
1075 	 * then we need to kick the thread.
1076 	 */
1077 	if (st->state > CPUHP_TEARDOWN_CPU) {
1078 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1079 		ret = cpuhp_kick_ap_work(cpu);
1080 		/*
1081 		 * The AP side has done the error rollback already. Just
1082 		 * return the error code..
1083 		 */
1084 		if (ret)
1085 			goto out;
1086 
1087 		/*
1088 		 * We might have stopped still in the range of the AP hotplug
1089 		 * thread. Nothing to do anymore.
1090 		 */
1091 		if (st->state > CPUHP_TEARDOWN_CPU)
1092 			goto out;
1093 
1094 		st->target = target;
1095 	}
1096 	/*
1097 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1098 	 * to do the further cleanups.
1099 	 */
1100 	ret = cpuhp_down_callbacks(cpu, st, target);
1101 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1102 		cpuhp_reset_state(st, prev_state);
1103 		__cpuhp_kick_ap(st);
1104 	}
1105 
1106 out:
1107 	cpus_write_unlock();
1108 	/*
1109 	 * Do post unplug cleanup. This is still protected against
1110 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1111 	 */
1112 	lockup_detector_cleanup();
1113 	arch_smt_update();
1114 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1115 	return ret;
1116 }
1117 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1118 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1119 {
1120 	if (cpu_hotplug_disabled)
1121 		return -EBUSY;
1122 	return _cpu_down(cpu, 0, target);
1123 }
1124 
cpu_down(unsigned int cpu,enum cpuhp_state target)1125 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1126 {
1127 	int err;
1128 
1129 	cpu_maps_update_begin();
1130 	err = cpu_down_maps_locked(cpu, target);
1131 	cpu_maps_update_done();
1132 	return err;
1133 }
1134 
1135 /**
1136  * cpu_device_down - Bring down a cpu device
1137  * @dev: Pointer to the cpu device to offline
1138  *
1139  * This function is meant to be used by device core cpu subsystem only.
1140  *
1141  * Other subsystems should use remove_cpu() instead.
1142  */
cpu_device_down(struct device * dev)1143 int cpu_device_down(struct device *dev)
1144 {
1145 	return cpu_down(dev->id, CPUHP_OFFLINE);
1146 }
1147 
remove_cpu(unsigned int cpu)1148 int remove_cpu(unsigned int cpu)
1149 {
1150 	int ret;
1151 
1152 	lock_device_hotplug();
1153 	ret = device_offline(get_cpu_device(cpu));
1154 	unlock_device_hotplug();
1155 
1156 	return ret;
1157 }
1158 EXPORT_SYMBOL_GPL(remove_cpu);
1159 
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1160 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1161 {
1162 	unsigned int cpu;
1163 	int error;
1164 
1165 	cpu_maps_update_begin();
1166 
1167 	/*
1168 	 * Make certain the cpu I'm about to reboot on is online.
1169 	 *
1170 	 * This is inline to what migrate_to_reboot_cpu() already do.
1171 	 */
1172 	if (!cpu_online(primary_cpu))
1173 		primary_cpu = cpumask_first(cpu_online_mask);
1174 
1175 	for_each_online_cpu(cpu) {
1176 		if (cpu == primary_cpu)
1177 			continue;
1178 
1179 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1180 		if (error) {
1181 			pr_err("Failed to offline CPU%d - error=%d",
1182 				cpu, error);
1183 			break;
1184 		}
1185 	}
1186 
1187 	/*
1188 	 * Ensure all but the reboot CPU are offline.
1189 	 */
1190 	BUG_ON(num_online_cpus() > 1);
1191 
1192 	/*
1193 	 * Make sure the CPUs won't be enabled by someone else after this
1194 	 * point. Kexec will reboot to a new kernel shortly resetting
1195 	 * everything along the way.
1196 	 */
1197 	cpu_hotplug_disabled++;
1198 
1199 	cpu_maps_update_done();
1200 }
1201 
1202 #else
1203 #define takedown_cpu		NULL
1204 #endif /*CONFIG_HOTPLUG_CPU*/
1205 
1206 /**
1207  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1208  * @cpu: cpu that just started
1209  *
1210  * It must be called by the arch code on the new cpu, before the new cpu
1211  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1212  */
notify_cpu_starting(unsigned int cpu)1213 void notify_cpu_starting(unsigned int cpu)
1214 {
1215 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1216 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1217 	int ret;
1218 
1219 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1220 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1221 	while (st->state < target) {
1222 		st->state++;
1223 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1224 		/*
1225 		 * STARTING must not fail!
1226 		 */
1227 		WARN_ON_ONCE(ret);
1228 	}
1229 }
1230 
1231 /*
1232  * Called from the idle task. Wake up the controlling task which brings the
1233  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1234  * online bringup to the hotplug thread.
1235  */
cpuhp_online_idle(enum cpuhp_state state)1236 void cpuhp_online_idle(enum cpuhp_state state)
1237 {
1238 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1239 
1240 	/* Happens for the boot cpu */
1241 	if (state != CPUHP_AP_ONLINE_IDLE)
1242 		return;
1243 
1244 	/*
1245 	 * Unpart the stopper thread before we start the idle loop (and start
1246 	 * scheduling); this ensures the stopper task is always available.
1247 	 */
1248 	stop_machine_unpark(smp_processor_id());
1249 
1250 	st->state = CPUHP_AP_ONLINE_IDLE;
1251 	complete_ap_thread(st, true);
1252 }
1253 
1254 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1255 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1256 {
1257 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1258 	struct task_struct *idle;
1259 	int ret = 0;
1260 
1261 	cpus_write_lock();
1262 
1263 	if (!cpu_present(cpu)) {
1264 		ret = -EINVAL;
1265 		goto out;
1266 	}
1267 
1268 	/*
1269 	 * The caller of cpu_up() might have raced with another
1270 	 * caller. Nothing to do.
1271 	 */
1272 	if (st->state >= target)
1273 		goto out;
1274 
1275 	if (st->state == CPUHP_OFFLINE) {
1276 		/* Let it fail before we try to bring the cpu up */
1277 		idle = idle_thread_get(cpu);
1278 		if (IS_ERR(idle)) {
1279 			ret = PTR_ERR(idle);
1280 			goto out;
1281 		}
1282 	}
1283 
1284 	cpuhp_tasks_frozen = tasks_frozen;
1285 
1286 	cpuhp_set_state(st, target);
1287 	/*
1288 	 * If the current CPU state is in the range of the AP hotplug thread,
1289 	 * then we need to kick the thread once more.
1290 	 */
1291 	if (st->state > CPUHP_BRINGUP_CPU) {
1292 		ret = cpuhp_kick_ap_work(cpu);
1293 		/*
1294 		 * The AP side has done the error rollback already. Just
1295 		 * return the error code..
1296 		 */
1297 		if (ret)
1298 			goto out;
1299 	}
1300 
1301 	/*
1302 	 * Try to reach the target state. We max out on the BP at
1303 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1304 	 * responsible for bringing it up to the target state.
1305 	 */
1306 	target = min((int)target, CPUHP_BRINGUP_CPU);
1307 	ret = cpuhp_up_callbacks(cpu, st, target);
1308 out:
1309 	cpus_write_unlock();
1310 	arch_smt_update();
1311 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1312 	return ret;
1313 }
1314 
cpu_up(unsigned int cpu,enum cpuhp_state target)1315 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1316 {
1317 	int err = 0;
1318 
1319 	if (!cpu_possible(cpu)) {
1320 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1321 		       cpu);
1322 #if defined(CONFIG_IA64)
1323 		pr_err("please check additional_cpus= boot parameter\n");
1324 #endif
1325 		return -EINVAL;
1326 	}
1327 
1328 	err = try_online_node(cpu_to_node(cpu));
1329 	if (err)
1330 		return err;
1331 
1332 	cpu_maps_update_begin();
1333 
1334 	if (cpu_hotplug_disabled) {
1335 		err = -EBUSY;
1336 		goto out;
1337 	}
1338 	if (!cpu_smt_allowed(cpu)) {
1339 		err = -EPERM;
1340 		goto out;
1341 	}
1342 
1343 	err = _cpu_up(cpu, 0, target);
1344 out:
1345 	cpu_maps_update_done();
1346 	return err;
1347 }
1348 
1349 /**
1350  * cpu_device_up - Bring up a cpu device
1351  * @dev: Pointer to the cpu device to online
1352  *
1353  * This function is meant to be used by device core cpu subsystem only.
1354  *
1355  * Other subsystems should use add_cpu() instead.
1356  */
cpu_device_up(struct device * dev)1357 int cpu_device_up(struct device *dev)
1358 {
1359 	return cpu_up(dev->id, CPUHP_ONLINE);
1360 }
1361 
add_cpu(unsigned int cpu)1362 int add_cpu(unsigned int cpu)
1363 {
1364 	int ret;
1365 
1366 	lock_device_hotplug();
1367 	ret = device_online(get_cpu_device(cpu));
1368 	unlock_device_hotplug();
1369 
1370 	return ret;
1371 }
1372 EXPORT_SYMBOL_GPL(add_cpu);
1373 
1374 /**
1375  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1376  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1377  *
1378  * On some architectures like arm64, we can hibernate on any CPU, but on
1379  * wake up the CPU we hibernated on might be offline as a side effect of
1380  * using maxcpus= for example.
1381  */
bringup_hibernate_cpu(unsigned int sleep_cpu)1382 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1383 {
1384 	int ret;
1385 
1386 	if (!cpu_online(sleep_cpu)) {
1387 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1388 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1389 		if (ret) {
1390 			pr_err("Failed to bring hibernate-CPU up!\n");
1391 			return ret;
1392 		}
1393 	}
1394 	return 0;
1395 }
1396 
bringup_nonboot_cpus(unsigned int setup_max_cpus)1397 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1398 {
1399 	unsigned int cpu;
1400 
1401 	for_each_present_cpu(cpu) {
1402 		if (num_online_cpus() >= setup_max_cpus)
1403 			break;
1404 		if (!cpu_online(cpu))
1405 			cpu_up(cpu, CPUHP_ONLINE);
1406 	}
1407 }
1408 
1409 #ifdef CONFIG_PM_SLEEP_SMP
1410 static cpumask_var_t frozen_cpus;
1411 
freeze_secondary_cpus(int primary)1412 int freeze_secondary_cpus(int primary)
1413 {
1414 	int cpu, error = 0;
1415 
1416 	cpu_maps_update_begin();
1417 	if (primary == -1) {
1418 		primary = cpumask_first(cpu_online_mask);
1419 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1420 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1421 	} else {
1422 		if (!cpu_online(primary))
1423 			primary = cpumask_first(cpu_online_mask);
1424 	}
1425 
1426 	/*
1427 	 * We take down all of the non-boot CPUs in one shot to avoid races
1428 	 * with the userspace trying to use the CPU hotplug at the same time
1429 	 */
1430 	cpumask_clear(frozen_cpus);
1431 
1432 	pr_info("Disabling non-boot CPUs ...\n");
1433 	for_each_online_cpu(cpu) {
1434 		if (cpu == primary)
1435 			continue;
1436 
1437 		if (pm_wakeup_pending()) {
1438 			pr_info("Wakeup pending. Abort CPU freeze\n");
1439 			error = -EBUSY;
1440 			break;
1441 		}
1442 
1443 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1444 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1445 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1446 		if (!error)
1447 			cpumask_set_cpu(cpu, frozen_cpus);
1448 		else {
1449 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1450 			break;
1451 		}
1452 	}
1453 
1454 	if (!error)
1455 		BUG_ON(num_online_cpus() > 1);
1456 	else
1457 		pr_err("Non-boot CPUs are not disabled\n");
1458 
1459 	/*
1460 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1461 	 * this even in case of failure as all freeze_secondary_cpus() users are
1462 	 * supposed to do thaw_secondary_cpus() on the failure path.
1463 	 */
1464 	cpu_hotplug_disabled++;
1465 
1466 	cpu_maps_update_done();
1467 	return error;
1468 }
1469 
arch_thaw_secondary_cpus_begin(void)1470 void __weak arch_thaw_secondary_cpus_begin(void)
1471 {
1472 }
1473 
arch_thaw_secondary_cpus_end(void)1474 void __weak arch_thaw_secondary_cpus_end(void)
1475 {
1476 }
1477 
thaw_secondary_cpus(void)1478 void thaw_secondary_cpus(void)
1479 {
1480 	int cpu, error;
1481 
1482 	/* Allow everyone to use the CPU hotplug again */
1483 	cpu_maps_update_begin();
1484 	__cpu_hotplug_enable();
1485 	if (cpumask_empty(frozen_cpus))
1486 		goto out;
1487 
1488 	pr_info("Enabling non-boot CPUs ...\n");
1489 
1490 	arch_thaw_secondary_cpus_begin();
1491 
1492 	for_each_cpu(cpu, frozen_cpus) {
1493 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1494 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1495 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1496 		if (!error) {
1497 			pr_info("CPU%d is up\n", cpu);
1498 			continue;
1499 		}
1500 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1501 	}
1502 
1503 	arch_thaw_secondary_cpus_end();
1504 
1505 	cpumask_clear(frozen_cpus);
1506 out:
1507 	cpu_maps_update_done();
1508 }
1509 
alloc_frozen_cpus(void)1510 static int __init alloc_frozen_cpus(void)
1511 {
1512 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1513 		return -ENOMEM;
1514 	return 0;
1515 }
1516 core_initcall(alloc_frozen_cpus);
1517 
1518 /*
1519  * When callbacks for CPU hotplug notifications are being executed, we must
1520  * ensure that the state of the system with respect to the tasks being frozen
1521  * or not, as reported by the notification, remains unchanged *throughout the
1522  * duration* of the execution of the callbacks.
1523  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1524  *
1525  * This synchronization is implemented by mutually excluding regular CPU
1526  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1527  * Hibernate notifications.
1528  */
1529 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1530 cpu_hotplug_pm_callback(struct notifier_block *nb,
1531 			unsigned long action, void *ptr)
1532 {
1533 	switch (action) {
1534 
1535 	case PM_SUSPEND_PREPARE:
1536 	case PM_HIBERNATION_PREPARE:
1537 		cpu_hotplug_disable();
1538 		break;
1539 
1540 	case PM_POST_SUSPEND:
1541 	case PM_POST_HIBERNATION:
1542 		cpu_hotplug_enable();
1543 		break;
1544 
1545 	default:
1546 		return NOTIFY_DONE;
1547 	}
1548 
1549 	return NOTIFY_OK;
1550 }
1551 
1552 
cpu_hotplug_pm_sync_init(void)1553 static int __init cpu_hotplug_pm_sync_init(void)
1554 {
1555 	/*
1556 	 * cpu_hotplug_pm_callback has higher priority than x86
1557 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1558 	 * to disable cpu hotplug to avoid cpu hotplug race.
1559 	 */
1560 	pm_notifier(cpu_hotplug_pm_callback, 0);
1561 	return 0;
1562 }
1563 core_initcall(cpu_hotplug_pm_sync_init);
1564 
1565 #endif /* CONFIG_PM_SLEEP_SMP */
1566 
1567 int __boot_cpu_id;
1568 
1569 #endif /* CONFIG_SMP */
1570 
1571 /* Boot processor state steps */
1572 static struct cpuhp_step cpuhp_hp_states[] = {
1573 	[CPUHP_OFFLINE] = {
1574 		.name			= "offline",
1575 		.startup.single		= NULL,
1576 		.teardown.single	= NULL,
1577 	},
1578 #ifdef CONFIG_SMP
1579 	[CPUHP_CREATE_THREADS]= {
1580 		.name			= "threads:prepare",
1581 		.startup.single		= smpboot_create_threads,
1582 		.teardown.single	= NULL,
1583 		.cant_stop		= true,
1584 	},
1585 	[CPUHP_PERF_PREPARE] = {
1586 		.name			= "perf:prepare",
1587 		.startup.single		= perf_event_init_cpu,
1588 		.teardown.single	= perf_event_exit_cpu,
1589 	},
1590 	[CPUHP_RANDOM_PREPARE] = {
1591 		.name			= "random:prepare",
1592 		.startup.single		= random_prepare_cpu,
1593 		.teardown.single	= NULL,
1594 	},
1595 	[CPUHP_WORKQUEUE_PREP] = {
1596 		.name			= "workqueue:prepare",
1597 		.startup.single		= workqueue_prepare_cpu,
1598 		.teardown.single	= NULL,
1599 	},
1600 	[CPUHP_HRTIMERS_PREPARE] = {
1601 		.name			= "hrtimers:prepare",
1602 		.startup.single		= hrtimers_prepare_cpu,
1603 		.teardown.single	= hrtimers_dead_cpu,
1604 	},
1605 	[CPUHP_SMPCFD_PREPARE] = {
1606 		.name			= "smpcfd:prepare",
1607 		.startup.single		= smpcfd_prepare_cpu,
1608 		.teardown.single	= smpcfd_dead_cpu,
1609 	},
1610 	[CPUHP_RELAY_PREPARE] = {
1611 		.name			= "relay:prepare",
1612 		.startup.single		= relay_prepare_cpu,
1613 		.teardown.single	= NULL,
1614 	},
1615 	[CPUHP_SLAB_PREPARE] = {
1616 		.name			= "slab:prepare",
1617 		.startup.single		= slab_prepare_cpu,
1618 		.teardown.single	= slab_dead_cpu,
1619 	},
1620 	[CPUHP_RCUTREE_PREP] = {
1621 		.name			= "RCU/tree:prepare",
1622 		.startup.single		= rcutree_prepare_cpu,
1623 		.teardown.single	= rcutree_dead_cpu,
1624 	},
1625 	/*
1626 	 * On the tear-down path, timers_dead_cpu() must be invoked
1627 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1628 	 * otherwise a RCU stall occurs.
1629 	 */
1630 	[CPUHP_TIMERS_PREPARE] = {
1631 		.name			= "timers:prepare",
1632 		.startup.single		= timers_prepare_cpu,
1633 		.teardown.single	= timers_dead_cpu,
1634 	},
1635 	/* Kicks the plugged cpu into life */
1636 	[CPUHP_BRINGUP_CPU] = {
1637 		.name			= "cpu:bringup",
1638 		.startup.single		= bringup_cpu,
1639 		.teardown.single	= finish_cpu,
1640 		.cant_stop		= true,
1641 	},
1642 	/* Final state before CPU kills itself */
1643 	[CPUHP_AP_IDLE_DEAD] = {
1644 		.name			= "idle:dead",
1645 	},
1646 	/*
1647 	 * Last state before CPU enters the idle loop to die. Transient state
1648 	 * for synchronization.
1649 	 */
1650 	[CPUHP_AP_OFFLINE] = {
1651 		.name			= "ap:offline",
1652 		.cant_stop		= true,
1653 	},
1654 	/* First state is scheduler control. Interrupts are disabled */
1655 	[CPUHP_AP_SCHED_STARTING] = {
1656 		.name			= "sched:starting",
1657 		.startup.single		= sched_cpu_starting,
1658 		.teardown.single	= sched_cpu_dying,
1659 	},
1660 	[CPUHP_AP_RCUTREE_DYING] = {
1661 		.name			= "RCU/tree:dying",
1662 		.startup.single		= NULL,
1663 		.teardown.single	= rcutree_dying_cpu,
1664 	},
1665 	[CPUHP_AP_SMPCFD_DYING] = {
1666 		.name			= "smpcfd:dying",
1667 		.startup.single		= NULL,
1668 		.teardown.single	= smpcfd_dying_cpu,
1669 	},
1670 	/* Entry state on starting. Interrupts enabled from here on. Transient
1671 	 * state for synchronsization */
1672 	[CPUHP_AP_ONLINE] = {
1673 		.name			= "ap:online",
1674 	},
1675 	/*
1676 	 * Handled on controll processor until the plugged processor manages
1677 	 * this itself.
1678 	 */
1679 	[CPUHP_TEARDOWN_CPU] = {
1680 		.name			= "cpu:teardown",
1681 		.startup.single		= NULL,
1682 		.teardown.single	= takedown_cpu,
1683 		.cant_stop		= true,
1684 	},
1685 	/* Handle smpboot threads park/unpark */
1686 	[CPUHP_AP_SMPBOOT_THREADS] = {
1687 		.name			= "smpboot/threads:online",
1688 		.startup.single		= smpboot_unpark_threads,
1689 		.teardown.single	= smpboot_park_threads,
1690 	},
1691 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1692 		.name			= "irq/affinity:online",
1693 		.startup.single		= irq_affinity_online_cpu,
1694 		.teardown.single	= NULL,
1695 	},
1696 	[CPUHP_AP_PERF_ONLINE] = {
1697 		.name			= "perf:online",
1698 		.startup.single		= perf_event_init_cpu,
1699 		.teardown.single	= perf_event_exit_cpu,
1700 	},
1701 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1702 		.name			= "lockup_detector:online",
1703 		.startup.single		= lockup_detector_online_cpu,
1704 		.teardown.single	= lockup_detector_offline_cpu,
1705 	},
1706 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1707 		.name			= "workqueue:online",
1708 		.startup.single		= workqueue_online_cpu,
1709 		.teardown.single	= workqueue_offline_cpu,
1710 	},
1711 	[CPUHP_AP_RANDOM_ONLINE] = {
1712 		.name			= "random:online",
1713 		.startup.single		= random_online_cpu,
1714 		.teardown.single	= NULL,
1715 	},
1716 	[CPUHP_AP_RCUTREE_ONLINE] = {
1717 		.name			= "RCU/tree:online",
1718 		.startup.single		= rcutree_online_cpu,
1719 		.teardown.single	= rcutree_offline_cpu,
1720 	},
1721 #endif
1722 	/*
1723 	 * The dynamically registered state space is here
1724 	 */
1725 
1726 #ifdef CONFIG_SMP
1727 	/* Last state is scheduler control setting the cpu active */
1728 	[CPUHP_AP_ACTIVE] = {
1729 		.name			= "sched:active",
1730 		.startup.single		= sched_cpu_activate,
1731 		.teardown.single	= sched_cpu_deactivate,
1732 	},
1733 #endif
1734 
1735 	/* CPU is fully up and running. */
1736 	[CPUHP_ONLINE] = {
1737 		.name			= "online",
1738 		.startup.single		= NULL,
1739 		.teardown.single	= NULL,
1740 	},
1741 };
1742 
1743 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1744 static int cpuhp_cb_check(enum cpuhp_state state)
1745 {
1746 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1747 		return -EINVAL;
1748 	return 0;
1749 }
1750 
1751 /*
1752  * Returns a free for dynamic slot assignment of the Online state. The states
1753  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1754  * by having no name assigned.
1755  */
cpuhp_reserve_state(enum cpuhp_state state)1756 static int cpuhp_reserve_state(enum cpuhp_state state)
1757 {
1758 	enum cpuhp_state i, end;
1759 	struct cpuhp_step *step;
1760 
1761 	switch (state) {
1762 	case CPUHP_AP_ONLINE_DYN:
1763 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1764 		end = CPUHP_AP_ONLINE_DYN_END;
1765 		break;
1766 	case CPUHP_BP_PREPARE_DYN:
1767 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1768 		end = CPUHP_BP_PREPARE_DYN_END;
1769 		break;
1770 	default:
1771 		return -EINVAL;
1772 	}
1773 
1774 	for (i = state; i <= end; i++, step++) {
1775 		if (!step->name)
1776 			return i;
1777 	}
1778 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1779 	return -ENOSPC;
1780 }
1781 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1782 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1783 				 int (*startup)(unsigned int cpu),
1784 				 int (*teardown)(unsigned int cpu),
1785 				 bool multi_instance)
1786 {
1787 	/* (Un)Install the callbacks for further cpu hotplug operations */
1788 	struct cpuhp_step *sp;
1789 	int ret = 0;
1790 
1791 	/*
1792 	 * If name is NULL, then the state gets removed.
1793 	 *
1794 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1795 	 * the first allocation from these dynamic ranges, so the removal
1796 	 * would trigger a new allocation and clear the wrong (already
1797 	 * empty) state, leaving the callbacks of the to be cleared state
1798 	 * dangling, which causes wreckage on the next hotplug operation.
1799 	 */
1800 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1801 		     state == CPUHP_BP_PREPARE_DYN)) {
1802 		ret = cpuhp_reserve_state(state);
1803 		if (ret < 0)
1804 			return ret;
1805 		state = ret;
1806 	}
1807 	sp = cpuhp_get_step(state);
1808 	if (name && sp->name)
1809 		return -EBUSY;
1810 
1811 	sp->startup.single = startup;
1812 	sp->teardown.single = teardown;
1813 	sp->name = name;
1814 	sp->multi_instance = multi_instance;
1815 	INIT_HLIST_HEAD(&sp->list);
1816 	return ret;
1817 }
1818 
cpuhp_get_teardown_cb(enum cpuhp_state state)1819 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1820 {
1821 	return cpuhp_get_step(state)->teardown.single;
1822 }
1823 
1824 /*
1825  * Call the startup/teardown function for a step either on the AP or
1826  * on the current CPU.
1827  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1828 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1829 			    struct hlist_node *node)
1830 {
1831 	struct cpuhp_step *sp = cpuhp_get_step(state);
1832 	int ret;
1833 
1834 	/*
1835 	 * If there's nothing to do, we done.
1836 	 * Relies on the union for multi_instance.
1837 	 */
1838 	if ((bringup && !sp->startup.single) ||
1839 	    (!bringup && !sp->teardown.single))
1840 		return 0;
1841 	/*
1842 	 * The non AP bound callbacks can fail on bringup. On teardown
1843 	 * e.g. module removal we crash for now.
1844 	 */
1845 #ifdef CONFIG_SMP
1846 	if (cpuhp_is_ap_state(state))
1847 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1848 	else
1849 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1850 #else
1851 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1852 #endif
1853 	BUG_ON(ret && !bringup);
1854 	return ret;
1855 }
1856 
1857 /*
1858  * Called from __cpuhp_setup_state on a recoverable failure.
1859  *
1860  * Note: The teardown callbacks for rollback are not allowed to fail!
1861  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1862 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1863 				   struct hlist_node *node)
1864 {
1865 	int cpu;
1866 
1867 	/* Roll back the already executed steps on the other cpus */
1868 	for_each_present_cpu(cpu) {
1869 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1870 		int cpustate = st->state;
1871 
1872 		if (cpu >= failedcpu)
1873 			break;
1874 
1875 		/* Did we invoke the startup call on that cpu ? */
1876 		if (cpustate >= state)
1877 			cpuhp_issue_call(cpu, state, false, node);
1878 	}
1879 }
1880 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1881 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1882 					  struct hlist_node *node,
1883 					  bool invoke)
1884 {
1885 	struct cpuhp_step *sp;
1886 	int cpu;
1887 	int ret;
1888 
1889 	lockdep_assert_cpus_held();
1890 
1891 	sp = cpuhp_get_step(state);
1892 	if (sp->multi_instance == false)
1893 		return -EINVAL;
1894 
1895 	mutex_lock(&cpuhp_state_mutex);
1896 
1897 	if (!invoke || !sp->startup.multi)
1898 		goto add_node;
1899 
1900 	/*
1901 	 * Try to call the startup callback for each present cpu
1902 	 * depending on the hotplug state of the cpu.
1903 	 */
1904 	for_each_present_cpu(cpu) {
1905 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1906 		int cpustate = st->state;
1907 
1908 		if (cpustate < state)
1909 			continue;
1910 
1911 		ret = cpuhp_issue_call(cpu, state, true, node);
1912 		if (ret) {
1913 			if (sp->teardown.multi)
1914 				cpuhp_rollback_install(cpu, state, node);
1915 			goto unlock;
1916 		}
1917 	}
1918 add_node:
1919 	ret = 0;
1920 	hlist_add_head(node, &sp->list);
1921 unlock:
1922 	mutex_unlock(&cpuhp_state_mutex);
1923 	return ret;
1924 }
1925 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1926 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1927 			       bool invoke)
1928 {
1929 	int ret;
1930 
1931 	cpus_read_lock();
1932 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1933 	cpus_read_unlock();
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1937 
1938 /**
1939  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1940  * @state:		The state to setup
1941  * @invoke:		If true, the startup function is invoked for cpus where
1942  *			cpu state >= @state
1943  * @startup:		startup callback function
1944  * @teardown:		teardown callback function
1945  * @multi_instance:	State is set up for multiple instances which get
1946  *			added afterwards.
1947  *
1948  * The caller needs to hold cpus read locked while calling this function.
1949  * Returns:
1950  *   On success:
1951  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1952  *      0 for all other states
1953  *   On failure: proper (negative) error code
1954  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1955 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1956 				   const char *name, bool invoke,
1957 				   int (*startup)(unsigned int cpu),
1958 				   int (*teardown)(unsigned int cpu),
1959 				   bool multi_instance)
1960 {
1961 	int cpu, ret = 0;
1962 	bool dynstate;
1963 
1964 	lockdep_assert_cpus_held();
1965 
1966 	if (cpuhp_cb_check(state) || !name)
1967 		return -EINVAL;
1968 
1969 	mutex_lock(&cpuhp_state_mutex);
1970 
1971 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1972 				    multi_instance);
1973 
1974 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1975 	if (ret > 0 && dynstate) {
1976 		state = ret;
1977 		ret = 0;
1978 	}
1979 
1980 	if (ret || !invoke || !startup)
1981 		goto out;
1982 
1983 	/*
1984 	 * Try to call the startup callback for each present cpu
1985 	 * depending on the hotplug state of the cpu.
1986 	 */
1987 	for_each_present_cpu(cpu) {
1988 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1989 		int cpustate = st->state;
1990 
1991 		if (cpustate < state)
1992 			continue;
1993 
1994 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1995 		if (ret) {
1996 			if (teardown)
1997 				cpuhp_rollback_install(cpu, state, NULL);
1998 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1999 			goto out;
2000 		}
2001 	}
2002 out:
2003 	mutex_unlock(&cpuhp_state_mutex);
2004 	/*
2005 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2006 	 * dynamically allocated state in case of success.
2007 	 */
2008 	if (!ret && dynstate)
2009 		return state;
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2013 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2014 int __cpuhp_setup_state(enum cpuhp_state state,
2015 			const char *name, bool invoke,
2016 			int (*startup)(unsigned int cpu),
2017 			int (*teardown)(unsigned int cpu),
2018 			bool multi_instance)
2019 {
2020 	int ret;
2021 
2022 	cpus_read_lock();
2023 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2024 					     teardown, multi_instance);
2025 	cpus_read_unlock();
2026 	return ret;
2027 }
2028 EXPORT_SYMBOL(__cpuhp_setup_state);
2029 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2030 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2031 				  struct hlist_node *node, bool invoke)
2032 {
2033 	struct cpuhp_step *sp = cpuhp_get_step(state);
2034 	int cpu;
2035 
2036 	BUG_ON(cpuhp_cb_check(state));
2037 
2038 	if (!sp->multi_instance)
2039 		return -EINVAL;
2040 
2041 	cpus_read_lock();
2042 	mutex_lock(&cpuhp_state_mutex);
2043 
2044 	if (!invoke || !cpuhp_get_teardown_cb(state))
2045 		goto remove;
2046 	/*
2047 	 * Call the teardown callback for each present cpu depending
2048 	 * on the hotplug state of the cpu. This function is not
2049 	 * allowed to fail currently!
2050 	 */
2051 	for_each_present_cpu(cpu) {
2052 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2053 		int cpustate = st->state;
2054 
2055 		if (cpustate >= state)
2056 			cpuhp_issue_call(cpu, state, false, node);
2057 	}
2058 
2059 remove:
2060 	hlist_del(node);
2061 	mutex_unlock(&cpuhp_state_mutex);
2062 	cpus_read_unlock();
2063 
2064 	return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2067 
2068 /**
2069  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2070  * @state:	The state to remove
2071  * @invoke:	If true, the teardown function is invoked for cpus where
2072  *		cpu state >= @state
2073  *
2074  * The caller needs to hold cpus read locked while calling this function.
2075  * The teardown callback is currently not allowed to fail. Think
2076  * about module removal!
2077  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2078 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2079 {
2080 	struct cpuhp_step *sp = cpuhp_get_step(state);
2081 	int cpu;
2082 
2083 	BUG_ON(cpuhp_cb_check(state));
2084 
2085 	lockdep_assert_cpus_held();
2086 
2087 	mutex_lock(&cpuhp_state_mutex);
2088 	if (sp->multi_instance) {
2089 		WARN(!hlist_empty(&sp->list),
2090 		     "Error: Removing state %d which has instances left.\n",
2091 		     state);
2092 		goto remove;
2093 	}
2094 
2095 	if (!invoke || !cpuhp_get_teardown_cb(state))
2096 		goto remove;
2097 
2098 	/*
2099 	 * Call the teardown callback for each present cpu depending
2100 	 * on the hotplug state of the cpu. This function is not
2101 	 * allowed to fail currently!
2102 	 */
2103 	for_each_present_cpu(cpu) {
2104 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2105 		int cpustate = st->state;
2106 
2107 		if (cpustate >= state)
2108 			cpuhp_issue_call(cpu, state, false, NULL);
2109 	}
2110 remove:
2111 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2112 	mutex_unlock(&cpuhp_state_mutex);
2113 }
2114 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2115 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2116 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2117 {
2118 	cpus_read_lock();
2119 	__cpuhp_remove_state_cpuslocked(state, invoke);
2120 	cpus_read_unlock();
2121 }
2122 EXPORT_SYMBOL(__cpuhp_remove_state);
2123 
2124 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2125 static void cpuhp_offline_cpu_device(unsigned int cpu)
2126 {
2127 	struct device *dev = get_cpu_device(cpu);
2128 
2129 	dev->offline = true;
2130 	/* Tell user space about the state change */
2131 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2132 }
2133 
cpuhp_online_cpu_device(unsigned int cpu)2134 static void cpuhp_online_cpu_device(unsigned int cpu)
2135 {
2136 	struct device *dev = get_cpu_device(cpu);
2137 
2138 	dev->offline = false;
2139 	/* Tell user space about the state change */
2140 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2141 }
2142 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2143 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2144 {
2145 	int cpu, ret = 0;
2146 
2147 	cpu_maps_update_begin();
2148 	for_each_online_cpu(cpu) {
2149 		if (topology_is_primary_thread(cpu))
2150 			continue;
2151 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2152 		if (ret)
2153 			break;
2154 		/*
2155 		 * As this needs to hold the cpu maps lock it's impossible
2156 		 * to call device_offline() because that ends up calling
2157 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2158 		 * needs to be held as this might race against in kernel
2159 		 * abusers of the hotplug machinery (thermal management).
2160 		 *
2161 		 * So nothing would update device:offline state. That would
2162 		 * leave the sysfs entry stale and prevent onlining after
2163 		 * smt control has been changed to 'off' again. This is
2164 		 * called under the sysfs hotplug lock, so it is properly
2165 		 * serialized against the regular offline usage.
2166 		 */
2167 		cpuhp_offline_cpu_device(cpu);
2168 	}
2169 	if (!ret)
2170 		cpu_smt_control = ctrlval;
2171 	cpu_maps_update_done();
2172 	return ret;
2173 }
2174 
cpuhp_smt_enable(void)2175 int cpuhp_smt_enable(void)
2176 {
2177 	int cpu, ret = 0;
2178 
2179 	cpu_maps_update_begin();
2180 	cpu_smt_control = CPU_SMT_ENABLED;
2181 	for_each_present_cpu(cpu) {
2182 		/* Skip online CPUs and CPUs on offline nodes */
2183 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2184 			continue;
2185 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2186 		if (ret)
2187 			break;
2188 		/* See comment in cpuhp_smt_disable() */
2189 		cpuhp_online_cpu_device(cpu);
2190 	}
2191 	cpu_maps_update_done();
2192 	return ret;
2193 }
2194 #endif
2195 
2196 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)2197 static ssize_t show_cpuhp_state(struct device *dev,
2198 				struct device_attribute *attr, char *buf)
2199 {
2200 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2201 
2202 	return sprintf(buf, "%d\n", st->state);
2203 }
2204 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2205 
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2206 static ssize_t write_cpuhp_target(struct device *dev,
2207 				  struct device_attribute *attr,
2208 				  const char *buf, size_t count)
2209 {
2210 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2211 	struct cpuhp_step *sp;
2212 	int target, ret;
2213 
2214 	ret = kstrtoint(buf, 10, &target);
2215 	if (ret)
2216 		return ret;
2217 
2218 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2219 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2220 		return -EINVAL;
2221 #else
2222 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2223 		return -EINVAL;
2224 #endif
2225 
2226 	ret = lock_device_hotplug_sysfs();
2227 	if (ret)
2228 		return ret;
2229 
2230 	mutex_lock(&cpuhp_state_mutex);
2231 	sp = cpuhp_get_step(target);
2232 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2233 	mutex_unlock(&cpuhp_state_mutex);
2234 	if (ret)
2235 		goto out;
2236 
2237 	if (st->state < target)
2238 		ret = cpu_up(dev->id, target);
2239 	else if (st->state > target)
2240 		ret = cpu_down(dev->id, target);
2241 	else if (WARN_ON(st->target != target))
2242 		st->target = target;
2243 out:
2244 	unlock_device_hotplug();
2245 	return ret ? ret : count;
2246 }
2247 
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2248 static ssize_t show_cpuhp_target(struct device *dev,
2249 				 struct device_attribute *attr, char *buf)
2250 {
2251 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2252 
2253 	return sprintf(buf, "%d\n", st->target);
2254 }
2255 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2256 
2257 
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2258 static ssize_t write_cpuhp_fail(struct device *dev,
2259 				struct device_attribute *attr,
2260 				const char *buf, size_t count)
2261 {
2262 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2263 	struct cpuhp_step *sp;
2264 	int fail, ret;
2265 
2266 	ret = kstrtoint(buf, 10, &fail);
2267 	if (ret)
2268 		return ret;
2269 
2270 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2271 		return -EINVAL;
2272 
2273 	/*
2274 	 * Cannot fail STARTING/DYING callbacks.
2275 	 */
2276 	if (cpuhp_is_atomic_state(fail))
2277 		return -EINVAL;
2278 
2279 	/*
2280 	 * Cannot fail anything that doesn't have callbacks.
2281 	 */
2282 	mutex_lock(&cpuhp_state_mutex);
2283 	sp = cpuhp_get_step(fail);
2284 	if (!sp->startup.single && !sp->teardown.single)
2285 		ret = -EINVAL;
2286 	mutex_unlock(&cpuhp_state_mutex);
2287 	if (ret)
2288 		return ret;
2289 
2290 	st->fail = fail;
2291 
2292 	return count;
2293 }
2294 
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2295 static ssize_t show_cpuhp_fail(struct device *dev,
2296 			       struct device_attribute *attr, char *buf)
2297 {
2298 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2299 
2300 	return sprintf(buf, "%d\n", st->fail);
2301 }
2302 
2303 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2304 
2305 static struct attribute *cpuhp_cpu_attrs[] = {
2306 	&dev_attr_state.attr,
2307 	&dev_attr_target.attr,
2308 	&dev_attr_fail.attr,
2309 	NULL
2310 };
2311 
2312 static const struct attribute_group cpuhp_cpu_attr_group = {
2313 	.attrs = cpuhp_cpu_attrs,
2314 	.name = "hotplug",
2315 	NULL
2316 };
2317 
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2318 static ssize_t show_cpuhp_states(struct device *dev,
2319 				 struct device_attribute *attr, char *buf)
2320 {
2321 	ssize_t cur, res = 0;
2322 	int i;
2323 
2324 	mutex_lock(&cpuhp_state_mutex);
2325 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2326 		struct cpuhp_step *sp = cpuhp_get_step(i);
2327 
2328 		if (sp->name) {
2329 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2330 			buf += cur;
2331 			res += cur;
2332 		}
2333 	}
2334 	mutex_unlock(&cpuhp_state_mutex);
2335 	return res;
2336 }
2337 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2338 
2339 static struct attribute *cpuhp_cpu_root_attrs[] = {
2340 	&dev_attr_states.attr,
2341 	NULL
2342 };
2343 
2344 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2345 	.attrs = cpuhp_cpu_root_attrs,
2346 	.name = "hotplug",
2347 	NULL
2348 };
2349 
2350 #ifdef CONFIG_HOTPLUG_SMT
2351 
2352 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2353 __store_smt_control(struct device *dev, struct device_attribute *attr,
2354 		    const char *buf, size_t count)
2355 {
2356 	int ctrlval, ret;
2357 
2358 	if (sysfs_streq(buf, "on"))
2359 		ctrlval = CPU_SMT_ENABLED;
2360 	else if (sysfs_streq(buf, "off"))
2361 		ctrlval = CPU_SMT_DISABLED;
2362 	else if (sysfs_streq(buf, "forceoff"))
2363 		ctrlval = CPU_SMT_FORCE_DISABLED;
2364 	else
2365 		return -EINVAL;
2366 
2367 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2368 		return -EPERM;
2369 
2370 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2371 		return -ENODEV;
2372 
2373 	ret = lock_device_hotplug_sysfs();
2374 	if (ret)
2375 		return ret;
2376 
2377 	if (ctrlval != cpu_smt_control) {
2378 		switch (ctrlval) {
2379 		case CPU_SMT_ENABLED:
2380 			ret = cpuhp_smt_enable();
2381 			break;
2382 		case CPU_SMT_DISABLED:
2383 		case CPU_SMT_FORCE_DISABLED:
2384 			ret = cpuhp_smt_disable(ctrlval);
2385 			break;
2386 		}
2387 	}
2388 
2389 	unlock_device_hotplug();
2390 	return ret ? ret : count;
2391 }
2392 
2393 #else /* !CONFIG_HOTPLUG_SMT */
2394 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2395 __store_smt_control(struct device *dev, struct device_attribute *attr,
2396 		    const char *buf, size_t count)
2397 {
2398 	return -ENODEV;
2399 }
2400 #endif /* CONFIG_HOTPLUG_SMT */
2401 
2402 static const char *smt_states[] = {
2403 	[CPU_SMT_ENABLED]		= "on",
2404 	[CPU_SMT_DISABLED]		= "off",
2405 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2406 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2407 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2408 };
2409 
2410 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2411 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2412 {
2413 	const char *state = smt_states[cpu_smt_control];
2414 
2415 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2416 }
2417 
2418 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2419 store_smt_control(struct device *dev, struct device_attribute *attr,
2420 		  const char *buf, size_t count)
2421 {
2422 	return __store_smt_control(dev, attr, buf, count);
2423 }
2424 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2425 
2426 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2427 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2428 {
2429 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2430 }
2431 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2432 
2433 static struct attribute *cpuhp_smt_attrs[] = {
2434 	&dev_attr_control.attr,
2435 	&dev_attr_active.attr,
2436 	NULL
2437 };
2438 
2439 static const struct attribute_group cpuhp_smt_attr_group = {
2440 	.attrs = cpuhp_smt_attrs,
2441 	.name = "smt",
2442 	NULL
2443 };
2444 
cpu_smt_sysfs_init(void)2445 static int __init cpu_smt_sysfs_init(void)
2446 {
2447 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2448 				  &cpuhp_smt_attr_group);
2449 }
2450 
cpuhp_sysfs_init(void)2451 static int __init cpuhp_sysfs_init(void)
2452 {
2453 	int cpu, ret;
2454 
2455 	ret = cpu_smt_sysfs_init();
2456 	if (ret)
2457 		return ret;
2458 
2459 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2460 				 &cpuhp_cpu_root_attr_group);
2461 	if (ret)
2462 		return ret;
2463 
2464 	for_each_possible_cpu(cpu) {
2465 		struct device *dev = get_cpu_device(cpu);
2466 
2467 		if (!dev)
2468 			continue;
2469 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2470 		if (ret)
2471 			return ret;
2472 	}
2473 	return 0;
2474 }
2475 device_initcall(cpuhp_sysfs_init);
2476 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2477 
2478 /*
2479  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2480  * represents all NR_CPUS bits binary values of 1<<nr.
2481  *
2482  * It is used by cpumask_of() to get a constant address to a CPU
2483  * mask value that has a single bit set only.
2484  */
2485 
2486 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2487 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2488 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2489 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2490 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2491 
2492 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2493 
2494 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2495 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2496 #if BITS_PER_LONG > 32
2497 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2498 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2499 #endif
2500 };
2501 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2502 
2503 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2504 EXPORT_SYMBOL(cpu_all_bits);
2505 
2506 #ifdef CONFIG_INIT_ALL_POSSIBLE
2507 struct cpumask __cpu_possible_mask __read_mostly
2508 	= {CPU_BITS_ALL};
2509 #else
2510 struct cpumask __cpu_possible_mask __read_mostly;
2511 #endif
2512 EXPORT_SYMBOL(__cpu_possible_mask);
2513 
2514 struct cpumask __cpu_online_mask __read_mostly;
2515 EXPORT_SYMBOL(__cpu_online_mask);
2516 
2517 struct cpumask __cpu_present_mask __read_mostly;
2518 EXPORT_SYMBOL(__cpu_present_mask);
2519 
2520 struct cpumask __cpu_active_mask __read_mostly;
2521 EXPORT_SYMBOL(__cpu_active_mask);
2522 
2523 #ifdef CONFIG_CPU_ISOLATION_OPT
2524 struct cpumask __cpu_isolated_mask __read_mostly;
2525 EXPORT_SYMBOL(__cpu_isolated_mask);
2526 #endif
2527 
2528 atomic_t __num_online_cpus __read_mostly;
2529 EXPORT_SYMBOL(__num_online_cpus);
2530 
init_cpu_present(const struct cpumask * src)2531 void init_cpu_present(const struct cpumask *src)
2532 {
2533 	cpumask_copy(&__cpu_present_mask, src);
2534 }
2535 
init_cpu_possible(const struct cpumask * src)2536 void init_cpu_possible(const struct cpumask *src)
2537 {
2538 	cpumask_copy(&__cpu_possible_mask, src);
2539 }
2540 
init_cpu_online(const struct cpumask * src)2541 void init_cpu_online(const struct cpumask *src)
2542 {
2543 	cpumask_copy(&__cpu_online_mask, src);
2544 }
2545 
2546 #ifdef CONFIG_CPU_ISOLATION_OPT
init_cpu_isolated(const struct cpumask * src)2547 void init_cpu_isolated(const struct cpumask *src)
2548 {
2549 	cpumask_copy(&__cpu_isolated_mask, src);
2550 }
2551 #endif
2552 
set_cpu_online(unsigned int cpu,bool online)2553 void set_cpu_online(unsigned int cpu, bool online)
2554 {
2555 	/*
2556 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2557 	 * function by the reboot and kexec code which invoke it from
2558 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2559 	 * regular CPU hotplug is properly serialized.
2560 	 *
2561 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2562 	 * does not protect readers which are not serialized against
2563 	 * concurrent hotplug operations.
2564 	 */
2565 	if (online) {
2566 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2567 			atomic_inc(&__num_online_cpus);
2568 	} else {
2569 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2570 			atomic_dec(&__num_online_cpus);
2571 	}
2572 }
2573 
2574 /*
2575  * Activate the first processor.
2576  */
boot_cpu_init(void)2577 void __init boot_cpu_init(void)
2578 {
2579 	int cpu = smp_processor_id();
2580 
2581 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2582 	set_cpu_online(cpu, true);
2583 	set_cpu_active(cpu, true);
2584 	set_cpu_present(cpu, true);
2585 	set_cpu_possible(cpu, true);
2586 
2587 #ifdef CONFIG_SMP
2588 	__boot_cpu_id = cpu;
2589 #endif
2590 }
2591 
2592 /*
2593  * Must be called _AFTER_ setting up the per_cpu areas
2594  */
boot_cpu_hotplug_init(void)2595 void __init boot_cpu_hotplug_init(void)
2596 {
2597 #ifdef CONFIG_SMP
2598 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2599 #endif
2600 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2601 }
2602 
2603 /*
2604  * These are used for a global "mitigations=" cmdline option for toggling
2605  * optional CPU mitigations.
2606  */
2607 enum cpu_mitigations {
2608 	CPU_MITIGATIONS_OFF,
2609 	CPU_MITIGATIONS_AUTO,
2610 	CPU_MITIGATIONS_AUTO_NOSMT,
2611 };
2612 
2613 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2614 	CPU_MITIGATIONS_AUTO;
2615 
mitigations_parse_cmdline(char * arg)2616 static int __init mitigations_parse_cmdline(char *arg)
2617 {
2618 	if (!strcmp(arg, "off"))
2619 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2620 	else if (!strcmp(arg, "auto"))
2621 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2622 	else if (!strcmp(arg, "auto,nosmt"))
2623 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2624 	else
2625 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2626 			arg);
2627 
2628 	return 0;
2629 }
2630 early_param("mitigations", mitigations_parse_cmdline);
2631 
2632 /* mitigations=off */
cpu_mitigations_off(void)2633 bool cpu_mitigations_off(void)
2634 {
2635 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2636 }
2637 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2638 
2639 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2640 bool cpu_mitigations_auto_nosmt(void)
2641 {
2642 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2643 }
2644 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2645