• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 
20 #include <uapi/linux/bpf.h>
21 #include <uapi/linux/btf.h>
22 
23 #include <asm/tlb.h>
24 
25 #include "trace_probe.h"
26 #include "trace.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "bpf_trace.h"
30 
31 #define bpf_event_rcu_dereference(p)					\
32 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
33 
34 #ifdef CONFIG_MODULES
35 struct bpf_trace_module {
36 	struct module *module;
37 	struct list_head list;
38 };
39 
40 static LIST_HEAD(bpf_trace_modules);
41 static DEFINE_MUTEX(bpf_module_mutex);
42 
bpf_get_raw_tracepoint_module(const char * name)43 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
44 {
45 	struct bpf_raw_event_map *btp, *ret = NULL;
46 	struct bpf_trace_module *btm;
47 	unsigned int i;
48 
49 	mutex_lock(&bpf_module_mutex);
50 	list_for_each_entry(btm, &bpf_trace_modules, list) {
51 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
52 			btp = &btm->module->bpf_raw_events[i];
53 			if (!strcmp(btp->tp->name, name)) {
54 				if (try_module_get(btm->module))
55 					ret = btp;
56 				goto out;
57 			}
58 		}
59 	}
60 out:
61 	mutex_unlock(&bpf_module_mutex);
62 	return ret;
63 }
64 #else
bpf_get_raw_tracepoint_module(const char * name)65 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
66 {
67 	return NULL;
68 }
69 #endif /* CONFIG_MODULES */
70 
71 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
72 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
73 
74 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
75 				  u64 flags, const struct btf **btf,
76 				  s32 *btf_id);
77 
78 /**
79  * trace_call_bpf - invoke BPF program
80  * @call: tracepoint event
81  * @ctx: opaque context pointer
82  *
83  * kprobe handlers execute BPF programs via this helper.
84  * Can be used from static tracepoints in the future.
85  *
86  * Return: BPF programs always return an integer which is interpreted by
87  * kprobe handler as:
88  * 0 - return from kprobe (event is filtered out)
89  * 1 - store kprobe event into ring buffer
90  * Other values are reserved and currently alias to 1
91  */
trace_call_bpf(struct trace_event_call * call,void * ctx)92 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
93 {
94 	unsigned int ret;
95 
96 	cant_sleep();
97 
98 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
99 		/*
100 		 * since some bpf program is already running on this cpu,
101 		 * don't call into another bpf program (same or different)
102 		 * and don't send kprobe event into ring-buffer,
103 		 * so return zero here
104 		 */
105 		ret = 0;
106 		goto out;
107 	}
108 
109 	/*
110 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
111 	 * to all call sites, we did a bpf_prog_array_valid() there to check
112 	 * whether call->prog_array is empty or not, which is
113 	 * a heurisitc to speed up execution.
114 	 *
115 	 * If bpf_prog_array_valid() fetched prog_array was
116 	 * non-NULL, we go into trace_call_bpf() and do the actual
117 	 * proper rcu_dereference() under RCU lock.
118 	 * If it turns out that prog_array is NULL then, we bail out.
119 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
120 	 * was NULL, you'll skip the prog_array with the risk of missing
121 	 * out of events when it was updated in between this and the
122 	 * rcu_dereference() which is accepted risk.
123 	 */
124 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
125 
126  out:
127 	__this_cpu_dec(bpf_prog_active);
128 
129 	return ret;
130 }
131 
132 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)133 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
134 {
135 	regs_set_return_value(regs, rc);
136 	override_function_with_return(regs);
137 	return 0;
138 }
139 
140 static const struct bpf_func_proto bpf_override_return_proto = {
141 	.func		= bpf_override_return,
142 	.gpl_only	= true,
143 	.ret_type	= RET_INTEGER,
144 	.arg1_type	= ARG_PTR_TO_CTX,
145 	.arg2_type	= ARG_ANYTHING,
146 };
147 #endif
148 
149 static __always_inline int
bpf_probe_read_user_common(void * dst,u32 size,const void __user * unsafe_ptr)150 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
151 {
152 	int ret;
153 
154 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
155 	if (unlikely(ret < 0))
156 		memset(dst, 0, size);
157 	return ret;
158 }
159 
BPF_CALL_3(bpf_probe_read_user,void *,dst,u32,size,const void __user *,unsafe_ptr)160 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
161 	   const void __user *, unsafe_ptr)
162 {
163 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
164 }
165 
166 const struct bpf_func_proto bpf_probe_read_user_proto = {
167 	.func		= bpf_probe_read_user,
168 	.gpl_only	= true,
169 	.ret_type	= RET_INTEGER,
170 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
171 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
172 	.arg3_type	= ARG_ANYTHING,
173 };
174 
175 static __always_inline int
bpf_probe_read_user_str_common(void * dst,u32 size,const void __user * unsafe_ptr)176 bpf_probe_read_user_str_common(void *dst, u32 size,
177 			       const void __user *unsafe_ptr)
178 {
179 	int ret;
180 
181 	/*
182 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
183 	 * terminator into `dst`.
184 	 *
185 	 * strncpy_from_user() does long-sized strides in the fast path. If the
186 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
187 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
188 	 * and keys a hash map with it, then semantically identical strings can
189 	 * occupy multiple entries in the map.
190 	 */
191 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
192 	if (unlikely(ret < 0))
193 		memset(dst, 0, size);
194 	return ret;
195 }
196 
BPF_CALL_3(bpf_probe_read_user_str,void *,dst,u32,size,const void __user *,unsafe_ptr)197 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
198 	   const void __user *, unsafe_ptr)
199 {
200 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
201 }
202 
203 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
204 	.func		= bpf_probe_read_user_str,
205 	.gpl_only	= true,
206 	.ret_type	= RET_INTEGER,
207 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
208 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
209 	.arg3_type	= ARG_ANYTHING,
210 };
211 
212 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)213 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
214 {
215 	int ret;
216 
217 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
218 	if (unlikely(ret < 0))
219 		memset(dst, 0, size);
220 	return ret;
221 }
222 
BPF_CALL_3(bpf_probe_read_kernel,void *,dst,u32,size,const void *,unsafe_ptr)223 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
224 	   const void *, unsafe_ptr)
225 {
226 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
227 }
228 
229 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
230 	.func		= bpf_probe_read_kernel,
231 	.gpl_only	= true,
232 	.ret_type	= RET_INTEGER,
233 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
234 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
235 	.arg3_type	= ARG_ANYTHING,
236 };
237 
238 static __always_inline int
bpf_probe_read_kernel_str_common(void * dst,u32 size,const void * unsafe_ptr)239 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
240 {
241 	int ret;
242 
243 	/*
244 	 * The strncpy_from_kernel_nofault() call will likely not fill the
245 	 * entire buffer, but that's okay in this circumstance as we're probing
246 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
247 	 * as well probe the stack. Thus, memory is explicitly cleared
248 	 * only in error case, so that improper users ignoring return
249 	 * code altogether don't copy garbage; otherwise length of string
250 	 * is returned that can be used for bpf_perf_event_output() et al.
251 	 */
252 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
253 	if (unlikely(ret < 0))
254 		memset(dst, 0, size);
255 	return ret;
256 }
257 
BPF_CALL_3(bpf_probe_read_kernel_str,void *,dst,u32,size,const void *,unsafe_ptr)258 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
259 	   const void *, unsafe_ptr)
260 {
261 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
262 }
263 
264 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
265 	.func		= bpf_probe_read_kernel_str,
266 	.gpl_only	= true,
267 	.ret_type	= RET_INTEGER,
268 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
269 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
270 	.arg3_type	= ARG_ANYTHING,
271 };
272 
273 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat,void *,dst,u32,size,const void *,unsafe_ptr)274 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
275 	   const void *, unsafe_ptr)
276 {
277 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
278 		return bpf_probe_read_user_common(dst, size,
279 				(__force void __user *)unsafe_ptr);
280 	}
281 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
282 }
283 
284 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
285 	.func		= bpf_probe_read_compat,
286 	.gpl_only	= true,
287 	.ret_type	= RET_INTEGER,
288 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
289 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
290 	.arg3_type	= ARG_ANYTHING,
291 };
292 
BPF_CALL_3(bpf_probe_read_compat_str,void *,dst,u32,size,const void *,unsafe_ptr)293 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
294 	   const void *, unsafe_ptr)
295 {
296 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
297 		return bpf_probe_read_user_str_common(dst, size,
298 				(__force void __user *)unsafe_ptr);
299 	}
300 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
301 }
302 
303 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
304 	.func		= bpf_probe_read_compat_str,
305 	.gpl_only	= true,
306 	.ret_type	= RET_INTEGER,
307 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
308 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
309 	.arg3_type	= ARG_ANYTHING,
310 };
311 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
312 
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)313 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
314 	   u32, size)
315 {
316 	/*
317 	 * Ensure we're in user context which is safe for the helper to
318 	 * run. This helper has no business in a kthread.
319 	 *
320 	 * access_ok() should prevent writing to non-user memory, but in
321 	 * some situations (nommu, temporary switch, etc) access_ok() does
322 	 * not provide enough validation, hence the check on KERNEL_DS.
323 	 *
324 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
325 	 * state, when the task or mm are switched. This is specifically
326 	 * required to prevent the use of temporary mm.
327 	 */
328 
329 	if (unlikely(in_interrupt() ||
330 		     current->flags & (PF_KTHREAD | PF_EXITING)))
331 		return -EPERM;
332 	if (unlikely(uaccess_kernel()))
333 		return -EPERM;
334 	if (unlikely(!nmi_uaccess_okay()))
335 		return -EPERM;
336 
337 	return copy_to_user_nofault(unsafe_ptr, src, size);
338 }
339 
340 static const struct bpf_func_proto bpf_probe_write_user_proto = {
341 	.func		= bpf_probe_write_user,
342 	.gpl_only	= true,
343 	.ret_type	= RET_INTEGER,
344 	.arg1_type	= ARG_ANYTHING,
345 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
346 	.arg3_type	= ARG_CONST_SIZE,
347 };
348 
bpf_get_probe_write_proto(void)349 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
350 {
351 	if (!capable(CAP_SYS_ADMIN))
352 		return NULL;
353 
354 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
355 			    current->comm, task_pid_nr(current));
356 
357 	return &bpf_probe_write_user_proto;
358 }
359 
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)360 static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
361 		size_t bufsz)
362 {
363 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
364 
365 	buf[0] = 0;
366 
367 	switch (fmt_ptype) {
368 	case 's':
369 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
370 		if ((unsigned long)unsafe_ptr < TASK_SIZE) {
371 			strncpy_from_user_nofault(buf, user_ptr, bufsz);
372 			break;
373 		}
374 		fallthrough;
375 #endif
376 	case 'k':
377 		strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
378 		break;
379 	case 'u':
380 		strncpy_from_user_nofault(buf, user_ptr, bufsz);
381 		break;
382 	}
383 }
384 
385 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
386 
387 #define BPF_TRACE_PRINTK_SIZE   1024
388 
bpf_do_trace_printk(const char * fmt,...)389 static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...)
390 {
391 	static char buf[BPF_TRACE_PRINTK_SIZE];
392 	unsigned long flags;
393 	va_list ap;
394 	int ret;
395 
396 	raw_spin_lock_irqsave(&trace_printk_lock, flags);
397 	va_start(ap, fmt);
398 	ret = vsnprintf(buf, sizeof(buf), fmt, ap);
399 	va_end(ap);
400 	/* vsnprintf() will not append null for zero-length strings */
401 	if (ret == 0)
402 		buf[0] = '\0';
403 	trace_bpf_trace_printk(buf);
404 	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
405 
406 	return ret;
407 }
408 
409 /*
410  * Only limited trace_printk() conversion specifiers allowed:
411  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s
412  */
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)413 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
414 	   u64, arg2, u64, arg3)
415 {
416 	int i, mod[3] = {}, fmt_cnt = 0;
417 	char buf[64], fmt_ptype;
418 	void *unsafe_ptr = NULL;
419 	bool str_seen = false;
420 
421 	/*
422 	 * bpf_check()->check_func_arg()->check_stack_boundary()
423 	 * guarantees that fmt points to bpf program stack,
424 	 * fmt_size bytes of it were initialized and fmt_size > 0
425 	 */
426 	if (fmt[--fmt_size] != 0)
427 		return -EINVAL;
428 
429 	/* check format string for allowed specifiers */
430 	for (i = 0; i < fmt_size; i++) {
431 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
432 			return -EINVAL;
433 
434 		if (fmt[i] != '%')
435 			continue;
436 
437 		if (fmt_cnt >= 3)
438 			return -EINVAL;
439 
440 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
441 		i++;
442 		if (fmt[i] == 'l') {
443 			mod[fmt_cnt]++;
444 			i++;
445 		} else if (fmt[i] == 'p') {
446 			mod[fmt_cnt]++;
447 			if ((fmt[i + 1] == 'k' ||
448 			     fmt[i + 1] == 'u') &&
449 			    fmt[i + 2] == 's') {
450 				fmt_ptype = fmt[i + 1];
451 				i += 2;
452 				goto fmt_str;
453 			}
454 
455 			if (fmt[i + 1] == 'B') {
456 				i++;
457 				goto fmt_next;
458 			}
459 
460 			/* disallow any further format extensions */
461 			if (fmt[i + 1] != 0 &&
462 			    !isspace(fmt[i + 1]) &&
463 			    !ispunct(fmt[i + 1]))
464 				return -EINVAL;
465 
466 			goto fmt_next;
467 		} else if (fmt[i] == 's') {
468 			mod[fmt_cnt]++;
469 			fmt_ptype = fmt[i];
470 fmt_str:
471 			if (str_seen)
472 				/* allow only one '%s' per fmt string */
473 				return -EINVAL;
474 			str_seen = true;
475 
476 			if (fmt[i + 1] != 0 &&
477 			    !isspace(fmt[i + 1]) &&
478 			    !ispunct(fmt[i + 1]))
479 				return -EINVAL;
480 
481 			switch (fmt_cnt) {
482 			case 0:
483 				unsafe_ptr = (void *)(long)arg1;
484 				arg1 = (long)buf;
485 				break;
486 			case 1:
487 				unsafe_ptr = (void *)(long)arg2;
488 				arg2 = (long)buf;
489 				break;
490 			case 2:
491 				unsafe_ptr = (void *)(long)arg3;
492 				arg3 = (long)buf;
493 				break;
494 			}
495 
496 			bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype,
497 					sizeof(buf));
498 			goto fmt_next;
499 		}
500 
501 		if (fmt[i] == 'l') {
502 			mod[fmt_cnt]++;
503 			i++;
504 		}
505 
506 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
507 		    fmt[i] != 'u' && fmt[i] != 'x')
508 			return -EINVAL;
509 fmt_next:
510 		fmt_cnt++;
511 	}
512 
513 /* Horrid workaround for getting va_list handling working with different
514  * argument type combinations generically for 32 and 64 bit archs.
515  */
516 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
517 #define __BPF_TP(...)							\
518 	bpf_do_trace_printk(fmt, ##__VA_ARGS__)
519 
520 #define __BPF_ARG1_TP(...)						\
521 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
522 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
523 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
524 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
525 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
526 
527 #define __BPF_ARG2_TP(...)						\
528 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
529 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
530 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
531 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
532 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
533 
534 #define __BPF_ARG3_TP(...)						\
535 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
536 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
537 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
538 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
539 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
540 
541 	return __BPF_TP_EMIT();
542 }
543 
544 static const struct bpf_func_proto bpf_trace_printk_proto = {
545 	.func		= bpf_trace_printk,
546 	.gpl_only	= true,
547 	.ret_type	= RET_INTEGER,
548 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
549 	.arg2_type	= ARG_CONST_SIZE,
550 };
551 
bpf_get_trace_printk_proto(void)552 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
553 {
554 	/*
555 	 * This program might be calling bpf_trace_printk,
556 	 * so enable the associated bpf_trace/bpf_trace_printk event.
557 	 * Repeat this each time as it is possible a user has
558 	 * disabled bpf_trace_printk events.  By loading a program
559 	 * calling bpf_trace_printk() however the user has expressed
560 	 * the intent to see such events.
561 	 */
562 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
563 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
564 
565 	return &bpf_trace_printk_proto;
566 }
567 
568 #define MAX_SEQ_PRINTF_VARARGS		12
569 #define MAX_SEQ_PRINTF_MAX_MEMCPY	6
570 #define MAX_SEQ_PRINTF_STR_LEN		128
571 
572 struct bpf_seq_printf_buf {
573 	char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN];
574 };
575 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf);
576 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used);
577 
BPF_CALL_5(bpf_seq_printf,struct seq_file *,m,char *,fmt,u32,fmt_size,const void *,data,u32,data_len)578 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
579 	   const void *, data, u32, data_len)
580 {
581 	int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0;
582 	int i, buf_used, copy_size, num_args;
583 	u64 params[MAX_SEQ_PRINTF_VARARGS];
584 	struct bpf_seq_printf_buf *bufs;
585 	const u64 *args = data;
586 
587 	buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used);
588 	if (WARN_ON_ONCE(buf_used > 1)) {
589 		err = -EBUSY;
590 		goto out;
591 	}
592 
593 	bufs = this_cpu_ptr(&bpf_seq_printf_buf);
594 
595 	/*
596 	 * bpf_check()->check_func_arg()->check_stack_boundary()
597 	 * guarantees that fmt points to bpf program stack,
598 	 * fmt_size bytes of it were initialized and fmt_size > 0
599 	 */
600 	if (fmt[--fmt_size] != 0)
601 		goto out;
602 
603 	if (data_len & 7)
604 		goto out;
605 
606 	for (i = 0; i < fmt_size; i++) {
607 		if (fmt[i] == '%') {
608 			if (fmt[i + 1] == '%')
609 				i++;
610 			else if (!data || !data_len)
611 				goto out;
612 		}
613 	}
614 
615 	num_args = data_len / 8;
616 
617 	/* check format string for allowed specifiers */
618 	for (i = 0; i < fmt_size; i++) {
619 		/* only printable ascii for now. */
620 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
621 			err = -EINVAL;
622 			goto out;
623 		}
624 
625 		if (fmt[i] != '%')
626 			continue;
627 
628 		if (fmt[i + 1] == '%') {
629 			i++;
630 			continue;
631 		}
632 
633 		if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) {
634 			err = -E2BIG;
635 			goto out;
636 		}
637 
638 		if (fmt_cnt >= num_args) {
639 			err = -EINVAL;
640 			goto out;
641 		}
642 
643 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
644 		i++;
645 
646 		/* skip optional "[0 +-][num]" width formating field */
647 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
648 		       fmt[i] == ' ')
649 			i++;
650 		if (fmt[i] >= '1' && fmt[i] <= '9') {
651 			i++;
652 			while (fmt[i] >= '0' && fmt[i] <= '9')
653 				i++;
654 		}
655 
656 		if (fmt[i] == 's') {
657 			void *unsafe_ptr;
658 
659 			/* try our best to copy */
660 			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
661 				err = -E2BIG;
662 				goto out;
663 			}
664 
665 			unsafe_ptr = (void *)(long)args[fmt_cnt];
666 			err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt],
667 					unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN);
668 			if (err < 0)
669 				bufs->buf[memcpy_cnt][0] = '\0';
670 			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
671 
672 			fmt_cnt++;
673 			memcpy_cnt++;
674 			continue;
675 		}
676 
677 		if (fmt[i] == 'p') {
678 			if (fmt[i + 1] == 0 ||
679 			    fmt[i + 1] == 'K' ||
680 			    fmt[i + 1] == 'x' ||
681 			    fmt[i + 1] == 'B') {
682 				/* just kernel pointers */
683 				params[fmt_cnt] = args[fmt_cnt];
684 				fmt_cnt++;
685 				continue;
686 			}
687 
688 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
689 			if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') {
690 				err = -EINVAL;
691 				goto out;
692 			}
693 			if (fmt[i + 2] != '4' && fmt[i + 2] != '6') {
694 				err = -EINVAL;
695 				goto out;
696 			}
697 
698 			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
699 				err = -E2BIG;
700 				goto out;
701 			}
702 
703 
704 			copy_size = (fmt[i + 2] == '4') ? 4 : 16;
705 
706 			err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt],
707 						(void *) (long) args[fmt_cnt],
708 						copy_size);
709 			if (err < 0)
710 				memset(bufs->buf[memcpy_cnt], 0, copy_size);
711 			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
712 
713 			i += 2;
714 			fmt_cnt++;
715 			memcpy_cnt++;
716 			continue;
717 		}
718 
719 		if (fmt[i] == 'l') {
720 			i++;
721 			if (fmt[i] == 'l')
722 				i++;
723 		}
724 
725 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
726 		    fmt[i] != 'u' && fmt[i] != 'x' &&
727 		    fmt[i] != 'X') {
728 			err = -EINVAL;
729 			goto out;
730 		}
731 
732 		params[fmt_cnt] = args[fmt_cnt];
733 		fmt_cnt++;
734 	}
735 
736 	/* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
737 	 * all of them to seq_printf().
738 	 */
739 	seq_printf(m, fmt, params[0], params[1], params[2], params[3],
740 		   params[4], params[5], params[6], params[7], params[8],
741 		   params[9], params[10], params[11]);
742 
743 	err = seq_has_overflowed(m) ? -EOVERFLOW : 0;
744 out:
745 	this_cpu_dec(bpf_seq_printf_buf_used);
746 	return err;
747 }
748 
749 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
750 
751 static const struct bpf_func_proto bpf_seq_printf_proto = {
752 	.func		= bpf_seq_printf,
753 	.gpl_only	= true,
754 	.ret_type	= RET_INTEGER,
755 	.arg1_type	= ARG_PTR_TO_BTF_ID,
756 	.arg1_btf_id	= &btf_seq_file_ids[0],
757 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
758 	.arg3_type	= ARG_CONST_SIZE,
759 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
760 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
761 };
762 
BPF_CALL_3(bpf_seq_write,struct seq_file *,m,const void *,data,u32,len)763 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
764 {
765 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
766 }
767 
768 static const struct bpf_func_proto bpf_seq_write_proto = {
769 	.func		= bpf_seq_write,
770 	.gpl_only	= true,
771 	.ret_type	= RET_INTEGER,
772 	.arg1_type	= ARG_PTR_TO_BTF_ID,
773 	.arg1_btf_id	= &btf_seq_file_ids[0],
774 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
775 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
776 };
777 
BPF_CALL_4(bpf_seq_printf_btf,struct seq_file *,m,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)778 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
779 	   u32, btf_ptr_size, u64, flags)
780 {
781 	const struct btf *btf;
782 	s32 btf_id;
783 	int ret;
784 
785 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
786 	if (ret)
787 		return ret;
788 
789 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
790 }
791 
792 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
793 	.func		= bpf_seq_printf_btf,
794 	.gpl_only	= true,
795 	.ret_type	= RET_INTEGER,
796 	.arg1_type	= ARG_PTR_TO_BTF_ID,
797 	.arg1_btf_id	= &btf_seq_file_ids[0],
798 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
799 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
800 	.arg4_type	= ARG_ANYTHING,
801 };
802 
803 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)804 get_map_perf_counter(struct bpf_map *map, u64 flags,
805 		     u64 *value, u64 *enabled, u64 *running)
806 {
807 	struct bpf_array *array = container_of(map, struct bpf_array, map);
808 	unsigned int cpu = smp_processor_id();
809 	u64 index = flags & BPF_F_INDEX_MASK;
810 	struct bpf_event_entry *ee;
811 
812 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
813 		return -EINVAL;
814 	if (index == BPF_F_CURRENT_CPU)
815 		index = cpu;
816 	if (unlikely(index >= array->map.max_entries))
817 		return -E2BIG;
818 
819 	ee = READ_ONCE(array->ptrs[index]);
820 	if (!ee)
821 		return -ENOENT;
822 
823 	return perf_event_read_local(ee->event, value, enabled, running);
824 }
825 
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)826 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
827 {
828 	u64 value = 0;
829 	int err;
830 
831 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
832 	/*
833 	 * this api is ugly since we miss [-22..-2] range of valid
834 	 * counter values, but that's uapi
835 	 */
836 	if (err)
837 		return err;
838 	return value;
839 }
840 
841 static const struct bpf_func_proto bpf_perf_event_read_proto = {
842 	.func		= bpf_perf_event_read,
843 	.gpl_only	= true,
844 	.ret_type	= RET_INTEGER,
845 	.arg1_type	= ARG_CONST_MAP_PTR,
846 	.arg2_type	= ARG_ANYTHING,
847 };
848 
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)849 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
850 	   struct bpf_perf_event_value *, buf, u32, size)
851 {
852 	int err = -EINVAL;
853 
854 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
855 		goto clear;
856 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
857 				   &buf->running);
858 	if (unlikely(err))
859 		goto clear;
860 	return 0;
861 clear:
862 	memset(buf, 0, size);
863 	return err;
864 }
865 
866 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
867 	.func		= bpf_perf_event_read_value,
868 	.gpl_only	= true,
869 	.ret_type	= RET_INTEGER,
870 	.arg1_type	= ARG_CONST_MAP_PTR,
871 	.arg2_type	= ARG_ANYTHING,
872 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
873 	.arg4_type	= ARG_CONST_SIZE,
874 };
875 
876 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)877 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
878 			u64 flags, struct perf_sample_data *sd)
879 {
880 	struct bpf_array *array = container_of(map, struct bpf_array, map);
881 	unsigned int cpu = smp_processor_id();
882 	u64 index = flags & BPF_F_INDEX_MASK;
883 	struct bpf_event_entry *ee;
884 	struct perf_event *event;
885 
886 	if (index == BPF_F_CURRENT_CPU)
887 		index = cpu;
888 	if (unlikely(index >= array->map.max_entries))
889 		return -E2BIG;
890 
891 	ee = READ_ONCE(array->ptrs[index]);
892 	if (!ee)
893 		return -ENOENT;
894 
895 	event = ee->event;
896 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
897 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
898 		return -EINVAL;
899 
900 	if (unlikely(event->oncpu != cpu))
901 		return -EOPNOTSUPP;
902 
903 	return perf_event_output(event, sd, regs);
904 }
905 
906 /*
907  * Support executing tracepoints in normal, irq, and nmi context that each call
908  * bpf_perf_event_output
909  */
910 struct bpf_trace_sample_data {
911 	struct perf_sample_data sds[3];
912 };
913 
914 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
915 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)916 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
917 	   u64, flags, void *, data, u64, size)
918 {
919 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
920 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
921 	struct perf_raw_record raw = {
922 		.frag = {
923 			.size = size,
924 			.data = data,
925 		},
926 	};
927 	struct perf_sample_data *sd;
928 	int err;
929 
930 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
931 		err = -EBUSY;
932 		goto out;
933 	}
934 
935 	sd = &sds->sds[nest_level - 1];
936 
937 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
938 		err = -EINVAL;
939 		goto out;
940 	}
941 
942 	perf_sample_data_init(sd, 0, 0);
943 	sd->raw = &raw;
944 
945 	err = __bpf_perf_event_output(regs, map, flags, sd);
946 
947 out:
948 	this_cpu_dec(bpf_trace_nest_level);
949 	return err;
950 }
951 
952 static const struct bpf_func_proto bpf_perf_event_output_proto = {
953 	.func		= bpf_perf_event_output,
954 	.gpl_only	= true,
955 	.ret_type	= RET_INTEGER,
956 	.arg1_type	= ARG_PTR_TO_CTX,
957 	.arg2_type	= ARG_CONST_MAP_PTR,
958 	.arg3_type	= ARG_ANYTHING,
959 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
960 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
961 };
962 
963 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
964 struct bpf_nested_pt_regs {
965 	struct pt_regs regs[3];
966 };
967 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
968 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
969 
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)970 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
971 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
972 {
973 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
974 	struct perf_raw_frag frag = {
975 		.copy		= ctx_copy,
976 		.size		= ctx_size,
977 		.data		= ctx,
978 	};
979 	struct perf_raw_record raw = {
980 		.frag = {
981 			{
982 				.next	= ctx_size ? &frag : NULL,
983 			},
984 			.size	= meta_size,
985 			.data	= meta,
986 		},
987 	};
988 	struct perf_sample_data *sd;
989 	struct pt_regs *regs;
990 	u64 ret;
991 
992 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
993 		ret = -EBUSY;
994 		goto out;
995 	}
996 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
997 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
998 
999 	perf_fetch_caller_regs(regs);
1000 	perf_sample_data_init(sd, 0, 0);
1001 	sd->raw = &raw;
1002 
1003 	ret = __bpf_perf_event_output(regs, map, flags, sd);
1004 out:
1005 	this_cpu_dec(bpf_event_output_nest_level);
1006 	return ret;
1007 }
1008 
BPF_CALL_0(bpf_get_current_task)1009 BPF_CALL_0(bpf_get_current_task)
1010 {
1011 	return (long) current;
1012 }
1013 
1014 const struct bpf_func_proto bpf_get_current_task_proto = {
1015 	.func		= bpf_get_current_task,
1016 	.gpl_only	= true,
1017 	.ret_type	= RET_INTEGER,
1018 };
1019 
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)1020 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
1021 {
1022 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1023 	struct cgroup *cgrp;
1024 
1025 	if (unlikely(idx >= array->map.max_entries))
1026 		return -E2BIG;
1027 
1028 	cgrp = READ_ONCE(array->ptrs[idx]);
1029 	if (unlikely(!cgrp))
1030 		return -EAGAIN;
1031 
1032 	return task_under_cgroup_hierarchy(current, cgrp);
1033 }
1034 
1035 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
1036 	.func           = bpf_current_task_under_cgroup,
1037 	.gpl_only       = false,
1038 	.ret_type       = RET_INTEGER,
1039 	.arg1_type      = ARG_CONST_MAP_PTR,
1040 	.arg2_type      = ARG_ANYTHING,
1041 };
1042 
1043 struct send_signal_irq_work {
1044 	struct irq_work irq_work;
1045 	struct task_struct *task;
1046 	u32 sig;
1047 	enum pid_type type;
1048 };
1049 
1050 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
1051 
do_bpf_send_signal(struct irq_work * entry)1052 static void do_bpf_send_signal(struct irq_work *entry)
1053 {
1054 	struct send_signal_irq_work *work;
1055 
1056 	work = container_of(entry, struct send_signal_irq_work, irq_work);
1057 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
1058 }
1059 
bpf_send_signal_common(u32 sig,enum pid_type type)1060 static int bpf_send_signal_common(u32 sig, enum pid_type type)
1061 {
1062 	struct send_signal_irq_work *work = NULL;
1063 
1064 	/* Similar to bpf_probe_write_user, task needs to be
1065 	 * in a sound condition and kernel memory access be
1066 	 * permitted in order to send signal to the current
1067 	 * task.
1068 	 */
1069 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
1070 		return -EPERM;
1071 	if (unlikely(uaccess_kernel()))
1072 		return -EPERM;
1073 	if (unlikely(!nmi_uaccess_okay()))
1074 		return -EPERM;
1075 
1076 	if (irqs_disabled()) {
1077 		/* Do an early check on signal validity. Otherwise,
1078 		 * the error is lost in deferred irq_work.
1079 		 */
1080 		if (unlikely(!valid_signal(sig)))
1081 			return -EINVAL;
1082 
1083 		work = this_cpu_ptr(&send_signal_work);
1084 		if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
1085 			return -EBUSY;
1086 
1087 		/* Add the current task, which is the target of sending signal,
1088 		 * to the irq_work. The current task may change when queued
1089 		 * irq works get executed.
1090 		 */
1091 		work->task = current;
1092 		work->sig = sig;
1093 		work->type = type;
1094 		irq_work_queue(&work->irq_work);
1095 		return 0;
1096 	}
1097 
1098 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
1099 }
1100 
BPF_CALL_1(bpf_send_signal,u32,sig)1101 BPF_CALL_1(bpf_send_signal, u32, sig)
1102 {
1103 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
1104 }
1105 
1106 static const struct bpf_func_proto bpf_send_signal_proto = {
1107 	.func		= bpf_send_signal,
1108 	.gpl_only	= false,
1109 	.ret_type	= RET_INTEGER,
1110 	.arg1_type	= ARG_ANYTHING,
1111 };
1112 
BPF_CALL_1(bpf_send_signal_thread,u32,sig)1113 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
1114 {
1115 	return bpf_send_signal_common(sig, PIDTYPE_PID);
1116 }
1117 
1118 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
1119 	.func		= bpf_send_signal_thread,
1120 	.gpl_only	= false,
1121 	.ret_type	= RET_INTEGER,
1122 	.arg1_type	= ARG_ANYTHING,
1123 };
1124 
BPF_CALL_3(bpf_d_path,struct path *,path,char *,buf,u32,sz)1125 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
1126 {
1127 	long len;
1128 	char *p;
1129 
1130 	if (!sz)
1131 		return 0;
1132 
1133 	p = d_path(path, buf, sz);
1134 	if (IS_ERR(p)) {
1135 		len = PTR_ERR(p);
1136 	} else {
1137 		len = buf + sz - p;
1138 		memmove(buf, p, len);
1139 	}
1140 
1141 	return len;
1142 }
1143 
1144 BTF_SET_START(btf_allowlist_d_path)
1145 #ifdef CONFIG_SECURITY
BTF_ID(func,security_file_permission)1146 BTF_ID(func, security_file_permission)
1147 BTF_ID(func, security_inode_getattr)
1148 BTF_ID(func, security_file_open)
1149 #endif
1150 #ifdef CONFIG_SECURITY_PATH
1151 BTF_ID(func, security_path_truncate)
1152 #endif
1153 BTF_ID(func, vfs_truncate)
1154 BTF_ID(func, vfs_fallocate)
1155 BTF_ID(func, dentry_open)
1156 BTF_ID(func, vfs_getattr)
1157 BTF_ID(func, filp_close)
1158 BTF_SET_END(btf_allowlist_d_path)
1159 
1160 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
1161 {
1162 	return btf_id_set_contains(&btf_allowlist_d_path, prog->aux->attach_btf_id);
1163 }
1164 
1165 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
1166 
1167 static const struct bpf_func_proto bpf_d_path_proto = {
1168 	.func		= bpf_d_path,
1169 	.gpl_only	= false,
1170 	.ret_type	= RET_INTEGER,
1171 	.arg1_type	= ARG_PTR_TO_BTF_ID,
1172 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
1173 	.arg2_type	= ARG_PTR_TO_MEM,
1174 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1175 	.allowed	= bpf_d_path_allowed,
1176 };
1177 
1178 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
1179 			 BTF_F_PTR_RAW | BTF_F_ZERO)
1180 
bpf_btf_printf_prepare(struct btf_ptr * ptr,u32 btf_ptr_size,u64 flags,const struct btf ** btf,s32 * btf_id)1181 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
1182 				  u64 flags, const struct btf **btf,
1183 				  s32 *btf_id)
1184 {
1185 	const struct btf_type *t;
1186 
1187 	if (unlikely(flags & ~(BTF_F_ALL)))
1188 		return -EINVAL;
1189 
1190 	if (btf_ptr_size != sizeof(struct btf_ptr))
1191 		return -EINVAL;
1192 
1193 	*btf = bpf_get_btf_vmlinux();
1194 
1195 	if (IS_ERR_OR_NULL(*btf))
1196 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
1197 
1198 	if (ptr->type_id > 0)
1199 		*btf_id = ptr->type_id;
1200 	else
1201 		return -EINVAL;
1202 
1203 	if (*btf_id > 0)
1204 		t = btf_type_by_id(*btf, *btf_id);
1205 	if (*btf_id <= 0 || !t)
1206 		return -ENOENT;
1207 
1208 	return 0;
1209 }
1210 
BPF_CALL_5(bpf_snprintf_btf,char *,str,u32,str_size,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)1211 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1212 	   u32, btf_ptr_size, u64, flags)
1213 {
1214 	const struct btf *btf;
1215 	s32 btf_id;
1216 	int ret;
1217 
1218 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1219 	if (ret)
1220 		return ret;
1221 
1222 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1223 				      flags);
1224 }
1225 
1226 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1227 	.func		= bpf_snprintf_btf,
1228 	.gpl_only	= false,
1229 	.ret_type	= RET_INTEGER,
1230 	.arg1_type	= ARG_PTR_TO_MEM,
1231 	.arg2_type	= ARG_CONST_SIZE,
1232 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1233 	.arg4_type	= ARG_CONST_SIZE,
1234 	.arg5_type	= ARG_ANYTHING,
1235 };
1236 
1237 const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1238 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1239 {
1240 	switch (func_id) {
1241 	case BPF_FUNC_map_lookup_elem:
1242 		return &bpf_map_lookup_elem_proto;
1243 	case BPF_FUNC_map_update_elem:
1244 		return &bpf_map_update_elem_proto;
1245 	case BPF_FUNC_map_delete_elem:
1246 		return &bpf_map_delete_elem_proto;
1247 	case BPF_FUNC_map_push_elem:
1248 		return &bpf_map_push_elem_proto;
1249 	case BPF_FUNC_map_pop_elem:
1250 		return &bpf_map_pop_elem_proto;
1251 	case BPF_FUNC_map_peek_elem:
1252 		return &bpf_map_peek_elem_proto;
1253 	case BPF_FUNC_ktime_get_ns:
1254 		return &bpf_ktime_get_ns_proto;
1255 	case BPF_FUNC_ktime_get_boot_ns:
1256 		return &bpf_ktime_get_boot_ns_proto;
1257 	case BPF_FUNC_tail_call:
1258 		return &bpf_tail_call_proto;
1259 	case BPF_FUNC_get_current_pid_tgid:
1260 		return &bpf_get_current_pid_tgid_proto;
1261 	case BPF_FUNC_get_current_task:
1262 		return &bpf_get_current_task_proto;
1263 	case BPF_FUNC_get_current_uid_gid:
1264 		return &bpf_get_current_uid_gid_proto;
1265 	case BPF_FUNC_get_current_comm:
1266 		return &bpf_get_current_comm_proto;
1267 	case BPF_FUNC_trace_printk:
1268 		return bpf_get_trace_printk_proto();
1269 	case BPF_FUNC_get_smp_processor_id:
1270 		return &bpf_get_smp_processor_id_proto;
1271 	case BPF_FUNC_get_numa_node_id:
1272 		return &bpf_get_numa_node_id_proto;
1273 	case BPF_FUNC_perf_event_read:
1274 		return &bpf_perf_event_read_proto;
1275 	case BPF_FUNC_current_task_under_cgroup:
1276 		return &bpf_current_task_under_cgroup_proto;
1277 	case BPF_FUNC_get_prandom_u32:
1278 		return &bpf_get_prandom_u32_proto;
1279 	case BPF_FUNC_probe_write_user:
1280 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1281 		       NULL : bpf_get_probe_write_proto();
1282 	case BPF_FUNC_probe_read_user:
1283 		return &bpf_probe_read_user_proto;
1284 	case BPF_FUNC_probe_read_kernel:
1285 		return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1286 		       NULL : &bpf_probe_read_kernel_proto;
1287 	case BPF_FUNC_probe_read_user_str:
1288 		return &bpf_probe_read_user_str_proto;
1289 	case BPF_FUNC_probe_read_kernel_str:
1290 		return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1291 		       NULL : &bpf_probe_read_kernel_str_proto;
1292 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1293 	case BPF_FUNC_probe_read:
1294 		return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1295 		       NULL : &bpf_probe_read_compat_proto;
1296 	case BPF_FUNC_probe_read_str:
1297 		return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1298 		       NULL : &bpf_probe_read_compat_str_proto;
1299 #endif
1300 #ifdef CONFIG_CGROUPS
1301 	case BPF_FUNC_get_current_cgroup_id:
1302 		return &bpf_get_current_cgroup_id_proto;
1303 #endif
1304 	case BPF_FUNC_send_signal:
1305 		return &bpf_send_signal_proto;
1306 	case BPF_FUNC_send_signal_thread:
1307 		return &bpf_send_signal_thread_proto;
1308 	case BPF_FUNC_perf_event_read_value:
1309 		return &bpf_perf_event_read_value_proto;
1310 	case BPF_FUNC_get_ns_current_pid_tgid:
1311 		return &bpf_get_ns_current_pid_tgid_proto;
1312 	case BPF_FUNC_ringbuf_output:
1313 		return &bpf_ringbuf_output_proto;
1314 	case BPF_FUNC_ringbuf_reserve:
1315 		return &bpf_ringbuf_reserve_proto;
1316 	case BPF_FUNC_ringbuf_submit:
1317 		return &bpf_ringbuf_submit_proto;
1318 	case BPF_FUNC_ringbuf_discard:
1319 		return &bpf_ringbuf_discard_proto;
1320 	case BPF_FUNC_ringbuf_query:
1321 		return &bpf_ringbuf_query_proto;
1322 	case BPF_FUNC_jiffies64:
1323 		return &bpf_jiffies64_proto;
1324 	case BPF_FUNC_get_task_stack:
1325 		return &bpf_get_task_stack_proto;
1326 	case BPF_FUNC_copy_from_user:
1327 		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1328 	case BPF_FUNC_snprintf_btf:
1329 		return &bpf_snprintf_btf_proto;
1330 	case BPF_FUNC_per_cpu_ptr:
1331 		return &bpf_per_cpu_ptr_proto;
1332 	case BPF_FUNC_this_cpu_ptr:
1333 		return &bpf_this_cpu_ptr_proto;
1334 	default:
1335 		return NULL;
1336 	}
1337 }
1338 
1339 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1340 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1341 {
1342 	switch (func_id) {
1343 	case BPF_FUNC_perf_event_output:
1344 		return &bpf_perf_event_output_proto;
1345 	case BPF_FUNC_get_stackid:
1346 		return &bpf_get_stackid_proto;
1347 	case BPF_FUNC_get_stack:
1348 		return &bpf_get_stack_proto;
1349 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1350 	case BPF_FUNC_override_return:
1351 		return &bpf_override_return_proto;
1352 #endif
1353 	default:
1354 		return bpf_tracing_func_proto(func_id, prog);
1355 	}
1356 }
1357 
1358 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1359 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1360 					const struct bpf_prog *prog,
1361 					struct bpf_insn_access_aux *info)
1362 {
1363 	if (off < 0 || off >= sizeof(struct pt_regs))
1364 		return false;
1365 	if (type != BPF_READ)
1366 		return false;
1367 	if (off % size != 0)
1368 		return false;
1369 	/*
1370 	 * Assertion for 32 bit to make sure last 8 byte access
1371 	 * (BPF_DW) to the last 4 byte member is disallowed.
1372 	 */
1373 	if (off + size > sizeof(struct pt_regs))
1374 		return false;
1375 
1376 	return true;
1377 }
1378 
1379 const struct bpf_verifier_ops kprobe_verifier_ops = {
1380 	.get_func_proto  = kprobe_prog_func_proto,
1381 	.is_valid_access = kprobe_prog_is_valid_access,
1382 };
1383 
1384 const struct bpf_prog_ops kprobe_prog_ops = {
1385 };
1386 
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)1387 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1388 	   u64, flags, void *, data, u64, size)
1389 {
1390 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1391 
1392 	/*
1393 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1394 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1395 	 * from there and call the same bpf_perf_event_output() helper inline.
1396 	 */
1397 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1398 }
1399 
1400 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1401 	.func		= bpf_perf_event_output_tp,
1402 	.gpl_only	= true,
1403 	.ret_type	= RET_INTEGER,
1404 	.arg1_type	= ARG_PTR_TO_CTX,
1405 	.arg2_type	= ARG_CONST_MAP_PTR,
1406 	.arg3_type	= ARG_ANYTHING,
1407 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1408 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1409 };
1410 
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)1411 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1412 	   u64, flags)
1413 {
1414 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1415 
1416 	/*
1417 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1418 	 * the other helper's function body cannot be inlined due to being
1419 	 * external, thus we need to call raw helper function.
1420 	 */
1421 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1422 			       flags, 0, 0);
1423 }
1424 
1425 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1426 	.func		= bpf_get_stackid_tp,
1427 	.gpl_only	= true,
1428 	.ret_type	= RET_INTEGER,
1429 	.arg1_type	= ARG_PTR_TO_CTX,
1430 	.arg2_type	= ARG_CONST_MAP_PTR,
1431 	.arg3_type	= ARG_ANYTHING,
1432 };
1433 
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)1434 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1435 	   u64, flags)
1436 {
1437 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1438 
1439 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1440 			     (unsigned long) size, flags, 0);
1441 }
1442 
1443 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1444 	.func		= bpf_get_stack_tp,
1445 	.gpl_only	= true,
1446 	.ret_type	= RET_INTEGER,
1447 	.arg1_type	= ARG_PTR_TO_CTX,
1448 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1449 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1450 	.arg4_type	= ARG_ANYTHING,
1451 };
1452 
1453 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1454 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1455 {
1456 	switch (func_id) {
1457 	case BPF_FUNC_perf_event_output:
1458 		return &bpf_perf_event_output_proto_tp;
1459 	case BPF_FUNC_get_stackid:
1460 		return &bpf_get_stackid_proto_tp;
1461 	case BPF_FUNC_get_stack:
1462 		return &bpf_get_stack_proto_tp;
1463 	default:
1464 		return bpf_tracing_func_proto(func_id, prog);
1465 	}
1466 }
1467 
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1468 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1469 				    const struct bpf_prog *prog,
1470 				    struct bpf_insn_access_aux *info)
1471 {
1472 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1473 		return false;
1474 	if (type != BPF_READ)
1475 		return false;
1476 	if (off % size != 0)
1477 		return false;
1478 
1479 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1480 	return true;
1481 }
1482 
1483 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1484 	.get_func_proto  = tp_prog_func_proto,
1485 	.is_valid_access = tp_prog_is_valid_access,
1486 };
1487 
1488 const struct bpf_prog_ops tracepoint_prog_ops = {
1489 };
1490 
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)1491 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1492 	   struct bpf_perf_event_value *, buf, u32, size)
1493 {
1494 	int err = -EINVAL;
1495 
1496 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1497 		goto clear;
1498 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1499 				    &buf->running);
1500 	if (unlikely(err))
1501 		goto clear;
1502 	return 0;
1503 clear:
1504 	memset(buf, 0, size);
1505 	return err;
1506 }
1507 
1508 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1509          .func           = bpf_perf_prog_read_value,
1510          .gpl_only       = true,
1511          .ret_type       = RET_INTEGER,
1512          .arg1_type      = ARG_PTR_TO_CTX,
1513          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1514          .arg3_type      = ARG_CONST_SIZE,
1515 };
1516 
BPF_CALL_4(bpf_read_branch_records,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)1517 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1518 	   void *, buf, u32, size, u64, flags)
1519 {
1520 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1521 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1522 	u32 to_copy;
1523 
1524 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1525 		return -EINVAL;
1526 
1527 	if (unlikely(!br_stack))
1528 		return -ENOENT;
1529 
1530 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1531 		return br_stack->nr * br_entry_size;
1532 
1533 	if (!buf || (size % br_entry_size != 0))
1534 		return -EINVAL;
1535 
1536 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1537 	memcpy(buf, br_stack->entries, to_copy);
1538 
1539 	return to_copy;
1540 }
1541 
1542 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1543 	.func           = bpf_read_branch_records,
1544 	.gpl_only       = true,
1545 	.ret_type       = RET_INTEGER,
1546 	.arg1_type      = ARG_PTR_TO_CTX,
1547 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1548 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1549 	.arg4_type      = ARG_ANYTHING,
1550 };
1551 
1552 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1553 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1554 {
1555 	switch (func_id) {
1556 	case BPF_FUNC_perf_event_output:
1557 		return &bpf_perf_event_output_proto_tp;
1558 	case BPF_FUNC_get_stackid:
1559 		return &bpf_get_stackid_proto_pe;
1560 	case BPF_FUNC_get_stack:
1561 		return &bpf_get_stack_proto_pe;
1562 	case BPF_FUNC_perf_prog_read_value:
1563 		return &bpf_perf_prog_read_value_proto;
1564 	case BPF_FUNC_read_branch_records:
1565 		return &bpf_read_branch_records_proto;
1566 	default:
1567 		return bpf_tracing_func_proto(func_id, prog);
1568 	}
1569 }
1570 
1571 /*
1572  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1573  * to avoid potential recursive reuse issue when/if tracepoints are added
1574  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1575  *
1576  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1577  * in normal, irq, and nmi context.
1578  */
1579 struct bpf_raw_tp_regs {
1580 	struct pt_regs regs[3];
1581 };
1582 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1583 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)1584 static struct pt_regs *get_bpf_raw_tp_regs(void)
1585 {
1586 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1587 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1588 
1589 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1590 		this_cpu_dec(bpf_raw_tp_nest_level);
1591 		return ERR_PTR(-EBUSY);
1592 	}
1593 
1594 	return &tp_regs->regs[nest_level - 1];
1595 }
1596 
put_bpf_raw_tp_regs(void)1597 static void put_bpf_raw_tp_regs(void)
1598 {
1599 	this_cpu_dec(bpf_raw_tp_nest_level);
1600 }
1601 
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)1602 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1603 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1604 {
1605 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1606 	int ret;
1607 
1608 	if (IS_ERR(regs))
1609 		return PTR_ERR(regs);
1610 
1611 	perf_fetch_caller_regs(regs);
1612 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1613 
1614 	put_bpf_raw_tp_regs();
1615 	return ret;
1616 }
1617 
1618 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1619 	.func		= bpf_perf_event_output_raw_tp,
1620 	.gpl_only	= true,
1621 	.ret_type	= RET_INTEGER,
1622 	.arg1_type	= ARG_PTR_TO_CTX,
1623 	.arg2_type	= ARG_CONST_MAP_PTR,
1624 	.arg3_type	= ARG_ANYTHING,
1625 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1626 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1627 };
1628 
1629 extern const struct bpf_func_proto bpf_skb_output_proto;
1630 extern const struct bpf_func_proto bpf_xdp_output_proto;
1631 
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1632 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1633 	   struct bpf_map *, map, u64, flags)
1634 {
1635 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1636 	int ret;
1637 
1638 	if (IS_ERR(regs))
1639 		return PTR_ERR(regs);
1640 
1641 	perf_fetch_caller_regs(regs);
1642 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1643 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1644 			      flags, 0, 0);
1645 	put_bpf_raw_tp_regs();
1646 	return ret;
1647 }
1648 
1649 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1650 	.func		= bpf_get_stackid_raw_tp,
1651 	.gpl_only	= true,
1652 	.ret_type	= RET_INTEGER,
1653 	.arg1_type	= ARG_PTR_TO_CTX,
1654 	.arg2_type	= ARG_CONST_MAP_PTR,
1655 	.arg3_type	= ARG_ANYTHING,
1656 };
1657 
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1658 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1659 	   void *, buf, u32, size, u64, flags)
1660 {
1661 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1662 	int ret;
1663 
1664 	if (IS_ERR(regs))
1665 		return PTR_ERR(regs);
1666 
1667 	perf_fetch_caller_regs(regs);
1668 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1669 			    (unsigned long) size, flags, 0);
1670 	put_bpf_raw_tp_regs();
1671 	return ret;
1672 }
1673 
1674 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1675 	.func		= bpf_get_stack_raw_tp,
1676 	.gpl_only	= true,
1677 	.ret_type	= RET_INTEGER,
1678 	.arg1_type	= ARG_PTR_TO_CTX,
1679 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1680 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1681 	.arg4_type	= ARG_ANYTHING,
1682 };
1683 
1684 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1685 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1686 {
1687 	switch (func_id) {
1688 	case BPF_FUNC_perf_event_output:
1689 		return &bpf_perf_event_output_proto_raw_tp;
1690 	case BPF_FUNC_get_stackid:
1691 		return &bpf_get_stackid_proto_raw_tp;
1692 	case BPF_FUNC_get_stack:
1693 		return &bpf_get_stack_proto_raw_tp;
1694 	default:
1695 		return bpf_tracing_func_proto(func_id, prog);
1696 	}
1697 }
1698 
1699 const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1700 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1701 {
1702 	switch (func_id) {
1703 #ifdef CONFIG_NET
1704 	case BPF_FUNC_skb_output:
1705 		return &bpf_skb_output_proto;
1706 	case BPF_FUNC_xdp_output:
1707 		return &bpf_xdp_output_proto;
1708 	case BPF_FUNC_skc_to_tcp6_sock:
1709 		return &bpf_skc_to_tcp6_sock_proto;
1710 	case BPF_FUNC_skc_to_tcp_sock:
1711 		return &bpf_skc_to_tcp_sock_proto;
1712 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1713 		return &bpf_skc_to_tcp_timewait_sock_proto;
1714 	case BPF_FUNC_skc_to_tcp_request_sock:
1715 		return &bpf_skc_to_tcp_request_sock_proto;
1716 	case BPF_FUNC_skc_to_udp6_sock:
1717 		return &bpf_skc_to_udp6_sock_proto;
1718 #endif
1719 	case BPF_FUNC_seq_printf:
1720 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1721 		       &bpf_seq_printf_proto :
1722 		       NULL;
1723 	case BPF_FUNC_seq_write:
1724 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1725 		       &bpf_seq_write_proto :
1726 		       NULL;
1727 	case BPF_FUNC_seq_printf_btf:
1728 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1729 		       &bpf_seq_printf_btf_proto :
1730 		       NULL;
1731 	case BPF_FUNC_d_path:
1732 		return &bpf_d_path_proto;
1733 	default:
1734 		return raw_tp_prog_func_proto(func_id, prog);
1735 	}
1736 }
1737 
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1738 static bool raw_tp_prog_is_valid_access(int off, int size,
1739 					enum bpf_access_type type,
1740 					const struct bpf_prog *prog,
1741 					struct bpf_insn_access_aux *info)
1742 {
1743 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1744 		return false;
1745 	if (type != BPF_READ)
1746 		return false;
1747 	if (off % size != 0)
1748 		return false;
1749 	return true;
1750 }
1751 
tracing_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1752 static bool tracing_prog_is_valid_access(int off, int size,
1753 					 enum bpf_access_type type,
1754 					 const struct bpf_prog *prog,
1755 					 struct bpf_insn_access_aux *info)
1756 {
1757 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1758 		return false;
1759 	if (type != BPF_READ)
1760 		return false;
1761 	if (off % size != 0)
1762 		return false;
1763 	return btf_ctx_access(off, size, type, prog, info);
1764 }
1765 
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)1766 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1767 				     const union bpf_attr *kattr,
1768 				     union bpf_attr __user *uattr)
1769 {
1770 	return -ENOTSUPP;
1771 }
1772 
1773 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1774 	.get_func_proto  = raw_tp_prog_func_proto,
1775 	.is_valid_access = raw_tp_prog_is_valid_access,
1776 };
1777 
1778 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1779 #ifdef CONFIG_NET
1780 	.test_run = bpf_prog_test_run_raw_tp,
1781 #endif
1782 };
1783 
1784 const struct bpf_verifier_ops tracing_verifier_ops = {
1785 	.get_func_proto  = tracing_prog_func_proto,
1786 	.is_valid_access = tracing_prog_is_valid_access,
1787 };
1788 
1789 const struct bpf_prog_ops tracing_prog_ops = {
1790 	.test_run = bpf_prog_test_run_tracing,
1791 };
1792 
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1793 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1794 						 enum bpf_access_type type,
1795 						 const struct bpf_prog *prog,
1796 						 struct bpf_insn_access_aux *info)
1797 {
1798 	if (off == 0) {
1799 		if (size != sizeof(u64) || type != BPF_READ)
1800 			return false;
1801 		info->reg_type = PTR_TO_TP_BUFFER;
1802 	}
1803 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1804 }
1805 
1806 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1807 	.get_func_proto  = raw_tp_prog_func_proto,
1808 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1809 };
1810 
1811 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1812 };
1813 
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1814 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1815 				    const struct bpf_prog *prog,
1816 				    struct bpf_insn_access_aux *info)
1817 {
1818 	const int size_u64 = sizeof(u64);
1819 
1820 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1821 		return false;
1822 	if (type != BPF_READ)
1823 		return false;
1824 	if (off % size != 0) {
1825 		if (sizeof(unsigned long) != 4)
1826 			return false;
1827 		if (size != 8)
1828 			return false;
1829 		if (off % size != 4)
1830 			return false;
1831 	}
1832 
1833 	switch (off) {
1834 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1835 		bpf_ctx_record_field_size(info, size_u64);
1836 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1837 			return false;
1838 		break;
1839 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1840 		bpf_ctx_record_field_size(info, size_u64);
1841 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1842 			return false;
1843 		break;
1844 	default:
1845 		if (size != sizeof(long))
1846 			return false;
1847 	}
1848 
1849 	return true;
1850 }
1851 
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1852 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1853 				      const struct bpf_insn *si,
1854 				      struct bpf_insn *insn_buf,
1855 				      struct bpf_prog *prog, u32 *target_size)
1856 {
1857 	struct bpf_insn *insn = insn_buf;
1858 
1859 	switch (si->off) {
1860 	case offsetof(struct bpf_perf_event_data, sample_period):
1861 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1862 						       data), si->dst_reg, si->src_reg,
1863 				      offsetof(struct bpf_perf_event_data_kern, data));
1864 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1865 				      bpf_target_off(struct perf_sample_data, period, 8,
1866 						     target_size));
1867 		break;
1868 	case offsetof(struct bpf_perf_event_data, addr):
1869 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1870 						       data), si->dst_reg, si->src_reg,
1871 				      offsetof(struct bpf_perf_event_data_kern, data));
1872 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1873 				      bpf_target_off(struct perf_sample_data, addr, 8,
1874 						     target_size));
1875 		break;
1876 	default:
1877 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1878 						       regs), si->dst_reg, si->src_reg,
1879 				      offsetof(struct bpf_perf_event_data_kern, regs));
1880 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1881 				      si->off);
1882 		break;
1883 	}
1884 
1885 	return insn - insn_buf;
1886 }
1887 
1888 const struct bpf_verifier_ops perf_event_verifier_ops = {
1889 	.get_func_proto		= pe_prog_func_proto,
1890 	.is_valid_access	= pe_prog_is_valid_access,
1891 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1892 };
1893 
1894 const struct bpf_prog_ops perf_event_prog_ops = {
1895 };
1896 
1897 static DEFINE_MUTEX(bpf_event_mutex);
1898 
1899 #define BPF_TRACE_MAX_PROGS 64
1900 
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog)1901 int perf_event_attach_bpf_prog(struct perf_event *event,
1902 			       struct bpf_prog *prog)
1903 {
1904 	struct bpf_prog_array *old_array;
1905 	struct bpf_prog_array *new_array;
1906 	int ret = -EEXIST;
1907 
1908 	/*
1909 	 * Kprobe override only works if they are on the function entry,
1910 	 * and only if they are on the opt-in list.
1911 	 */
1912 	if (prog->kprobe_override &&
1913 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1914 	     !trace_kprobe_error_injectable(event->tp_event)))
1915 		return -EINVAL;
1916 
1917 	mutex_lock(&bpf_event_mutex);
1918 
1919 	if (event->prog)
1920 		goto unlock;
1921 
1922 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1923 	if (old_array &&
1924 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1925 		ret = -E2BIG;
1926 		goto unlock;
1927 	}
1928 
1929 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1930 	if (ret < 0)
1931 		goto unlock;
1932 
1933 	/* set the new array to event->tp_event and set event->prog */
1934 	event->prog = prog;
1935 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1936 	bpf_prog_array_free(old_array);
1937 
1938 unlock:
1939 	mutex_unlock(&bpf_event_mutex);
1940 	return ret;
1941 }
1942 
perf_event_detach_bpf_prog(struct perf_event * event)1943 void perf_event_detach_bpf_prog(struct perf_event *event)
1944 {
1945 	struct bpf_prog_array *old_array;
1946 	struct bpf_prog_array *new_array;
1947 	int ret;
1948 
1949 	mutex_lock(&bpf_event_mutex);
1950 
1951 	if (!event->prog)
1952 		goto unlock;
1953 
1954 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1955 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1956 	if (ret == -ENOENT)
1957 		goto unlock;
1958 	if (ret < 0) {
1959 		bpf_prog_array_delete_safe(old_array, event->prog);
1960 	} else {
1961 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1962 		bpf_prog_array_free(old_array);
1963 	}
1964 
1965 	bpf_prog_put(event->prog);
1966 	event->prog = NULL;
1967 
1968 unlock:
1969 	mutex_unlock(&bpf_event_mutex);
1970 }
1971 
perf_event_query_prog_array(struct perf_event * event,void __user * info)1972 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1973 {
1974 	struct perf_event_query_bpf __user *uquery = info;
1975 	struct perf_event_query_bpf query = {};
1976 	struct bpf_prog_array *progs;
1977 	u32 *ids, prog_cnt, ids_len;
1978 	int ret;
1979 
1980 	if (!perfmon_capable())
1981 		return -EPERM;
1982 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1983 		return -EINVAL;
1984 	if (copy_from_user(&query, uquery, sizeof(query)))
1985 		return -EFAULT;
1986 
1987 	ids_len = query.ids_len;
1988 	if (ids_len > BPF_TRACE_MAX_PROGS)
1989 		return -E2BIG;
1990 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1991 	if (!ids)
1992 		return -ENOMEM;
1993 	/*
1994 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1995 	 * is required when user only wants to check for uquery->prog_cnt.
1996 	 * There is no need to check for it since the case is handled
1997 	 * gracefully in bpf_prog_array_copy_info.
1998 	 */
1999 
2000 	mutex_lock(&bpf_event_mutex);
2001 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2002 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2003 	mutex_unlock(&bpf_event_mutex);
2004 
2005 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2006 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2007 		ret = -EFAULT;
2008 
2009 	kfree(ids);
2010 	return ret;
2011 }
2012 
2013 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2014 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2015 
bpf_get_raw_tracepoint(const char * name)2016 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2017 {
2018 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2019 
2020 	for (; btp < __stop__bpf_raw_tp; btp++) {
2021 		if (!strcmp(btp->tp->name, name))
2022 			return btp;
2023 	}
2024 
2025 	return bpf_get_raw_tracepoint_module(name);
2026 }
2027 
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)2028 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2029 {
2030 	struct module *mod;
2031 
2032 	preempt_disable();
2033 	mod = __module_address((unsigned long)btp);
2034 	module_put(mod);
2035 	preempt_enable();
2036 }
2037 
2038 static __always_inline
__bpf_trace_run(struct bpf_prog * prog,u64 * args)2039 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2040 {
2041 	cant_sleep();
2042 	rcu_read_lock();
2043 	(void) BPF_PROG_RUN(prog, args);
2044 	rcu_read_unlock();
2045 }
2046 
2047 #define UNPACK(...)			__VA_ARGS__
2048 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2049 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2050 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2051 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2052 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2053 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2054 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2055 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2056 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2057 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2058 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2059 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2060 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2061 
2062 #define SARG(X)		u64 arg##X
2063 #define COPY(X)		args[X] = arg##X
2064 
2065 #define __DL_COM	(,)
2066 #define __DL_SEM	(;)
2067 
2068 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2069 
2070 #define BPF_TRACE_DEFN_x(x)						\
2071 	void bpf_trace_run##x(struct bpf_prog *prog,			\
2072 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2073 	{								\
2074 		u64 args[x];						\
2075 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2076 		__bpf_trace_run(prog, args);				\
2077 	}								\
2078 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2079 BPF_TRACE_DEFN_x(1);
2080 BPF_TRACE_DEFN_x(2);
2081 BPF_TRACE_DEFN_x(3);
2082 BPF_TRACE_DEFN_x(4);
2083 BPF_TRACE_DEFN_x(5);
2084 BPF_TRACE_DEFN_x(6);
2085 BPF_TRACE_DEFN_x(7);
2086 BPF_TRACE_DEFN_x(8);
2087 BPF_TRACE_DEFN_x(9);
2088 BPF_TRACE_DEFN_x(10);
2089 BPF_TRACE_DEFN_x(11);
2090 BPF_TRACE_DEFN_x(12);
2091 
__bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2092 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2093 {
2094 	struct tracepoint *tp = btp->tp;
2095 
2096 	/*
2097 	 * check that program doesn't access arguments beyond what's
2098 	 * available in this tracepoint
2099 	 */
2100 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2101 		return -EINVAL;
2102 
2103 	if (prog->aux->max_tp_access > btp->writable_size)
2104 		return -EINVAL;
2105 
2106 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2107 						   prog);
2108 }
2109 
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2110 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2111 {
2112 	return __bpf_probe_register(btp, prog);
2113 }
2114 
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2115 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2116 {
2117 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2118 }
2119 
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr)2120 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2121 			    u32 *fd_type, const char **buf,
2122 			    u64 *probe_offset, u64 *probe_addr)
2123 {
2124 	bool is_tracepoint, is_syscall_tp;
2125 	struct bpf_prog *prog;
2126 	int flags, err = 0;
2127 
2128 	prog = event->prog;
2129 	if (!prog)
2130 		return -ENOENT;
2131 
2132 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2133 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2134 		return -EOPNOTSUPP;
2135 
2136 	*prog_id = prog->aux->id;
2137 	flags = event->tp_event->flags;
2138 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2139 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2140 
2141 	if (is_tracepoint || is_syscall_tp) {
2142 		*buf = is_tracepoint ? event->tp_event->tp->name
2143 				     : event->tp_event->name;
2144 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
2145 		*probe_offset = 0x0;
2146 		*probe_addr = 0x0;
2147 	} else {
2148 		/* kprobe/uprobe */
2149 		err = -EOPNOTSUPP;
2150 #ifdef CONFIG_KPROBE_EVENTS
2151 		if (flags & TRACE_EVENT_FL_KPROBE)
2152 			err = bpf_get_kprobe_info(event, fd_type, buf,
2153 						  probe_offset, probe_addr,
2154 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2155 #endif
2156 #ifdef CONFIG_UPROBE_EVENTS
2157 		if (flags & TRACE_EVENT_FL_UPROBE)
2158 			err = bpf_get_uprobe_info(event, fd_type, buf,
2159 						  probe_offset,
2160 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2161 #endif
2162 	}
2163 
2164 	return err;
2165 }
2166 
send_signal_irq_work_init(void)2167 static int __init send_signal_irq_work_init(void)
2168 {
2169 	int cpu;
2170 	struct send_signal_irq_work *work;
2171 
2172 	for_each_possible_cpu(cpu) {
2173 		work = per_cpu_ptr(&send_signal_work, cpu);
2174 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2175 	}
2176 	return 0;
2177 }
2178 
2179 subsys_initcall(send_signal_irq_work_init);
2180 
2181 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)2182 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2183 			    void *module)
2184 {
2185 	struct bpf_trace_module *btm, *tmp;
2186 	struct module *mod = module;
2187 	int ret = 0;
2188 
2189 	if (mod->num_bpf_raw_events == 0 ||
2190 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2191 		goto out;
2192 
2193 	mutex_lock(&bpf_module_mutex);
2194 
2195 	switch (op) {
2196 	case MODULE_STATE_COMING:
2197 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2198 		if (btm) {
2199 			btm->module = module;
2200 			list_add(&btm->list, &bpf_trace_modules);
2201 		} else {
2202 			ret = -ENOMEM;
2203 		}
2204 		break;
2205 	case MODULE_STATE_GOING:
2206 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2207 			if (btm->module == module) {
2208 				list_del(&btm->list);
2209 				kfree(btm);
2210 				break;
2211 			}
2212 		}
2213 		break;
2214 	}
2215 
2216 	mutex_unlock(&bpf_module_mutex);
2217 
2218 out:
2219 	return notifier_from_errno(ret);
2220 }
2221 
2222 static struct notifier_block bpf_module_nb = {
2223 	.notifier_call = bpf_event_notify,
2224 };
2225 
bpf_event_init(void)2226 static int __init bpf_event_init(void)
2227 {
2228 	register_module_notifier(&bpf_module_nb);
2229 	return 0;
2230 }
2231 
2232 fs_initcall(bpf_event_init);
2233 #endif /* CONFIG_MODULES */
2234