• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2009 Rob Sykes <robs@users.sourceforge.net>
3  * Copyright (c) 2013 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <float.h>
23 #include <math.h>
24 
25 #include "libavutil/opt.h"
26 #include "audio.h"
27 #include "avfilter.h"
28 #include "internal.h"
29 
30 #define HISTOGRAM_SIZE                  8192
31 #define HISTOGRAM_MAX                   (HISTOGRAM_SIZE-1)
32 
33 #define MEASURE_ALL                     UINT_MAX
34 #define MEASURE_NONE                           0
35 
36 #define MEASURE_DC_OFFSET               (1 <<  0)
37 #define MEASURE_MIN_LEVEL               (1 <<  1)
38 #define MEASURE_MAX_LEVEL               (1 <<  2)
39 #define MEASURE_MIN_DIFFERENCE          (1 <<  3)
40 #define MEASURE_MAX_DIFFERENCE          (1 <<  4)
41 #define MEASURE_MEAN_DIFFERENCE         (1 <<  5)
42 #define MEASURE_RMS_DIFFERENCE          (1 <<  6)
43 #define MEASURE_PEAK_LEVEL              (1 <<  7)
44 #define MEASURE_RMS_LEVEL               (1 <<  8)
45 #define MEASURE_RMS_PEAK                (1 <<  9)
46 #define MEASURE_RMS_TROUGH              (1 << 10)
47 #define MEASURE_CREST_FACTOR            (1 << 11)
48 #define MEASURE_FLAT_FACTOR             (1 << 12)
49 #define MEASURE_PEAK_COUNT              (1 << 13)
50 #define MEASURE_BIT_DEPTH               (1 << 14)
51 #define MEASURE_DYNAMIC_RANGE           (1 << 15)
52 #define MEASURE_ZERO_CROSSINGS          (1 << 16)
53 #define MEASURE_ZERO_CROSSINGS_RATE     (1 << 17)
54 #define MEASURE_NUMBER_OF_SAMPLES       (1 << 18)
55 #define MEASURE_NUMBER_OF_NANS          (1 << 19)
56 #define MEASURE_NUMBER_OF_INFS          (1 << 20)
57 #define MEASURE_NUMBER_OF_DENORMALS     (1 << 21)
58 #define MEASURE_NOISE_FLOOR             (1 << 22)
59 #define MEASURE_NOISE_FLOOR_COUNT       (1 << 23)
60 
61 #define MEASURE_MINMAXPEAK              (MEASURE_MIN_LEVEL | MEASURE_MAX_LEVEL | MEASURE_PEAK_LEVEL)
62 
63 typedef struct ChannelStats {
64     double last;
65     double last_non_zero;
66     double min_non_zero;
67     double sigma_x, sigma_x2;
68     double avg_sigma_x2, min_sigma_x2, max_sigma_x2;
69     double min, max;
70     double nmin, nmax;
71     double min_run, max_run;
72     double min_runs, max_runs;
73     double min_diff, max_diff;
74     double diff1_sum;
75     double diff1_sum_x2;
76     uint64_t mask, imask;
77     uint64_t min_count, max_count;
78     uint64_t noise_floor_count;
79     uint64_t zero_runs;
80     uint64_t nb_samples;
81     uint64_t nb_nans;
82     uint64_t nb_infs;
83     uint64_t nb_denormals;
84     double *win_samples;
85     unsigned histogram[HISTOGRAM_SIZE];
86     int win_pos;
87     int max_index;
88     double noise_floor;
89 } ChannelStats;
90 
91 typedef struct AudioStatsContext {
92     const AVClass *class;
93     ChannelStats *chstats;
94     int nb_channels;
95     uint64_t tc_samples;
96     double time_constant;
97     double mult;
98     int metadata;
99     int reset_count;
100     int nb_frames;
101     int maxbitdepth;
102     int measure_perchannel;
103     int measure_overall;
104     int is_float;
105     int is_double;
106 } AudioStatsContext;
107 
108 #define OFFSET(x) offsetof(AudioStatsContext, x)
109 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
110 
111 static const AVOption astats_options[] = {
112     { "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, .01, 10, FLAGS },
113     { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
114     { "reset", "recalculate stats after this many frames", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS },
115     { "measure_perchannel", "only measure_perchannel these per-channel statistics", OFFSET(measure_perchannel), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" },
116       { "none"                      , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NONE                }, 0, 0, FLAGS, "measure" },
117       { "all"                       , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ALL                 }, 0, 0, FLAGS, "measure" },
118       { "DC_offset"                 , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DC_OFFSET           }, 0, 0, FLAGS, "measure" },
119       { "Min_level"                 , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_LEVEL           }, 0, 0, FLAGS, "measure" },
120       { "Max_level"                 , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_LEVEL           }, 0, 0, FLAGS, "measure" },
121       { "Min_difference"            , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_DIFFERENCE      }, 0, 0, FLAGS, "measure" },
122       { "Max_difference"            , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_DIFFERENCE      }, 0, 0, FLAGS, "measure" },
123       { "Mean_difference"           , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MEAN_DIFFERENCE     }, 0, 0, FLAGS, "measure" },
124       { "RMS_difference"            , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_DIFFERENCE      }, 0, 0, FLAGS, "measure" },
125       { "Peak_level"                , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_LEVEL          }, 0, 0, FLAGS, "measure" },
126       { "RMS_level"                 , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_LEVEL           }, 0, 0, FLAGS, "measure" },
127       { "RMS_peak"                  , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_PEAK            }, 0, 0, FLAGS, "measure" },
128       { "RMS_trough"                , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_TROUGH          }, 0, 0, FLAGS, "measure" },
129       { "Crest_factor"              , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CREST_FACTOR        }, 0, 0, FLAGS, "measure" },
130       { "Flat_factor"               , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLAT_FACTOR         }, 0, 0, FLAGS, "measure" },
131       { "Peak_count"                , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_COUNT          }, 0, 0, FLAGS, "measure" },
132       { "Bit_depth"                 , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_BIT_DEPTH           }, 0, 0, FLAGS, "measure" },
133       { "Dynamic_range"             , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DYNAMIC_RANGE       }, 0, 0, FLAGS, "measure" },
134       { "Zero_crossings"            , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS      }, 0, 0, FLAGS, "measure" },
135       { "Zero_crossings_rate"       , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS_RATE }, 0, 0, FLAGS, "measure" },
136       { "Noise_floor"               , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR         }, 0, 0, FLAGS, "measure" },
137       { "Noise_floor_count"         , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR_COUNT   }, 0, 0, FLAGS, "measure" },
138       { "Number_of_samples"         , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_SAMPLES   }, 0, 0, FLAGS, "measure" },
139       { "Number_of_NaNs"            , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_NANS      }, 0, 0, FLAGS, "measure" },
140       { "Number_of_Infs"            , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_INFS      }, 0, 0, FLAGS, "measure" },
141       { "Number_of_denormals"       , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_DENORMALS }, 0, 0, FLAGS, "measure" },
142     { "measure_overall", "only measure_perchannel these overall statistics", OFFSET(measure_overall), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" },
143     { NULL }
144 };
145 
146 AVFILTER_DEFINE_CLASS(astats);
147 
query_formats(AVFilterContext * ctx)148 static int query_formats(AVFilterContext *ctx)
149 {
150     AVFilterFormats *formats;
151     AVFilterChannelLayouts *layouts;
152     static const enum AVSampleFormat sample_fmts[] = {
153         AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
154         AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
155         AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64P,
156         AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
157         AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP,
158         AV_SAMPLE_FMT_NONE
159     };
160     int ret;
161 
162     layouts = ff_all_channel_counts();
163     if (!layouts)
164         return AVERROR(ENOMEM);
165     ret = ff_set_common_channel_layouts(ctx, layouts);
166     if (ret < 0)
167         return ret;
168 
169     formats = ff_make_format_list(sample_fmts);
170     if (!formats)
171         return AVERROR(ENOMEM);
172     ret = ff_set_common_formats(ctx, formats);
173     if (ret < 0)
174         return ret;
175 
176     formats = ff_all_samplerates();
177     if (!formats)
178         return AVERROR(ENOMEM);
179     return ff_set_common_samplerates(ctx, formats);
180 }
181 
reset_stats(AudioStatsContext * s)182 static void reset_stats(AudioStatsContext *s)
183 {
184     int c;
185 
186     for (c = 0; c < s->nb_channels; c++) {
187         ChannelStats *p = &s->chstats[c];
188 
189         p->min = p->nmin = p->min_sigma_x2 = DBL_MAX;
190         p->max = p->nmax = p->max_sigma_x2 =-DBL_MAX;
191         p->min_non_zero = DBL_MAX;
192         p->min_diff = DBL_MAX;
193         p->max_diff = 0;
194         p->sigma_x = 0;
195         p->sigma_x2 = 0;
196         p->avg_sigma_x2 = 0;
197         p->min_run = 0;
198         p->max_run = 0;
199         p->min_runs = 0;
200         p->max_runs = 0;
201         p->diff1_sum = 0;
202         p->diff1_sum_x2 = 0;
203         p->mask = 0;
204         p->imask = 0xFFFFFFFFFFFFFFFF;
205         p->min_count = 0;
206         p->max_count = 0;
207         p->zero_runs = 0;
208         p->nb_samples = 0;
209         p->nb_nans = 0;
210         p->nb_infs = 0;
211         p->nb_denormals = 0;
212         p->last = NAN;
213         p->noise_floor = NAN;
214         p->noise_floor_count = 0;
215         p->win_pos = 0;
216         memset(p->win_samples, 0, s->tc_samples * sizeof(*p->win_samples));
217         memset(p->histogram, 0, sizeof(p->histogram));
218     }
219 }
220 
config_output(AVFilterLink * outlink)221 static int config_output(AVFilterLink *outlink)
222 {
223     AudioStatsContext *s = outlink->src->priv;
224 
225     s->chstats = av_calloc(sizeof(*s->chstats), outlink->channels);
226     if (!s->chstats)
227         return AVERROR(ENOMEM);
228 
229     s->tc_samples = 5 * s->time_constant * outlink->sample_rate + .5;
230     s->nb_channels = outlink->channels;
231 
232     for (int i = 0; i < s->nb_channels; i++) {
233         ChannelStats *p = &s->chstats[i];
234 
235         p->win_samples = av_calloc(s->tc_samples, sizeof(*p->win_samples));
236         if (!p->win_samples)
237             return AVERROR(ENOMEM);
238     }
239 
240     s->mult = exp((-1 / s->time_constant / outlink->sample_rate));
241     s->nb_frames = 0;
242     s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8;
243     s->is_double = outlink->format == AV_SAMPLE_FMT_DBL  ||
244                    outlink->format == AV_SAMPLE_FMT_DBLP;
245 
246     s->is_float = outlink->format == AV_SAMPLE_FMT_FLT  ||
247                   outlink->format == AV_SAMPLE_FMT_FLTP;
248 
249     reset_stats(s);
250 
251     return 0;
252 }
253 
bit_depth(AudioStatsContext * s,uint64_t mask,uint64_t imask,AVRational * depth)254 static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth)
255 {
256     unsigned result = s->maxbitdepth;
257 
258     mask = mask & (~imask);
259 
260     for (; result && !(mask & 1); --result, mask >>= 1);
261 
262     depth->den = result;
263     depth->num = 0;
264 
265     for (; result; --result, mask >>= 1)
266         if (mask & 1)
267             depth->num++;
268 }
269 
update_minmax(AudioStatsContext * s,ChannelStats * p,double d)270 static inline void update_minmax(AudioStatsContext *s, ChannelStats *p, double d)
271 {
272     if (d < p->min)
273         p->min = d;
274     if (d > p->max)
275         p->max = d;
276 }
277 
update_stat(AudioStatsContext * s,ChannelStats * p,double d,double nd,int64_t i)278 static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i)
279 {
280     double drop;
281     int index;
282 
283     if (d < p->min) {
284         p->min = d;
285         p->nmin = nd;
286         p->min_run = 1;
287         p->min_runs = 0;
288         p->min_count = 1;
289     } else if (d == p->min) {
290         p->min_count++;
291         p->min_run = d == p->last ? p->min_run + 1 : 1;
292     } else if (p->last == p->min) {
293         p->min_runs += p->min_run * p->min_run;
294     }
295 
296     if (d != 0 && FFABS(d) < p->min_non_zero)
297         p->min_non_zero = FFABS(d);
298 
299     if (d > p->max) {
300         p->max = d;
301         p->nmax = nd;
302         p->max_run = 1;
303         p->max_runs = 0;
304         p->max_count = 1;
305     } else if (d == p->max) {
306         p->max_count++;
307         p->max_run = d == p->last ? p->max_run + 1 : 1;
308     } else if (p->last == p->max) {
309         p->max_runs += p->max_run * p->max_run;
310     }
311 
312     if (d != 0) {
313         p->zero_runs += FFSIGN(d) != FFSIGN(p->last_non_zero);
314         p->last_non_zero = d;
315     }
316 
317     p->sigma_x += nd;
318     p->sigma_x2 += nd * nd;
319     p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd;
320     if (!isnan(p->last)) {
321         p->min_diff = FFMIN(p->min_diff, fabs(d - p->last));
322         p->max_diff = FFMAX(p->max_diff, fabs(d - p->last));
323         p->diff1_sum += fabs(d - p->last);
324         p->diff1_sum_x2 += (d - p->last) * (d - p->last);
325     }
326     p->last = d;
327     p->mask |= i;
328     p->imask &= i;
329 
330     drop = p->win_samples[p->win_pos];
331     p->win_samples[p->win_pos] = nd;
332     index = av_clip(lrint(av_clipd(FFABS(nd), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX);
333     p->max_index = FFMAX(p->max_index, index);
334     p->histogram[index]++;
335     if (!isnan(p->noise_floor))
336         p->histogram[av_clip(lrint(av_clipd(FFABS(drop), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX)]--;
337     p->win_pos++;
338 
339     while (p->histogram[p->max_index] == 0)
340         p->max_index--;
341     if (p->win_pos >= s->tc_samples || !isnan(p->noise_floor)) {
342         double noise_floor = 1.;
343 
344         for (int i = p->max_index; i >= 0; i--) {
345             if (p->histogram[i]) {
346                 noise_floor = i / (double)HISTOGRAM_MAX;
347                 break;
348             }
349         }
350 
351         if (isnan(p->noise_floor)) {
352             p->noise_floor = noise_floor;
353             p->noise_floor_count = 1;
354         } else {
355             if (noise_floor < p->noise_floor) {
356                 p->noise_floor = noise_floor;
357                 p->noise_floor_count = 1;
358             } else if (noise_floor == p->noise_floor) {
359                 p->noise_floor_count++;
360             }
361         }
362     }
363 
364     if (p->win_pos >= s->tc_samples) {
365         p->win_pos = 0;
366     }
367 
368     if (p->nb_samples >= s->tc_samples) {
369         p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2);
370         p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2);
371     }
372     p->nb_samples++;
373 }
374 
update_float_stat(AudioStatsContext * s,ChannelStats * p,float d)375 static inline void update_float_stat(AudioStatsContext *s, ChannelStats *p, float d)
376 {
377     int type = fpclassify(d);
378 
379     p->nb_nans      += type == FP_NAN;
380     p->nb_infs      += type == FP_INFINITE;
381     p->nb_denormals += type == FP_SUBNORMAL;
382 }
383 
update_double_stat(AudioStatsContext * s,ChannelStats * p,double d)384 static inline void update_double_stat(AudioStatsContext *s, ChannelStats *p, double d)
385 {
386     int type = fpclassify(d);
387 
388     p->nb_nans      += type == FP_NAN;
389     p->nb_infs      += type == FP_INFINITE;
390     p->nb_denormals += type == FP_SUBNORMAL;
391 }
392 
set_meta(AVDictionary ** metadata,int chan,const char * key,const char * fmt,double val)393 static void set_meta(AVDictionary **metadata, int chan, const char *key,
394                      const char *fmt, double val)
395 {
396     uint8_t value[128];
397     uint8_t key2[128];
398 
399     snprintf(value, sizeof(value), fmt, val);
400     if (chan)
401         snprintf(key2, sizeof(key2), "lavfi.astats.%d.%s", chan, key);
402     else
403         snprintf(key2, sizeof(key2), "lavfi.astats.%s", key);
404     av_dict_set(metadata, key2, value, 0);
405 }
406 
407 #define LINEAR_TO_DB(x) (log10(x) * 20)
408 
set_metadata(AudioStatsContext * s,AVDictionary ** metadata)409 static void set_metadata(AudioStatsContext *s, AVDictionary **metadata)
410 {
411     uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0;
412     uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0;
413     double min_runs = 0, max_runs = 0,
414            min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0,
415            nmin = DBL_MAX, nmax =-DBL_MAX,
416            max_sigma_x = 0,
417            diff1_sum = 0,
418            diff1_sum_x2 = 0,
419            sigma_x = 0,
420            sigma_x2 = 0,
421            noise_floor = 0,
422            min_sigma_x2 = DBL_MAX,
423            max_sigma_x2 =-DBL_MAX;
424     AVRational depth;
425     int c;
426 
427     for (c = 0; c < s->nb_channels; c++) {
428         ChannelStats *p = &s->chstats[c];
429 
430         if (p->nb_samples < s->tc_samples)
431             p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
432 
433         min = FFMIN(min, p->min);
434         max = FFMAX(max, p->max);
435         nmin = FFMIN(nmin, p->nmin);
436         nmax = FFMAX(nmax, p->nmax);
437         min_diff = FFMIN(min_diff, p->min_diff);
438         max_diff = FFMAX(max_diff, p->max_diff);
439         diff1_sum += p->diff1_sum;
440         diff1_sum_x2 += p->diff1_sum_x2;
441         min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
442         max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
443         sigma_x += p->sigma_x;
444         sigma_x2 += p->sigma_x2;
445         noise_floor = FFMAX(noise_floor, p->noise_floor);
446         noise_floor_count += p->noise_floor_count;
447         min_count += p->min_count;
448         max_count += p->max_count;
449         min_runs += p->min_runs;
450         max_runs += p->max_runs;
451         mask |= p->mask;
452         imask &= p->imask;
453         nb_samples += p->nb_samples;
454         nb_nans += p->nb_nans;
455         nb_infs += p->nb_infs;
456         nb_denormals += p->nb_denormals;
457         if (fabs(p->sigma_x) > fabs(max_sigma_x))
458             max_sigma_x = p->sigma_x;
459 
460         if (s->measure_perchannel & MEASURE_DC_OFFSET)
461             set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples);
462         if (s->measure_perchannel & MEASURE_MIN_LEVEL)
463             set_meta(metadata, c + 1, "Min_level", "%f", p->min);
464         if (s->measure_perchannel & MEASURE_MAX_LEVEL)
465             set_meta(metadata, c + 1, "Max_level", "%f", p->max);
466         if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE)
467             set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff);
468         if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE)
469             set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff);
470         if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE)
471             set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1));
472         if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE)
473             set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
474         if (s->measure_perchannel & MEASURE_PEAK_LEVEL)
475             set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
476         if (s->measure_perchannel & MEASURE_RMS_LEVEL)
477             set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
478         if (s->measure_perchannel & MEASURE_RMS_PEAK)
479             set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
480         if (s->measure_perchannel & MEASURE_RMS_TROUGH)
481             set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
482         if (s->measure_perchannel & MEASURE_CREST_FACTOR)
483             set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
484         if (s->measure_perchannel & MEASURE_FLAT_FACTOR)
485             set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
486         if (s->measure_perchannel & MEASURE_PEAK_COUNT)
487             set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count));
488         if (s->measure_perchannel & MEASURE_NOISE_FLOOR)
489             set_meta(metadata, c + 1, "Noise_floor", "%f", LINEAR_TO_DB(p->noise_floor));
490         if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT)
491             set_meta(metadata, c + 1, "Noise_floor_count", "%f", p->noise_floor_count);
492         if (s->measure_perchannel & MEASURE_BIT_DEPTH) {
493             bit_depth(s, p->mask, p->imask, &depth);
494             set_meta(metadata, c + 1, "Bit_depth", "%f", depth.num);
495             set_meta(metadata, c + 1, "Bit_depth2", "%f", depth.den);
496         }
497         if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE)
498             set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
499         if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS)
500             set_meta(metadata, c + 1, "Zero_crossings", "%f", p->zero_runs);
501         if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE)
502             set_meta(metadata, c + 1, "Zero_crossings_rate", "%f", p->zero_runs/(double)p->nb_samples);
503         if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS)
504             set_meta(metadata, c + 1, "Number of NaNs", "%f", p->nb_nans);
505         if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS)
506             set_meta(metadata, c + 1, "Number of Infs", "%f", p->nb_infs);
507         if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS)
508             set_meta(metadata, c + 1, "Number of denormals", "%f", p->nb_denormals);
509     }
510 
511     if (s->measure_overall & MEASURE_DC_OFFSET)
512         set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels));
513     if (s->measure_overall & MEASURE_MIN_LEVEL)
514         set_meta(metadata, 0, "Overall.Min_level", "%f", min);
515     if (s->measure_overall & MEASURE_MAX_LEVEL)
516         set_meta(metadata, 0, "Overall.Max_level", "%f", max);
517     if (s->measure_overall & MEASURE_MIN_DIFFERENCE)
518         set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff);
519     if (s->measure_overall & MEASURE_MAX_DIFFERENCE)
520         set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff);
521     if (s->measure_overall & MEASURE_MEAN_DIFFERENCE)
522         set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels));
523     if (s->measure_overall & MEASURE_RMS_DIFFERENCE)
524         set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
525     if (s->measure_overall & MEASURE_PEAK_LEVEL)
526         set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
527     if (s->measure_overall & MEASURE_RMS_LEVEL)
528         set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
529     if (s->measure_overall & MEASURE_RMS_PEAK)
530         set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2)));
531     if (s->measure_overall & MEASURE_RMS_TROUGH)
532         set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2)));
533     if (s->measure_overall & MEASURE_FLAT_FACTOR)
534         set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
535     if (s->measure_overall & MEASURE_PEAK_COUNT)
536         set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels);
537     if (s->measure_overall & MEASURE_NOISE_FLOOR)
538         set_meta(metadata, 0, "Overall.Noise_floor", "%f", LINEAR_TO_DB(noise_floor));
539     if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT)
540         set_meta(metadata, 0, "Overall.Noise_floor_count", "%f", noise_floor_count / (double)s->nb_channels);
541     if (s->measure_overall & MEASURE_BIT_DEPTH) {
542         bit_depth(s, mask, imask, &depth);
543         set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth.num);
544         set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth.den);
545     }
546     if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES)
547         set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels);
548     if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS)
549         set_meta(metadata, 0, "Number of NaNs", "%f", nb_nans / (float)s->nb_channels);
550     if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS)
551         set_meta(metadata, 0, "Number of Infs", "%f", nb_infs / (float)s->nb_channels);
552     if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS)
553         set_meta(metadata, 0, "Number of denormals", "%f", nb_denormals / (float)s->nb_channels);
554 }
555 
556 #define UPDATE_STATS_P(type, update_func, update_float, channel_func)           \
557     for (int c = start; c < end; c++) {                                         \
558         ChannelStats *p = &s->chstats[c];                                       \
559         const type *src = (const type *)data[c];                                \
560         const type * const srcend = src + samples;                              \
561         for (; src < srcend; src++) {                                           \
562             update_func;                                                        \
563             update_float;                                                       \
564         }                                                                       \
565         channel_func;                                                           \
566     }
567 
568 #define UPDATE_STATS_I(type, update_func, update_float, channel_func)           \
569     for (int c = start; c < end; c++) {                                         \
570         ChannelStats *p = &s->chstats[c];                                       \
571         const type *src = (const type *)data[0];                                \
572         const type * const srcend = src + samples * channels;                   \
573         for (src += c; src < srcend; src += channels) {                         \
574             update_func;                                                        \
575             update_float;                                                       \
576         }                                                                       \
577         channel_func;                                                           \
578     }
579 
580 #define UPDATE_STATS(planar, type, sample, normalizer_suffix, int_sample) \
581     if ((s->measure_overall | s->measure_perchannel) & ~MEASURE_MINMAXPEAK) {                          \
582         UPDATE_STATS_##planar(type, update_stat(s, p, sample, sample normalizer_suffix, int_sample), s->is_float ? update_float_stat(s, p, sample) : s->is_double ? update_double_stat(s, p, sample) : (void)NULL, ); \
583     } else {                                                                                           \
584         UPDATE_STATS_##planar(type, update_minmax(s, p, sample), , p->nmin = p->min normalizer_suffix; p->nmax = p->max normalizer_suffix;); \
585     }
586 
filter_channel(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)587 static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
588 {
589     AudioStatsContext *s = ctx->priv;
590     AVFilterLink *inlink = ctx->inputs[0];
591     AVFrame *buf = arg;
592     const uint8_t * const * const data = (const uint8_t * const *)buf->extended_data;
593     const int channels = s->nb_channels;
594     const int samples = buf->nb_samples;
595     const int start = (buf->channels * jobnr) / nb_jobs;
596     const int end = (buf->channels * (jobnr+1)) / nb_jobs;
597 
598     switch (inlink->format) {
599     case AV_SAMPLE_FMT_DBLP:
600         UPDATE_STATS(P, double, *src, , llrint(*src * (UINT64_C(1) << 63)));
601         break;
602     case AV_SAMPLE_FMT_DBL:
603         UPDATE_STATS(I, double, *src, , llrint(*src * (UINT64_C(1) << 63)));
604         break;
605     case AV_SAMPLE_FMT_FLTP:
606         UPDATE_STATS(P, float, *src, , llrint(*src * (UINT64_C(1) << 31)));
607         break;
608     case AV_SAMPLE_FMT_FLT:
609         UPDATE_STATS(I, float, *src, , llrint(*src * (UINT64_C(1) << 31)));
610         break;
611     case AV_SAMPLE_FMT_S64P:
612         UPDATE_STATS(P, int64_t, *src, / (double)INT64_MAX, *src);
613         break;
614     case AV_SAMPLE_FMT_S64:
615         UPDATE_STATS(I, int64_t, *src, / (double)INT64_MAX, *src);
616         break;
617     case AV_SAMPLE_FMT_S32P:
618         UPDATE_STATS(P, int32_t, *src, / (double)INT32_MAX, *src);
619         break;
620     case AV_SAMPLE_FMT_S32:
621         UPDATE_STATS(I, int32_t, *src, / (double)INT32_MAX, *src);
622         break;
623     case AV_SAMPLE_FMT_S16P:
624         UPDATE_STATS(P, int16_t, *src, / (double)INT16_MAX, *src);
625         break;
626     case AV_SAMPLE_FMT_S16:
627         UPDATE_STATS(I, int16_t, *src, / (double)INT16_MAX, *src);
628         break;
629     }
630 
631     return 0;
632 }
633 
filter_frame(AVFilterLink * inlink,AVFrame * buf)634 static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
635 {
636     AVFilterContext *ctx = inlink->dst;
637     AudioStatsContext *s = ctx->priv;
638     AVDictionary **metadata = &buf->metadata;
639 
640     if (s->reset_count > 0) {
641         if (s->nb_frames >= s->reset_count) {
642             reset_stats(s);
643             s->nb_frames = 0;
644         }
645         s->nb_frames++;
646     }
647 
648     ctx->internal->execute(ctx, filter_channel, buf, NULL, FFMIN(inlink->channels, ff_filter_get_nb_threads(ctx)));
649 
650     if (s->metadata)
651         set_metadata(s, metadata);
652 
653     return ff_filter_frame(inlink->dst->outputs[0], buf);
654 }
655 
print_stats(AVFilterContext * ctx)656 static void print_stats(AVFilterContext *ctx)
657 {
658     AudioStatsContext *s = ctx->priv;
659     uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0;
660     uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0;
661     double min_runs = 0, max_runs = 0,
662            min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0,
663            nmin = DBL_MAX, nmax =-DBL_MAX,
664            max_sigma_x = 0,
665            diff1_sum_x2 = 0,
666            diff1_sum = 0,
667            sigma_x = 0,
668            sigma_x2 = 0,
669            noise_floor = 0,
670            min_sigma_x2 = DBL_MAX,
671            max_sigma_x2 =-DBL_MAX;
672     AVRational depth;
673     int c;
674 
675     for (c = 0; c < s->nb_channels; c++) {
676         ChannelStats *p = &s->chstats[c];
677 
678         if (p->nb_samples < s->tc_samples)
679             p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
680 
681         min = FFMIN(min, p->min);
682         max = FFMAX(max, p->max);
683         nmin = FFMIN(nmin, p->nmin);
684         nmax = FFMAX(nmax, p->nmax);
685         min_diff = FFMIN(min_diff, p->min_diff);
686         max_diff = FFMAX(max_diff, p->max_diff);
687         diff1_sum_x2 += p->diff1_sum_x2;
688         diff1_sum += p->diff1_sum;
689         min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
690         max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
691         sigma_x += p->sigma_x;
692         sigma_x2 += p->sigma_x2;
693         noise_floor = FFMAX(noise_floor, p->noise_floor);
694         min_count += p->min_count;
695         max_count += p->max_count;
696         noise_floor_count += p->noise_floor_count;
697         min_runs += p->min_runs;
698         max_runs += p->max_runs;
699         mask |= p->mask;
700         imask &= p->imask;
701         nb_samples += p->nb_samples;
702         nb_nans += p->nb_nans;
703         nb_infs += p->nb_infs;
704         nb_denormals += p->nb_denormals;
705         if (fabs(p->sigma_x) > fabs(max_sigma_x))
706             max_sigma_x = p->sigma_x;
707 
708         av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1);
709         if (s->measure_perchannel & MEASURE_DC_OFFSET)
710             av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples);
711         if (s->measure_perchannel & MEASURE_MIN_LEVEL)
712             av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min);
713         if (s->measure_perchannel & MEASURE_MAX_LEVEL)
714             av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max);
715         if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE)
716             av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff);
717         if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE)
718             av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff);
719         if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE)
720             av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1));
721         if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE)
722             av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
723         if (s->measure_perchannel & MEASURE_PEAK_LEVEL)
724             av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
725         if (s->measure_perchannel & MEASURE_RMS_LEVEL)
726             av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
727         if (s->measure_perchannel & MEASURE_RMS_PEAK)
728             av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
729         if (s->measure_perchannel & MEASURE_RMS_TROUGH)
730             if (p->min_sigma_x2 != 1)
731                 av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
732         if (s->measure_perchannel & MEASURE_CREST_FACTOR)
733             av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
734         if (s->measure_perchannel & MEASURE_FLAT_FACTOR)
735             av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
736         if (s->measure_perchannel & MEASURE_PEAK_COUNT)
737             av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count);
738         if (s->measure_perchannel & MEASURE_NOISE_FLOOR)
739             av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(p->noise_floor));
740         if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT)
741             av_log(ctx, AV_LOG_INFO, "Noise floor count: %"PRId64"\n", p->noise_floor_count);
742         if (s->measure_perchannel & MEASURE_BIT_DEPTH) {
743             bit_depth(s, p->mask, p->imask, &depth);
744             av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
745         }
746         if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE)
747             av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
748         if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS)
749             av_log(ctx, AV_LOG_INFO, "Zero crossings: %"PRId64"\n", p->zero_runs);
750         if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE)
751             av_log(ctx, AV_LOG_INFO, "Zero crossings rate: %f\n", p->zero_runs/(double)p->nb_samples);
752         if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS)
753             av_log(ctx, AV_LOG_INFO, "Number of NaNs: %"PRId64"\n", p->nb_nans);
754         if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS)
755             av_log(ctx, AV_LOG_INFO, "Number of Infs: %"PRId64"\n", p->nb_infs);
756         if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS)
757             av_log(ctx, AV_LOG_INFO, "Number of denormals: %"PRId64"\n", p->nb_denormals);
758     }
759 
760     av_log(ctx, AV_LOG_INFO, "Overall\n");
761     if (s->measure_overall & MEASURE_DC_OFFSET)
762         av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels));
763     if (s->measure_overall & MEASURE_MIN_LEVEL)
764         av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min);
765     if (s->measure_overall & MEASURE_MAX_LEVEL)
766         av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max);
767     if (s->measure_overall & MEASURE_MIN_DIFFERENCE)
768         av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff);
769     if (s->measure_overall & MEASURE_MAX_DIFFERENCE)
770         av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff);
771     if (s->measure_overall & MEASURE_MEAN_DIFFERENCE)
772         av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels));
773     if (s->measure_overall & MEASURE_RMS_DIFFERENCE)
774         av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
775     if (s->measure_overall & MEASURE_PEAK_LEVEL)
776         av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
777     if (s->measure_overall & MEASURE_RMS_LEVEL)
778         av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
779     if (s->measure_overall & MEASURE_RMS_PEAK)
780         av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2)));
781     if (s->measure_overall & MEASURE_RMS_TROUGH)
782         if (min_sigma_x2 != 1)
783             av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2)));
784     if (s->measure_overall & MEASURE_FLAT_FACTOR)
785         av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
786     if (s->measure_overall & MEASURE_PEAK_COUNT)
787         av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels);
788     if (s->measure_overall & MEASURE_NOISE_FLOOR)
789         av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(noise_floor));
790     if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT)
791         av_log(ctx, AV_LOG_INFO, "Noise floor count: %f\n", noise_floor_count / (double)s->nb_channels);
792     if (s->measure_overall & MEASURE_BIT_DEPTH) {
793         bit_depth(s, mask, imask, &depth);
794         av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
795     }
796     if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES)
797         av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels);
798     if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS)
799         av_log(ctx, AV_LOG_INFO, "Number of NaNs: %f\n", nb_nans / (float)s->nb_channels);
800     if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS)
801         av_log(ctx, AV_LOG_INFO, "Number of Infs: %f\n", nb_infs / (float)s->nb_channels);
802     if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS)
803         av_log(ctx, AV_LOG_INFO, "Number of denormals: %f\n", nb_denormals / (float)s->nb_channels);
804 }
805 
uninit(AVFilterContext * ctx)806 static av_cold void uninit(AVFilterContext *ctx)
807 {
808     AudioStatsContext *s = ctx->priv;
809 
810     if (s->nb_channels)
811         print_stats(ctx);
812     if (s->chstats) {
813         for (int i = 0; i < s->nb_channels; i++) {
814             ChannelStats *p = &s->chstats[i];
815 
816             av_freep(&p->win_samples);
817         }
818     }
819     av_freep(&s->chstats);
820 }
821 
822 static const AVFilterPad astats_inputs[] = {
823     {
824         .name         = "default",
825         .type         = AVMEDIA_TYPE_AUDIO,
826         .filter_frame = filter_frame,
827     },
828     { NULL }
829 };
830 
831 static const AVFilterPad astats_outputs[] = {
832     {
833         .name         = "default",
834         .type         = AVMEDIA_TYPE_AUDIO,
835         .config_props = config_output,
836     },
837     { NULL }
838 };
839 
840 AVFilter ff_af_astats = {
841     .name          = "astats",
842     .description   = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."),
843     .query_formats = query_formats,
844     .priv_size     = sizeof(AudioStatsContext),
845     .priv_class    = &astats_class,
846     .uninit        = uninit,
847     .inputs        = astats_inputs,
848     .outputs       = astats_outputs,
849     .flags         = AVFILTER_FLAG_SLICE_THREADS,
850 };
851