1 /*
2 * Copyright (c) 2009 Rob Sykes <robs@users.sourceforge.net>
3 * Copyright (c) 2013 Paul B Mahol
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <float.h>
23 #include <math.h>
24
25 #include "libavutil/opt.h"
26 #include "audio.h"
27 #include "avfilter.h"
28 #include "internal.h"
29
30 #define HISTOGRAM_SIZE 8192
31 #define HISTOGRAM_MAX (HISTOGRAM_SIZE-1)
32
33 #define MEASURE_ALL UINT_MAX
34 #define MEASURE_NONE 0
35
36 #define MEASURE_DC_OFFSET (1 << 0)
37 #define MEASURE_MIN_LEVEL (1 << 1)
38 #define MEASURE_MAX_LEVEL (1 << 2)
39 #define MEASURE_MIN_DIFFERENCE (1 << 3)
40 #define MEASURE_MAX_DIFFERENCE (1 << 4)
41 #define MEASURE_MEAN_DIFFERENCE (1 << 5)
42 #define MEASURE_RMS_DIFFERENCE (1 << 6)
43 #define MEASURE_PEAK_LEVEL (1 << 7)
44 #define MEASURE_RMS_LEVEL (1 << 8)
45 #define MEASURE_RMS_PEAK (1 << 9)
46 #define MEASURE_RMS_TROUGH (1 << 10)
47 #define MEASURE_CREST_FACTOR (1 << 11)
48 #define MEASURE_FLAT_FACTOR (1 << 12)
49 #define MEASURE_PEAK_COUNT (1 << 13)
50 #define MEASURE_BIT_DEPTH (1 << 14)
51 #define MEASURE_DYNAMIC_RANGE (1 << 15)
52 #define MEASURE_ZERO_CROSSINGS (1 << 16)
53 #define MEASURE_ZERO_CROSSINGS_RATE (1 << 17)
54 #define MEASURE_NUMBER_OF_SAMPLES (1 << 18)
55 #define MEASURE_NUMBER_OF_NANS (1 << 19)
56 #define MEASURE_NUMBER_OF_INFS (1 << 20)
57 #define MEASURE_NUMBER_OF_DENORMALS (1 << 21)
58 #define MEASURE_NOISE_FLOOR (1 << 22)
59 #define MEASURE_NOISE_FLOOR_COUNT (1 << 23)
60
61 #define MEASURE_MINMAXPEAK (MEASURE_MIN_LEVEL | MEASURE_MAX_LEVEL | MEASURE_PEAK_LEVEL)
62
63 typedef struct ChannelStats {
64 double last;
65 double last_non_zero;
66 double min_non_zero;
67 double sigma_x, sigma_x2;
68 double avg_sigma_x2, min_sigma_x2, max_sigma_x2;
69 double min, max;
70 double nmin, nmax;
71 double min_run, max_run;
72 double min_runs, max_runs;
73 double min_diff, max_diff;
74 double diff1_sum;
75 double diff1_sum_x2;
76 uint64_t mask, imask;
77 uint64_t min_count, max_count;
78 uint64_t noise_floor_count;
79 uint64_t zero_runs;
80 uint64_t nb_samples;
81 uint64_t nb_nans;
82 uint64_t nb_infs;
83 uint64_t nb_denormals;
84 double *win_samples;
85 unsigned histogram[HISTOGRAM_SIZE];
86 int win_pos;
87 int max_index;
88 double noise_floor;
89 } ChannelStats;
90
91 typedef struct AudioStatsContext {
92 const AVClass *class;
93 ChannelStats *chstats;
94 int nb_channels;
95 uint64_t tc_samples;
96 double time_constant;
97 double mult;
98 int metadata;
99 int reset_count;
100 int nb_frames;
101 int maxbitdepth;
102 int measure_perchannel;
103 int measure_overall;
104 int is_float;
105 int is_double;
106 } AudioStatsContext;
107
108 #define OFFSET(x) offsetof(AudioStatsContext, x)
109 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
110
111 static const AVOption astats_options[] = {
112 { "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, .01, 10, FLAGS },
113 { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
114 { "reset", "recalculate stats after this many frames", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS },
115 { "measure_perchannel", "only measure_perchannel these per-channel statistics", OFFSET(measure_perchannel), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" },
116 { "none" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NONE }, 0, 0, FLAGS, "measure" },
117 { "all" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ALL }, 0, 0, FLAGS, "measure" },
118 { "DC_offset" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DC_OFFSET }, 0, 0, FLAGS, "measure" },
119 { "Min_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_LEVEL }, 0, 0, FLAGS, "measure" },
120 { "Max_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_LEVEL }, 0, 0, FLAGS, "measure" },
121 { "Min_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_DIFFERENCE }, 0, 0, FLAGS, "measure" },
122 { "Max_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_DIFFERENCE }, 0, 0, FLAGS, "measure" },
123 { "Mean_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MEAN_DIFFERENCE }, 0, 0, FLAGS, "measure" },
124 { "RMS_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_DIFFERENCE }, 0, 0, FLAGS, "measure" },
125 { "Peak_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_LEVEL }, 0, 0, FLAGS, "measure" },
126 { "RMS_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_LEVEL }, 0, 0, FLAGS, "measure" },
127 { "RMS_peak" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_PEAK }, 0, 0, FLAGS, "measure" },
128 { "RMS_trough" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_TROUGH }, 0, 0, FLAGS, "measure" },
129 { "Crest_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CREST_FACTOR }, 0, 0, FLAGS, "measure" },
130 { "Flat_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLAT_FACTOR }, 0, 0, FLAGS, "measure" },
131 { "Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_COUNT }, 0, 0, FLAGS, "measure" },
132 { "Bit_depth" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_BIT_DEPTH }, 0, 0, FLAGS, "measure" },
133 { "Dynamic_range" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DYNAMIC_RANGE }, 0, 0, FLAGS, "measure" },
134 { "Zero_crossings" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS }, 0, 0, FLAGS, "measure" },
135 { "Zero_crossings_rate" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS_RATE }, 0, 0, FLAGS, "measure" },
136 { "Noise_floor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR }, 0, 0, FLAGS, "measure" },
137 { "Noise_floor_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR_COUNT }, 0, 0, FLAGS, "measure" },
138 { "Number_of_samples" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_SAMPLES }, 0, 0, FLAGS, "measure" },
139 { "Number_of_NaNs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_NANS }, 0, 0, FLAGS, "measure" },
140 { "Number_of_Infs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_INFS }, 0, 0, FLAGS, "measure" },
141 { "Number_of_denormals" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_DENORMALS }, 0, 0, FLAGS, "measure" },
142 { "measure_overall", "only measure_perchannel these overall statistics", OFFSET(measure_overall), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" },
143 { NULL }
144 };
145
146 AVFILTER_DEFINE_CLASS(astats);
147
query_formats(AVFilterContext * ctx)148 static int query_formats(AVFilterContext *ctx)
149 {
150 AVFilterFormats *formats;
151 AVFilterChannelLayouts *layouts;
152 static const enum AVSampleFormat sample_fmts[] = {
153 AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
154 AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
155 AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64P,
156 AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
157 AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP,
158 AV_SAMPLE_FMT_NONE
159 };
160 int ret;
161
162 layouts = ff_all_channel_counts();
163 if (!layouts)
164 return AVERROR(ENOMEM);
165 ret = ff_set_common_channel_layouts(ctx, layouts);
166 if (ret < 0)
167 return ret;
168
169 formats = ff_make_format_list(sample_fmts);
170 if (!formats)
171 return AVERROR(ENOMEM);
172 ret = ff_set_common_formats(ctx, formats);
173 if (ret < 0)
174 return ret;
175
176 formats = ff_all_samplerates();
177 if (!formats)
178 return AVERROR(ENOMEM);
179 return ff_set_common_samplerates(ctx, formats);
180 }
181
reset_stats(AudioStatsContext * s)182 static void reset_stats(AudioStatsContext *s)
183 {
184 int c;
185
186 for (c = 0; c < s->nb_channels; c++) {
187 ChannelStats *p = &s->chstats[c];
188
189 p->min = p->nmin = p->min_sigma_x2 = DBL_MAX;
190 p->max = p->nmax = p->max_sigma_x2 =-DBL_MAX;
191 p->min_non_zero = DBL_MAX;
192 p->min_diff = DBL_MAX;
193 p->max_diff = 0;
194 p->sigma_x = 0;
195 p->sigma_x2 = 0;
196 p->avg_sigma_x2 = 0;
197 p->min_run = 0;
198 p->max_run = 0;
199 p->min_runs = 0;
200 p->max_runs = 0;
201 p->diff1_sum = 0;
202 p->diff1_sum_x2 = 0;
203 p->mask = 0;
204 p->imask = 0xFFFFFFFFFFFFFFFF;
205 p->min_count = 0;
206 p->max_count = 0;
207 p->zero_runs = 0;
208 p->nb_samples = 0;
209 p->nb_nans = 0;
210 p->nb_infs = 0;
211 p->nb_denormals = 0;
212 p->last = NAN;
213 p->noise_floor = NAN;
214 p->noise_floor_count = 0;
215 p->win_pos = 0;
216 memset(p->win_samples, 0, s->tc_samples * sizeof(*p->win_samples));
217 memset(p->histogram, 0, sizeof(p->histogram));
218 }
219 }
220
config_output(AVFilterLink * outlink)221 static int config_output(AVFilterLink *outlink)
222 {
223 AudioStatsContext *s = outlink->src->priv;
224
225 s->chstats = av_calloc(sizeof(*s->chstats), outlink->channels);
226 if (!s->chstats)
227 return AVERROR(ENOMEM);
228
229 s->tc_samples = 5 * s->time_constant * outlink->sample_rate + .5;
230 s->nb_channels = outlink->channels;
231
232 for (int i = 0; i < s->nb_channels; i++) {
233 ChannelStats *p = &s->chstats[i];
234
235 p->win_samples = av_calloc(s->tc_samples, sizeof(*p->win_samples));
236 if (!p->win_samples)
237 return AVERROR(ENOMEM);
238 }
239
240 s->mult = exp((-1 / s->time_constant / outlink->sample_rate));
241 s->nb_frames = 0;
242 s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8;
243 s->is_double = outlink->format == AV_SAMPLE_FMT_DBL ||
244 outlink->format == AV_SAMPLE_FMT_DBLP;
245
246 s->is_float = outlink->format == AV_SAMPLE_FMT_FLT ||
247 outlink->format == AV_SAMPLE_FMT_FLTP;
248
249 reset_stats(s);
250
251 return 0;
252 }
253
bit_depth(AudioStatsContext * s,uint64_t mask,uint64_t imask,AVRational * depth)254 static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth)
255 {
256 unsigned result = s->maxbitdepth;
257
258 mask = mask & (~imask);
259
260 for (; result && !(mask & 1); --result, mask >>= 1);
261
262 depth->den = result;
263 depth->num = 0;
264
265 for (; result; --result, mask >>= 1)
266 if (mask & 1)
267 depth->num++;
268 }
269
update_minmax(AudioStatsContext * s,ChannelStats * p,double d)270 static inline void update_minmax(AudioStatsContext *s, ChannelStats *p, double d)
271 {
272 if (d < p->min)
273 p->min = d;
274 if (d > p->max)
275 p->max = d;
276 }
277
update_stat(AudioStatsContext * s,ChannelStats * p,double d,double nd,int64_t i)278 static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i)
279 {
280 double drop;
281 int index;
282
283 if (d < p->min) {
284 p->min = d;
285 p->nmin = nd;
286 p->min_run = 1;
287 p->min_runs = 0;
288 p->min_count = 1;
289 } else if (d == p->min) {
290 p->min_count++;
291 p->min_run = d == p->last ? p->min_run + 1 : 1;
292 } else if (p->last == p->min) {
293 p->min_runs += p->min_run * p->min_run;
294 }
295
296 if (d != 0 && FFABS(d) < p->min_non_zero)
297 p->min_non_zero = FFABS(d);
298
299 if (d > p->max) {
300 p->max = d;
301 p->nmax = nd;
302 p->max_run = 1;
303 p->max_runs = 0;
304 p->max_count = 1;
305 } else if (d == p->max) {
306 p->max_count++;
307 p->max_run = d == p->last ? p->max_run + 1 : 1;
308 } else if (p->last == p->max) {
309 p->max_runs += p->max_run * p->max_run;
310 }
311
312 if (d != 0) {
313 p->zero_runs += FFSIGN(d) != FFSIGN(p->last_non_zero);
314 p->last_non_zero = d;
315 }
316
317 p->sigma_x += nd;
318 p->sigma_x2 += nd * nd;
319 p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd;
320 if (!isnan(p->last)) {
321 p->min_diff = FFMIN(p->min_diff, fabs(d - p->last));
322 p->max_diff = FFMAX(p->max_diff, fabs(d - p->last));
323 p->diff1_sum += fabs(d - p->last);
324 p->diff1_sum_x2 += (d - p->last) * (d - p->last);
325 }
326 p->last = d;
327 p->mask |= i;
328 p->imask &= i;
329
330 drop = p->win_samples[p->win_pos];
331 p->win_samples[p->win_pos] = nd;
332 index = av_clip(lrint(av_clipd(FFABS(nd), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX);
333 p->max_index = FFMAX(p->max_index, index);
334 p->histogram[index]++;
335 if (!isnan(p->noise_floor))
336 p->histogram[av_clip(lrint(av_clipd(FFABS(drop), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX)]--;
337 p->win_pos++;
338
339 while (p->histogram[p->max_index] == 0)
340 p->max_index--;
341 if (p->win_pos >= s->tc_samples || !isnan(p->noise_floor)) {
342 double noise_floor = 1.;
343
344 for (int i = p->max_index; i >= 0; i--) {
345 if (p->histogram[i]) {
346 noise_floor = i / (double)HISTOGRAM_MAX;
347 break;
348 }
349 }
350
351 if (isnan(p->noise_floor)) {
352 p->noise_floor = noise_floor;
353 p->noise_floor_count = 1;
354 } else {
355 if (noise_floor < p->noise_floor) {
356 p->noise_floor = noise_floor;
357 p->noise_floor_count = 1;
358 } else if (noise_floor == p->noise_floor) {
359 p->noise_floor_count++;
360 }
361 }
362 }
363
364 if (p->win_pos >= s->tc_samples) {
365 p->win_pos = 0;
366 }
367
368 if (p->nb_samples >= s->tc_samples) {
369 p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2);
370 p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2);
371 }
372 p->nb_samples++;
373 }
374
update_float_stat(AudioStatsContext * s,ChannelStats * p,float d)375 static inline void update_float_stat(AudioStatsContext *s, ChannelStats *p, float d)
376 {
377 int type = fpclassify(d);
378
379 p->nb_nans += type == FP_NAN;
380 p->nb_infs += type == FP_INFINITE;
381 p->nb_denormals += type == FP_SUBNORMAL;
382 }
383
update_double_stat(AudioStatsContext * s,ChannelStats * p,double d)384 static inline void update_double_stat(AudioStatsContext *s, ChannelStats *p, double d)
385 {
386 int type = fpclassify(d);
387
388 p->nb_nans += type == FP_NAN;
389 p->nb_infs += type == FP_INFINITE;
390 p->nb_denormals += type == FP_SUBNORMAL;
391 }
392
set_meta(AVDictionary ** metadata,int chan,const char * key,const char * fmt,double val)393 static void set_meta(AVDictionary **metadata, int chan, const char *key,
394 const char *fmt, double val)
395 {
396 uint8_t value[128];
397 uint8_t key2[128];
398
399 snprintf(value, sizeof(value), fmt, val);
400 if (chan)
401 snprintf(key2, sizeof(key2), "lavfi.astats.%d.%s", chan, key);
402 else
403 snprintf(key2, sizeof(key2), "lavfi.astats.%s", key);
404 av_dict_set(metadata, key2, value, 0);
405 }
406
407 #define LINEAR_TO_DB(x) (log10(x) * 20)
408
set_metadata(AudioStatsContext * s,AVDictionary ** metadata)409 static void set_metadata(AudioStatsContext *s, AVDictionary **metadata)
410 {
411 uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0;
412 uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0;
413 double min_runs = 0, max_runs = 0,
414 min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0,
415 nmin = DBL_MAX, nmax =-DBL_MAX,
416 max_sigma_x = 0,
417 diff1_sum = 0,
418 diff1_sum_x2 = 0,
419 sigma_x = 0,
420 sigma_x2 = 0,
421 noise_floor = 0,
422 min_sigma_x2 = DBL_MAX,
423 max_sigma_x2 =-DBL_MAX;
424 AVRational depth;
425 int c;
426
427 for (c = 0; c < s->nb_channels; c++) {
428 ChannelStats *p = &s->chstats[c];
429
430 if (p->nb_samples < s->tc_samples)
431 p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
432
433 min = FFMIN(min, p->min);
434 max = FFMAX(max, p->max);
435 nmin = FFMIN(nmin, p->nmin);
436 nmax = FFMAX(nmax, p->nmax);
437 min_diff = FFMIN(min_diff, p->min_diff);
438 max_diff = FFMAX(max_diff, p->max_diff);
439 diff1_sum += p->diff1_sum;
440 diff1_sum_x2 += p->diff1_sum_x2;
441 min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
442 max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
443 sigma_x += p->sigma_x;
444 sigma_x2 += p->sigma_x2;
445 noise_floor = FFMAX(noise_floor, p->noise_floor);
446 noise_floor_count += p->noise_floor_count;
447 min_count += p->min_count;
448 max_count += p->max_count;
449 min_runs += p->min_runs;
450 max_runs += p->max_runs;
451 mask |= p->mask;
452 imask &= p->imask;
453 nb_samples += p->nb_samples;
454 nb_nans += p->nb_nans;
455 nb_infs += p->nb_infs;
456 nb_denormals += p->nb_denormals;
457 if (fabs(p->sigma_x) > fabs(max_sigma_x))
458 max_sigma_x = p->sigma_x;
459
460 if (s->measure_perchannel & MEASURE_DC_OFFSET)
461 set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples);
462 if (s->measure_perchannel & MEASURE_MIN_LEVEL)
463 set_meta(metadata, c + 1, "Min_level", "%f", p->min);
464 if (s->measure_perchannel & MEASURE_MAX_LEVEL)
465 set_meta(metadata, c + 1, "Max_level", "%f", p->max);
466 if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE)
467 set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff);
468 if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE)
469 set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff);
470 if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE)
471 set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1));
472 if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE)
473 set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
474 if (s->measure_perchannel & MEASURE_PEAK_LEVEL)
475 set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
476 if (s->measure_perchannel & MEASURE_RMS_LEVEL)
477 set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
478 if (s->measure_perchannel & MEASURE_RMS_PEAK)
479 set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
480 if (s->measure_perchannel & MEASURE_RMS_TROUGH)
481 set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
482 if (s->measure_perchannel & MEASURE_CREST_FACTOR)
483 set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
484 if (s->measure_perchannel & MEASURE_FLAT_FACTOR)
485 set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
486 if (s->measure_perchannel & MEASURE_PEAK_COUNT)
487 set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count));
488 if (s->measure_perchannel & MEASURE_NOISE_FLOOR)
489 set_meta(metadata, c + 1, "Noise_floor", "%f", LINEAR_TO_DB(p->noise_floor));
490 if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT)
491 set_meta(metadata, c + 1, "Noise_floor_count", "%f", p->noise_floor_count);
492 if (s->measure_perchannel & MEASURE_BIT_DEPTH) {
493 bit_depth(s, p->mask, p->imask, &depth);
494 set_meta(metadata, c + 1, "Bit_depth", "%f", depth.num);
495 set_meta(metadata, c + 1, "Bit_depth2", "%f", depth.den);
496 }
497 if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE)
498 set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
499 if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS)
500 set_meta(metadata, c + 1, "Zero_crossings", "%f", p->zero_runs);
501 if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE)
502 set_meta(metadata, c + 1, "Zero_crossings_rate", "%f", p->zero_runs/(double)p->nb_samples);
503 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS)
504 set_meta(metadata, c + 1, "Number of NaNs", "%f", p->nb_nans);
505 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS)
506 set_meta(metadata, c + 1, "Number of Infs", "%f", p->nb_infs);
507 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS)
508 set_meta(metadata, c + 1, "Number of denormals", "%f", p->nb_denormals);
509 }
510
511 if (s->measure_overall & MEASURE_DC_OFFSET)
512 set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels));
513 if (s->measure_overall & MEASURE_MIN_LEVEL)
514 set_meta(metadata, 0, "Overall.Min_level", "%f", min);
515 if (s->measure_overall & MEASURE_MAX_LEVEL)
516 set_meta(metadata, 0, "Overall.Max_level", "%f", max);
517 if (s->measure_overall & MEASURE_MIN_DIFFERENCE)
518 set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff);
519 if (s->measure_overall & MEASURE_MAX_DIFFERENCE)
520 set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff);
521 if (s->measure_overall & MEASURE_MEAN_DIFFERENCE)
522 set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels));
523 if (s->measure_overall & MEASURE_RMS_DIFFERENCE)
524 set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
525 if (s->measure_overall & MEASURE_PEAK_LEVEL)
526 set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
527 if (s->measure_overall & MEASURE_RMS_LEVEL)
528 set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
529 if (s->measure_overall & MEASURE_RMS_PEAK)
530 set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2)));
531 if (s->measure_overall & MEASURE_RMS_TROUGH)
532 set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2)));
533 if (s->measure_overall & MEASURE_FLAT_FACTOR)
534 set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
535 if (s->measure_overall & MEASURE_PEAK_COUNT)
536 set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels);
537 if (s->measure_overall & MEASURE_NOISE_FLOOR)
538 set_meta(metadata, 0, "Overall.Noise_floor", "%f", LINEAR_TO_DB(noise_floor));
539 if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT)
540 set_meta(metadata, 0, "Overall.Noise_floor_count", "%f", noise_floor_count / (double)s->nb_channels);
541 if (s->measure_overall & MEASURE_BIT_DEPTH) {
542 bit_depth(s, mask, imask, &depth);
543 set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth.num);
544 set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth.den);
545 }
546 if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES)
547 set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels);
548 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS)
549 set_meta(metadata, 0, "Number of NaNs", "%f", nb_nans / (float)s->nb_channels);
550 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS)
551 set_meta(metadata, 0, "Number of Infs", "%f", nb_infs / (float)s->nb_channels);
552 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS)
553 set_meta(metadata, 0, "Number of denormals", "%f", nb_denormals / (float)s->nb_channels);
554 }
555
556 #define UPDATE_STATS_P(type, update_func, update_float, channel_func) \
557 for (int c = start; c < end; c++) { \
558 ChannelStats *p = &s->chstats[c]; \
559 const type *src = (const type *)data[c]; \
560 const type * const srcend = src + samples; \
561 for (; src < srcend; src++) { \
562 update_func; \
563 update_float; \
564 } \
565 channel_func; \
566 }
567
568 #define UPDATE_STATS_I(type, update_func, update_float, channel_func) \
569 for (int c = start; c < end; c++) { \
570 ChannelStats *p = &s->chstats[c]; \
571 const type *src = (const type *)data[0]; \
572 const type * const srcend = src + samples * channels; \
573 for (src += c; src < srcend; src += channels) { \
574 update_func; \
575 update_float; \
576 } \
577 channel_func; \
578 }
579
580 #define UPDATE_STATS(planar, type, sample, normalizer_suffix, int_sample) \
581 if ((s->measure_overall | s->measure_perchannel) & ~MEASURE_MINMAXPEAK) { \
582 UPDATE_STATS_##planar(type, update_stat(s, p, sample, sample normalizer_suffix, int_sample), s->is_float ? update_float_stat(s, p, sample) : s->is_double ? update_double_stat(s, p, sample) : (void)NULL, ); \
583 } else { \
584 UPDATE_STATS_##planar(type, update_minmax(s, p, sample), , p->nmin = p->min normalizer_suffix; p->nmax = p->max normalizer_suffix;); \
585 }
586
filter_channel(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)587 static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
588 {
589 AudioStatsContext *s = ctx->priv;
590 AVFilterLink *inlink = ctx->inputs[0];
591 AVFrame *buf = arg;
592 const uint8_t * const * const data = (const uint8_t * const *)buf->extended_data;
593 const int channels = s->nb_channels;
594 const int samples = buf->nb_samples;
595 const int start = (buf->channels * jobnr) / nb_jobs;
596 const int end = (buf->channels * (jobnr+1)) / nb_jobs;
597
598 switch (inlink->format) {
599 case AV_SAMPLE_FMT_DBLP:
600 UPDATE_STATS(P, double, *src, , llrint(*src * (UINT64_C(1) << 63)));
601 break;
602 case AV_SAMPLE_FMT_DBL:
603 UPDATE_STATS(I, double, *src, , llrint(*src * (UINT64_C(1) << 63)));
604 break;
605 case AV_SAMPLE_FMT_FLTP:
606 UPDATE_STATS(P, float, *src, , llrint(*src * (UINT64_C(1) << 31)));
607 break;
608 case AV_SAMPLE_FMT_FLT:
609 UPDATE_STATS(I, float, *src, , llrint(*src * (UINT64_C(1) << 31)));
610 break;
611 case AV_SAMPLE_FMT_S64P:
612 UPDATE_STATS(P, int64_t, *src, / (double)INT64_MAX, *src);
613 break;
614 case AV_SAMPLE_FMT_S64:
615 UPDATE_STATS(I, int64_t, *src, / (double)INT64_MAX, *src);
616 break;
617 case AV_SAMPLE_FMT_S32P:
618 UPDATE_STATS(P, int32_t, *src, / (double)INT32_MAX, *src);
619 break;
620 case AV_SAMPLE_FMT_S32:
621 UPDATE_STATS(I, int32_t, *src, / (double)INT32_MAX, *src);
622 break;
623 case AV_SAMPLE_FMT_S16P:
624 UPDATE_STATS(P, int16_t, *src, / (double)INT16_MAX, *src);
625 break;
626 case AV_SAMPLE_FMT_S16:
627 UPDATE_STATS(I, int16_t, *src, / (double)INT16_MAX, *src);
628 break;
629 }
630
631 return 0;
632 }
633
filter_frame(AVFilterLink * inlink,AVFrame * buf)634 static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
635 {
636 AVFilterContext *ctx = inlink->dst;
637 AudioStatsContext *s = ctx->priv;
638 AVDictionary **metadata = &buf->metadata;
639
640 if (s->reset_count > 0) {
641 if (s->nb_frames >= s->reset_count) {
642 reset_stats(s);
643 s->nb_frames = 0;
644 }
645 s->nb_frames++;
646 }
647
648 ctx->internal->execute(ctx, filter_channel, buf, NULL, FFMIN(inlink->channels, ff_filter_get_nb_threads(ctx)));
649
650 if (s->metadata)
651 set_metadata(s, metadata);
652
653 return ff_filter_frame(inlink->dst->outputs[0], buf);
654 }
655
print_stats(AVFilterContext * ctx)656 static void print_stats(AVFilterContext *ctx)
657 {
658 AudioStatsContext *s = ctx->priv;
659 uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0;
660 uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0;
661 double min_runs = 0, max_runs = 0,
662 min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0,
663 nmin = DBL_MAX, nmax =-DBL_MAX,
664 max_sigma_x = 0,
665 diff1_sum_x2 = 0,
666 diff1_sum = 0,
667 sigma_x = 0,
668 sigma_x2 = 0,
669 noise_floor = 0,
670 min_sigma_x2 = DBL_MAX,
671 max_sigma_x2 =-DBL_MAX;
672 AVRational depth;
673 int c;
674
675 for (c = 0; c < s->nb_channels; c++) {
676 ChannelStats *p = &s->chstats[c];
677
678 if (p->nb_samples < s->tc_samples)
679 p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
680
681 min = FFMIN(min, p->min);
682 max = FFMAX(max, p->max);
683 nmin = FFMIN(nmin, p->nmin);
684 nmax = FFMAX(nmax, p->nmax);
685 min_diff = FFMIN(min_diff, p->min_diff);
686 max_diff = FFMAX(max_diff, p->max_diff);
687 diff1_sum_x2 += p->diff1_sum_x2;
688 diff1_sum += p->diff1_sum;
689 min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
690 max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
691 sigma_x += p->sigma_x;
692 sigma_x2 += p->sigma_x2;
693 noise_floor = FFMAX(noise_floor, p->noise_floor);
694 min_count += p->min_count;
695 max_count += p->max_count;
696 noise_floor_count += p->noise_floor_count;
697 min_runs += p->min_runs;
698 max_runs += p->max_runs;
699 mask |= p->mask;
700 imask &= p->imask;
701 nb_samples += p->nb_samples;
702 nb_nans += p->nb_nans;
703 nb_infs += p->nb_infs;
704 nb_denormals += p->nb_denormals;
705 if (fabs(p->sigma_x) > fabs(max_sigma_x))
706 max_sigma_x = p->sigma_x;
707
708 av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1);
709 if (s->measure_perchannel & MEASURE_DC_OFFSET)
710 av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples);
711 if (s->measure_perchannel & MEASURE_MIN_LEVEL)
712 av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min);
713 if (s->measure_perchannel & MEASURE_MAX_LEVEL)
714 av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max);
715 if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE)
716 av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff);
717 if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE)
718 av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff);
719 if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE)
720 av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1));
721 if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE)
722 av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
723 if (s->measure_perchannel & MEASURE_PEAK_LEVEL)
724 av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
725 if (s->measure_perchannel & MEASURE_RMS_LEVEL)
726 av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
727 if (s->measure_perchannel & MEASURE_RMS_PEAK)
728 av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
729 if (s->measure_perchannel & MEASURE_RMS_TROUGH)
730 if (p->min_sigma_x2 != 1)
731 av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
732 if (s->measure_perchannel & MEASURE_CREST_FACTOR)
733 av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
734 if (s->measure_perchannel & MEASURE_FLAT_FACTOR)
735 av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
736 if (s->measure_perchannel & MEASURE_PEAK_COUNT)
737 av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count);
738 if (s->measure_perchannel & MEASURE_NOISE_FLOOR)
739 av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(p->noise_floor));
740 if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT)
741 av_log(ctx, AV_LOG_INFO, "Noise floor count: %"PRId64"\n", p->noise_floor_count);
742 if (s->measure_perchannel & MEASURE_BIT_DEPTH) {
743 bit_depth(s, p->mask, p->imask, &depth);
744 av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
745 }
746 if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE)
747 av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
748 if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS)
749 av_log(ctx, AV_LOG_INFO, "Zero crossings: %"PRId64"\n", p->zero_runs);
750 if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE)
751 av_log(ctx, AV_LOG_INFO, "Zero crossings rate: %f\n", p->zero_runs/(double)p->nb_samples);
752 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS)
753 av_log(ctx, AV_LOG_INFO, "Number of NaNs: %"PRId64"\n", p->nb_nans);
754 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS)
755 av_log(ctx, AV_LOG_INFO, "Number of Infs: %"PRId64"\n", p->nb_infs);
756 if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS)
757 av_log(ctx, AV_LOG_INFO, "Number of denormals: %"PRId64"\n", p->nb_denormals);
758 }
759
760 av_log(ctx, AV_LOG_INFO, "Overall\n");
761 if (s->measure_overall & MEASURE_DC_OFFSET)
762 av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels));
763 if (s->measure_overall & MEASURE_MIN_LEVEL)
764 av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min);
765 if (s->measure_overall & MEASURE_MAX_LEVEL)
766 av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max);
767 if (s->measure_overall & MEASURE_MIN_DIFFERENCE)
768 av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff);
769 if (s->measure_overall & MEASURE_MAX_DIFFERENCE)
770 av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff);
771 if (s->measure_overall & MEASURE_MEAN_DIFFERENCE)
772 av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels));
773 if (s->measure_overall & MEASURE_RMS_DIFFERENCE)
774 av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
775 if (s->measure_overall & MEASURE_PEAK_LEVEL)
776 av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
777 if (s->measure_overall & MEASURE_RMS_LEVEL)
778 av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
779 if (s->measure_overall & MEASURE_RMS_PEAK)
780 av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2)));
781 if (s->measure_overall & MEASURE_RMS_TROUGH)
782 if (min_sigma_x2 != 1)
783 av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2)));
784 if (s->measure_overall & MEASURE_FLAT_FACTOR)
785 av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
786 if (s->measure_overall & MEASURE_PEAK_COUNT)
787 av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels);
788 if (s->measure_overall & MEASURE_NOISE_FLOOR)
789 av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(noise_floor));
790 if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT)
791 av_log(ctx, AV_LOG_INFO, "Noise floor count: %f\n", noise_floor_count / (double)s->nb_channels);
792 if (s->measure_overall & MEASURE_BIT_DEPTH) {
793 bit_depth(s, mask, imask, &depth);
794 av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
795 }
796 if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES)
797 av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels);
798 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS)
799 av_log(ctx, AV_LOG_INFO, "Number of NaNs: %f\n", nb_nans / (float)s->nb_channels);
800 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS)
801 av_log(ctx, AV_LOG_INFO, "Number of Infs: %f\n", nb_infs / (float)s->nb_channels);
802 if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS)
803 av_log(ctx, AV_LOG_INFO, "Number of denormals: %f\n", nb_denormals / (float)s->nb_channels);
804 }
805
uninit(AVFilterContext * ctx)806 static av_cold void uninit(AVFilterContext *ctx)
807 {
808 AudioStatsContext *s = ctx->priv;
809
810 if (s->nb_channels)
811 print_stats(ctx);
812 if (s->chstats) {
813 for (int i = 0; i < s->nb_channels; i++) {
814 ChannelStats *p = &s->chstats[i];
815
816 av_freep(&p->win_samples);
817 }
818 }
819 av_freep(&s->chstats);
820 }
821
822 static const AVFilterPad astats_inputs[] = {
823 {
824 .name = "default",
825 .type = AVMEDIA_TYPE_AUDIO,
826 .filter_frame = filter_frame,
827 },
828 { NULL }
829 };
830
831 static const AVFilterPad astats_outputs[] = {
832 {
833 .name = "default",
834 .type = AVMEDIA_TYPE_AUDIO,
835 .config_props = config_output,
836 },
837 { NULL }
838 };
839
840 AVFilter ff_af_astats = {
841 .name = "astats",
842 .description = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."),
843 .query_formats = query_formats,
844 .priv_size = sizeof(AudioStatsContext),
845 .priv_class = &astats_class,
846 .uninit = uninit,
847 .inputs = astats_inputs,
848 .outputs = astats_outputs,
849 .flags = AVFILTER_FLAG_SLICE_THREADS,
850 };
851