• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_10_14_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = (val >> 8) | (reg << 6);
253 	out[0] = reg >> 2;
254 }
255 
regmap_format_8(void * buf,unsigned int val,unsigned int shift)256 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
257 {
258 	u8 *b = buf;
259 
260 	b[0] = val << shift;
261 }
262 
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)263 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
264 {
265 	put_unaligned_be16(val << shift, buf);
266 }
267 
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)268 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
269 {
270 	put_unaligned_le16(val << shift, buf);
271 }
272 
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_native(void *buf, unsigned int val,
274 				    unsigned int shift)
275 {
276 	u16 v = val << shift;
277 
278 	memcpy(buf, &v, sizeof(v));
279 }
280 
regmap_format_24(void * buf,unsigned int val,unsigned int shift)281 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
282 {
283 	u8 *b = buf;
284 
285 	val <<= shift;
286 
287 	b[0] = val >> 16;
288 	b[1] = val >> 8;
289 	b[2] = val;
290 }
291 
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)292 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
293 {
294 	put_unaligned_be32(val << shift, buf);
295 }
296 
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)297 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
298 {
299 	put_unaligned_le32(val << shift, buf);
300 }
301 
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)302 static void regmap_format_32_native(void *buf, unsigned int val,
303 				    unsigned int shift)
304 {
305 	u32 v = val << shift;
306 
307 	memcpy(buf, &v, sizeof(v));
308 }
309 
310 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)311 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
312 {
313 	put_unaligned_be64((u64) val << shift, buf);
314 }
315 
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)316 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
317 {
318 	put_unaligned_le64((u64) val << shift, buf);
319 }
320 
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)321 static void regmap_format_64_native(void *buf, unsigned int val,
322 				    unsigned int shift)
323 {
324 	u64 v = (u64) val << shift;
325 
326 	memcpy(buf, &v, sizeof(v));
327 }
328 #endif
329 
regmap_parse_inplace_noop(void * buf)330 static void regmap_parse_inplace_noop(void *buf)
331 {
332 }
333 
regmap_parse_8(const void * buf)334 static unsigned int regmap_parse_8(const void *buf)
335 {
336 	const u8 *b = buf;
337 
338 	return b[0];
339 }
340 
regmap_parse_16_be(const void * buf)341 static unsigned int regmap_parse_16_be(const void *buf)
342 {
343 	return get_unaligned_be16(buf);
344 }
345 
regmap_parse_16_le(const void * buf)346 static unsigned int regmap_parse_16_le(const void *buf)
347 {
348 	return get_unaligned_le16(buf);
349 }
350 
regmap_parse_16_be_inplace(void * buf)351 static void regmap_parse_16_be_inplace(void *buf)
352 {
353 	u16 v = get_unaligned_be16(buf);
354 
355 	memcpy(buf, &v, sizeof(v));
356 }
357 
regmap_parse_16_le_inplace(void * buf)358 static void regmap_parse_16_le_inplace(void *buf)
359 {
360 	u16 v = get_unaligned_le16(buf);
361 
362 	memcpy(buf, &v, sizeof(v));
363 }
364 
regmap_parse_16_native(const void * buf)365 static unsigned int regmap_parse_16_native(const void *buf)
366 {
367 	u16 v;
368 
369 	memcpy(&v, buf, sizeof(v));
370 	return v;
371 }
372 
regmap_parse_24(const void * buf)373 static unsigned int regmap_parse_24(const void *buf)
374 {
375 	const u8 *b = buf;
376 	unsigned int ret = b[2];
377 	ret |= ((unsigned int)b[1]) << 8;
378 	ret |= ((unsigned int)b[0]) << 16;
379 
380 	return ret;
381 }
382 
regmap_parse_32_be(const void * buf)383 static unsigned int regmap_parse_32_be(const void *buf)
384 {
385 	return get_unaligned_be32(buf);
386 }
387 
regmap_parse_32_le(const void * buf)388 static unsigned int regmap_parse_32_le(const void *buf)
389 {
390 	return get_unaligned_le32(buf);
391 }
392 
regmap_parse_32_be_inplace(void * buf)393 static void regmap_parse_32_be_inplace(void *buf)
394 {
395 	u32 v = get_unaligned_be32(buf);
396 
397 	memcpy(buf, &v, sizeof(v));
398 }
399 
regmap_parse_32_le_inplace(void * buf)400 static void regmap_parse_32_le_inplace(void *buf)
401 {
402 	u32 v = get_unaligned_le32(buf);
403 
404 	memcpy(buf, &v, sizeof(v));
405 }
406 
regmap_parse_32_native(const void * buf)407 static unsigned int regmap_parse_32_native(const void *buf)
408 {
409 	u32 v;
410 
411 	memcpy(&v, buf, sizeof(v));
412 	return v;
413 }
414 
415 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)416 static unsigned int regmap_parse_64_be(const void *buf)
417 {
418 	return get_unaligned_be64(buf);
419 }
420 
regmap_parse_64_le(const void * buf)421 static unsigned int regmap_parse_64_le(const void *buf)
422 {
423 	return get_unaligned_le64(buf);
424 }
425 
regmap_parse_64_be_inplace(void * buf)426 static void regmap_parse_64_be_inplace(void *buf)
427 {
428 	u64 v =  get_unaligned_be64(buf);
429 
430 	memcpy(buf, &v, sizeof(v));
431 }
432 
regmap_parse_64_le_inplace(void * buf)433 static void regmap_parse_64_le_inplace(void *buf)
434 {
435 	u64 v = get_unaligned_le64(buf);
436 
437 	memcpy(buf, &v, sizeof(v));
438 }
439 
regmap_parse_64_native(const void * buf)440 static unsigned int regmap_parse_64_native(const void *buf)
441 {
442 	u64 v;
443 
444 	memcpy(&v, buf, sizeof(v));
445 	return v;
446 }
447 #endif
448 
regmap_lock_hwlock(void * __map)449 static void regmap_lock_hwlock(void *__map)
450 {
451 	struct regmap *map = __map;
452 
453 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
454 }
455 
regmap_lock_hwlock_irq(void * __map)456 static void regmap_lock_hwlock_irq(void *__map)
457 {
458 	struct regmap *map = __map;
459 
460 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
461 }
462 
regmap_lock_hwlock_irqsave(void * __map)463 static void regmap_lock_hwlock_irqsave(void *__map)
464 {
465 	struct regmap *map = __map;
466 
467 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
468 				    &map->spinlock_flags);
469 }
470 
regmap_unlock_hwlock(void * __map)471 static void regmap_unlock_hwlock(void *__map)
472 {
473 	struct regmap *map = __map;
474 
475 	hwspin_unlock(map->hwlock);
476 }
477 
regmap_unlock_hwlock_irq(void * __map)478 static void regmap_unlock_hwlock_irq(void *__map)
479 {
480 	struct regmap *map = __map;
481 
482 	hwspin_unlock_irq(map->hwlock);
483 }
484 
regmap_unlock_hwlock_irqrestore(void * __map)485 static void regmap_unlock_hwlock_irqrestore(void *__map)
486 {
487 	struct regmap *map = __map;
488 
489 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
490 }
491 
regmap_lock_unlock_none(void * __map)492 static void regmap_lock_unlock_none(void *__map)
493 {
494 
495 }
496 
regmap_lock_mutex(void * __map)497 static void regmap_lock_mutex(void *__map)
498 {
499 	struct regmap *map = __map;
500 	mutex_lock(&map->mutex);
501 }
502 
regmap_unlock_mutex(void * __map)503 static void regmap_unlock_mutex(void *__map)
504 {
505 	struct regmap *map = __map;
506 	mutex_unlock(&map->mutex);
507 }
508 
regmap_lock_spinlock(void * __map)509 static void regmap_lock_spinlock(void *__map)
510 __acquires(&map->spinlock)
511 {
512 	struct regmap *map = __map;
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&map->spinlock, flags);
516 	map->spinlock_flags = flags;
517 }
518 
regmap_unlock_spinlock(void * __map)519 static void regmap_unlock_spinlock(void *__map)
520 __releases(&map->spinlock)
521 {
522 	struct regmap *map = __map;
523 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524 }
525 
dev_get_regmap_release(struct device * dev,void * res)526 static void dev_get_regmap_release(struct device *dev, void *res)
527 {
528 	/*
529 	 * We don't actually have anything to do here; the goal here
530 	 * is not to manage the regmap but to provide a simple way to
531 	 * get the regmap back given a struct device.
532 	 */
533 }
534 
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)535 static bool _regmap_range_add(struct regmap *map,
536 			      struct regmap_range_node *data)
537 {
538 	struct rb_root *root = &map->range_tree;
539 	struct rb_node **new = &(root->rb_node), *parent = NULL;
540 
541 	while (*new) {
542 		struct regmap_range_node *this =
543 			rb_entry(*new, struct regmap_range_node, node);
544 
545 		parent = *new;
546 		if (data->range_max < this->range_min)
547 			new = &((*new)->rb_left);
548 		else if (data->range_min > this->range_max)
549 			new = &((*new)->rb_right);
550 		else
551 			return false;
552 	}
553 
554 	rb_link_node(&data->node, parent, new);
555 	rb_insert_color(&data->node, root);
556 
557 	return true;
558 }
559 
_regmap_range_lookup(struct regmap * map,unsigned int reg)560 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
561 						      unsigned int reg)
562 {
563 	struct rb_node *node = map->range_tree.rb_node;
564 
565 	while (node) {
566 		struct regmap_range_node *this =
567 			rb_entry(node, struct regmap_range_node, node);
568 
569 		if (reg < this->range_min)
570 			node = node->rb_left;
571 		else if (reg > this->range_max)
572 			node = node->rb_right;
573 		else
574 			return this;
575 	}
576 
577 	return NULL;
578 }
579 
regmap_range_exit(struct regmap * map)580 static void regmap_range_exit(struct regmap *map)
581 {
582 	struct rb_node *next;
583 	struct regmap_range_node *range_node;
584 
585 	next = rb_first(&map->range_tree);
586 	while (next) {
587 		range_node = rb_entry(next, struct regmap_range_node, node);
588 		next = rb_next(&range_node->node);
589 		rb_erase(&range_node->node, &map->range_tree);
590 		kfree(range_node);
591 	}
592 
593 	kfree(map->selector_work_buf);
594 }
595 
regmap_set_name(struct regmap * map,const struct regmap_config * config)596 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
597 {
598 	if (config->name) {
599 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
600 
601 		if (!name)
602 			return -ENOMEM;
603 
604 		kfree_const(map->name);
605 		map->name = name;
606 	}
607 
608 	return 0;
609 }
610 
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)611 int regmap_attach_dev(struct device *dev, struct regmap *map,
612 		      const struct regmap_config *config)
613 {
614 	struct regmap **m;
615 	int ret;
616 
617 	map->dev = dev;
618 
619 	ret = regmap_set_name(map, config);
620 	if (ret)
621 		return ret;
622 
623 	regmap_debugfs_exit(map);
624 	regmap_debugfs_init(map);
625 
626 	/* Add a devres resource for dev_get_regmap() */
627 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
628 	if (!m) {
629 		regmap_debugfs_exit(map);
630 		return -ENOMEM;
631 	}
632 	*m = map;
633 	devres_add(dev, m);
634 
635 	return 0;
636 }
637 EXPORT_SYMBOL_GPL(regmap_attach_dev);
638 
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)639 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
640 					const struct regmap_config *config)
641 {
642 	enum regmap_endian endian;
643 
644 	/* Retrieve the endianness specification from the regmap config */
645 	endian = config->reg_format_endian;
646 
647 	/* If the regmap config specified a non-default value, use that */
648 	if (endian != REGMAP_ENDIAN_DEFAULT)
649 		return endian;
650 
651 	/* Retrieve the endianness specification from the bus config */
652 	if (bus && bus->reg_format_endian_default)
653 		endian = bus->reg_format_endian_default;
654 
655 	/* If the bus specified a non-default value, use that */
656 	if (endian != REGMAP_ENDIAN_DEFAULT)
657 		return endian;
658 
659 	/* Use this if no other value was found */
660 	return REGMAP_ENDIAN_BIG;
661 }
662 
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)663 enum regmap_endian regmap_get_val_endian(struct device *dev,
664 					 const struct regmap_bus *bus,
665 					 const struct regmap_config *config)
666 {
667 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
668 	enum regmap_endian endian;
669 
670 	/* Retrieve the endianness specification from the regmap config */
671 	endian = config->val_format_endian;
672 
673 	/* If the regmap config specified a non-default value, use that */
674 	if (endian != REGMAP_ENDIAN_DEFAULT)
675 		return endian;
676 
677 	/* If the firmware node exist try to get endianness from it */
678 	if (fwnode_property_read_bool(fwnode, "big-endian"))
679 		endian = REGMAP_ENDIAN_BIG;
680 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
681 		endian = REGMAP_ENDIAN_LITTLE;
682 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
683 		endian = REGMAP_ENDIAN_NATIVE;
684 
685 	/* If the endianness was specified in fwnode, use that */
686 	if (endian != REGMAP_ENDIAN_DEFAULT)
687 		return endian;
688 
689 	/* Retrieve the endianness specification from the bus config */
690 	if (bus && bus->val_format_endian_default)
691 		endian = bus->val_format_endian_default;
692 
693 	/* If the bus specified a non-default value, use that */
694 	if (endian != REGMAP_ENDIAN_DEFAULT)
695 		return endian;
696 
697 	/* Use this if no other value was found */
698 	return REGMAP_ENDIAN_BIG;
699 }
700 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
701 
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)702 struct regmap *__regmap_init(struct device *dev,
703 			     const struct regmap_bus *bus,
704 			     void *bus_context,
705 			     const struct regmap_config *config,
706 			     struct lock_class_key *lock_key,
707 			     const char *lock_name)
708 {
709 	struct regmap *map;
710 	int ret = -EINVAL;
711 	enum regmap_endian reg_endian, val_endian;
712 	int i, j;
713 
714 	if (!config)
715 		goto err;
716 
717 	map = kzalloc(sizeof(*map), GFP_KERNEL);
718 	if (map == NULL) {
719 		ret = -ENOMEM;
720 		goto err;
721 	}
722 
723 	ret = regmap_set_name(map, config);
724 	if (ret)
725 		goto err_map;
726 
727 	ret = -EINVAL; /* Later error paths rely on this */
728 
729 	if (config->disable_locking) {
730 		map->lock = map->unlock = regmap_lock_unlock_none;
731 		map->can_sleep = config->can_sleep;
732 		regmap_debugfs_disable(map);
733 	} else if (config->lock && config->unlock) {
734 		map->lock = config->lock;
735 		map->unlock = config->unlock;
736 		map->lock_arg = config->lock_arg;
737 		map->can_sleep = config->can_sleep;
738 	} else if (config->use_hwlock) {
739 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
740 		if (!map->hwlock) {
741 			ret = -ENXIO;
742 			goto err_name;
743 		}
744 
745 		switch (config->hwlock_mode) {
746 		case HWLOCK_IRQSTATE:
747 			map->lock = regmap_lock_hwlock_irqsave;
748 			map->unlock = regmap_unlock_hwlock_irqrestore;
749 			break;
750 		case HWLOCK_IRQ:
751 			map->lock = regmap_lock_hwlock_irq;
752 			map->unlock = regmap_unlock_hwlock_irq;
753 			break;
754 		default:
755 			map->lock = regmap_lock_hwlock;
756 			map->unlock = regmap_unlock_hwlock;
757 			break;
758 		}
759 
760 		map->lock_arg = map;
761 	} else {
762 		if ((bus && bus->fast_io) ||
763 		    config->fast_io) {
764 			spin_lock_init(&map->spinlock);
765 			map->lock = regmap_lock_spinlock;
766 			map->unlock = regmap_unlock_spinlock;
767 			lockdep_set_class_and_name(&map->spinlock,
768 						   lock_key, lock_name);
769 		} else {
770 			mutex_init(&map->mutex);
771 			map->lock = regmap_lock_mutex;
772 			map->unlock = regmap_unlock_mutex;
773 			map->can_sleep = true;
774 			lockdep_set_class_and_name(&map->mutex,
775 						   lock_key, lock_name);
776 		}
777 		map->lock_arg = map;
778 	}
779 
780 	/*
781 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
782 	 * scratch buffers with sleeping allocations.
783 	 */
784 	if ((bus && bus->fast_io) || config->fast_io)
785 		map->alloc_flags = GFP_ATOMIC;
786 	else
787 		map->alloc_flags = GFP_KERNEL;
788 
789 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
790 	map->format.pad_bytes = config->pad_bits / 8;
791 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
792 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
793 			config->val_bits + config->pad_bits, 8);
794 	map->reg_shift = config->pad_bits % 8;
795 	if (config->reg_stride)
796 		map->reg_stride = config->reg_stride;
797 	else
798 		map->reg_stride = 1;
799 	if (is_power_of_2(map->reg_stride))
800 		map->reg_stride_order = ilog2(map->reg_stride);
801 	else
802 		map->reg_stride_order = -1;
803 	map->use_single_read = config->use_single_read || !bus || !bus->read;
804 	map->use_single_write = config->use_single_write || !bus || !bus->write;
805 	map->can_multi_write = config->can_multi_write && bus && bus->write;
806 	if (bus) {
807 		map->max_raw_read = bus->max_raw_read;
808 		map->max_raw_write = bus->max_raw_write;
809 	}
810 	map->dev = dev;
811 	map->bus = bus;
812 	map->bus_context = bus_context;
813 	map->max_register = config->max_register;
814 	map->wr_table = config->wr_table;
815 	map->rd_table = config->rd_table;
816 	map->volatile_table = config->volatile_table;
817 	map->precious_table = config->precious_table;
818 	map->wr_noinc_table = config->wr_noinc_table;
819 	map->rd_noinc_table = config->rd_noinc_table;
820 	map->writeable_reg = config->writeable_reg;
821 	map->readable_reg = config->readable_reg;
822 	map->volatile_reg = config->volatile_reg;
823 	map->precious_reg = config->precious_reg;
824 	map->writeable_noinc_reg = config->writeable_noinc_reg;
825 	map->readable_noinc_reg = config->readable_noinc_reg;
826 	map->cache_type = config->cache_type;
827 
828 	spin_lock_init(&map->async_lock);
829 	INIT_LIST_HEAD(&map->async_list);
830 	INIT_LIST_HEAD(&map->async_free);
831 	init_waitqueue_head(&map->async_waitq);
832 
833 	if (config->read_flag_mask ||
834 	    config->write_flag_mask ||
835 	    config->zero_flag_mask) {
836 		map->read_flag_mask = config->read_flag_mask;
837 		map->write_flag_mask = config->write_flag_mask;
838 	} else if (bus) {
839 		map->read_flag_mask = bus->read_flag_mask;
840 	}
841 
842 	if (!bus) {
843 		map->reg_read  = config->reg_read;
844 		map->reg_write = config->reg_write;
845 
846 		map->defer_caching = false;
847 		goto skip_format_initialization;
848 	} else if (!bus->read || !bus->write) {
849 		map->reg_read = _regmap_bus_reg_read;
850 		map->reg_write = _regmap_bus_reg_write;
851 		map->reg_update_bits = bus->reg_update_bits;
852 
853 		map->defer_caching = false;
854 		goto skip_format_initialization;
855 	} else {
856 		map->reg_read  = _regmap_bus_read;
857 		map->reg_update_bits = bus->reg_update_bits;
858 	}
859 
860 	reg_endian = regmap_get_reg_endian(bus, config);
861 	val_endian = regmap_get_val_endian(dev, bus, config);
862 
863 	switch (config->reg_bits + map->reg_shift) {
864 	case 2:
865 		switch (config->val_bits) {
866 		case 6:
867 			map->format.format_write = regmap_format_2_6_write;
868 			break;
869 		default:
870 			goto err_hwlock;
871 		}
872 		break;
873 
874 	case 4:
875 		switch (config->val_bits) {
876 		case 12:
877 			map->format.format_write = regmap_format_4_12_write;
878 			break;
879 		default:
880 			goto err_hwlock;
881 		}
882 		break;
883 
884 	case 7:
885 		switch (config->val_bits) {
886 		case 9:
887 			map->format.format_write = regmap_format_7_9_write;
888 			break;
889 		default:
890 			goto err_hwlock;
891 		}
892 		break;
893 
894 	case 10:
895 		switch (config->val_bits) {
896 		case 14:
897 			map->format.format_write = regmap_format_10_14_write;
898 			break;
899 		default:
900 			goto err_hwlock;
901 		}
902 		break;
903 
904 	case 12:
905 		switch (config->val_bits) {
906 		case 20:
907 			map->format.format_write = regmap_format_12_20_write;
908 			break;
909 		default:
910 			goto err_hwlock;
911 		}
912 		break;
913 
914 	case 8:
915 		map->format.format_reg = regmap_format_8;
916 		break;
917 
918 	case 16:
919 		switch (reg_endian) {
920 		case REGMAP_ENDIAN_BIG:
921 			map->format.format_reg = regmap_format_16_be;
922 			break;
923 		case REGMAP_ENDIAN_LITTLE:
924 			map->format.format_reg = regmap_format_16_le;
925 			break;
926 		case REGMAP_ENDIAN_NATIVE:
927 			map->format.format_reg = regmap_format_16_native;
928 			break;
929 		default:
930 			goto err_hwlock;
931 		}
932 		break;
933 
934 	case 24:
935 		if (reg_endian != REGMAP_ENDIAN_BIG)
936 			goto err_hwlock;
937 		map->format.format_reg = regmap_format_24;
938 		break;
939 
940 	case 32:
941 		switch (reg_endian) {
942 		case REGMAP_ENDIAN_BIG:
943 			map->format.format_reg = regmap_format_32_be;
944 			break;
945 		case REGMAP_ENDIAN_LITTLE:
946 			map->format.format_reg = regmap_format_32_le;
947 			break;
948 		case REGMAP_ENDIAN_NATIVE:
949 			map->format.format_reg = regmap_format_32_native;
950 			break;
951 		default:
952 			goto err_hwlock;
953 		}
954 		break;
955 
956 #ifdef CONFIG_64BIT
957 	case 64:
958 		switch (reg_endian) {
959 		case REGMAP_ENDIAN_BIG:
960 			map->format.format_reg = regmap_format_64_be;
961 			break;
962 		case REGMAP_ENDIAN_LITTLE:
963 			map->format.format_reg = regmap_format_64_le;
964 			break;
965 		case REGMAP_ENDIAN_NATIVE:
966 			map->format.format_reg = regmap_format_64_native;
967 			break;
968 		default:
969 			goto err_hwlock;
970 		}
971 		break;
972 #endif
973 
974 	default:
975 		goto err_hwlock;
976 	}
977 
978 	if (val_endian == REGMAP_ENDIAN_NATIVE)
979 		map->format.parse_inplace = regmap_parse_inplace_noop;
980 
981 	switch (config->val_bits) {
982 	case 8:
983 		map->format.format_val = regmap_format_8;
984 		map->format.parse_val = regmap_parse_8;
985 		map->format.parse_inplace = regmap_parse_inplace_noop;
986 		break;
987 	case 16:
988 		switch (val_endian) {
989 		case REGMAP_ENDIAN_BIG:
990 			map->format.format_val = regmap_format_16_be;
991 			map->format.parse_val = regmap_parse_16_be;
992 			map->format.parse_inplace = regmap_parse_16_be_inplace;
993 			break;
994 		case REGMAP_ENDIAN_LITTLE:
995 			map->format.format_val = regmap_format_16_le;
996 			map->format.parse_val = regmap_parse_16_le;
997 			map->format.parse_inplace = regmap_parse_16_le_inplace;
998 			break;
999 		case REGMAP_ENDIAN_NATIVE:
1000 			map->format.format_val = regmap_format_16_native;
1001 			map->format.parse_val = regmap_parse_16_native;
1002 			break;
1003 		default:
1004 			goto err_hwlock;
1005 		}
1006 		break;
1007 	case 24:
1008 		if (val_endian != REGMAP_ENDIAN_BIG)
1009 			goto err_hwlock;
1010 		map->format.format_val = regmap_format_24;
1011 		map->format.parse_val = regmap_parse_24;
1012 		break;
1013 	case 32:
1014 		switch (val_endian) {
1015 		case REGMAP_ENDIAN_BIG:
1016 			map->format.format_val = regmap_format_32_be;
1017 			map->format.parse_val = regmap_parse_32_be;
1018 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1019 			break;
1020 		case REGMAP_ENDIAN_LITTLE:
1021 			map->format.format_val = regmap_format_32_le;
1022 			map->format.parse_val = regmap_parse_32_le;
1023 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1024 			break;
1025 		case REGMAP_ENDIAN_NATIVE:
1026 			map->format.format_val = regmap_format_32_native;
1027 			map->format.parse_val = regmap_parse_32_native;
1028 			break;
1029 		default:
1030 			goto err_hwlock;
1031 		}
1032 		break;
1033 #ifdef CONFIG_64BIT
1034 	case 64:
1035 		switch (val_endian) {
1036 		case REGMAP_ENDIAN_BIG:
1037 			map->format.format_val = regmap_format_64_be;
1038 			map->format.parse_val = regmap_parse_64_be;
1039 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1040 			break;
1041 		case REGMAP_ENDIAN_LITTLE:
1042 			map->format.format_val = regmap_format_64_le;
1043 			map->format.parse_val = regmap_parse_64_le;
1044 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1045 			break;
1046 		case REGMAP_ENDIAN_NATIVE:
1047 			map->format.format_val = regmap_format_64_native;
1048 			map->format.parse_val = regmap_parse_64_native;
1049 			break;
1050 		default:
1051 			goto err_hwlock;
1052 		}
1053 		break;
1054 #endif
1055 	}
1056 
1057 	if (map->format.format_write) {
1058 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1059 		    (val_endian != REGMAP_ENDIAN_BIG))
1060 			goto err_hwlock;
1061 		map->use_single_write = true;
1062 	}
1063 
1064 	if (!map->format.format_write &&
1065 	    !(map->format.format_reg && map->format.format_val))
1066 		goto err_hwlock;
1067 
1068 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1069 	if (map->work_buf == NULL) {
1070 		ret = -ENOMEM;
1071 		goto err_hwlock;
1072 	}
1073 
1074 	if (map->format.format_write) {
1075 		map->defer_caching = false;
1076 		map->reg_write = _regmap_bus_formatted_write;
1077 	} else if (map->format.format_val) {
1078 		map->defer_caching = true;
1079 		map->reg_write = _regmap_bus_raw_write;
1080 	}
1081 
1082 skip_format_initialization:
1083 
1084 	map->range_tree = RB_ROOT;
1085 	for (i = 0; i < config->num_ranges; i++) {
1086 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1087 		struct regmap_range_node *new;
1088 
1089 		/* Sanity check */
1090 		if (range_cfg->range_max < range_cfg->range_min) {
1091 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1092 				range_cfg->range_max, range_cfg->range_min);
1093 			goto err_range;
1094 		}
1095 
1096 		if (range_cfg->range_max > map->max_register) {
1097 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1098 				range_cfg->range_max, map->max_register);
1099 			goto err_range;
1100 		}
1101 
1102 		if (range_cfg->selector_reg > map->max_register) {
1103 			dev_err(map->dev,
1104 				"Invalid range %d: selector out of map\n", i);
1105 			goto err_range;
1106 		}
1107 
1108 		if (range_cfg->window_len == 0) {
1109 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1110 				i);
1111 			goto err_range;
1112 		}
1113 
1114 		/* Make sure, that this register range has no selector
1115 		   or data window within its boundary */
1116 		for (j = 0; j < config->num_ranges; j++) {
1117 			unsigned sel_reg = config->ranges[j].selector_reg;
1118 			unsigned win_min = config->ranges[j].window_start;
1119 			unsigned win_max = win_min +
1120 					   config->ranges[j].window_len - 1;
1121 
1122 			/* Allow data window inside its own virtual range */
1123 			if (j == i)
1124 				continue;
1125 
1126 			if (range_cfg->range_min <= sel_reg &&
1127 			    sel_reg <= range_cfg->range_max) {
1128 				dev_err(map->dev,
1129 					"Range %d: selector for %d in window\n",
1130 					i, j);
1131 				goto err_range;
1132 			}
1133 
1134 			if (!(win_max < range_cfg->range_min ||
1135 			      win_min > range_cfg->range_max)) {
1136 				dev_err(map->dev,
1137 					"Range %d: window for %d in window\n",
1138 					i, j);
1139 				goto err_range;
1140 			}
1141 		}
1142 
1143 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1144 		if (new == NULL) {
1145 			ret = -ENOMEM;
1146 			goto err_range;
1147 		}
1148 
1149 		new->map = map;
1150 		new->name = range_cfg->name;
1151 		new->range_min = range_cfg->range_min;
1152 		new->range_max = range_cfg->range_max;
1153 		new->selector_reg = range_cfg->selector_reg;
1154 		new->selector_mask = range_cfg->selector_mask;
1155 		new->selector_shift = range_cfg->selector_shift;
1156 		new->window_start = range_cfg->window_start;
1157 		new->window_len = range_cfg->window_len;
1158 
1159 		if (!_regmap_range_add(map, new)) {
1160 			dev_err(map->dev, "Failed to add range %d\n", i);
1161 			kfree(new);
1162 			goto err_range;
1163 		}
1164 
1165 		if (map->selector_work_buf == NULL) {
1166 			map->selector_work_buf =
1167 				kzalloc(map->format.buf_size, GFP_KERNEL);
1168 			if (map->selector_work_buf == NULL) {
1169 				ret = -ENOMEM;
1170 				goto err_range;
1171 			}
1172 		}
1173 	}
1174 
1175 	ret = regcache_init(map, config);
1176 	if (ret != 0)
1177 		goto err_range;
1178 
1179 	if (dev) {
1180 		ret = regmap_attach_dev(dev, map, config);
1181 		if (ret != 0)
1182 			goto err_regcache;
1183 	} else {
1184 		regmap_debugfs_init(map);
1185 	}
1186 
1187 	return map;
1188 
1189 err_regcache:
1190 	regcache_exit(map);
1191 err_range:
1192 	regmap_range_exit(map);
1193 	kfree(map->work_buf);
1194 err_hwlock:
1195 	if (map->hwlock)
1196 		hwspin_lock_free(map->hwlock);
1197 err_name:
1198 	kfree_const(map->name);
1199 err_map:
1200 	kfree(map);
1201 err:
1202 	return ERR_PTR(ret);
1203 }
1204 EXPORT_SYMBOL_GPL(__regmap_init);
1205 
devm_regmap_release(struct device * dev,void * res)1206 static void devm_regmap_release(struct device *dev, void *res)
1207 {
1208 	regmap_exit(*(struct regmap **)res);
1209 }
1210 
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1211 struct regmap *__devm_regmap_init(struct device *dev,
1212 				  const struct regmap_bus *bus,
1213 				  void *bus_context,
1214 				  const struct regmap_config *config,
1215 				  struct lock_class_key *lock_key,
1216 				  const char *lock_name)
1217 {
1218 	struct regmap **ptr, *regmap;
1219 
1220 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1221 	if (!ptr)
1222 		return ERR_PTR(-ENOMEM);
1223 
1224 	regmap = __regmap_init(dev, bus, bus_context, config,
1225 			       lock_key, lock_name);
1226 	if (!IS_ERR(regmap)) {
1227 		*ptr = regmap;
1228 		devres_add(dev, ptr);
1229 	} else {
1230 		devres_free(ptr);
1231 	}
1232 
1233 	return regmap;
1234 }
1235 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1236 
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1237 static void regmap_field_init(struct regmap_field *rm_field,
1238 	struct regmap *regmap, struct reg_field reg_field)
1239 {
1240 	rm_field->regmap = regmap;
1241 	rm_field->reg = reg_field.reg;
1242 	rm_field->shift = reg_field.lsb;
1243 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1244 	rm_field->id_size = reg_field.id_size;
1245 	rm_field->id_offset = reg_field.id_offset;
1246 }
1247 
1248 /**
1249  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1250  *
1251  * @dev: Device that will be interacted with
1252  * @regmap: regmap bank in which this register field is located.
1253  * @reg_field: Register field with in the bank.
1254  *
1255  * The return value will be an ERR_PTR() on error or a valid pointer
1256  * to a struct regmap_field. The regmap_field will be automatically freed
1257  * by the device management code.
1258  */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1259 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1260 		struct regmap *regmap, struct reg_field reg_field)
1261 {
1262 	struct regmap_field *rm_field = devm_kzalloc(dev,
1263 					sizeof(*rm_field), GFP_KERNEL);
1264 	if (!rm_field)
1265 		return ERR_PTR(-ENOMEM);
1266 
1267 	regmap_field_init(rm_field, regmap, reg_field);
1268 
1269 	return rm_field;
1270 
1271 }
1272 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1273 
1274 
1275 /**
1276  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1277  *
1278  * @regmap: regmap bank in which this register field is located.
1279  * @rm_field: regmap register fields within the bank.
1280  * @reg_field: Register fields within the bank.
1281  * @num_fields: Number of register fields.
1282  *
1283  * The return value will be an -ENOMEM on error or zero for success.
1284  * Newly allocated regmap_fields should be freed by calling
1285  * regmap_field_bulk_free()
1286  */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,struct reg_field * reg_field,int num_fields)1287 int regmap_field_bulk_alloc(struct regmap *regmap,
1288 			    struct regmap_field **rm_field,
1289 			    struct reg_field *reg_field,
1290 			    int num_fields)
1291 {
1292 	struct regmap_field *rf;
1293 	int i;
1294 
1295 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1296 	if (!rf)
1297 		return -ENOMEM;
1298 
1299 	for (i = 0; i < num_fields; i++) {
1300 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1301 		rm_field[i] = &rf[i];
1302 	}
1303 
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1307 
1308 /**
1309  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1310  * fields.
1311  *
1312  * @dev: Device that will be interacted with
1313  * @regmap: regmap bank in which this register field is located.
1314  * @rm_field: regmap register fields within the bank.
1315  * @reg_field: Register fields within the bank.
1316  * @num_fields: Number of register fields.
1317  *
1318  * The return value will be an -ENOMEM on error or zero for success.
1319  * Newly allocated regmap_fields will be automatically freed by the
1320  * device management code.
1321  */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,struct reg_field * reg_field,int num_fields)1322 int devm_regmap_field_bulk_alloc(struct device *dev,
1323 				 struct regmap *regmap,
1324 				 struct regmap_field **rm_field,
1325 				 struct reg_field *reg_field,
1326 				 int num_fields)
1327 {
1328 	struct regmap_field *rf;
1329 	int i;
1330 
1331 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1332 	if (!rf)
1333 		return -ENOMEM;
1334 
1335 	for (i = 0; i < num_fields; i++) {
1336 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1337 		rm_field[i] = &rf[i];
1338 	}
1339 
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1343 
1344 /**
1345  * regmap_field_bulk_free() - Free register field allocated using
1346  *                       regmap_field_bulk_alloc.
1347  *
1348  * @field: regmap fields which should be freed.
1349  */
regmap_field_bulk_free(struct regmap_field * field)1350 void regmap_field_bulk_free(struct regmap_field *field)
1351 {
1352 	kfree(field);
1353 }
1354 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1355 
1356 /**
1357  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1358  *                            devm_regmap_field_bulk_alloc.
1359  *
1360  * @dev: Device that will be interacted with
1361  * @field: regmap field which should be freed.
1362  *
1363  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1364  * drivers need not call this function, as the memory allocated via devm
1365  * will be freed as per device-driver life-cycle.
1366  */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1367 void devm_regmap_field_bulk_free(struct device *dev,
1368 				 struct regmap_field *field)
1369 {
1370 	devm_kfree(dev, field);
1371 }
1372 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1373 
1374 /**
1375  * devm_regmap_field_free() - Free a register field allocated using
1376  *                            devm_regmap_field_alloc.
1377  *
1378  * @dev: Device that will be interacted with
1379  * @field: regmap field which should be freed.
1380  *
1381  * Free register field allocated using devm_regmap_field_alloc(). Usually
1382  * drivers need not call this function, as the memory allocated via devm
1383  * will be freed as per device-driver life-cyle.
1384  */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1385 void devm_regmap_field_free(struct device *dev,
1386 	struct regmap_field *field)
1387 {
1388 	devm_kfree(dev, field);
1389 }
1390 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1391 
1392 /**
1393  * regmap_field_alloc() - Allocate and initialise a register field.
1394  *
1395  * @regmap: regmap bank in which this register field is located.
1396  * @reg_field: Register field with in the bank.
1397  *
1398  * The return value will be an ERR_PTR() on error or a valid pointer
1399  * to a struct regmap_field. The regmap_field should be freed by the
1400  * user once its finished working with it using regmap_field_free().
1401  */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1402 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1403 		struct reg_field reg_field)
1404 {
1405 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1406 
1407 	if (!rm_field)
1408 		return ERR_PTR(-ENOMEM);
1409 
1410 	regmap_field_init(rm_field, regmap, reg_field);
1411 
1412 	return rm_field;
1413 }
1414 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1415 
1416 /**
1417  * regmap_field_free() - Free register field allocated using
1418  *                       regmap_field_alloc.
1419  *
1420  * @field: regmap field which should be freed.
1421  */
regmap_field_free(struct regmap_field * field)1422 void regmap_field_free(struct regmap_field *field)
1423 {
1424 	kfree(field);
1425 }
1426 EXPORT_SYMBOL_GPL(regmap_field_free);
1427 
1428 /**
1429  * regmap_reinit_cache() - Reinitialise the current register cache
1430  *
1431  * @map: Register map to operate on.
1432  * @config: New configuration.  Only the cache data will be used.
1433  *
1434  * Discard any existing register cache for the map and initialize a
1435  * new cache.  This can be used to restore the cache to defaults or to
1436  * update the cache configuration to reflect runtime discovery of the
1437  * hardware.
1438  *
1439  * No explicit locking is done here, the user needs to ensure that
1440  * this function will not race with other calls to regmap.
1441  */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1442 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1443 {
1444 	int ret;
1445 
1446 	regcache_exit(map);
1447 	regmap_debugfs_exit(map);
1448 
1449 	map->max_register = config->max_register;
1450 	map->writeable_reg = config->writeable_reg;
1451 	map->readable_reg = config->readable_reg;
1452 	map->volatile_reg = config->volatile_reg;
1453 	map->precious_reg = config->precious_reg;
1454 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1455 	map->readable_noinc_reg = config->readable_noinc_reg;
1456 	map->cache_type = config->cache_type;
1457 
1458 	ret = regmap_set_name(map, config);
1459 	if (ret)
1460 		return ret;
1461 
1462 	regmap_debugfs_init(map);
1463 
1464 	map->cache_bypass = false;
1465 	map->cache_only = false;
1466 
1467 	return regcache_init(map, config);
1468 }
1469 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1470 
1471 /**
1472  * regmap_exit() - Free a previously allocated register map
1473  *
1474  * @map: Register map to operate on.
1475  */
regmap_exit(struct regmap * map)1476 void regmap_exit(struct regmap *map)
1477 {
1478 	struct regmap_async *async;
1479 
1480 	regcache_exit(map);
1481 	regmap_debugfs_exit(map);
1482 	regmap_range_exit(map);
1483 	if (map->bus && map->bus->free_context)
1484 		map->bus->free_context(map->bus_context);
1485 	kfree(map->work_buf);
1486 	while (!list_empty(&map->async_free)) {
1487 		async = list_first_entry_or_null(&map->async_free,
1488 						 struct regmap_async,
1489 						 list);
1490 		list_del(&async->list);
1491 		kfree(async->work_buf);
1492 		kfree(async);
1493 	}
1494 	if (map->hwlock)
1495 		hwspin_lock_free(map->hwlock);
1496 	if (map->lock == regmap_lock_mutex)
1497 		mutex_destroy(&map->mutex);
1498 	kfree_const(map->name);
1499 	kfree(map->patch);
1500 	kfree(map);
1501 }
1502 EXPORT_SYMBOL_GPL(regmap_exit);
1503 
dev_get_regmap_match(struct device * dev,void * res,void * data)1504 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1505 {
1506 	struct regmap **r = res;
1507 	if (!r || !*r) {
1508 		WARN_ON(!r || !*r);
1509 		return 0;
1510 	}
1511 
1512 	/* If the user didn't specify a name match any */
1513 	if (data)
1514 		return !strcmp((*r)->name, data);
1515 	else
1516 		return 1;
1517 }
1518 
1519 /**
1520  * dev_get_regmap() - Obtain the regmap (if any) for a device
1521  *
1522  * @dev: Device to retrieve the map for
1523  * @name: Optional name for the register map, usually NULL.
1524  *
1525  * Returns the regmap for the device if one is present, or NULL.  If
1526  * name is specified then it must match the name specified when
1527  * registering the device, if it is NULL then the first regmap found
1528  * will be used.  Devices with multiple register maps are very rare,
1529  * generic code should normally not need to specify a name.
1530  */
dev_get_regmap(struct device * dev,const char * name)1531 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1532 {
1533 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1534 					dev_get_regmap_match, (void *)name);
1535 
1536 	if (!r)
1537 		return NULL;
1538 	return *r;
1539 }
1540 EXPORT_SYMBOL_GPL(dev_get_regmap);
1541 
1542 /**
1543  * regmap_get_device() - Obtain the device from a regmap
1544  *
1545  * @map: Register map to operate on.
1546  *
1547  * Returns the underlying device that the regmap has been created for.
1548  */
regmap_get_device(struct regmap * map)1549 struct device *regmap_get_device(struct regmap *map)
1550 {
1551 	return map->dev;
1552 }
1553 EXPORT_SYMBOL_GPL(regmap_get_device);
1554 
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1555 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1556 			       struct regmap_range_node *range,
1557 			       unsigned int val_num)
1558 {
1559 	void *orig_work_buf;
1560 	unsigned int win_offset;
1561 	unsigned int win_page;
1562 	bool page_chg;
1563 	int ret;
1564 
1565 	win_offset = (*reg - range->range_min) % range->window_len;
1566 	win_page = (*reg - range->range_min) / range->window_len;
1567 
1568 	if (val_num > 1) {
1569 		/* Bulk write shouldn't cross range boundary */
1570 		if (*reg + val_num - 1 > range->range_max)
1571 			return -EINVAL;
1572 
1573 		/* ... or single page boundary */
1574 		if (val_num > range->window_len - win_offset)
1575 			return -EINVAL;
1576 	}
1577 
1578 	/* It is possible to have selector register inside data window.
1579 	   In that case, selector register is located on every page and
1580 	   it needs no page switching, when accessed alone. */
1581 	if (val_num > 1 ||
1582 	    range->window_start + win_offset != range->selector_reg) {
1583 		/* Use separate work_buf during page switching */
1584 		orig_work_buf = map->work_buf;
1585 		map->work_buf = map->selector_work_buf;
1586 
1587 		ret = _regmap_update_bits(map, range->selector_reg,
1588 					  range->selector_mask,
1589 					  win_page << range->selector_shift,
1590 					  &page_chg, false);
1591 
1592 		map->work_buf = orig_work_buf;
1593 
1594 		if (ret != 0)
1595 			return ret;
1596 	}
1597 
1598 	*reg = range->window_start + win_offset;
1599 
1600 	return 0;
1601 }
1602 
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1603 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1604 					  unsigned long mask)
1605 {
1606 	u8 *buf;
1607 	int i;
1608 
1609 	if (!mask || !map->work_buf)
1610 		return;
1611 
1612 	buf = map->work_buf;
1613 
1614 	for (i = 0; i < max_bytes; i++)
1615 		buf[i] |= (mask >> (8 * i)) & 0xff;
1616 }
1617 
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1618 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1619 				  const void *val, size_t val_len, bool noinc)
1620 {
1621 	struct regmap_range_node *range;
1622 	unsigned long flags;
1623 	void *work_val = map->work_buf + map->format.reg_bytes +
1624 		map->format.pad_bytes;
1625 	void *buf;
1626 	int ret = -ENOTSUPP;
1627 	size_t len;
1628 	int i;
1629 
1630 	WARN_ON(!map->bus);
1631 
1632 	/* Check for unwritable or noinc registers in range
1633 	 * before we start
1634 	 */
1635 	if (!regmap_writeable_noinc(map, reg)) {
1636 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1637 			unsigned int element =
1638 				reg + regmap_get_offset(map, i);
1639 			if (!regmap_writeable(map, element) ||
1640 				regmap_writeable_noinc(map, element))
1641 				return -EINVAL;
1642 		}
1643 	}
1644 
1645 	if (!map->cache_bypass && map->format.parse_val) {
1646 		unsigned int ival;
1647 		int val_bytes = map->format.val_bytes;
1648 		for (i = 0; i < val_len / val_bytes; i++) {
1649 			ival = map->format.parse_val(val + (i * val_bytes));
1650 			ret = regcache_write(map,
1651 					     reg + regmap_get_offset(map, i),
1652 					     ival);
1653 			if (ret) {
1654 				dev_err(map->dev,
1655 					"Error in caching of register: %x ret: %d\n",
1656 					reg + regmap_get_offset(map, i), ret);
1657 				return ret;
1658 			}
1659 		}
1660 		if (map->cache_only) {
1661 			map->cache_dirty = true;
1662 			return 0;
1663 		}
1664 	}
1665 
1666 	range = _regmap_range_lookup(map, reg);
1667 	if (range) {
1668 		int val_num = val_len / map->format.val_bytes;
1669 		int win_offset = (reg - range->range_min) % range->window_len;
1670 		int win_residue = range->window_len - win_offset;
1671 
1672 		/* If the write goes beyond the end of the window split it */
1673 		while (val_num > win_residue) {
1674 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1675 				win_residue, val_len / map->format.val_bytes);
1676 			ret = _regmap_raw_write_impl(map, reg, val,
1677 						     win_residue *
1678 						     map->format.val_bytes, noinc);
1679 			if (ret != 0)
1680 				return ret;
1681 
1682 			reg += win_residue;
1683 			val_num -= win_residue;
1684 			val += win_residue * map->format.val_bytes;
1685 			val_len -= win_residue * map->format.val_bytes;
1686 
1687 			win_offset = (reg - range->range_min) %
1688 				range->window_len;
1689 			win_residue = range->window_len - win_offset;
1690 		}
1691 
1692 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1693 		if (ret != 0)
1694 			return ret;
1695 	}
1696 
1697 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1698 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1699 				      map->write_flag_mask);
1700 
1701 	/*
1702 	 * Essentially all I/O mechanisms will be faster with a single
1703 	 * buffer to write.  Since register syncs often generate raw
1704 	 * writes of single registers optimise that case.
1705 	 */
1706 	if (val != work_val && val_len == map->format.val_bytes) {
1707 		memcpy(work_val, val, map->format.val_bytes);
1708 		val = work_val;
1709 	}
1710 
1711 	if (map->async && map->bus->async_write) {
1712 		struct regmap_async *async;
1713 
1714 		trace_regmap_async_write_start(map, reg, val_len);
1715 
1716 		spin_lock_irqsave(&map->async_lock, flags);
1717 		async = list_first_entry_or_null(&map->async_free,
1718 						 struct regmap_async,
1719 						 list);
1720 		if (async)
1721 			list_del(&async->list);
1722 		spin_unlock_irqrestore(&map->async_lock, flags);
1723 
1724 		if (!async) {
1725 			async = map->bus->async_alloc();
1726 			if (!async)
1727 				return -ENOMEM;
1728 
1729 			async->work_buf = kzalloc(map->format.buf_size,
1730 						  GFP_KERNEL | GFP_DMA);
1731 			if (!async->work_buf) {
1732 				kfree(async);
1733 				return -ENOMEM;
1734 			}
1735 		}
1736 
1737 		async->map = map;
1738 
1739 		/* If the caller supplied the value we can use it safely. */
1740 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1741 		       map->format.reg_bytes + map->format.val_bytes);
1742 
1743 		spin_lock_irqsave(&map->async_lock, flags);
1744 		list_add_tail(&async->list, &map->async_list);
1745 		spin_unlock_irqrestore(&map->async_lock, flags);
1746 
1747 		if (val != work_val)
1748 			ret = map->bus->async_write(map->bus_context,
1749 						    async->work_buf,
1750 						    map->format.reg_bytes +
1751 						    map->format.pad_bytes,
1752 						    val, val_len, async);
1753 		else
1754 			ret = map->bus->async_write(map->bus_context,
1755 						    async->work_buf,
1756 						    map->format.reg_bytes +
1757 						    map->format.pad_bytes +
1758 						    val_len, NULL, 0, async);
1759 
1760 		if (ret != 0) {
1761 			dev_err(map->dev, "Failed to schedule write: %d\n",
1762 				ret);
1763 
1764 			spin_lock_irqsave(&map->async_lock, flags);
1765 			list_move(&async->list, &map->async_free);
1766 			spin_unlock_irqrestore(&map->async_lock, flags);
1767 		}
1768 
1769 		return ret;
1770 	}
1771 
1772 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1773 
1774 	/* If we're doing a single register write we can probably just
1775 	 * send the work_buf directly, otherwise try to do a gather
1776 	 * write.
1777 	 */
1778 	if (val == work_val)
1779 		ret = map->bus->write(map->bus_context, map->work_buf,
1780 				      map->format.reg_bytes +
1781 				      map->format.pad_bytes +
1782 				      val_len);
1783 	else if (map->bus->gather_write)
1784 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1785 					     map->format.reg_bytes +
1786 					     map->format.pad_bytes,
1787 					     val, val_len);
1788 	else
1789 		ret = -ENOTSUPP;
1790 
1791 	/* If that didn't work fall back on linearising by hand. */
1792 	if (ret == -ENOTSUPP) {
1793 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1794 		buf = kzalloc(len, GFP_KERNEL);
1795 		if (!buf)
1796 			return -ENOMEM;
1797 
1798 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1799 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1800 		       val, val_len);
1801 		ret = map->bus->write(map->bus_context, buf, len);
1802 
1803 		kfree(buf);
1804 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1805 		/* regcache_drop_region() takes lock that we already have,
1806 		 * thus call map->cache_ops->drop() directly
1807 		 */
1808 		if (map->cache_ops && map->cache_ops->drop)
1809 			map->cache_ops->drop(map, reg, reg + 1);
1810 	}
1811 
1812 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1813 
1814 	return ret;
1815 }
1816 
1817 /**
1818  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1819  *
1820  * @map: Map to check.
1821  */
regmap_can_raw_write(struct regmap * map)1822 bool regmap_can_raw_write(struct regmap *map)
1823 {
1824 	return map->bus && map->bus->write && map->format.format_val &&
1825 		map->format.format_reg;
1826 }
1827 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1828 
1829 /**
1830  * regmap_get_raw_read_max - Get the maximum size we can read
1831  *
1832  * @map: Map to check.
1833  */
regmap_get_raw_read_max(struct regmap * map)1834 size_t regmap_get_raw_read_max(struct regmap *map)
1835 {
1836 	return map->max_raw_read;
1837 }
1838 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1839 
1840 /**
1841  * regmap_get_raw_write_max - Get the maximum size we can read
1842  *
1843  * @map: Map to check.
1844  */
regmap_get_raw_write_max(struct regmap * map)1845 size_t regmap_get_raw_write_max(struct regmap *map)
1846 {
1847 	return map->max_raw_write;
1848 }
1849 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1850 
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1851 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1852 				       unsigned int val)
1853 {
1854 	int ret;
1855 	struct regmap_range_node *range;
1856 	struct regmap *map = context;
1857 
1858 	WARN_ON(!map->bus || !map->format.format_write);
1859 
1860 	range = _regmap_range_lookup(map, reg);
1861 	if (range) {
1862 		ret = _regmap_select_page(map, &reg, range, 1);
1863 		if (ret != 0)
1864 			return ret;
1865 	}
1866 
1867 	map->format.format_write(map, reg, val);
1868 
1869 	trace_regmap_hw_write_start(map, reg, 1);
1870 
1871 	ret = map->bus->write(map->bus_context, map->work_buf,
1872 			      map->format.buf_size);
1873 
1874 	trace_regmap_hw_write_done(map, reg, 1);
1875 
1876 	return ret;
1877 }
1878 
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1879 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1880 				 unsigned int val)
1881 {
1882 	struct regmap *map = context;
1883 
1884 	return map->bus->reg_write(map->bus_context, reg, val);
1885 }
1886 
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1887 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1888 				 unsigned int val)
1889 {
1890 	struct regmap *map = context;
1891 
1892 	WARN_ON(!map->bus || !map->format.format_val);
1893 
1894 	map->format.format_val(map->work_buf + map->format.reg_bytes
1895 			       + map->format.pad_bytes, val, 0);
1896 	return _regmap_raw_write_impl(map, reg,
1897 				      map->work_buf +
1898 				      map->format.reg_bytes +
1899 				      map->format.pad_bytes,
1900 				      map->format.val_bytes,
1901 				      false);
1902 }
1903 
_regmap_map_get_context(struct regmap * map)1904 static inline void *_regmap_map_get_context(struct regmap *map)
1905 {
1906 	return (map->bus) ? map : map->bus_context;
1907 }
1908 
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1909 int _regmap_write(struct regmap *map, unsigned int reg,
1910 		  unsigned int val)
1911 {
1912 	int ret;
1913 	void *context = _regmap_map_get_context(map);
1914 
1915 	if (!regmap_writeable(map, reg))
1916 		return -EIO;
1917 
1918 	if (!map->cache_bypass && !map->defer_caching) {
1919 		ret = regcache_write(map, reg, val);
1920 		if (ret != 0)
1921 			return ret;
1922 		if (map->cache_only) {
1923 			map->cache_dirty = true;
1924 			return 0;
1925 		}
1926 	}
1927 
1928 	if (regmap_should_log(map))
1929 		dev_info(map->dev, "%x <= %x\n", reg, val);
1930 
1931 	trace_regmap_reg_write(map, reg, val);
1932 
1933 	return map->reg_write(context, reg, val);
1934 }
1935 
1936 /**
1937  * regmap_write() - Write a value to a single register
1938  *
1939  * @map: Register map to write to
1940  * @reg: Register to write to
1941  * @val: Value to be written
1942  *
1943  * A value of zero will be returned on success, a negative errno will
1944  * be returned in error cases.
1945  */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1946 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1947 {
1948 	int ret;
1949 
1950 	if (!IS_ALIGNED(reg, map->reg_stride))
1951 		return -EINVAL;
1952 
1953 	map->lock(map->lock_arg);
1954 
1955 	ret = _regmap_write(map, reg, val);
1956 
1957 	map->unlock(map->lock_arg);
1958 
1959 	return ret;
1960 }
1961 EXPORT_SYMBOL_GPL(regmap_write);
1962 
1963 /**
1964  * regmap_write_async() - Write a value to a single register asynchronously
1965  *
1966  * @map: Register map to write to
1967  * @reg: Register to write to
1968  * @val: Value to be written
1969  *
1970  * A value of zero will be returned on success, a negative errno will
1971  * be returned in error cases.
1972  */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1973 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1974 {
1975 	int ret;
1976 
1977 	if (!IS_ALIGNED(reg, map->reg_stride))
1978 		return -EINVAL;
1979 
1980 	map->lock(map->lock_arg);
1981 
1982 	map->async = true;
1983 
1984 	ret = _regmap_write(map, reg, val);
1985 
1986 	map->async = false;
1987 
1988 	map->unlock(map->lock_arg);
1989 
1990 	return ret;
1991 }
1992 EXPORT_SYMBOL_GPL(regmap_write_async);
1993 
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1994 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1995 		      const void *val, size_t val_len, bool noinc)
1996 {
1997 	size_t val_bytes = map->format.val_bytes;
1998 	size_t val_count = val_len / val_bytes;
1999 	size_t chunk_count, chunk_bytes;
2000 	size_t chunk_regs = val_count;
2001 	int ret, i;
2002 
2003 	if (!val_count)
2004 		return -EINVAL;
2005 
2006 	if (map->use_single_write)
2007 		chunk_regs = 1;
2008 	else if (map->max_raw_write && val_len > map->max_raw_write)
2009 		chunk_regs = map->max_raw_write / val_bytes;
2010 
2011 	chunk_count = val_count / chunk_regs;
2012 	chunk_bytes = chunk_regs * val_bytes;
2013 
2014 	/* Write as many bytes as possible with chunk_size */
2015 	for (i = 0; i < chunk_count; i++) {
2016 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2017 		if (ret)
2018 			return ret;
2019 
2020 		reg += regmap_get_offset(map, chunk_regs);
2021 		val += chunk_bytes;
2022 		val_len -= chunk_bytes;
2023 	}
2024 
2025 	/* Write remaining bytes */
2026 	if (val_len)
2027 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2028 
2029 	return ret;
2030 }
2031 
2032 /**
2033  * regmap_raw_write() - Write raw values to one or more registers
2034  *
2035  * @map: Register map to write to
2036  * @reg: Initial register to write to
2037  * @val: Block of data to be written, laid out for direct transmission to the
2038  *       device
2039  * @val_len: Length of data pointed to by val.
2040  *
2041  * This function is intended to be used for things like firmware
2042  * download where a large block of data needs to be transferred to the
2043  * device.  No formatting will be done on the data provided.
2044  *
2045  * A value of zero will be returned on success, a negative errno will
2046  * be returned in error cases.
2047  */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2048 int regmap_raw_write(struct regmap *map, unsigned int reg,
2049 		     const void *val, size_t val_len)
2050 {
2051 	int ret;
2052 
2053 	if (!regmap_can_raw_write(map))
2054 		return -EINVAL;
2055 	if (val_len % map->format.val_bytes)
2056 		return -EINVAL;
2057 
2058 	map->lock(map->lock_arg);
2059 
2060 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2061 
2062 	map->unlock(map->lock_arg);
2063 
2064 	return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(regmap_raw_write);
2067 
2068 /**
2069  * regmap_noinc_write(): Write data from a register without incrementing the
2070  *			register number
2071  *
2072  * @map: Register map to write to
2073  * @reg: Register to write to
2074  * @val: Pointer to data buffer
2075  * @val_len: Length of output buffer in bytes.
2076  *
2077  * The regmap API usually assumes that bulk bus write operations will write a
2078  * range of registers. Some devices have certain registers for which a write
2079  * operation can write to an internal FIFO.
2080  *
2081  * The target register must be volatile but registers after it can be
2082  * completely unrelated cacheable registers.
2083  *
2084  * This will attempt multiple writes as required to write val_len bytes.
2085  *
2086  * A value of zero will be returned on success, a negative errno will be
2087  * returned in error cases.
2088  */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2089 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2090 		      const void *val, size_t val_len)
2091 {
2092 	size_t write_len;
2093 	int ret;
2094 
2095 	if (!map->bus)
2096 		return -EINVAL;
2097 	if (!map->bus->write)
2098 		return -ENOTSUPP;
2099 	if (val_len % map->format.val_bytes)
2100 		return -EINVAL;
2101 	if (!IS_ALIGNED(reg, map->reg_stride))
2102 		return -EINVAL;
2103 	if (val_len == 0)
2104 		return -EINVAL;
2105 
2106 	map->lock(map->lock_arg);
2107 
2108 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2109 		ret = -EINVAL;
2110 		goto out_unlock;
2111 	}
2112 
2113 	while (val_len) {
2114 		if (map->max_raw_write && map->max_raw_write < val_len)
2115 			write_len = map->max_raw_write;
2116 		else
2117 			write_len = val_len;
2118 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2119 		if (ret)
2120 			goto out_unlock;
2121 		val = ((u8 *)val) + write_len;
2122 		val_len -= write_len;
2123 	}
2124 
2125 out_unlock:
2126 	map->unlock(map->lock_arg);
2127 	return ret;
2128 }
2129 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2130 
2131 /**
2132  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2133  *                                   register field.
2134  *
2135  * @field: Register field to write to
2136  * @mask: Bitmask to change
2137  * @val: Value to be written
2138  * @change: Boolean indicating if a write was done
2139  * @async: Boolean indicating asynchronously
2140  * @force: Boolean indicating use force update
2141  *
2142  * Perform a read/modify/write cycle on the register field with change,
2143  * async, force option.
2144  *
2145  * A value of zero will be returned on success, a negative errno will
2146  * be returned in error cases.
2147  */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2148 int regmap_field_update_bits_base(struct regmap_field *field,
2149 				  unsigned int mask, unsigned int val,
2150 				  bool *change, bool async, bool force)
2151 {
2152 	mask = (mask << field->shift) & field->mask;
2153 
2154 	return regmap_update_bits_base(field->regmap, field->reg,
2155 				       mask, val << field->shift,
2156 				       change, async, force);
2157 }
2158 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2159 
2160 /**
2161  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2162  *                                    register field with port ID
2163  *
2164  * @field: Register field to write to
2165  * @id: port ID
2166  * @mask: Bitmask to change
2167  * @val: Value to be written
2168  * @change: Boolean indicating if a write was done
2169  * @async: Boolean indicating asynchronously
2170  * @force: Boolean indicating use force update
2171  *
2172  * A value of zero will be returned on success, a negative errno will
2173  * be returned in error cases.
2174  */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2175 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2176 				   unsigned int mask, unsigned int val,
2177 				   bool *change, bool async, bool force)
2178 {
2179 	if (id >= field->id_size)
2180 		return -EINVAL;
2181 
2182 	mask = (mask << field->shift) & field->mask;
2183 
2184 	return regmap_update_bits_base(field->regmap,
2185 				       field->reg + (field->id_offset * id),
2186 				       mask, val << field->shift,
2187 				       change, async, force);
2188 }
2189 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2190 
2191 /**
2192  * regmap_bulk_write() - Write multiple registers to the device
2193  *
2194  * @map: Register map to write to
2195  * @reg: First register to be write from
2196  * @val: Block of data to be written, in native register size for device
2197  * @val_count: Number of registers to write
2198  *
2199  * This function is intended to be used for writing a large block of
2200  * data to the device either in single transfer or multiple transfer.
2201  *
2202  * A value of zero will be returned on success, a negative errno will
2203  * be returned in error cases.
2204  */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2205 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2206 		     size_t val_count)
2207 {
2208 	int ret = 0, i;
2209 	size_t val_bytes = map->format.val_bytes;
2210 
2211 	if (!IS_ALIGNED(reg, map->reg_stride))
2212 		return -EINVAL;
2213 
2214 	/*
2215 	 * Some devices don't support bulk write, for them we have a series of
2216 	 * single write operations.
2217 	 */
2218 	if (!map->bus || !map->format.parse_inplace) {
2219 		map->lock(map->lock_arg);
2220 		for (i = 0; i < val_count; i++) {
2221 			unsigned int ival;
2222 
2223 			switch (val_bytes) {
2224 			case 1:
2225 				ival = *(u8 *)(val + (i * val_bytes));
2226 				break;
2227 			case 2:
2228 				ival = *(u16 *)(val + (i * val_bytes));
2229 				break;
2230 			case 4:
2231 				ival = *(u32 *)(val + (i * val_bytes));
2232 				break;
2233 #ifdef CONFIG_64BIT
2234 			case 8:
2235 				ival = *(u64 *)(val + (i * val_bytes));
2236 				break;
2237 #endif
2238 			default:
2239 				ret = -EINVAL;
2240 				goto out;
2241 			}
2242 
2243 			ret = _regmap_write(map,
2244 					    reg + regmap_get_offset(map, i),
2245 					    ival);
2246 			if (ret != 0)
2247 				goto out;
2248 		}
2249 out:
2250 		map->unlock(map->lock_arg);
2251 	} else {
2252 		void *wval;
2253 
2254 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2255 		if (!wval)
2256 			return -ENOMEM;
2257 
2258 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2259 			map->format.parse_inplace(wval + i);
2260 
2261 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2262 
2263 		kfree(wval);
2264 	}
2265 	return ret;
2266 }
2267 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2268 
2269 /*
2270  * _regmap_raw_multi_reg_write()
2271  *
2272  * the (register,newvalue) pairs in regs have not been formatted, but
2273  * they are all in the same page and have been changed to being page
2274  * relative. The page register has been written if that was necessary.
2275  */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2276 static int _regmap_raw_multi_reg_write(struct regmap *map,
2277 				       const struct reg_sequence *regs,
2278 				       size_t num_regs)
2279 {
2280 	int ret;
2281 	void *buf;
2282 	int i;
2283 	u8 *u8;
2284 	size_t val_bytes = map->format.val_bytes;
2285 	size_t reg_bytes = map->format.reg_bytes;
2286 	size_t pad_bytes = map->format.pad_bytes;
2287 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2288 	size_t len = pair_size * num_regs;
2289 
2290 	if (!len)
2291 		return -EINVAL;
2292 
2293 	buf = kzalloc(len, GFP_KERNEL);
2294 	if (!buf)
2295 		return -ENOMEM;
2296 
2297 	/* We have to linearise by hand. */
2298 
2299 	u8 = buf;
2300 
2301 	for (i = 0; i < num_regs; i++) {
2302 		unsigned int reg = regs[i].reg;
2303 		unsigned int val = regs[i].def;
2304 		trace_regmap_hw_write_start(map, reg, 1);
2305 		map->format.format_reg(u8, reg, map->reg_shift);
2306 		u8 += reg_bytes + pad_bytes;
2307 		map->format.format_val(u8, val, 0);
2308 		u8 += val_bytes;
2309 	}
2310 	u8 = buf;
2311 	*u8 |= map->write_flag_mask;
2312 
2313 	ret = map->bus->write(map->bus_context, buf, len);
2314 
2315 	kfree(buf);
2316 
2317 	for (i = 0; i < num_regs; i++) {
2318 		int reg = regs[i].reg;
2319 		trace_regmap_hw_write_done(map, reg, 1);
2320 	}
2321 	return ret;
2322 }
2323 
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2324 static unsigned int _regmap_register_page(struct regmap *map,
2325 					  unsigned int reg,
2326 					  struct regmap_range_node *range)
2327 {
2328 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2329 
2330 	return win_page;
2331 }
2332 
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2333 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2334 					       struct reg_sequence *regs,
2335 					       size_t num_regs)
2336 {
2337 	int ret;
2338 	int i, n;
2339 	struct reg_sequence *base;
2340 	unsigned int this_page = 0;
2341 	unsigned int page_change = 0;
2342 	/*
2343 	 * the set of registers are not neccessarily in order, but
2344 	 * since the order of write must be preserved this algorithm
2345 	 * chops the set each time the page changes. This also applies
2346 	 * if there is a delay required at any point in the sequence.
2347 	 */
2348 	base = regs;
2349 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2350 		unsigned int reg = regs[i].reg;
2351 		struct regmap_range_node *range;
2352 
2353 		range = _regmap_range_lookup(map, reg);
2354 		if (range) {
2355 			unsigned int win_page = _regmap_register_page(map, reg,
2356 								      range);
2357 
2358 			if (i == 0)
2359 				this_page = win_page;
2360 			if (win_page != this_page) {
2361 				this_page = win_page;
2362 				page_change = 1;
2363 			}
2364 		}
2365 
2366 		/* If we have both a page change and a delay make sure to
2367 		 * write the regs and apply the delay before we change the
2368 		 * page.
2369 		 */
2370 
2371 		if (page_change || regs[i].delay_us) {
2372 
2373 				/* For situations where the first write requires
2374 				 * a delay we need to make sure we don't call
2375 				 * raw_multi_reg_write with n=0
2376 				 * This can't occur with page breaks as we
2377 				 * never write on the first iteration
2378 				 */
2379 				if (regs[i].delay_us && i == 0)
2380 					n = 1;
2381 
2382 				ret = _regmap_raw_multi_reg_write(map, base, n);
2383 				if (ret != 0)
2384 					return ret;
2385 
2386 				if (regs[i].delay_us) {
2387 					if (map->can_sleep)
2388 						fsleep(regs[i].delay_us);
2389 					else
2390 						udelay(regs[i].delay_us);
2391 				}
2392 
2393 				base += n;
2394 				n = 0;
2395 
2396 				if (page_change) {
2397 					ret = _regmap_select_page(map,
2398 								  &base[n].reg,
2399 								  range, 1);
2400 					if (ret != 0)
2401 						return ret;
2402 
2403 					page_change = 0;
2404 				}
2405 
2406 		}
2407 
2408 	}
2409 	if (n > 0)
2410 		return _regmap_raw_multi_reg_write(map, base, n);
2411 	return 0;
2412 }
2413 
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2414 static int _regmap_multi_reg_write(struct regmap *map,
2415 				   const struct reg_sequence *regs,
2416 				   size_t num_regs)
2417 {
2418 	int i;
2419 	int ret;
2420 
2421 	if (!map->can_multi_write) {
2422 		for (i = 0; i < num_regs; i++) {
2423 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2424 			if (ret != 0)
2425 				return ret;
2426 
2427 			if (regs[i].delay_us) {
2428 				if (map->can_sleep)
2429 					fsleep(regs[i].delay_us);
2430 				else
2431 					udelay(regs[i].delay_us);
2432 			}
2433 		}
2434 		return 0;
2435 	}
2436 
2437 	if (!map->format.parse_inplace)
2438 		return -EINVAL;
2439 
2440 	if (map->writeable_reg)
2441 		for (i = 0; i < num_regs; i++) {
2442 			int reg = regs[i].reg;
2443 			if (!map->writeable_reg(map->dev, reg))
2444 				return -EINVAL;
2445 			if (!IS_ALIGNED(reg, map->reg_stride))
2446 				return -EINVAL;
2447 		}
2448 
2449 	if (!map->cache_bypass) {
2450 		for (i = 0; i < num_regs; i++) {
2451 			unsigned int val = regs[i].def;
2452 			unsigned int reg = regs[i].reg;
2453 			ret = regcache_write(map, reg, val);
2454 			if (ret) {
2455 				dev_err(map->dev,
2456 				"Error in caching of register: %x ret: %d\n",
2457 								reg, ret);
2458 				return ret;
2459 			}
2460 		}
2461 		if (map->cache_only) {
2462 			map->cache_dirty = true;
2463 			return 0;
2464 		}
2465 	}
2466 
2467 	WARN_ON(!map->bus);
2468 
2469 	for (i = 0; i < num_regs; i++) {
2470 		unsigned int reg = regs[i].reg;
2471 		struct regmap_range_node *range;
2472 
2473 		/* Coalesce all the writes between a page break or a delay
2474 		 * in a sequence
2475 		 */
2476 		range = _regmap_range_lookup(map, reg);
2477 		if (range || regs[i].delay_us) {
2478 			size_t len = sizeof(struct reg_sequence)*num_regs;
2479 			struct reg_sequence *base = kmemdup(regs, len,
2480 							   GFP_KERNEL);
2481 			if (!base)
2482 				return -ENOMEM;
2483 			ret = _regmap_range_multi_paged_reg_write(map, base,
2484 								  num_regs);
2485 			kfree(base);
2486 
2487 			return ret;
2488 		}
2489 	}
2490 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2491 }
2492 
2493 /**
2494  * regmap_multi_reg_write() - Write multiple registers to the device
2495  *
2496  * @map: Register map to write to
2497  * @regs: Array of structures containing register,value to be written
2498  * @num_regs: Number of registers to write
2499  *
2500  * Write multiple registers to the device where the set of register, value
2501  * pairs are supplied in any order, possibly not all in a single range.
2502  *
2503  * The 'normal' block write mode will send ultimately send data on the
2504  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2505  * addressed. However, this alternative block multi write mode will send
2506  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2507  * must of course support the mode.
2508  *
2509  * A value of zero will be returned on success, a negative errno will be
2510  * returned in error cases.
2511  */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2512 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2513 			   int num_regs)
2514 {
2515 	int ret;
2516 
2517 	map->lock(map->lock_arg);
2518 
2519 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2520 
2521 	map->unlock(map->lock_arg);
2522 
2523 	return ret;
2524 }
2525 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2526 
2527 /**
2528  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2529  *                                     device but not the cache
2530  *
2531  * @map: Register map to write to
2532  * @regs: Array of structures containing register,value to be written
2533  * @num_regs: Number of registers to write
2534  *
2535  * Write multiple registers to the device but not the cache where the set
2536  * of register are supplied in any order.
2537  *
2538  * This function is intended to be used for writing a large block of data
2539  * atomically to the device in single transfer for those I2C client devices
2540  * that implement this alternative block write mode.
2541  *
2542  * A value of zero will be returned on success, a negative errno will
2543  * be returned in error cases.
2544  */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2545 int regmap_multi_reg_write_bypassed(struct regmap *map,
2546 				    const struct reg_sequence *regs,
2547 				    int num_regs)
2548 {
2549 	int ret;
2550 	bool bypass;
2551 
2552 	map->lock(map->lock_arg);
2553 
2554 	bypass = map->cache_bypass;
2555 	map->cache_bypass = true;
2556 
2557 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2558 
2559 	map->cache_bypass = bypass;
2560 
2561 	map->unlock(map->lock_arg);
2562 
2563 	return ret;
2564 }
2565 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2566 
2567 /**
2568  * regmap_raw_write_async() - Write raw values to one or more registers
2569  *                            asynchronously
2570  *
2571  * @map: Register map to write to
2572  * @reg: Initial register to write to
2573  * @val: Block of data to be written, laid out for direct transmission to the
2574  *       device.  Must be valid until regmap_async_complete() is called.
2575  * @val_len: Length of data pointed to by val.
2576  *
2577  * This function is intended to be used for things like firmware
2578  * download where a large block of data needs to be transferred to the
2579  * device.  No formatting will be done on the data provided.
2580  *
2581  * If supported by the underlying bus the write will be scheduled
2582  * asynchronously, helping maximise I/O speed on higher speed buses
2583  * like SPI.  regmap_async_complete() can be called to ensure that all
2584  * asynchrnous writes have been completed.
2585  *
2586  * A value of zero will be returned on success, a negative errno will
2587  * be returned in error cases.
2588  */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2589 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2590 			   const void *val, size_t val_len)
2591 {
2592 	int ret;
2593 
2594 	if (val_len % map->format.val_bytes)
2595 		return -EINVAL;
2596 	if (!IS_ALIGNED(reg, map->reg_stride))
2597 		return -EINVAL;
2598 
2599 	map->lock(map->lock_arg);
2600 
2601 	map->async = true;
2602 
2603 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2604 
2605 	map->async = false;
2606 
2607 	map->unlock(map->lock_arg);
2608 
2609 	return ret;
2610 }
2611 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2612 
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2613 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2614 			    unsigned int val_len, bool noinc)
2615 {
2616 	struct regmap_range_node *range;
2617 	int ret;
2618 
2619 	WARN_ON(!map->bus);
2620 
2621 	if (!map->bus || !map->bus->read)
2622 		return -EINVAL;
2623 
2624 	range = _regmap_range_lookup(map, reg);
2625 	if (range) {
2626 		ret = _regmap_select_page(map, &reg, range,
2627 					  noinc ? 1 : val_len / map->format.val_bytes);
2628 		if (ret != 0)
2629 			return ret;
2630 	}
2631 
2632 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2633 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2634 				      map->read_flag_mask);
2635 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2636 
2637 	ret = map->bus->read(map->bus_context, map->work_buf,
2638 			     map->format.reg_bytes + map->format.pad_bytes,
2639 			     val, val_len);
2640 
2641 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2642 
2643 	return ret;
2644 }
2645 
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2646 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2647 				unsigned int *val)
2648 {
2649 	struct regmap *map = context;
2650 
2651 	return map->bus->reg_read(map->bus_context, reg, val);
2652 }
2653 
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2654 static int _regmap_bus_read(void *context, unsigned int reg,
2655 			    unsigned int *val)
2656 {
2657 	int ret;
2658 	struct regmap *map = context;
2659 	void *work_val = map->work_buf + map->format.reg_bytes +
2660 		map->format.pad_bytes;
2661 
2662 	if (!map->format.parse_val)
2663 		return -EINVAL;
2664 
2665 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2666 	if (ret == 0)
2667 		*val = map->format.parse_val(work_val);
2668 
2669 	return ret;
2670 }
2671 
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2672 static int _regmap_read(struct regmap *map, unsigned int reg,
2673 			unsigned int *val)
2674 {
2675 	int ret;
2676 	void *context = _regmap_map_get_context(map);
2677 
2678 	if (!map->cache_bypass) {
2679 		ret = regcache_read(map, reg, val);
2680 		if (ret == 0)
2681 			return 0;
2682 	}
2683 
2684 	if (map->cache_only)
2685 		return -EBUSY;
2686 
2687 	if (!regmap_readable(map, reg))
2688 		return -EIO;
2689 
2690 	ret = map->reg_read(context, reg, val);
2691 	if (ret == 0) {
2692 		if (regmap_should_log(map))
2693 			dev_info(map->dev, "%x => %x\n", reg, *val);
2694 
2695 		trace_regmap_reg_read(map, reg, *val);
2696 
2697 		if (!map->cache_bypass)
2698 			regcache_write(map, reg, *val);
2699 	}
2700 
2701 	return ret;
2702 }
2703 
2704 /**
2705  * regmap_read() - Read a value from a single register
2706  *
2707  * @map: Register map to read from
2708  * @reg: Register to be read from
2709  * @val: Pointer to store read value
2710  *
2711  * A value of zero will be returned on success, a negative errno will
2712  * be returned in error cases.
2713  */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2714 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2715 {
2716 	int ret;
2717 
2718 	if (!IS_ALIGNED(reg, map->reg_stride))
2719 		return -EINVAL;
2720 
2721 	map->lock(map->lock_arg);
2722 
2723 	ret = _regmap_read(map, reg, val);
2724 
2725 	map->unlock(map->lock_arg);
2726 
2727 	return ret;
2728 }
2729 EXPORT_SYMBOL_GPL(regmap_read);
2730 
2731 /**
2732  * regmap_raw_read() - Read raw data from the device
2733  *
2734  * @map: Register map to read from
2735  * @reg: First register to be read from
2736  * @val: Pointer to store read value
2737  * @val_len: Size of data to read
2738  *
2739  * A value of zero will be returned on success, a negative errno will
2740  * be returned in error cases.
2741  */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2742 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2743 		    size_t val_len)
2744 {
2745 	size_t val_bytes = map->format.val_bytes;
2746 	size_t val_count = val_len / val_bytes;
2747 	unsigned int v;
2748 	int ret, i;
2749 
2750 	if (!map->bus)
2751 		return -EINVAL;
2752 	if (val_len % map->format.val_bytes)
2753 		return -EINVAL;
2754 	if (!IS_ALIGNED(reg, map->reg_stride))
2755 		return -EINVAL;
2756 	if (val_count == 0)
2757 		return -EINVAL;
2758 
2759 	map->lock(map->lock_arg);
2760 
2761 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2762 	    map->cache_type == REGCACHE_NONE) {
2763 		size_t chunk_count, chunk_bytes;
2764 		size_t chunk_regs = val_count;
2765 
2766 		if (!map->bus->read) {
2767 			ret = -ENOTSUPP;
2768 			goto out;
2769 		}
2770 
2771 		if (map->use_single_read)
2772 			chunk_regs = 1;
2773 		else if (map->max_raw_read && val_len > map->max_raw_read)
2774 			chunk_regs = map->max_raw_read / val_bytes;
2775 
2776 		chunk_count = val_count / chunk_regs;
2777 		chunk_bytes = chunk_regs * val_bytes;
2778 
2779 		/* Read bytes that fit into whole chunks */
2780 		for (i = 0; i < chunk_count; i++) {
2781 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2782 			if (ret != 0)
2783 				goto out;
2784 
2785 			reg += regmap_get_offset(map, chunk_regs);
2786 			val += chunk_bytes;
2787 			val_len -= chunk_bytes;
2788 		}
2789 
2790 		/* Read remaining bytes */
2791 		if (val_len) {
2792 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2793 			if (ret != 0)
2794 				goto out;
2795 		}
2796 	} else {
2797 		/* Otherwise go word by word for the cache; should be low
2798 		 * cost as we expect to hit the cache.
2799 		 */
2800 		for (i = 0; i < val_count; i++) {
2801 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2802 					   &v);
2803 			if (ret != 0)
2804 				goto out;
2805 
2806 			map->format.format_val(val + (i * val_bytes), v, 0);
2807 		}
2808 	}
2809 
2810  out:
2811 	map->unlock(map->lock_arg);
2812 
2813 	return ret;
2814 }
2815 EXPORT_SYMBOL_GPL(regmap_raw_read);
2816 
2817 /**
2818  * regmap_noinc_read(): Read data from a register without incrementing the
2819  *			register number
2820  *
2821  * @map: Register map to read from
2822  * @reg: Register to read from
2823  * @val: Pointer to data buffer
2824  * @val_len: Length of output buffer in bytes.
2825  *
2826  * The regmap API usually assumes that bulk bus read operations will read a
2827  * range of registers. Some devices have certain registers for which a read
2828  * operation read will read from an internal FIFO.
2829  *
2830  * The target register must be volatile but registers after it can be
2831  * completely unrelated cacheable registers.
2832  *
2833  * This will attempt multiple reads as required to read val_len bytes.
2834  *
2835  * A value of zero will be returned on success, a negative errno will be
2836  * returned in error cases.
2837  */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2838 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2839 		      void *val, size_t val_len)
2840 {
2841 	size_t read_len;
2842 	int ret;
2843 
2844 	if (!map->bus)
2845 		return -EINVAL;
2846 	if (!map->bus->read)
2847 		return -ENOTSUPP;
2848 	if (val_len % map->format.val_bytes)
2849 		return -EINVAL;
2850 	if (!IS_ALIGNED(reg, map->reg_stride))
2851 		return -EINVAL;
2852 	if (val_len == 0)
2853 		return -EINVAL;
2854 
2855 	map->lock(map->lock_arg);
2856 
2857 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2858 		ret = -EINVAL;
2859 		goto out_unlock;
2860 	}
2861 
2862 	while (val_len) {
2863 		if (map->max_raw_read && map->max_raw_read < val_len)
2864 			read_len = map->max_raw_read;
2865 		else
2866 			read_len = val_len;
2867 		ret = _regmap_raw_read(map, reg, val, read_len, true);
2868 		if (ret)
2869 			goto out_unlock;
2870 		val = ((u8 *)val) + read_len;
2871 		val_len -= read_len;
2872 	}
2873 
2874 out_unlock:
2875 	map->unlock(map->lock_arg);
2876 	return ret;
2877 }
2878 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2879 
2880 /**
2881  * regmap_field_read(): Read a value to a single register field
2882  *
2883  * @field: Register field to read from
2884  * @val: Pointer to store read value
2885  *
2886  * A value of zero will be returned on success, a negative errno will
2887  * be returned in error cases.
2888  */
regmap_field_read(struct regmap_field * field,unsigned int * val)2889 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2890 {
2891 	int ret;
2892 	unsigned int reg_val;
2893 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2894 	if (ret != 0)
2895 		return ret;
2896 
2897 	reg_val &= field->mask;
2898 	reg_val >>= field->shift;
2899 	*val = reg_val;
2900 
2901 	return ret;
2902 }
2903 EXPORT_SYMBOL_GPL(regmap_field_read);
2904 
2905 /**
2906  * regmap_fields_read() - Read a value to a single register field with port ID
2907  *
2908  * @field: Register field to read from
2909  * @id: port ID
2910  * @val: Pointer to store read value
2911  *
2912  * A value of zero will be returned on success, a negative errno will
2913  * be returned in error cases.
2914  */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2915 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2916 		       unsigned int *val)
2917 {
2918 	int ret;
2919 	unsigned int reg_val;
2920 
2921 	if (id >= field->id_size)
2922 		return -EINVAL;
2923 
2924 	ret = regmap_read(field->regmap,
2925 			  field->reg + (field->id_offset * id),
2926 			  &reg_val);
2927 	if (ret != 0)
2928 		return ret;
2929 
2930 	reg_val &= field->mask;
2931 	reg_val >>= field->shift;
2932 	*val = reg_val;
2933 
2934 	return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(regmap_fields_read);
2937 
2938 /**
2939  * regmap_bulk_read() - Read multiple registers from the device
2940  *
2941  * @map: Register map to read from
2942  * @reg: First register to be read from
2943  * @val: Pointer to store read value, in native register size for device
2944  * @val_count: Number of registers to read
2945  *
2946  * A value of zero will be returned on success, a negative errno will
2947  * be returned in error cases.
2948  */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2949 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2950 		     size_t val_count)
2951 {
2952 	int ret, i;
2953 	size_t val_bytes = map->format.val_bytes;
2954 	bool vol = regmap_volatile_range(map, reg, val_count);
2955 
2956 	if (!IS_ALIGNED(reg, map->reg_stride))
2957 		return -EINVAL;
2958 	if (val_count == 0)
2959 		return -EINVAL;
2960 
2961 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2962 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2963 		if (ret != 0)
2964 			return ret;
2965 
2966 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2967 			map->format.parse_inplace(val + i);
2968 	} else {
2969 #ifdef CONFIG_64BIT
2970 		u64 *u64 = val;
2971 #endif
2972 		u32 *u32 = val;
2973 		u16 *u16 = val;
2974 		u8 *u8 = val;
2975 
2976 		map->lock(map->lock_arg);
2977 
2978 		for (i = 0; i < val_count; i++) {
2979 			unsigned int ival;
2980 
2981 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2982 					   &ival);
2983 			if (ret != 0)
2984 				goto out;
2985 
2986 			switch (map->format.val_bytes) {
2987 #ifdef CONFIG_64BIT
2988 			case 8:
2989 				u64[i] = ival;
2990 				break;
2991 #endif
2992 			case 4:
2993 				u32[i] = ival;
2994 				break;
2995 			case 2:
2996 				u16[i] = ival;
2997 				break;
2998 			case 1:
2999 				u8[i] = ival;
3000 				break;
3001 			default:
3002 				ret = -EINVAL;
3003 				goto out;
3004 			}
3005 		}
3006 
3007 out:
3008 		map->unlock(map->lock_arg);
3009 	}
3010 
3011 	return ret;
3012 }
3013 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3014 
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3015 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3016 			       unsigned int mask, unsigned int val,
3017 			       bool *change, bool force_write)
3018 {
3019 	int ret;
3020 	unsigned int tmp, orig;
3021 
3022 	if (change)
3023 		*change = false;
3024 
3025 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3026 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3027 		if (ret == 0 && change)
3028 			*change = true;
3029 	} else {
3030 		ret = _regmap_read(map, reg, &orig);
3031 		if (ret != 0)
3032 			return ret;
3033 
3034 		tmp = orig & ~mask;
3035 		tmp |= val & mask;
3036 
3037 		if (force_write || (tmp != orig)) {
3038 			ret = _regmap_write(map, reg, tmp);
3039 			if (ret == 0 && change)
3040 				*change = true;
3041 		}
3042 	}
3043 
3044 	return ret;
3045 }
3046 
3047 /**
3048  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3049  *
3050  * @map: Register map to update
3051  * @reg: Register to update
3052  * @mask: Bitmask to change
3053  * @val: New value for bitmask
3054  * @change: Boolean indicating if a write was done
3055  * @async: Boolean indicating asynchronously
3056  * @force: Boolean indicating use force update
3057  *
3058  * Perform a read/modify/write cycle on a register map with change, async, force
3059  * options.
3060  *
3061  * If async is true:
3062  *
3063  * With most buses the read must be done synchronously so this is most useful
3064  * for devices with a cache which do not need to interact with the hardware to
3065  * determine the current register value.
3066  *
3067  * Returns zero for success, a negative number on error.
3068  */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3069 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3070 			    unsigned int mask, unsigned int val,
3071 			    bool *change, bool async, bool force)
3072 {
3073 	int ret;
3074 
3075 	map->lock(map->lock_arg);
3076 
3077 	map->async = async;
3078 
3079 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3080 
3081 	map->async = false;
3082 
3083 	map->unlock(map->lock_arg);
3084 
3085 	return ret;
3086 }
3087 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3088 
3089 /**
3090  * regmap_test_bits() - Check if all specified bits are set in a register.
3091  *
3092  * @map: Register map to operate on
3093  * @reg: Register to read from
3094  * @bits: Bits to test
3095  *
3096  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3097  * bits are set and a negative error number if the underlying regmap_read()
3098  * fails.
3099  */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3100 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3101 {
3102 	unsigned int val, ret;
3103 
3104 	ret = regmap_read(map, reg, &val);
3105 	if (ret)
3106 		return ret;
3107 
3108 	return (val & bits) == bits;
3109 }
3110 EXPORT_SYMBOL_GPL(regmap_test_bits);
3111 
regmap_async_complete_cb(struct regmap_async * async,int ret)3112 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3113 {
3114 	struct regmap *map = async->map;
3115 	bool wake;
3116 
3117 	trace_regmap_async_io_complete(map);
3118 
3119 	spin_lock(&map->async_lock);
3120 	list_move(&async->list, &map->async_free);
3121 	wake = list_empty(&map->async_list);
3122 
3123 	if (ret != 0)
3124 		map->async_ret = ret;
3125 
3126 	spin_unlock(&map->async_lock);
3127 
3128 	if (wake)
3129 		wake_up(&map->async_waitq);
3130 }
3131 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3132 
regmap_async_is_done(struct regmap * map)3133 static int regmap_async_is_done(struct regmap *map)
3134 {
3135 	unsigned long flags;
3136 	int ret;
3137 
3138 	spin_lock_irqsave(&map->async_lock, flags);
3139 	ret = list_empty(&map->async_list);
3140 	spin_unlock_irqrestore(&map->async_lock, flags);
3141 
3142 	return ret;
3143 }
3144 
3145 /**
3146  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3147  *
3148  * @map: Map to operate on.
3149  *
3150  * Blocks until any pending asynchronous I/O has completed.  Returns
3151  * an error code for any failed I/O operations.
3152  */
regmap_async_complete(struct regmap * map)3153 int regmap_async_complete(struct regmap *map)
3154 {
3155 	unsigned long flags;
3156 	int ret;
3157 
3158 	/* Nothing to do with no async support */
3159 	if (!map->bus || !map->bus->async_write)
3160 		return 0;
3161 
3162 	trace_regmap_async_complete_start(map);
3163 
3164 	wait_event(map->async_waitq, regmap_async_is_done(map));
3165 
3166 	spin_lock_irqsave(&map->async_lock, flags);
3167 	ret = map->async_ret;
3168 	map->async_ret = 0;
3169 	spin_unlock_irqrestore(&map->async_lock, flags);
3170 
3171 	trace_regmap_async_complete_done(map);
3172 
3173 	return ret;
3174 }
3175 EXPORT_SYMBOL_GPL(regmap_async_complete);
3176 
3177 /**
3178  * regmap_register_patch - Register and apply register updates to be applied
3179  *                         on device initialistion
3180  *
3181  * @map: Register map to apply updates to.
3182  * @regs: Values to update.
3183  * @num_regs: Number of entries in regs.
3184  *
3185  * Register a set of register updates to be applied to the device
3186  * whenever the device registers are synchronised with the cache and
3187  * apply them immediately.  Typically this is used to apply
3188  * corrections to be applied to the device defaults on startup, such
3189  * as the updates some vendors provide to undocumented registers.
3190  *
3191  * The caller must ensure that this function cannot be called
3192  * concurrently with either itself or regcache_sync().
3193  */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3194 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3195 			  int num_regs)
3196 {
3197 	struct reg_sequence *p;
3198 	int ret;
3199 	bool bypass;
3200 
3201 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3202 	    num_regs))
3203 		return 0;
3204 
3205 	p = krealloc(map->patch,
3206 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3207 		     GFP_KERNEL);
3208 	if (p) {
3209 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3210 		map->patch = p;
3211 		map->patch_regs += num_regs;
3212 	} else {
3213 		return -ENOMEM;
3214 	}
3215 
3216 	map->lock(map->lock_arg);
3217 
3218 	bypass = map->cache_bypass;
3219 
3220 	map->cache_bypass = true;
3221 	map->async = true;
3222 
3223 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3224 
3225 	map->async = false;
3226 	map->cache_bypass = bypass;
3227 
3228 	map->unlock(map->lock_arg);
3229 
3230 	regmap_async_complete(map);
3231 
3232 	return ret;
3233 }
3234 EXPORT_SYMBOL_GPL(regmap_register_patch);
3235 
3236 /**
3237  * regmap_get_val_bytes() - Report the size of a register value
3238  *
3239  * @map: Register map to operate on.
3240  *
3241  * Report the size of a register value, mainly intended to for use by
3242  * generic infrastructure built on top of regmap.
3243  */
regmap_get_val_bytes(struct regmap * map)3244 int regmap_get_val_bytes(struct regmap *map)
3245 {
3246 	if (map->format.format_write)
3247 		return -EINVAL;
3248 
3249 	return map->format.val_bytes;
3250 }
3251 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3252 
3253 /**
3254  * regmap_get_max_register() - Report the max register value
3255  *
3256  * @map: Register map to operate on.
3257  *
3258  * Report the max register value, mainly intended to for use by
3259  * generic infrastructure built on top of regmap.
3260  */
regmap_get_max_register(struct regmap * map)3261 int regmap_get_max_register(struct regmap *map)
3262 {
3263 	return map->max_register ? map->max_register : -EINVAL;
3264 }
3265 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3266 
3267 /**
3268  * regmap_get_reg_stride() - Report the register address stride
3269  *
3270  * @map: Register map to operate on.
3271  *
3272  * Report the register address stride, mainly intended to for use by
3273  * generic infrastructure built on top of regmap.
3274  */
regmap_get_reg_stride(struct regmap * map)3275 int regmap_get_reg_stride(struct regmap *map)
3276 {
3277 	return map->reg_stride;
3278 }
3279 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3280 
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3281 int regmap_parse_val(struct regmap *map, const void *buf,
3282 			unsigned int *val)
3283 {
3284 	if (!map->format.parse_val)
3285 		return -EINVAL;
3286 
3287 	*val = map->format.parse_val(buf);
3288 
3289 	return 0;
3290 }
3291 EXPORT_SYMBOL_GPL(regmap_parse_val);
3292 
regmap_initcall(void)3293 static int __init regmap_initcall(void)
3294 {
3295 	regmap_debugfs_initcall();
3296 
3297 	return 0;
3298 }
3299 postcore_initcall(regmap_initcall);
3300