• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests related to logic bugs (e.g. bad dereferences,
4  * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5  * lockups) along with other things that don't fit well into existing LKDTM
6  * test source files.
7  */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14 #include <linux/slab.h>
15 
16 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
17 #include <asm/desc.h>
18 #endif
19 
20 struct lkdtm_list {
21 	struct list_head node;
22 };
23 
24 /*
25  * Make sure our attempts to over run the kernel stack doesn't trigger
26  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
27  * recurse past the end of THREAD_SIZE by default.
28  */
29 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
30 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
31 #else
32 #define REC_STACK_SIZE (THREAD_SIZE / 8)
33 #endif
34 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
35 
36 static int recur_count = REC_NUM_DEFAULT;
37 
38 static DEFINE_SPINLOCK(lock_me_up);
39 
40 /*
41  * Make sure compiler does not optimize this function or stack frame away:
42  * - function marked noinline
43  * - stack variables are marked volatile
44  * - stack variables are written (memset()) and read (pr_info())
45  * - function has external effects (pr_info())
46  * */
recursive_loop(int remaining)47 static int noinline recursive_loop(int remaining)
48 {
49 	volatile char buf[REC_STACK_SIZE];
50 
51 	memset((void *)buf, remaining & 0xFF, sizeof(buf));
52 	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
53 		recur_count);
54 	if (!remaining)
55 		return 0;
56 	else
57 		return recursive_loop(remaining - 1);
58 }
59 
60 /* If the depth is negative, use the default, otherwise keep parameter. */
lkdtm_bugs_init(int * recur_param)61 void __init lkdtm_bugs_init(int *recur_param)
62 {
63 	if (*recur_param < 0)
64 		*recur_param = recur_count;
65 	else
66 		recur_count = *recur_param;
67 }
68 
lkdtm_PANIC(void)69 void lkdtm_PANIC(void)
70 {
71 	panic("dumptest");
72 }
73 
lkdtm_BUG(void)74 void lkdtm_BUG(void)
75 {
76 	BUG();
77 }
78 
79 static int warn_counter;
80 
lkdtm_WARNING(void)81 void lkdtm_WARNING(void)
82 {
83 	WARN_ON(++warn_counter);
84 }
85 
lkdtm_WARNING_MESSAGE(void)86 void lkdtm_WARNING_MESSAGE(void)
87 {
88 	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
89 }
90 
lkdtm_EXCEPTION(void)91 void lkdtm_EXCEPTION(void)
92 {
93 	*((volatile int *) 0) = 0;
94 }
95 
lkdtm_LOOP(void)96 void lkdtm_LOOP(void)
97 {
98 	for (;;)
99 		;
100 }
101 
lkdtm_EXHAUST_STACK(void)102 void lkdtm_EXHAUST_STACK(void)
103 {
104 	pr_info("Calling function with %lu frame size to depth %d ...\n",
105 		REC_STACK_SIZE, recur_count);
106 	recursive_loop(recur_count);
107 	pr_info("FAIL: survived without exhausting stack?!\n");
108 }
109 
__lkdtm_CORRUPT_STACK(void * stack)110 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111 {
112 	memset(stack, '\xff', 64);
113 }
114 
115 /* This should trip the stack canary, not corrupt the return address. */
lkdtm_CORRUPT_STACK(void)116 noinline void lkdtm_CORRUPT_STACK(void)
117 {
118 	/* Use default char array length that triggers stack protection. */
119 	char data[8] __aligned(sizeof(void *));
120 
121 	pr_info("Corrupting stack containing char array ...\n");
122 	__lkdtm_CORRUPT_STACK((void *)&data);
123 }
124 
125 /* Same as above but will only get a canary with -fstack-protector-strong */
lkdtm_CORRUPT_STACK_STRONG(void)126 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
127 {
128 	union {
129 		unsigned short shorts[4];
130 		unsigned long *ptr;
131 	} data __aligned(sizeof(void *));
132 
133 	pr_info("Corrupting stack containing union ...\n");
134 	__lkdtm_CORRUPT_STACK((void *)&data);
135 }
136 
lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)137 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
138 {
139 	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
140 	u32 *p;
141 	u32 val = 0x12345678;
142 
143 	p = (u32 *)(data + 1);
144 	if (*p == 0)
145 		val = 0x87654321;
146 	*p = val;
147 
148 	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
149 		pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
150 }
151 
lkdtm_SOFTLOCKUP(void)152 void lkdtm_SOFTLOCKUP(void)
153 {
154 	preempt_disable();
155 	for (;;)
156 		cpu_relax();
157 }
158 
lkdtm_HARDLOCKUP(void)159 void lkdtm_HARDLOCKUP(void)
160 {
161 	local_irq_disable();
162 	for (;;)
163 		cpu_relax();
164 }
165 
lkdtm_SPINLOCKUP(void)166 void lkdtm_SPINLOCKUP(void)
167 {
168 	/* Must be called twice to trigger. */
169 	spin_lock(&lock_me_up);
170 	/* Let sparse know we intended to exit holding the lock. */
171 	__release(&lock_me_up);
172 }
173 
lkdtm_HUNG_TASK(void)174 void lkdtm_HUNG_TASK(void)
175 {
176 	set_current_state(TASK_UNINTERRUPTIBLE);
177 	schedule();
178 }
179 
180 volatile unsigned int huge = INT_MAX - 2;
181 volatile unsigned int ignored;
182 
lkdtm_OVERFLOW_SIGNED(void)183 void lkdtm_OVERFLOW_SIGNED(void)
184 {
185 	int value;
186 
187 	value = huge;
188 	pr_info("Normal signed addition ...\n");
189 	value += 1;
190 	ignored = value;
191 
192 	pr_info("Overflowing signed addition ...\n");
193 	value += 4;
194 	ignored = value;
195 }
196 
197 
lkdtm_OVERFLOW_UNSIGNED(void)198 void lkdtm_OVERFLOW_UNSIGNED(void)
199 {
200 	unsigned int value;
201 
202 	value = huge;
203 	pr_info("Normal unsigned addition ...\n");
204 	value += 1;
205 	ignored = value;
206 
207 	pr_info("Overflowing unsigned addition ...\n");
208 	value += 4;
209 	ignored = value;
210 }
211 
212 /* Intentionally using old-style flex array definition of 1 byte. */
213 struct array_bounds_flex_array {
214 	int one;
215 	int two;
216 	char data[1];
217 };
218 
219 struct array_bounds {
220 	int one;
221 	int two;
222 	char data[8];
223 	int three;
224 };
225 
lkdtm_ARRAY_BOUNDS(void)226 void lkdtm_ARRAY_BOUNDS(void)
227 {
228 	struct array_bounds_flex_array *not_checked;
229 	struct array_bounds *checked;
230 	volatile int i;
231 
232 	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
233 	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
234 	if (!not_checked || !checked) {
235 		kfree(not_checked);
236 		kfree(checked);
237 		return;
238 	}
239 
240 	pr_info("Array access within bounds ...\n");
241 	/* For both, touch all bytes in the actual member size. */
242 	for (i = 0; i < sizeof(checked->data); i++)
243 		checked->data[i] = 'A';
244 	/*
245 	 * For the uninstrumented flex array member, also touch 1 byte
246 	 * beyond to verify it is correctly uninstrumented.
247 	 */
248 	for (i = 0; i < sizeof(not_checked->data) + 1; i++)
249 		not_checked->data[i] = 'A';
250 
251 	pr_info("Array access beyond bounds ...\n");
252 	for (i = 0; i < sizeof(checked->data) + 1; i++)
253 		checked->data[i] = 'B';
254 
255 	kfree(not_checked);
256 	kfree(checked);
257 	pr_err("FAIL: survived array bounds overflow!\n");
258 }
259 
lkdtm_CORRUPT_LIST_ADD(void)260 void lkdtm_CORRUPT_LIST_ADD(void)
261 {
262 	/*
263 	 * Initially, an empty list via LIST_HEAD:
264 	 *	test_head.next = &test_head
265 	 *	test_head.prev = &test_head
266 	 */
267 	LIST_HEAD(test_head);
268 	struct lkdtm_list good, bad;
269 	void *target[2] = { };
270 	void *redirection = &target;
271 
272 	pr_info("attempting good list addition\n");
273 
274 	/*
275 	 * Adding to the list performs these actions:
276 	 *	test_head.next->prev = &good.node
277 	 *	good.node.next = test_head.next
278 	 *	good.node.prev = test_head
279 	 *	test_head.next = good.node
280 	 */
281 	list_add(&good.node, &test_head);
282 
283 	pr_info("attempting corrupted list addition\n");
284 	/*
285 	 * In simulating this "write what where" primitive, the "what" is
286 	 * the address of &bad.node, and the "where" is the address held
287 	 * by "redirection".
288 	 */
289 	test_head.next = redirection;
290 	list_add(&bad.node, &test_head);
291 
292 	if (target[0] == NULL && target[1] == NULL)
293 		pr_err("Overwrite did not happen, but no BUG?!\n");
294 	else
295 		pr_err("list_add() corruption not detected!\n");
296 }
297 
lkdtm_CORRUPT_LIST_DEL(void)298 void lkdtm_CORRUPT_LIST_DEL(void)
299 {
300 	LIST_HEAD(test_head);
301 	struct lkdtm_list item;
302 	void *target[2] = { };
303 	void *redirection = &target;
304 
305 	list_add(&item.node, &test_head);
306 
307 	pr_info("attempting good list removal\n");
308 	list_del(&item.node);
309 
310 	pr_info("attempting corrupted list removal\n");
311 	list_add(&item.node, &test_head);
312 
313 	/* As with the list_add() test above, this corrupts "next". */
314 	item.node.next = redirection;
315 	list_del(&item.node);
316 
317 	if (target[0] == NULL && target[1] == NULL)
318 		pr_err("Overwrite did not happen, but no BUG?!\n");
319 	else
320 		pr_err("list_del() corruption not detected!\n");
321 }
322 
323 /* Test that VMAP_STACK is actually allocating with a leading guard page */
lkdtm_STACK_GUARD_PAGE_LEADING(void)324 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
325 {
326 	const unsigned char *stack = task_stack_page(current);
327 	const unsigned char *ptr = stack - 1;
328 	volatile unsigned char byte;
329 
330 	pr_info("attempting bad read from page below current stack\n");
331 
332 	byte = *ptr;
333 
334 	pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
335 }
336 
337 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
lkdtm_STACK_GUARD_PAGE_TRAILING(void)338 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
339 {
340 	const unsigned char *stack = task_stack_page(current);
341 	const unsigned char *ptr = stack + THREAD_SIZE;
342 	volatile unsigned char byte;
343 
344 	pr_info("attempting bad read from page above current stack\n");
345 
346 	byte = *ptr;
347 
348 	pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
349 }
350 
lkdtm_UNSET_SMEP(void)351 void lkdtm_UNSET_SMEP(void)
352 {
353 #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
354 #define MOV_CR4_DEPTH	64
355 	void (*direct_write_cr4)(unsigned long val);
356 	unsigned char *insn;
357 	unsigned long cr4;
358 	int i;
359 
360 	cr4 = native_read_cr4();
361 
362 	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
363 		pr_err("FAIL: SMEP not in use\n");
364 		return;
365 	}
366 	cr4 &= ~(X86_CR4_SMEP);
367 
368 	pr_info("trying to clear SMEP normally\n");
369 	native_write_cr4(cr4);
370 	if (cr4 == native_read_cr4()) {
371 		pr_err("FAIL: pinning SMEP failed!\n");
372 		cr4 |= X86_CR4_SMEP;
373 		pr_info("restoring SMEP\n");
374 		native_write_cr4(cr4);
375 		return;
376 	}
377 	pr_info("ok: SMEP did not get cleared\n");
378 
379 	/*
380 	 * To test the post-write pinning verification we need to call
381 	 * directly into the middle of native_write_cr4() where the
382 	 * cr4 write happens, skipping any pinning. This searches for
383 	 * the cr4 writing instruction.
384 	 */
385 	insn = (unsigned char *)native_write_cr4;
386 	for (i = 0; i < MOV_CR4_DEPTH; i++) {
387 		/* mov %rdi, %cr4 */
388 		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
389 			break;
390 		/* mov %rdi,%rax; mov %rax, %cr4 */
391 		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
392 		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
393 		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
394 			break;
395 	}
396 	if (i >= MOV_CR4_DEPTH) {
397 		pr_info("ok: cannot locate cr4 writing call gadget\n");
398 		return;
399 	}
400 	direct_write_cr4 = (void *)(insn + i);
401 
402 	pr_info("trying to clear SMEP with call gadget\n");
403 	direct_write_cr4(cr4);
404 	if (native_read_cr4() & X86_CR4_SMEP) {
405 		pr_info("ok: SMEP removal was reverted\n");
406 	} else {
407 		pr_err("FAIL: cleared SMEP not detected!\n");
408 		cr4 |= X86_CR4_SMEP;
409 		pr_info("restoring SMEP\n");
410 		native_write_cr4(cr4);
411 	}
412 #else
413 	pr_err("XFAIL: this test is x86_64-only\n");
414 #endif
415 }
416 
lkdtm_DOUBLE_FAULT(void)417 void lkdtm_DOUBLE_FAULT(void)
418 {
419 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
420 	/*
421 	 * Trigger #DF by setting the stack limit to zero.  This clobbers
422 	 * a GDT TLS slot, which is okay because the current task will die
423 	 * anyway due to the double fault.
424 	 */
425 	struct desc_struct d = {
426 		.type = 3,	/* expand-up, writable, accessed data */
427 		.p = 1,		/* present */
428 		.d = 1,		/* 32-bit */
429 		.g = 0,		/* limit in bytes */
430 		.s = 1,		/* not system */
431 	};
432 
433 	local_irq_disable();
434 	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
435 			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
436 
437 	/*
438 	 * Put our zero-limit segment in SS and then trigger a fault.  The
439 	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
440 	 * deliver the fault will recursively cause #SS and result in #DF.
441 	 * This whole process happens while NMIs and MCEs are blocked by the
442 	 * MOV SS window.  This is nice because an NMI with an invalid SS
443 	 * would also double-fault, resulting in the NMI or MCE being lost.
444 	 */
445 	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
446 		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
447 
448 	pr_err("FAIL: tried to double fault but didn't die\n");
449 #else
450 	pr_err("XFAIL: this test is ia32-only\n");
451 #endif
452 }
453 
454 #ifdef CONFIG_ARM64
change_pac_parameters(void)455 static noinline void change_pac_parameters(void)
456 {
457 	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH)) {
458 		/* Reset the keys of current task */
459 		ptrauth_thread_init_kernel(current);
460 		ptrauth_thread_switch_kernel(current);
461 	}
462 }
463 #endif
464 
lkdtm_CORRUPT_PAC(void)465 noinline void lkdtm_CORRUPT_PAC(void)
466 {
467 #ifdef CONFIG_ARM64
468 #define CORRUPT_PAC_ITERATE	10
469 	int i;
470 
471 	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
472 		pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH\n");
473 
474 	if (!system_supports_address_auth()) {
475 		pr_err("FAIL: CPU lacks pointer authentication feature\n");
476 		return;
477 	}
478 
479 	pr_info("changing PAC parameters to force function return failure...\n");
480 	/*
481 	 * PAC is a hash value computed from input keys, return address and
482 	 * stack pointer. As pac has fewer bits so there is a chance of
483 	 * collision, so iterate few times to reduce the collision probability.
484 	 */
485 	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
486 		change_pac_parameters();
487 
488 	pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
489 #else
490 	pr_err("XFAIL: this test is arm64-only\n");
491 #endif
492 }
493