1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This is for all the tests related to logic bugs (e.g. bad dereferences,
4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5 * lockups) along with other things that don't fit well into existing LKDTM
6 * test source files.
7 */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14 #include <linux/slab.h>
15
16 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
17 #include <asm/desc.h>
18 #endif
19
20 struct lkdtm_list {
21 struct list_head node;
22 };
23
24 /*
25 * Make sure our attempts to over run the kernel stack doesn't trigger
26 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
27 * recurse past the end of THREAD_SIZE by default.
28 */
29 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
30 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
31 #else
32 #define REC_STACK_SIZE (THREAD_SIZE / 8)
33 #endif
34 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
35
36 static int recur_count = REC_NUM_DEFAULT;
37
38 static DEFINE_SPINLOCK(lock_me_up);
39
40 /*
41 * Make sure compiler does not optimize this function or stack frame away:
42 * - function marked noinline
43 * - stack variables are marked volatile
44 * - stack variables are written (memset()) and read (pr_info())
45 * - function has external effects (pr_info())
46 * */
recursive_loop(int remaining)47 static int noinline recursive_loop(int remaining)
48 {
49 volatile char buf[REC_STACK_SIZE];
50
51 memset((void *)buf, remaining & 0xFF, sizeof(buf));
52 pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
53 recur_count);
54 if (!remaining)
55 return 0;
56 else
57 return recursive_loop(remaining - 1);
58 }
59
60 /* If the depth is negative, use the default, otherwise keep parameter. */
lkdtm_bugs_init(int * recur_param)61 void __init lkdtm_bugs_init(int *recur_param)
62 {
63 if (*recur_param < 0)
64 *recur_param = recur_count;
65 else
66 recur_count = *recur_param;
67 }
68
lkdtm_PANIC(void)69 void lkdtm_PANIC(void)
70 {
71 panic("dumptest");
72 }
73
lkdtm_BUG(void)74 void lkdtm_BUG(void)
75 {
76 BUG();
77 }
78
79 static int warn_counter;
80
lkdtm_WARNING(void)81 void lkdtm_WARNING(void)
82 {
83 WARN_ON(++warn_counter);
84 }
85
lkdtm_WARNING_MESSAGE(void)86 void lkdtm_WARNING_MESSAGE(void)
87 {
88 WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
89 }
90
lkdtm_EXCEPTION(void)91 void lkdtm_EXCEPTION(void)
92 {
93 *((volatile int *) 0) = 0;
94 }
95
lkdtm_LOOP(void)96 void lkdtm_LOOP(void)
97 {
98 for (;;)
99 ;
100 }
101
lkdtm_EXHAUST_STACK(void)102 void lkdtm_EXHAUST_STACK(void)
103 {
104 pr_info("Calling function with %lu frame size to depth %d ...\n",
105 REC_STACK_SIZE, recur_count);
106 recursive_loop(recur_count);
107 pr_info("FAIL: survived without exhausting stack?!\n");
108 }
109
__lkdtm_CORRUPT_STACK(void * stack)110 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111 {
112 memset(stack, '\xff', 64);
113 }
114
115 /* This should trip the stack canary, not corrupt the return address. */
lkdtm_CORRUPT_STACK(void)116 noinline void lkdtm_CORRUPT_STACK(void)
117 {
118 /* Use default char array length that triggers stack protection. */
119 char data[8] __aligned(sizeof(void *));
120
121 pr_info("Corrupting stack containing char array ...\n");
122 __lkdtm_CORRUPT_STACK((void *)&data);
123 }
124
125 /* Same as above but will only get a canary with -fstack-protector-strong */
lkdtm_CORRUPT_STACK_STRONG(void)126 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
127 {
128 union {
129 unsigned short shorts[4];
130 unsigned long *ptr;
131 } data __aligned(sizeof(void *));
132
133 pr_info("Corrupting stack containing union ...\n");
134 __lkdtm_CORRUPT_STACK((void *)&data);
135 }
136
lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)137 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
138 {
139 static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
140 u32 *p;
141 u32 val = 0x12345678;
142
143 p = (u32 *)(data + 1);
144 if (*p == 0)
145 val = 0x87654321;
146 *p = val;
147
148 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
149 pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
150 }
151
lkdtm_SOFTLOCKUP(void)152 void lkdtm_SOFTLOCKUP(void)
153 {
154 preempt_disable();
155 for (;;)
156 cpu_relax();
157 }
158
lkdtm_HARDLOCKUP(void)159 void lkdtm_HARDLOCKUP(void)
160 {
161 local_irq_disable();
162 for (;;)
163 cpu_relax();
164 }
165
lkdtm_SPINLOCKUP(void)166 void lkdtm_SPINLOCKUP(void)
167 {
168 /* Must be called twice to trigger. */
169 spin_lock(&lock_me_up);
170 /* Let sparse know we intended to exit holding the lock. */
171 __release(&lock_me_up);
172 }
173
lkdtm_HUNG_TASK(void)174 void lkdtm_HUNG_TASK(void)
175 {
176 set_current_state(TASK_UNINTERRUPTIBLE);
177 schedule();
178 }
179
180 volatile unsigned int huge = INT_MAX - 2;
181 volatile unsigned int ignored;
182
lkdtm_OVERFLOW_SIGNED(void)183 void lkdtm_OVERFLOW_SIGNED(void)
184 {
185 int value;
186
187 value = huge;
188 pr_info("Normal signed addition ...\n");
189 value += 1;
190 ignored = value;
191
192 pr_info("Overflowing signed addition ...\n");
193 value += 4;
194 ignored = value;
195 }
196
197
lkdtm_OVERFLOW_UNSIGNED(void)198 void lkdtm_OVERFLOW_UNSIGNED(void)
199 {
200 unsigned int value;
201
202 value = huge;
203 pr_info("Normal unsigned addition ...\n");
204 value += 1;
205 ignored = value;
206
207 pr_info("Overflowing unsigned addition ...\n");
208 value += 4;
209 ignored = value;
210 }
211
212 /* Intentionally using old-style flex array definition of 1 byte. */
213 struct array_bounds_flex_array {
214 int one;
215 int two;
216 char data[1];
217 };
218
219 struct array_bounds {
220 int one;
221 int two;
222 char data[8];
223 int three;
224 };
225
lkdtm_ARRAY_BOUNDS(void)226 void lkdtm_ARRAY_BOUNDS(void)
227 {
228 struct array_bounds_flex_array *not_checked;
229 struct array_bounds *checked;
230 volatile int i;
231
232 not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
233 checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
234 if (!not_checked || !checked) {
235 kfree(not_checked);
236 kfree(checked);
237 return;
238 }
239
240 pr_info("Array access within bounds ...\n");
241 /* For both, touch all bytes in the actual member size. */
242 for (i = 0; i < sizeof(checked->data); i++)
243 checked->data[i] = 'A';
244 /*
245 * For the uninstrumented flex array member, also touch 1 byte
246 * beyond to verify it is correctly uninstrumented.
247 */
248 for (i = 0; i < sizeof(not_checked->data) + 1; i++)
249 not_checked->data[i] = 'A';
250
251 pr_info("Array access beyond bounds ...\n");
252 for (i = 0; i < sizeof(checked->data) + 1; i++)
253 checked->data[i] = 'B';
254
255 kfree(not_checked);
256 kfree(checked);
257 pr_err("FAIL: survived array bounds overflow!\n");
258 }
259
lkdtm_CORRUPT_LIST_ADD(void)260 void lkdtm_CORRUPT_LIST_ADD(void)
261 {
262 /*
263 * Initially, an empty list via LIST_HEAD:
264 * test_head.next = &test_head
265 * test_head.prev = &test_head
266 */
267 LIST_HEAD(test_head);
268 struct lkdtm_list good, bad;
269 void *target[2] = { };
270 void *redirection = ⌖
271
272 pr_info("attempting good list addition\n");
273
274 /*
275 * Adding to the list performs these actions:
276 * test_head.next->prev = &good.node
277 * good.node.next = test_head.next
278 * good.node.prev = test_head
279 * test_head.next = good.node
280 */
281 list_add(&good.node, &test_head);
282
283 pr_info("attempting corrupted list addition\n");
284 /*
285 * In simulating this "write what where" primitive, the "what" is
286 * the address of &bad.node, and the "where" is the address held
287 * by "redirection".
288 */
289 test_head.next = redirection;
290 list_add(&bad.node, &test_head);
291
292 if (target[0] == NULL && target[1] == NULL)
293 pr_err("Overwrite did not happen, but no BUG?!\n");
294 else
295 pr_err("list_add() corruption not detected!\n");
296 }
297
lkdtm_CORRUPT_LIST_DEL(void)298 void lkdtm_CORRUPT_LIST_DEL(void)
299 {
300 LIST_HEAD(test_head);
301 struct lkdtm_list item;
302 void *target[2] = { };
303 void *redirection = ⌖
304
305 list_add(&item.node, &test_head);
306
307 pr_info("attempting good list removal\n");
308 list_del(&item.node);
309
310 pr_info("attempting corrupted list removal\n");
311 list_add(&item.node, &test_head);
312
313 /* As with the list_add() test above, this corrupts "next". */
314 item.node.next = redirection;
315 list_del(&item.node);
316
317 if (target[0] == NULL && target[1] == NULL)
318 pr_err("Overwrite did not happen, but no BUG?!\n");
319 else
320 pr_err("list_del() corruption not detected!\n");
321 }
322
323 /* Test that VMAP_STACK is actually allocating with a leading guard page */
lkdtm_STACK_GUARD_PAGE_LEADING(void)324 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
325 {
326 const unsigned char *stack = task_stack_page(current);
327 const unsigned char *ptr = stack - 1;
328 volatile unsigned char byte;
329
330 pr_info("attempting bad read from page below current stack\n");
331
332 byte = *ptr;
333
334 pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
335 }
336
337 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
lkdtm_STACK_GUARD_PAGE_TRAILING(void)338 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
339 {
340 const unsigned char *stack = task_stack_page(current);
341 const unsigned char *ptr = stack + THREAD_SIZE;
342 volatile unsigned char byte;
343
344 pr_info("attempting bad read from page above current stack\n");
345
346 byte = *ptr;
347
348 pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
349 }
350
lkdtm_UNSET_SMEP(void)351 void lkdtm_UNSET_SMEP(void)
352 {
353 #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
354 #define MOV_CR4_DEPTH 64
355 void (*direct_write_cr4)(unsigned long val);
356 unsigned char *insn;
357 unsigned long cr4;
358 int i;
359
360 cr4 = native_read_cr4();
361
362 if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
363 pr_err("FAIL: SMEP not in use\n");
364 return;
365 }
366 cr4 &= ~(X86_CR4_SMEP);
367
368 pr_info("trying to clear SMEP normally\n");
369 native_write_cr4(cr4);
370 if (cr4 == native_read_cr4()) {
371 pr_err("FAIL: pinning SMEP failed!\n");
372 cr4 |= X86_CR4_SMEP;
373 pr_info("restoring SMEP\n");
374 native_write_cr4(cr4);
375 return;
376 }
377 pr_info("ok: SMEP did not get cleared\n");
378
379 /*
380 * To test the post-write pinning verification we need to call
381 * directly into the middle of native_write_cr4() where the
382 * cr4 write happens, skipping any pinning. This searches for
383 * the cr4 writing instruction.
384 */
385 insn = (unsigned char *)native_write_cr4;
386 for (i = 0; i < MOV_CR4_DEPTH; i++) {
387 /* mov %rdi, %cr4 */
388 if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
389 break;
390 /* mov %rdi,%rax; mov %rax, %cr4 */
391 if (insn[i] == 0x48 && insn[i+1] == 0x89 &&
392 insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
393 insn[i+4] == 0x22 && insn[i+5] == 0xe0)
394 break;
395 }
396 if (i >= MOV_CR4_DEPTH) {
397 pr_info("ok: cannot locate cr4 writing call gadget\n");
398 return;
399 }
400 direct_write_cr4 = (void *)(insn + i);
401
402 pr_info("trying to clear SMEP with call gadget\n");
403 direct_write_cr4(cr4);
404 if (native_read_cr4() & X86_CR4_SMEP) {
405 pr_info("ok: SMEP removal was reverted\n");
406 } else {
407 pr_err("FAIL: cleared SMEP not detected!\n");
408 cr4 |= X86_CR4_SMEP;
409 pr_info("restoring SMEP\n");
410 native_write_cr4(cr4);
411 }
412 #else
413 pr_err("XFAIL: this test is x86_64-only\n");
414 #endif
415 }
416
lkdtm_DOUBLE_FAULT(void)417 void lkdtm_DOUBLE_FAULT(void)
418 {
419 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
420 /*
421 * Trigger #DF by setting the stack limit to zero. This clobbers
422 * a GDT TLS slot, which is okay because the current task will die
423 * anyway due to the double fault.
424 */
425 struct desc_struct d = {
426 .type = 3, /* expand-up, writable, accessed data */
427 .p = 1, /* present */
428 .d = 1, /* 32-bit */
429 .g = 0, /* limit in bytes */
430 .s = 1, /* not system */
431 };
432
433 local_irq_disable();
434 write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
435 GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
436
437 /*
438 * Put our zero-limit segment in SS and then trigger a fault. The
439 * 4-byte access to (%esp) will fault with #SS, and the attempt to
440 * deliver the fault will recursively cause #SS and result in #DF.
441 * This whole process happens while NMIs and MCEs are blocked by the
442 * MOV SS window. This is nice because an NMI with an invalid SS
443 * would also double-fault, resulting in the NMI or MCE being lost.
444 */
445 asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
446 "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
447
448 pr_err("FAIL: tried to double fault but didn't die\n");
449 #else
450 pr_err("XFAIL: this test is ia32-only\n");
451 #endif
452 }
453
454 #ifdef CONFIG_ARM64
change_pac_parameters(void)455 static noinline void change_pac_parameters(void)
456 {
457 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH)) {
458 /* Reset the keys of current task */
459 ptrauth_thread_init_kernel(current);
460 ptrauth_thread_switch_kernel(current);
461 }
462 }
463 #endif
464
lkdtm_CORRUPT_PAC(void)465 noinline void lkdtm_CORRUPT_PAC(void)
466 {
467 #ifdef CONFIG_ARM64
468 #define CORRUPT_PAC_ITERATE 10
469 int i;
470
471 if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
472 pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH\n");
473
474 if (!system_supports_address_auth()) {
475 pr_err("FAIL: CPU lacks pointer authentication feature\n");
476 return;
477 }
478
479 pr_info("changing PAC parameters to force function return failure...\n");
480 /*
481 * PAC is a hash value computed from input keys, return address and
482 * stack pointer. As pac has fewer bits so there is a chance of
483 * collision, so iterate few times to reduce the collision probability.
484 */
485 for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
486 change_pac_parameters();
487
488 pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
489 #else
490 pr_err("XFAIL: this test is arm64-only\n");
491 #endif
492 }
493