• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Workingset detection
4  *
5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/memcontrol.h>
9 #include <linux/mm_inline.h>
10 #include <linux/writeback.h>
11 #include <linux/shmem_fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/atomic.h>
14 #include <linux/module.h>
15 #include <linux/swap.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 
20 /*
21  *		Double CLOCK lists
22  *
23  * Per node, two clock lists are maintained for file pages: the
24  * inactive and the active list.  Freshly faulted pages start out at
25  * the head of the inactive list and page reclaim scans pages from the
26  * tail.  Pages that are accessed multiple times on the inactive list
27  * are promoted to the active list, to protect them from reclaim,
28  * whereas active pages are demoted to the inactive list when the
29  * active list grows too big.
30  *
31  *   fault ------------------------+
32  *                                 |
33  *              +--------------+   |            +-------------+
34  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
35  *              +--------------+                +-------------+    |
36  *                     |                                           |
37  *                     +-------------- promotion ------------------+
38  *
39  *
40  *		Access frequency and refault distance
41  *
42  * A workload is thrashing when its pages are frequently used but they
43  * are evicted from the inactive list every time before another access
44  * would have promoted them to the active list.
45  *
46  * In cases where the average access distance between thrashing pages
47  * is bigger than the size of memory there is nothing that can be
48  * done - the thrashing set could never fit into memory under any
49  * circumstance.
50  *
51  * However, the average access distance could be bigger than the
52  * inactive list, yet smaller than the size of memory.  In this case,
53  * the set could fit into memory if it weren't for the currently
54  * active pages - which may be used more, hopefully less frequently:
55  *
56  *      +-memory available to cache-+
57  *      |                           |
58  *      +-inactive------+-active----+
59  *  a b | c d e f g h i | J K L M N |
60  *      +---------------+-----------+
61  *
62  * It is prohibitively expensive to accurately track access frequency
63  * of pages.  But a reasonable approximation can be made to measure
64  * thrashing on the inactive list, after which refaulting pages can be
65  * activated optimistically to compete with the existing active pages.
66  *
67  * Approximating inactive page access frequency - Observations:
68  *
69  * 1. When a page is accessed for the first time, it is added to the
70  *    head of the inactive list, slides every existing inactive page
71  *    towards the tail by one slot, and pushes the current tail page
72  *    out of memory.
73  *
74  * 2. When a page is accessed for the second time, it is promoted to
75  *    the active list, shrinking the inactive list by one slot.  This
76  *    also slides all inactive pages that were faulted into the cache
77  *    more recently than the activated page towards the tail of the
78  *    inactive list.
79  *
80  * Thus:
81  *
82  * 1. The sum of evictions and activations between any two points in
83  *    time indicate the minimum number of inactive pages accessed in
84  *    between.
85  *
86  * 2. Moving one inactive page N page slots towards the tail of the
87  *    list requires at least N inactive page accesses.
88  *
89  * Combining these:
90  *
91  * 1. When a page is finally evicted from memory, the number of
92  *    inactive pages accessed while the page was in cache is at least
93  *    the number of page slots on the inactive list.
94  *
95  * 2. In addition, measuring the sum of evictions and activations (E)
96  *    at the time of a page's eviction, and comparing it to another
97  *    reading (R) at the time the page faults back into memory tells
98  *    the minimum number of accesses while the page was not cached.
99  *    This is called the refault distance.
100  *
101  * Because the first access of the page was the fault and the second
102  * access the refault, we combine the in-cache distance with the
103  * out-of-cache distance to get the complete minimum access distance
104  * of this page:
105  *
106  *      NR_inactive + (R - E)
107  *
108  * And knowing the minimum access distance of a page, we can easily
109  * tell if the page would be able to stay in cache assuming all page
110  * slots in the cache were available:
111  *
112  *   NR_inactive + (R - E) <= NR_inactive + NR_active
113  *
114  * which can be further simplified to
115  *
116  *   (R - E) <= NR_active
117  *
118  * Put into words, the refault distance (out-of-cache) can be seen as
119  * a deficit in inactive list space (in-cache).  If the inactive list
120  * had (R - E) more page slots, the page would not have been evicted
121  * in between accesses, but activated instead.  And on a full system,
122  * the only thing eating into inactive list space is active pages.
123  *
124  *
125  *		Refaulting inactive pages
126  *
127  * All that is known about the active list is that the pages have been
128  * accessed more than once in the past.  This means that at any given
129  * time there is actually a good chance that pages on the active list
130  * are no longer in active use.
131  *
132  * So when a refault distance of (R - E) is observed and there are at
133  * least (R - E) active pages, the refaulting page is activated
134  * optimistically in the hope that (R - E) active pages are actually
135  * used less frequently than the refaulting page - or even not used at
136  * all anymore.
137  *
138  * That means if inactive cache is refaulting with a suitable refault
139  * distance, we assume the cache workingset is transitioning and put
140  * pressure on the current active list.
141  *
142  * If this is wrong and demotion kicks in, the pages which are truly
143  * used more frequently will be reactivated while the less frequently
144  * used once will be evicted from memory.
145  *
146  * But if this is right, the stale pages will be pushed out of memory
147  * and the used pages get to stay in cache.
148  *
149  *		Refaulting active pages
150  *
151  * If on the other hand the refaulting pages have recently been
152  * deactivated, it means that the active list is no longer protecting
153  * actively used cache from reclaim. The cache is NOT transitioning to
154  * a different workingset; the existing workingset is thrashing in the
155  * space allocated to the page cache.
156  *
157  *
158  *		Implementation
159  *
160  * For each node's LRU lists, a counter for inactive evictions and
161  * activations is maintained (node->nonresident_age).
162  *
163  * On eviction, a snapshot of this counter (along with some bits to
164  * identify the node) is stored in the now empty page cache
165  * slot of the evicted page.  This is called a shadow entry.
166  *
167  * On cache misses for which there are shadow entries, an eligible
168  * refault distance will immediately activate the refaulting page.
169  */
170 
171 #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
172 			 1 + NODES_SHIFT + MEM_CGROUP_ID_SHIFT)
173 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
174 
175 /*
176  * Eviction timestamps need to be able to cover the full range of
177  * actionable refaults. However, bits are tight in the xarray
178  * entry, and after storing the identifier for the lruvec there might
179  * not be enough left to represent every single actionable refault. In
180  * that case, we have to sacrifice granularity for distance, and group
181  * evictions into coarser buckets by shaving off lower timestamp bits.
182  */
183 static unsigned int bucket_order __read_mostly;
184 
pack_shadow(int memcgid,pg_data_t * pgdat,unsigned long eviction,bool workingset)185 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
186 			 bool workingset)
187 {
188 	eviction >>= bucket_order;
189 	eviction &= EVICTION_MASK;
190 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
191 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
192 	eviction = (eviction << 1) | workingset;
193 
194 	return xa_mk_value(eviction);
195 }
196 
unpack_shadow(void * shadow,int * memcgidp,pg_data_t ** pgdat,unsigned long * evictionp,bool * workingsetp)197 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
198 			  unsigned long *evictionp, bool *workingsetp)
199 {
200 	unsigned long entry = xa_to_value(shadow);
201 	int memcgid, nid;
202 	bool workingset;
203 
204 	workingset = entry & 1;
205 	entry >>= 1;
206 	nid = entry & ((1UL << NODES_SHIFT) - 1);
207 	entry >>= NODES_SHIFT;
208 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
209 	entry >>= MEM_CGROUP_ID_SHIFT;
210 
211 	*memcgidp = memcgid;
212 	*pgdat = NODE_DATA(nid);
213 	*evictionp = entry << bucket_order;
214 	*workingsetp = workingset;
215 }
216 
217 /**
218  * workingset_age_nonresident - age non-resident entries as LRU ages
219  * @lruvec: the lruvec that was aged
220  * @nr_pages: the number of pages to count
221  *
222  * As in-memory pages are aged, non-resident pages need to be aged as
223  * well, in order for the refault distances later on to be comparable
224  * to the in-memory dimensions. This function allows reclaim and LRU
225  * operations to drive the non-resident aging along in parallel.
226  */
workingset_age_nonresident(struct lruvec * lruvec,unsigned long nr_pages)227 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
228 {
229 	/*
230 	 * Reclaiming a cgroup means reclaiming all its children in a
231 	 * round-robin fashion. That means that each cgroup has an LRU
232 	 * order that is composed of the LRU orders of its child
233 	 * cgroups; and every page has an LRU position not just in the
234 	 * cgroup that owns it, but in all of that group's ancestors.
235 	 *
236 	 * So when the physical inactive list of a leaf cgroup ages,
237 	 * the virtual inactive lists of all its parents, including
238 	 * the root cgroup's, age as well.
239 	 */
240 	do {
241 		atomic_long_add(nr_pages, &lruvec->nonresident_age);
242 	} while ((lruvec = parent_lruvec(lruvec)));
243 }
244 
245 /**
246  * workingset_eviction - note the eviction of a page from memory
247  * @target_memcg: the cgroup that is causing the reclaim
248  * @page: the page being evicted
249  *
250  * Returns a shadow entry to be stored in @page->mapping->i_pages in place
251  * of the evicted @page so that a later refault can be detected.
252  */
workingset_eviction(struct page * page,struct mem_cgroup * target_memcg)253 void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg)
254 {
255 	struct pglist_data *pgdat = page_pgdat(page);
256 	unsigned long eviction;
257 	struct lruvec *lruvec;
258 	int memcgid;
259 
260 	/* Page is fully exclusive and pins page->mem_cgroup */
261 	VM_BUG_ON_PAGE(PageLRU(page), page);
262 	VM_BUG_ON_PAGE(page_count(page), page);
263 	VM_BUG_ON_PAGE(!PageLocked(page), page);
264 
265 	lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
266 #ifdef CONFIG_HYPERHOLD_FILE_LRU
267 	if (!is_prot_page(page) && page_is_file_lru(page)) {
268 		lruvec = node_lruvec(pgdat);
269 		workingset_age_nonresident(lruvec, thp_nr_pages(page));
270 	} else {
271 		workingset_age_nonresident(lruvec, thp_nr_pages(page));
272 	}
273 #else
274 	workingset_age_nonresident(lruvec, thp_nr_pages(page));
275 #endif
276 	/* XXX: target_memcg can be NULL, go through lruvec */
277 	memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
278 	eviction = atomic_long_read(&lruvec->nonresident_age);
279 	return pack_shadow(memcgid, pgdat, eviction, PageWorkingset(page));
280 }
281 
282 /**
283  * workingset_refault - evaluate the refault of a previously evicted page
284  * @page: the freshly allocated replacement page
285  * @shadow: shadow entry of the evicted page
286  *
287  * Calculates and evaluates the refault distance of the previously
288  * evicted page in the context of the node and the memcg whose memory
289  * pressure caused the eviction.
290  */
workingset_refault(struct page * page,void * shadow)291 void workingset_refault(struct page *page, void *shadow)
292 {
293 	bool file = page_is_file_lru(page);
294 	struct mem_cgroup *eviction_memcg;
295 	struct lruvec *eviction_lruvec;
296 	unsigned long refault_distance;
297 	unsigned long workingset_size;
298 	struct pglist_data *pgdat;
299 	struct mem_cgroup *memcg;
300 	unsigned long eviction;
301 	struct lruvec *lruvec;
302 	unsigned long refault;
303 	bool workingset;
304 	int memcgid;
305 
306 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
307 
308 	rcu_read_lock();
309 	/*
310 	 * Look up the memcg associated with the stored ID. It might
311 	 * have been deleted since the page's eviction.
312 	 *
313 	 * Note that in rare events the ID could have been recycled
314 	 * for a new cgroup that refaults a shared page. This is
315 	 * impossible to tell from the available data. However, this
316 	 * should be a rare and limited disturbance, and activations
317 	 * are always speculative anyway. Ultimately, it's the aging
318 	 * algorithm's job to shake out the minimum access frequency
319 	 * for the active cache.
320 	 *
321 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
322 	 * would be better if the root_mem_cgroup existed in all
323 	 * configurations instead.
324 	 */
325 #ifdef CONFIG_HYPERHOLD_FILE_LRU
326 	if (memcgid != -1) {
327 		eviction_memcg = mem_cgroup_from_id(memcgid);
328 		if (!mem_cgroup_disabled() && !eviction_memcg)
329 			goto out;
330 	}
331 #else
332 	eviction_memcg = mem_cgroup_from_id(memcgid);
333 	if (!mem_cgroup_disabled() && !eviction_memcg)
334 		goto out;
335 #endif
336 	eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
337 	refault = atomic_long_read(&eviction_lruvec->nonresident_age);
338 
339 	/*
340 	 * Calculate the refault distance
341 	 *
342 	 * The unsigned subtraction here gives an accurate distance
343 	 * across nonresident_age overflows in most cases. There is a
344 	 * special case: usually, shadow entries have a short lifetime
345 	 * and are either refaulted or reclaimed along with the inode
346 	 * before they get too old.  But it is not impossible for the
347 	 * nonresident_age to lap a shadow entry in the field, which
348 	 * can then result in a false small refault distance, leading
349 	 * to a false activation should this old entry actually
350 	 * refault again.  However, earlier kernels used to deactivate
351 	 * unconditionally with *every* reclaim invocation for the
352 	 * longest time, so the occasional inappropriate activation
353 	 * leading to pressure on the active list is not a problem.
354 	 */
355 	refault_distance = (refault - eviction) & EVICTION_MASK;
356 
357 	/*
358 	 * The activation decision for this page is made at the level
359 	 * where the eviction occurred, as that is where the LRU order
360 	 * during page reclaim is being determined.
361 	 *
362 	 * However, the cgroup that will own the page is the one that
363 	 * is actually experiencing the refault event.
364 	 */
365 	memcg = page_memcg(page);
366 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
367 #ifdef CONFIG_HYPERHOLD_FILE_LRU
368 	if (!is_prot_page(page) && file)
369 		inc_lruvec_state(node_lruvec(pgdat),
370 				WORKINGSET_REFAULT_BASE + file);
371 	else
372 		inc_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file);
373 #else
374 	inc_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file);
375 #endif
376 
377 	/*
378 	 * Compare the distance to the existing workingset size. We
379 	 * don't activate pages that couldn't stay resident even if
380 	 * all the memory was available to the workingset. Whether
381 	 * workingset competition needs to consider anon or not depends
382 	 * on having swap.
383 	 */
384 #ifdef CONFIG_HYPERHOLD_FILE_LRU
385 	workingset_size = lruvec_page_state(node_lruvec(pgdat), NR_ACTIVE_FILE);
386 #else
387 	workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
388 #endif
389 
390 	if (!file) {
391 #ifdef CONFIG_HYPERHOLD_FILE_LRU
392 		workingset_size += lruvec_page_state(node_lruvec(pgdat),
393 						     NR_INACTIVE_FILE);
394 #else
395 
396 		workingset_size += lruvec_page_state(eviction_lruvec,
397 						     NR_INACTIVE_FILE);
398 #endif
399 	}
400 	if (mem_cgroup_get_nr_swap_pages(memcg) > 0) {
401 		workingset_size += lruvec_page_state(eviction_lruvec,
402 						     NR_ACTIVE_ANON);
403 		if (file) {
404 			workingset_size += lruvec_page_state(eviction_lruvec,
405 						     NR_INACTIVE_ANON);
406 		}
407 	}
408 	if (refault_distance > workingset_size)
409 		goto out;
410 
411 	SetPageActive(page);
412 #ifdef CONFIG_HYPERHOLD_FILE_LRU
413 	if (!is_prot_page(page) && file) {
414 		workingset_age_nonresident(node_lruvec(pgdat),
415 					   thp_nr_pages(page));
416 		inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file);
417 	} else {
418 		workingset_age_nonresident(lruvec, thp_nr_pages(page));
419 		inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file);
420 	}
421 #else
422 	workingset_age_nonresident(lruvec, thp_nr_pages(page));
423 	inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file);
424 #endif
425 
426 	/* Page was active prior to eviction */
427 	if (workingset) {
428 		SetPageWorkingset(page);
429 		/* XXX: Move to lru_cache_add() when it supports new vs putback */
430 		spin_lock_irq(&page_pgdat(page)->lru_lock);
431 		lru_note_cost_page(page);
432 		spin_unlock_irq(&page_pgdat(page)->lru_lock);
433 #ifdef CONFIG_HYPERHOLD_FILE_LRU
434 		if (!is_prot_page(page) && file)
435 			inc_lruvec_state(node_lruvec(pgdat), WORKINGSET_RESTORE_BASE + file);
436 		else
437 			inc_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file);
438 #else
439 		inc_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file);
440 #endif
441 	}
442 out:
443 	rcu_read_unlock();
444 }
445 
446 /**
447  * workingset_activation - note a page activation
448  * @page: page that is being activated
449  */
workingset_activation(struct page * page)450 void workingset_activation(struct page *page)
451 {
452 	struct mem_cgroup *memcg;
453 	struct lruvec *lruvec;
454 
455 	rcu_read_lock();
456 	/*
457 	 * Filter non-memcg pages here, e.g. unmap can call
458 	 * mark_page_accessed() on VDSO pages.
459 	 *
460 	 * XXX: See workingset_refault() - this should return
461 	 * root_mem_cgroup even for !CONFIG_MEMCG.
462 	 */
463 	memcg = page_memcg_rcu(page);
464 	if (!mem_cgroup_disabled() && !memcg)
465 		goto out;
466 	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
467 #ifdef CONFIG_HYPERHOLD_FILE_LRU
468 	if (!is_prot_page(page) && page_is_file_lru(page)) {
469 		lruvec = node_lruvec(page_pgdat(page));
470 		workingset_age_nonresident(lruvec, thp_nr_pages(page));
471 	} else {
472 		workingset_age_nonresident(lruvec, thp_nr_pages(page));
473 	}
474 #else
475 	workingset_age_nonresident(lruvec, thp_nr_pages(page));
476 #endif
477 out:
478 	rcu_read_unlock();
479 }
480 
481 /*
482  * Shadow entries reflect the share of the working set that does not
483  * fit into memory, so their number depends on the access pattern of
484  * the workload.  In most cases, they will refault or get reclaimed
485  * along with the inode, but a (malicious) workload that streams
486  * through files with a total size several times that of available
487  * memory, while preventing the inodes from being reclaimed, can
488  * create excessive amounts of shadow nodes.  To keep a lid on this,
489  * track shadow nodes and reclaim them when they grow way past the
490  * point where they would still be useful.
491  */
492 
493 static struct list_lru shadow_nodes;
494 
workingset_update_node(struct xa_node * node)495 void workingset_update_node(struct xa_node *node)
496 {
497 	/*
498 	 * Track non-empty nodes that contain only shadow entries;
499 	 * unlink those that contain pages or are being freed.
500 	 *
501 	 * Avoid acquiring the list_lru lock when the nodes are
502 	 * already where they should be. The list_empty() test is safe
503 	 * as node->private_list is protected by the i_pages lock.
504 	 */
505 	VM_WARN_ON_ONCE(!irqs_disabled());  /* For __inc_lruvec_page_state */
506 
507 	if (node->count && node->count == node->nr_values) {
508 		if (list_empty(&node->private_list)) {
509 			list_lru_add(&shadow_nodes, &node->private_list);
510 			__inc_lruvec_slab_state(node, WORKINGSET_NODES);
511 		}
512 	} else {
513 		if (!list_empty(&node->private_list)) {
514 			list_lru_del(&shadow_nodes, &node->private_list);
515 			__dec_lruvec_slab_state(node, WORKINGSET_NODES);
516 		}
517 	}
518 }
519 
count_shadow_nodes(struct shrinker * shrinker,struct shrink_control * sc)520 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
521 					struct shrink_control *sc)
522 {
523 	unsigned long max_nodes;
524 	unsigned long nodes;
525 	unsigned long pages;
526 
527 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
528 
529 	/*
530 	 * Approximate a reasonable limit for the nodes
531 	 * containing shadow entries. We don't need to keep more
532 	 * shadow entries than possible pages on the active list,
533 	 * since refault distances bigger than that are dismissed.
534 	 *
535 	 * The size of the active list converges toward 100% of
536 	 * overall page cache as memory grows, with only a tiny
537 	 * inactive list. Assume the total cache size for that.
538 	 *
539 	 * Nodes might be sparsely populated, with only one shadow
540 	 * entry in the extreme case. Obviously, we cannot keep one
541 	 * node for every eligible shadow entry, so compromise on a
542 	 * worst-case density of 1/8th. Below that, not all eligible
543 	 * refaults can be detected anymore.
544 	 *
545 	 * On 64-bit with 7 xa_nodes per page and 64 slots
546 	 * each, this will reclaim shadow entries when they consume
547 	 * ~1.8% of available memory:
548 	 *
549 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
550 	 */
551 #ifdef CONFIG_MEMCG
552 #ifndef CONFIG_HYPERHOLD_FILE_LRU
553 	if (sc->memcg) {
554 		struct lruvec *lruvec;
555 		int i;
556 
557 		lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
558 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
559 			pages += lruvec_page_state_local(lruvec,
560 							 NR_LRU_BASE + i);
561 		pages += lruvec_page_state_local(
562 			lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
563 		pages += lruvec_page_state_local(
564 			lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
565 	} else
566 #endif
567 #endif
568 		pages = node_present_pages(sc->nid);
569 
570 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
571 
572 	if (!nodes)
573 		return SHRINK_EMPTY;
574 
575 	if (nodes <= max_nodes)
576 		return 0;
577 	return nodes - max_nodes;
578 }
579 
shadow_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)580 static enum lru_status shadow_lru_isolate(struct list_head *item,
581 					  struct list_lru_one *lru,
582 					  spinlock_t *lru_lock,
583 					  void *arg) __must_hold(lru_lock)
584 {
585 	struct xa_node *node = container_of(item, struct xa_node, private_list);
586 	struct address_space *mapping;
587 	int ret;
588 
589 	/*
590 	 * Page cache insertions and deletions synchronously maintain
591 	 * the shadow node LRU under the i_pages lock and the
592 	 * lru_lock.  Because the page cache tree is emptied before
593 	 * the inode can be destroyed, holding the lru_lock pins any
594 	 * address_space that has nodes on the LRU.
595 	 *
596 	 * We can then safely transition to the i_pages lock to
597 	 * pin only the address_space of the particular node we want
598 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
599 	 */
600 
601 	mapping = container_of(node->array, struct address_space, i_pages);
602 
603 	/* Coming from the list, invert the lock order */
604 	if (!xa_trylock(&mapping->i_pages)) {
605 		spin_unlock_irq(lru_lock);
606 		ret = LRU_RETRY;
607 		goto out;
608 	}
609 
610 	list_lru_isolate(lru, item);
611 	__dec_lruvec_slab_state(node, WORKINGSET_NODES);
612 
613 	spin_unlock(lru_lock);
614 
615 	/*
616 	 * The nodes should only contain one or more shadow entries,
617 	 * no pages, so we expect to be able to remove them all and
618 	 * delete and free the empty node afterwards.
619 	 */
620 	if (WARN_ON_ONCE(!node->nr_values))
621 		goto out_invalid;
622 	if (WARN_ON_ONCE(node->count != node->nr_values))
623 		goto out_invalid;
624 	mapping->nrexceptional -= node->nr_values;
625 	xa_delete_node(node, workingset_update_node);
626 	__inc_lruvec_slab_state(node, WORKINGSET_NODERECLAIM);
627 
628 out_invalid:
629 	xa_unlock_irq(&mapping->i_pages);
630 	ret = LRU_REMOVED_RETRY;
631 out:
632 	cond_resched();
633 	spin_lock_irq(lru_lock);
634 	return ret;
635 }
636 
scan_shadow_nodes(struct shrinker * shrinker,struct shrink_control * sc)637 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
638 				       struct shrink_control *sc)
639 {
640 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
641 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
642 					NULL);
643 }
644 
645 static struct shrinker workingset_shadow_shrinker = {
646 	.count_objects = count_shadow_nodes,
647 	.scan_objects = scan_shadow_nodes,
648 	.seeks = 0, /* ->count reports only fully expendable nodes */
649 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
650 };
651 
652 /*
653  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
654  * i_pages lock.
655  */
656 static struct lock_class_key shadow_nodes_key;
657 
workingset_init(void)658 static int __init workingset_init(void)
659 {
660 	unsigned int timestamp_bits;
661 	unsigned int max_order;
662 	int ret;
663 
664 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
665 	/*
666 	 * Calculate the eviction bucket size to cover the longest
667 	 * actionable refault distance, which is currently half of
668 	 * memory (totalram_pages/2). However, memory hotplug may add
669 	 * some more pages at runtime, so keep working with up to
670 	 * double the initial memory by using totalram_pages as-is.
671 	 */
672 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
673 	max_order = fls_long(totalram_pages() - 1);
674 	if (max_order > timestamp_bits)
675 		bucket_order = max_order - timestamp_bits;
676 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
677 	       timestamp_bits, max_order, bucket_order);
678 
679 	ret = prealloc_shrinker(&workingset_shadow_shrinker);
680 	if (ret)
681 		goto err;
682 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
683 			      &workingset_shadow_shrinker);
684 	if (ret)
685 		goto err_list_lru;
686 	register_shrinker_prepared(&workingset_shadow_shrinker);
687 	return 0;
688 err_list_lru:
689 	free_prealloced_shrinker(&workingset_shadow_shrinker);
690 err:
691 	return ret;
692 }
693 module_init(workingset_init);
694