• Home
  • Raw
  • Download

Lines Matching refs:ldexp

117         {float(ldexp(1.0f, -126)), "0x1p-126"},
118 {float(ldexp(-1.0f, -126)), "-0x1p-126"},
121 {float(ldexp(1.0f, -127)), "0x1p-127"},
122 {float(ldexp(1.0f, -127) / 2.0f), "0x1p-128"},
123 {float(ldexp(1.0f, -127) / 4.0f), "0x1p-129"},
124 {float(ldexp(1.0f, -127) / 8.0f), "0x1p-130"},
125 {float(ldexp(-1.0f, -127)), "-0x1p-127"},
126 {float(ldexp(-1.0f, -127) / 2.0f), "-0x1p-128"},
127 {float(ldexp(-1.0f, -127) / 4.0f), "-0x1p-129"},
128 {float(ldexp(-1.0f, -127) / 8.0f), "-0x1p-130"},
130 {float(ldexp(1.0, -127) + (ldexp(1.0, -127) / 2.0f)), "0x1.8p-127"},
131 {float(ldexp(1.0, -127) / 2.0 + (ldexp(1.0, -127) / 4.0f)),
180 {ldexp(1.0, 128), "0x1p+128"},
181 {ldexp(1.0, 129), "0x1p+129"},
182 {ldexp(-1.0, 128), "-0x1p+128"},
183 {ldexp(-1.0, 129), "-0x1p+129"},
184 {ldexp(1.0, 128) + ldexp(1.0, 90), "0x1.0000000004p+128"},
185 {ldexp(1.0, 129) + ldexp(1.0, 120), "0x1.008p+129"},
186 {ldexp(-1.0, 128) + ldexp(1.0, 90), "-0x1.fffffffff8p+127"},
187 {ldexp(-1.0, 129) + ldexp(1.0, 120), "-0x1.ffp+128"},
198 {ldexp(1.0, -128), "0x1p-128"},
199 {ldexp(1.0, -129), "0x1p-129"},
200 {ldexp(-1.0, -128), "-0x1p-128"},
201 {ldexp(-1.0, -129), "-0x1p-129"},
202 {ldexp(1.0, -128) + ldexp(1.0, -90), "0x1.0000000004p-90"},
203 {ldexp(1.0, -129) + ldexp(1.0, -120), "0x1.008p-120"},
204 {ldexp(-1.0, -128) + ldexp(1.0, -90), "0x1.fffffffff8p-91"},
205 {ldexp(-1.0, -129) + ldexp(1.0, -120), "0x1.ffp-121"},
208 {ldexp(1.0, -1022), "0x1p-1022"},
209 {ldexp(-1.0, -1022), "-0x1p-1022"},
212 {ldexp(1.0, -1023), "0x1p-1023"},
213 {ldexp(1.0, -1023) / 2.0, "0x1p-1024"},
214 {ldexp(1.0, -1023) / 4.0, "0x1p-1025"},
215 {ldexp(1.0, -1023) / 8.0, "0x1p-1026"},
216 {ldexp(-1.0, -1024), "-0x1p-1024"},
217 {ldexp(-1.0, -1024) / 2.0, "-0x1p-1025"},
218 {ldexp(-1.0, -1024) / 4.0, "-0x1p-1026"},
219 {ldexp(-1.0, -1024) / 8.0, "-0x1p-1027"},
221 {ldexp(1.0, -1023) + (ldexp(1.0, -1023) / 2.0), "0x1.8p-1023"},
222 {ldexp(1.0, -1023) / 2.0 + (ldexp(1.0, -1023) / 4.0),
517 {float(ldexp(1.f, 126)), "8.50705917e+37"},
518 {float(ldexp(-1.f, -126)), "-1.17549435e-38"},
521 {float(ldexp(1.0f, -127)), "0x1p-127"},
522 {float(ldexp(1.5f, -128)), "0x1.8p-128"},
523 {float(ldexp(1.25, -129)), "0x1.4p-129"},
524 {float(ldexp(1.125, -130)), "0x1.2p-130"},
525 {float(ldexp(-1.0f, -127)), "-0x1p-127"},
526 {float(ldexp(-1.0f, -128)), "-0x1p-128"},
527 {float(ldexp(-1.0f, -129)), "-0x1p-129"},
528 {float(ldexp(-1.5f, -130)), "-0x1.8p-130"},
548 {ldexp(1.0, 128), "3.4028236692093846e+38"},
549 {ldexp(1.5, 129), "1.0208471007628154e+39"},
550 {ldexp(-1.0, 128), "-3.4028236692093846e+38"},
551 {ldexp(-1.5, 129), "-1.0208471007628154e+39"},
554 {ldexp(1.5, -129), "2.2040519077917891e-39"},
555 {ldexp(-1.5, -129), "-2.2040519077917891e-39"},
558 {ldexp(1.0, -1022), "2.2250738585072014e-308"},
559 {ldexp(-1.0, -1022), "-2.2250738585072014e-308"},
562 {ldexp(1.125, -1023), "0x1.2p-1023"},
563 {ldexp(-1.375, -1024), "-0x1.6p-1024"},
588 EXPECT_EQ(0, unbiased_exponent(ldexp(1.0f, 0))); in TEST()
589 EXPECT_EQ(-32, unbiased_exponent(ldexp(1.0f, -32))); in TEST()
590 EXPECT_EQ(42, unbiased_exponent(ldexp(1.0f, 42))); in TEST()
591 EXPECT_EQ(125, unbiased_exponent(ldexp(1.0f, 125))); in TEST()
597 EXPECT_EQ(-100, unbiased_exponent(ldexp(1.0f, -100))); in TEST()
598 EXPECT_EQ(-127, unbiased_exponent(ldexp(1.0f, -127))); // First denorm in TEST()
599 EXPECT_EQ(-128, unbiased_exponent(ldexp(1.0f, -128))); in TEST()
600 EXPECT_EQ(-129, unbiased_exponent(ldexp(1.0f, -129))); in TEST()
601 EXPECT_EQ(-140, unbiased_exponent(ldexp(1.0f, -140))); in TEST()
603 EXPECT_EQ(-126 - 23, unbiased_exponent(ldexp(1.0f, -126 - 23))); in TEST()
605 EXPECT_EQ(0, unbiased_exponent(ldexp(1.0f, -127 - 23))); in TEST()
625 f += std::ldexp(1.0f, -i); in float_fractions()
636 static_cast<float>(ldexp(float_fractions(fractions), exp))) in normalized_significand()
704 EXPECT_EQ(static_cast<float>(ldexp(1.f, -149)), in TEST()
706 EXPECT_EQ(static_cast<float>(ldexp(1.f, -149)), in TEST()
709 EXPECT_EQ(static_cast<float>(ldexp(1.f, -149)), in TEST()
712 EXPECT_EQ(ldexp(1.0f, -127), set_from_sign(false, -127, 0, false)); in TEST()
713 EXPECT_EQ(ldexp(1.0f, -128), set_from_sign(false, -128, 0, false)); in TEST()
716 EXPECT_EQ(ldexp(float_fractions({0, 1, 2, 5}), -32), in TEST()
718 EXPECT_EQ(ldexp(float_fractions({0, 1, 2, 5}), -128), in TEST()
723 EXPECT_EQ(-ldexp(1.0, -127), set_from_sign(true, -127, 0, false)); in TEST()
724 EXPECT_EQ(-ldexp(1.0, -128), set_from_sign(true, -128, 0, false)); in TEST()
727 EXPECT_EQ(-ldexp(float_fractions({0, 1, 2, 5}), -32), in TEST()
729 EXPECT_EQ(-ldexp(float_fractions({0, 1, 2, 5}), -128), in TEST()
762 HF(static_cast<float>(-ldexp(float_fractions({0, 1, 2, 5}), -128))) in TEST()
837 …{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -128)), std::make_pair(half_bits_set({0…
838 …{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -129)), std::make_pair(half_bits_set({0…
839 …{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -131)), std::make_pair(half_bits_set({0…
840 …{static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -130)), std::make_pair(half_bits_set({0…
955 {static_cast<float>(ldexp(float_fractions({0, 1, 10}), 3)),
959 {static_cast<float>(-ldexp(float_fractions({0, 1, 10}), 3)),
965 {static_cast<float>(ldexp(1.0f, -25)),
968 {static_cast<float>(ldexp(1.0f, -25)), 0x1, {RD::kToPositiveInfinity}},
969 {static_cast<float>(-ldexp(1.0f, -25)),
972 {static_cast<float>(-ldexp(1.0f, -25)),
975 {static_cast<float>(ldexp(1.0f, -24)),
981 {static_cast<float>(ldexp(1.0f, 16)),
985 {static_cast<float>(ldexp(1.0f, 18)),
989 {static_cast<float>(ldexp(1.3f, 16)),
993 {static_cast<float>(-ldexp(1.0f, 16)),
997 {static_cast<float>(-ldexp(1.0f, 18)),
1001 {static_cast<float>(-ldexp(1.3f, 16)),
1059 {0x0001, static_cast<float>(ldexp(1.0, -24))},
1060 {0x0002, static_cast<float>(ldexp(1.0, -23))},
1061 {0x8001, static_cast<float>(-ldexp(1.0, -24))},
1062 {0x8011, static_cast<float>(-ldexp(1.0, -20) + -ldexp(1.0, -24))},
1404 {"0x1.0p127", true, "", float(ldexp(1.0f, 127))}, // good large number
1405 {"0x0.8p128", true, "", float(ldexp(1.0f, 127))}, // good large number
1406 {"0x0.1p131", true, "", float(ldexp(1.0f, 127))}, // good large number
1407 {"0x0.01p135", true, "", float(ldexp(1.0f, 127))}, // good large number
1408 {"0x1.0p128", true, "", float(ldexp(1.0f, 128))}, // infinity
1409 {"0x1.0p4294967295", true, "", float(ldexp(1.0f, 128))}, // infinity
1410 {"0x1.0p5000000000", true, "", float(ldexp(1.0f, 128))}, // infinity
1419 float(ldexp(1.0f, -126))}, // fine, a small normal number
1420 {"0x1.0p-127", true, "", float(ldexp(1.0f, -127))}, // denorm number
1422 float(ldexp(1.0f, -149))}, // smallest positive denormal
1424 float(ldexp(1.0f, -149))}, // smallest positive denormal
1426 float(ldexp(1.0f, -149))}, // smallest positive denormal
1428 float(ldexp(1.0f, -149))}, // smallest positive denormal