/* * Copyright (c) 2022 HiSilicon (Shanghai) Technologies CO., LIMITED. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __HI_MATH_H__ #define __HI_MATH_H__ #include "hi_type.h" #ifdef __cplusplus #if __cplusplus extern "C" { #endif #endif /* __cplusplus */ /* * ABS(x) absolute value of x * SIGN(x) sign of x * CMP(x,y) 0 if x == y; 1 if x > y; -1 if x < y */ #define ABS(x) ((x) >= 0 ? (x) : (-(x))) #define _SIGN(x) ((x) >= 0 ? 1 : (-1)) #define CMP(x, y) (((x) == (y)) ? 0 : (((x) > (y)) ? 1 : (-1))) /* * MAX2(x,y) maximum of x and y * MIN2(x,y) minimum of x and y * MAX3(x,y,z) maximum of x, y and z * MIN3(x,y,z) minimum of x, y and z * MEDIAN(x,y,z) median of x,y,z * MEAN2(x,y) mean of x,y */ #define MAX2(x, y) ((x) > (y) ? (x) : (y)) #define MIN2(x, y) ((x) < (y) ? (x) : (y)) #define MAX3(x, y, z) ((x) > (y) ? MAX2(x, z) : MAX2(y, z)) #define MIN3(x, y, z) ((x) < (y) ? MIN2(x, z) : MIN2(y, z)) #define MEDIAN(x, y, z) (((x) + (y) + (z) - MAX3(x, y, z)) - MIN3(x, y, z)) #define MEAN2(x, y) (((x) + (y)) >> 1) /* * CLIP3(x,min,max) clip x within [min,max] * WRAP_MAX(x,max,min) wrap to min if x equal max * WRAP_MIN(x,min,max) wrap to max if x equal min * VALUE_BETWEEN(x,min.max) True if x is between [min,max] inclusively. */ #define CLIP_MIN(x, min) (((x) >= (min)) ? (x) : (min)) #define CLIP3(x, min, max) ((x) < (min) ? (min) : ((x) > (max) ? (max) :(x))) #define CLIP_MAX(x, max) ((x) > (max) ? (max) : (x)) #define WRAP_MAX(x, max, min) ((x) >= (max) ? (min) : (x)) #define WRAP_MIN(x, min, max) ((x) <= (min) ? (max) : (x)) #define VALUE_BETWEEN(x, min, max) (((x) >= (min)) && ((x) <= (max))) /* * MULTI_OF_2_POWER(x,a) whether x is multiple of a(a must be power of 2) * HI_ALIGN_DOWN(x,a) floor x to multiple of a(a must be power of 2) * HI_ALIGN_UP(x, a) align x to multiple of a * * Example: * HI_ALIGN_UP(5,4) = 8 * HI_ALIGN_DOWN(5,4) = 4 */ #define MULTI_OF_2_POWER(x, a) (!((x) & ((a) - 1))) #define HICEILING(x, a) (((x) + (a) - 1) / (a)) #define HI_ALIGN_UP(x, a) ((((x) + ((a) - 1)) / (a)) * (a)) #define HI_ALIGN_DOWN(x, a) (((x) / (a)) * (a)) #define ALIGN_UP(x, a) ((((x) + ((a) - 1)) / (a)) * (a)) #define ALIGN_DOWN(x, a) (((x) / (a)) * (a)) #define DIV_UP(x, a) (((x) + ((a) - 1)) / (a)) /* * Get the span between two unsigned number, such as * SPAN(HI_U32, 200, 100) is 200 - 100 = 100 * SPAN(HI_U32, 100, 200) is 0xFFFFFFFF - 200 + 100 * SPAN(HI_U64, 100, 200) is 0xFFFFFFFFFFFFFFFF - 200 + 100 */ #define SPAN(type, begin, end) \ ({ \ type b = (begin); \ type e = (end); \ (type)((b >= e) ? (b - e) : (b + ((~((type)0)) - e))); \ }) /* * ENDIAN32(x,y) little endian <---> big endian * IS_LITTLE_END() whether the system is little end mode */ #define ENDIAN32(x) \ (((x) << 24) | \ (((x) & 0x0000ff00) << 8) | \ (((x) & 0x00ff0000) >> 8) | \ (((x) >> 24) & 0x000000ff)) /* * ENDIAN16(x,y) little endian <---> big endian * IS_LITTLE_END() whether the system is little end mode */ #define ENDIAN16(x) ((((x) << 8) & 0xff00) | (((x) >> 8) & 255)) __inline static HI_BOOL IS_LITTLE_END(void) { union unEND_TEST_U { HI_CHAR cTest[4]; HI_U32 u32Test; } unEndTest; unEndTest.cTest[0] = 0x01; unEndTest.cTest[1] = 0x02; unEndTest.cTest[2] = 0x03; unEndTest.cTest[3] = 0x04; return (unEndTest.u32Test > 0x01020304) ? (HI_TRUE) : (HI_FALSE); } /* * FRACTION32(de,nu) fraction: nu(minator) / de(nominator). * NUMERATOR32(x) of x(x is fraction) * DENOMINATOR32(x) Denominator of x(x is fraction) * represent fraction in 32 bit. LSB 16 is numerator, MSB 16 is denominator * It is integer if denominator is 0. */ #define FRACTION32(de, nu) (((de) << 16) | (nu)) #define NUMERATOR32(x) ((x) & 0xffff) #define DENOMINATOR32(x) ((x) >> 16) /* * RGB(r,g,b) assemble the r,g,b to 24bit color * RGB_R(c) get RED from 24bit color * RGB_G(c) get GREEN from 24bit color * RGB_B(c) get BLUE from 24bit color */ #define RGB(r, g, b) ((((r) & 0xff) << 16) | (((g) & 0xff) << 8) | ((b) & 0xff)) #define RGB_R(c) (((c) & 0xff0000) >> 16) #define RGB_G(c) (((c) & 0xff00) >> 8) #define RGB_B(c) ((c) & 0xff) /* * YUV(y,u,v) assemble the y,u,v to 30bit color * YUV_Y(c) get Y from 30bit color * YUV_U(c) get U from 30bit color * YUV_V(c) get V from 30bit color */ #define YUV(y, u, v) ((((y) & 0x03ff) << 20) | (((u) & 0x03ff) << 10) | ((v) & 0x03ff)) #define YUV_Y(c) (((c) & 0x3ff00000) >> 20) #define YUV_U(c) (((c) & 0x000ffc00) >> 10) #define YUV_V(c) ((c) & 0x000003ff) /* * YUV_8BIT(y,u,v) assemble the y,u,v to 24bit color * YUV_8BIT_Y(c) get Y from 24bit color * YUV_8BIT_U(c) get U from 24bit color * YUV_8BIT_V(c) get V from 24bit color */ #define YUV_8BIT(y, u, v) ((((y) & 0xff) << 16) | (((u) & 0xff) << 8) | ((v) & 0xff)) #define YUV_8BIT_Y(c) (((c) & 0xff0000) >> 16) #define YUV_8BIT_U(c) (((c) & 0xff00) >> 8) #define YUV_8BIT_V(c) ((c) & 0xff) /* * Rgb2Yc(r, g, b, *y, *u, *u) convert r,g,b to y,u,v * Rgb2Yuv(rgb) convert rgb to yuv */ __inline static HI_VOID Rgb2Yc(HI_U16 r, HI_U16 g, HI_U16 b, HI_U16 *py, HI_U16 *pcb, HI_U16 *pcr) { /* Y */ *py = (HI_U16)((((r * 66 + g * 129 + b * 25) >> 8) + 16) << 2); /* Cb */ *pcb = (HI_U16)(((((b * 112 - r * 38) - g * 74) >> 8) + 128) << 2); /* Cr */ *pcr = (HI_U16)(((((r * 112 - g * 94) - b * 18) >> 8) + 128) << 2); } __inline static HI_U32 Rgb2Yuv(HI_U32 u32Rgb) { HI_U16 y, u, v; Rgb2Yc(RGB_R(u32Rgb), RGB_G(u32Rgb), RGB_B(u32Rgb), &y, &u, &v); return YUV(y, u, v); } __inline static HI_VOID Rgb2Yc_full(HI_U16 r, HI_U16 g, HI_U16 b, HI_U16 *py, HI_U16 *pcb, HI_U16 *pcr) { HI_U16 py_temp, pcb_temp, pcr_temp; py_temp = (HI_U16)(((r * 76 + g * 150 + b * 29) >> 8) * 4); pcb_temp = (HI_U16)(CLIP_MIN(((((b * 130 - r * 44) - g * 86) >> 8) + 128), 0) * 4); pcr_temp = (HI_U16)(CLIP_MIN(((((r * 130 - g * 109) - b * 21) >> 8) + 128), 0) * 4); *py = MAX2(MIN2(py_temp, 1023), 0); *pcb = MAX2(MIN2(pcb_temp, 1023), 0); *pcr = MAX2(MIN2(pcr_temp, 1023), 0); } __inline static HI_U32 Rgb2Yuv_full(HI_U32 u32Rgb) { HI_U16 y, u, v; Rgb2Yc_full(RGB_R(u32Rgb), RGB_G(u32Rgb), RGB_B(u32Rgb), &y, &u, &v); return YUV(y, u, v); } /* * Rgb2Yc_8BIT(r, g, b, *y, *u, *u) convert r,g,b to y,u,v * Rgb2Yuv_8BIT(rgb) convert rgb to yuv */ __inline static HI_VOID Rgb2Yc_8BIT(HI_U8 r, HI_U8 g, HI_U8 b, HI_U8 *py, HI_U8 *pcb, HI_U8 *pcr) { /* Y */ *py = (HI_U8)(((r * 66 + g * 129 + b * 25) >> 8) + 16); /* Cb */ *pcb = (HI_U8)((((b * 112 - r * 38) - g * 74) >> 8) + 128); /* Cr */ *pcr = (HI_U8)((((r * 112 - g * 94) - b * 18) >> 8) + 128); } __inline static HI_U32 Rgb2Yuv_8BIT(HI_U32 u32Rgb) { HI_U8 y, u, v; Rgb2Yc_8BIT(RGB_R(u32Rgb), RGB_G(u32Rgb), RGB_B(u32Rgb), &y, &u, &v); return YUV_8BIT(y, u, v); } __inline static HI_VOID Rgb2Yc_full_8BIT(HI_U8 r, HI_U8 g, HI_U8 b, HI_U8 *py, HI_U8 *pcb, HI_U8 *pcr) { HI_S16 py_temp, pcb_temp, pcr_temp; py_temp = (r * 76 + g * 150 + b * 29) >> 8; pcb_temp = (((b * 130 - r * 44) - g * 86) >> 8) + 128; pcr_temp = (((r * 130 - g * 109) - b * 21) >> 8) + 128; *py = MAX2(MIN2(py_temp, 255), 0); *pcb = MAX2(MIN2(pcb_temp, 255), 0); *pcr = MAX2(MIN2(pcr_temp, 255), 0); } __inline static HI_U32 Rgb2Yuv_full_8BIT(HI_U32 u32Rgb) { HI_U8 y, u, v; Rgb2Yc_full_8BIT(RGB_R(u32Rgb), RGB_G(u32Rgb), RGB_B(u32Rgb), &y, &u, &v); return YUV_8BIT(y, u, v); } /* * FpsControl Using Sample: * FPS_CTRL_S g_stFpsCtrl; * * Take 12 frame uniform in 25. * InitFps(&g_stFpsCtrl, 25, 12); * * { * if(FpsControl(&g_stFpsCtrl)) printf("Yes, this frame should be token"); * } * */ typedef struct hiFPS_CTRL_S { HI_U32 u32Ffps; /* Full frame rate */ HI_U32 u32Tfps; /* Target frame rate */ HI_U32 u32FrmKey; /* update key frame */ } FPS_CTRL_S; __inline static HI_VOID InitFps(FPS_CTRL_S *pFrmCtrl, HI_U32 u32FullFps, HI_U32 u32TagFps) { pFrmCtrl->u32Ffps = u32FullFps; pFrmCtrl->u32Tfps = u32TagFps; pFrmCtrl->u32FrmKey = 0; } __inline static HI_BOOL FpsControl(FPS_CTRL_S *pFrmCtrl) { HI_BOOL bReturn = HI_FALSE; pFrmCtrl->u32FrmKey += pFrmCtrl->u32Tfps; if (pFrmCtrl->u32FrmKey >= pFrmCtrl->u32Ffps) { pFrmCtrl->u32FrmKey -= pFrmCtrl->u32Ffps; bReturn = HI_TRUE; } return bReturn; } __inline static HI_U32 GetLowAddr(HI_U64 u64Phyaddr) { return (HI_U32)u64Phyaddr; } __inline static HI_U32 GetHighAddr(HI_U64 u64Phyaddr) { return (HI_U32)(u64Phyaddr >> 32); } #define hi_usleep(usec) \ do { \ usleep(usec); \ } while (0) #ifdef __cplusplus #if __cplusplus } #endif #endif /* __cplusplus */ #endif /* __HI_MATH_H__ */