/** * f2fs.h * * Copyright (c) 2013 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef _F2FS_H_ #define _F2FS_H_ #include #include #include #include #include #include #include #include #include #ifdef HAVE_MNTENT_H #include #endif #ifdef HAVE_MACH_TIME_H #include #endif #include #ifdef HAVE_SYS_IOCTL_H #include #endif #ifdef HAVE_SYS_MOUNT_H #include #endif #include #include "f2fs_fs.h" #define EXIT_ERR_CODE (-1) #define ver_after(a, b) (typecheck(unsigned long long, a) && \ typecheck(unsigned long long, b) && \ ((long long)((a) - (b)) > 0)) #define container_of(ptr, type, member) ({ \ const typeof(((type *)0)->member) * __mptr = (ptr); \ (type *)((char *)__mptr - offsetof(type, member)); }) struct list_head { struct list_head *next, *prev; }; static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next) { next->prev = new; new->next = next; new->prev = prev; prev->next = new; } static inline void __list_del(struct list_head * prev, struct list_head * next) { next->prev = prev; prev->next = next; } static inline void list_del(struct list_head *entry) { __list_del(entry->prev, entry->next); } static inline void list_add_tail(struct list_head *new, struct list_head *head) { __list_add(new, head->prev, head); } #define LIST_HEAD_INIT(name) { &(name), &(name) } #define list_entry(ptr, type, member) \ container_of(ptr, type, member) #define list_first_entry(ptr, type, member) \ list_entry((ptr)->next, type, member) #define list_next_entry(pos, member) \ list_entry((pos)->member.next, typeof(*(pos)), member) #define list_for_each_entry(pos, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member); \ &pos->member != (head); \ pos = list_next_entry(pos, member)) #define list_for_each_entry_safe(pos, n, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member), \ n = list_next_entry(pos, member); \ &pos->member != (head); \ pos = n, n = list_next_entry(n, member)) /* * indicate meta/data type */ enum { META_CP, META_NAT, META_SIT, META_SSA, META_MAX, META_POR, }; #define MAX_RA_BLOCKS 64 enum { NAT_BITMAP, SIT_BITMAP }; struct node_info { nid_t nid; nid_t ino; u32 blk_addr; unsigned char version; }; struct f2fs_nm_info { block_t nat_blkaddr; block_t nat_blocks; nid_t max_nid; nid_t init_scan_nid; nid_t next_scan_nid; unsigned int nat_cnt; unsigned int fcnt; char *nat_bitmap; int bitmap_size; char *nid_bitmap; }; struct seg_entry { unsigned short valid_blocks; /* # of valid blocks */ unsigned short ckpt_valid_blocks; /* # of valid blocks last cp, for recovered data/node */ unsigned char *cur_valid_map; /* validity bitmap of blocks */ unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp, for recovered data/node */ unsigned char type; /* segment type like CURSEG_XXX_TYPE */ unsigned char orig_type; /* segment type like CURSEG_XXX_TYPE */ unsigned char ckpt_type; /* segment type like CURSEG_XXX_TYPE , for recovered data/node */ unsigned long long mtime; /* modification time of the segment */ int dirty; }; struct sec_entry { unsigned int valid_blocks; /* # of valid blocks in a section */ }; struct sit_info { block_t sit_base_addr; /* start block address of SIT area */ block_t sit_blocks; /* # of blocks used by SIT area */ block_t written_valid_blocks; /* # of valid blocks in main area */ unsigned char *bitmap; /* all bitmaps pointer */ char *sit_bitmap; /* SIT bitmap pointer */ unsigned int bitmap_size; /* SIT bitmap size */ unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ unsigned int dirty_sentries; /* # of dirty sentries */ unsigned int sents_per_block; /* # of SIT entries per block */ struct seg_entry *sentries; /* SIT segment-level cache */ struct sec_entry *sec_entries; /* SIT section-level cache */ unsigned long long elapsed_time; /* elapsed time after mount */ unsigned long long mounted_time; /* mount time */ unsigned long long min_mtime; /* min. modification time */ unsigned long long max_mtime; /* max. modification time */ }; struct curseg_info { struct f2fs_summary_block *sum_blk; /* cached summary block */ unsigned char alloc_type; /* current allocation type */ unsigned int segno; /* current segment number */ unsigned short next_blkoff; /* next block offset to write */ unsigned int zone; /* current zone number */ unsigned int next_segno; /* preallocated segment */ }; struct f2fs_sm_info { struct sit_info *sit_info; struct curseg_info *curseg_array; block_t seg0_blkaddr; block_t main_blkaddr; block_t ssa_blkaddr; unsigned int segment_count; unsigned int main_segments; unsigned int reserved_segments; unsigned int ovp_segments; }; struct f2fs_dentry_ptr { struct inode *inode; u8 *bitmap; struct f2fs_dir_entry *dentry; __u8 (*filename)[F2FS_SLOT_LEN]; int max; int nr_bitmap; }; struct dentry { char *path; char *full_path; const u8 *name; int len; char *link; unsigned long size; u8 file_type; u16 mode; u16 uid; u16 gid; u32 *inode; u32 mtime; char *secon; uint64_t capabilities; nid_t ino; nid_t pino; u64 from_devino; }; /* different from dnode_of_data in kernel */ struct dnode_of_data { struct f2fs_node *inode_blk; /* inode page */ struct f2fs_node *node_blk; /* cached direct node page */ nid_t nid; unsigned int ofs_in_node; block_t data_blkaddr; block_t node_blkaddr; int idirty, ndirty; }; struct hardlink_cache_entry { u64 from_devino; nid_t to_ino; int nbuild; }; struct f2fs_sb_info { struct f2fs_fsck *fsck; struct f2fs_super_block *raw_super; struct f2fs_nm_info *nm_info; struct f2fs_sm_info *sm_info; struct f2fs_checkpoint *ckpt; int cur_cp; struct list_head orphan_inode_list; unsigned int n_orphans; /* basic file system units */ unsigned int log_sectors_per_block; /* log2 sectors per block */ unsigned int log_blocksize; /* log2 block size */ unsigned int blocksize; /* block size */ unsigned int root_ino_num; /* root inode number*/ unsigned int node_ino_num; /* node inode number*/ unsigned int meta_ino_num; /* meta inode number*/ unsigned int log_blocks_per_seg; /* log2 blocks per segment */ unsigned int blocks_per_seg; /* blocks per segment */ unsigned int segs_per_sec; /* segments per section */ unsigned int secs_per_zone; /* sections per zone */ unsigned int total_sections; /* total section count */ unsigned int total_node_count; /* total node block count */ unsigned int total_valid_node_count; /* valid node block count */ unsigned int total_valid_inode_count; /* valid inode count */ int active_logs; /* # of active logs */ block_t user_block_count; /* # of user blocks */ block_t total_valid_block_count; /* # of valid blocks */ block_t alloc_valid_block_count; /* # of allocated blocks */ block_t last_valid_block_count; /* for recovery */ u32 s_next_generation; /* for NFS support */ unsigned int cur_victim_sec; /* current victim section num */ u32 free_segments; int cp_backuped; /* backup valid checkpoint */ /* true if late_build_segment_manger() is called */ bool seg_manager_done; /* keep track of hardlinks so we can recreate them */ void *hardlink_cache; }; static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) { return (struct f2fs_super_block *)(sbi->raw_super); } static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) { return (struct f2fs_checkpoint *)(sbi->ckpt); } static inline struct f2fs_fsck *F2FS_FSCK(struct f2fs_sb_info *sbi) { return (struct f2fs_fsck *)(sbi->fsck); } static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) { return (struct f2fs_nm_info *)(sbi->nm_info); } static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) { return (struct f2fs_sm_info *)(sbi->sm_info); } static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) { return (struct sit_info *)(SM_I(sbi)->sit_info); } static inline void *inline_data_addr(struct f2fs_node *node_blk) { int ofs = get_extra_isize(node_blk) + DEF_INLINE_RESERVED_SIZE; return (void *)&(node_blk->i.i_addr[ofs]); } static inline unsigned int ofs_of_node(struct f2fs_node *node_blk) { unsigned flag = le32_to_cpu(node_blk->footer.flag); return flag >> OFFSET_BIT_SHIFT; } static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) { return le64_to_cpu(cp->checkpoint_ver); } static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) { size_t crc_offset = le32_to_cpu(cp->checksum_offset); return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); } static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); return ckpt_flags & f ? 1 : 0; } static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); /* return NAT or SIT bitmap */ if (flag == NAT_BITMAP) return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); else if (flag == SIT_BITMAP) return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); return 0; } static inline block_t __cp_payload(struct f2fs_sb_info *sbi) { return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); } static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); int offset; if (is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG)) { unsigned int chksum_size = 0; offset = (flag == SIT_BITMAP) ? le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; if (le32_to_cpu(ckpt->checksum_offset) == CP_MIN_CHKSUM_OFFSET) chksum_size = sizeof(__le32); return &ckpt->sit_nat_version_bitmap[offset + chksum_size]; } if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) { if (flag == NAT_BITMAP) return &ckpt->sit_nat_version_bitmap; else return ((char *)ckpt + F2FS_BLKSIZE); } else { offset = (flag == NAT_BITMAP) ? le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; return &ckpt->sit_nat_version_bitmap[offset]; } } static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) { block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); if (sbi->cur_cp == 2) start_addr += sbi->blocks_per_seg; return start_addr; } static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) { return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); } static inline block_t __end_block_addr(struct f2fs_sb_info *sbi) { block_t end = SM_I(sbi)->main_blkaddr; return end + le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); } #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) #define IS_DATASEG(t) \ ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \ (t == CURSEG_WARM_DATA)) #define IS_NODESEG(t) \ ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \ (t == CURSEG_WARM_NODE)) #define MAIN_BLKADDR(sbi) \ (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) #define SEG0_BLKADDR(sbi) \ (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) #define GET_SUM_BLKADDR(sbi, segno) \ ((sbi->sm_info->ssa_blkaddr) + segno) #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ ((blk_addr) - SM_I(sbi)->seg0_blkaddr) #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) #define GET_SEC_FROM_SEG(sbi, segno) \ ((segno) / (sbi)->segs_per_sec) #define GET_SEG_FROM_SEC(sbi, secno) \ ((secno) * (sbi)->segs_per_sec) #define FREE_I_START_SEGNO(sbi) \ GET_SEGNO_FROM_SEG0(sbi, SM_I(sbi)->main_blkaddr) #define GET_R2L_SEGNO(sbi, segno) (segno + FREE_I_START_SEGNO(sbi)) #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) #define START_BLOCK(sbi, segno) (SM_I(sbi)->main_blkaddr + \ ((segno) << sbi->log_blocks_per_seg)) #define NEXT_FREE_BLKADDR(sbi, curseg) \ (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) #define SIT_BLK_CNT(sbi) \ ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) { return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); } static inline block_t start_sum_block(struct f2fs_sb_info *sbi) { return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); } static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) { return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) - (base + 1) + type; } /* for the list of fsync inodes, used only during recovery */ struct fsync_inode_entry { struct list_head list; /* list head */ nid_t ino; /* inode number */ block_t blkaddr; /* block address locating the last fsync */ block_t last_dentry; /* block address locating the last dentry */ }; #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) #define SIT_ENTRY_OFFSET(sit_i, segno) \ ((segno) % sit_i->sents_per_block) #define SIT_BLOCK_OFFSET(sit_i, segno) \ ((segno) / SIT_ENTRY_PER_BLOCK) #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) static inline bool IS_VALID_NID(struct f2fs_sb_info *sbi, u32 nid) { return (nid < (NAT_ENTRY_PER_BLOCK * le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_nat) << (sbi->log_blocks_per_seg - 1))); } static inline bool IS_VALID_BLK_ADDR(struct f2fs_sb_info *sbi, u32 addr) { if (addr == NULL_ADDR || addr == NEW_ADDR) return 1; if (addr >= le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count) || addr < SM_I(sbi)->main_blkaddr) { DBG(1, "block addr [0x%x]\n", addr); return 0; } /* next block offset will be checked at the end of fsck. */ return 1; } static inline bool is_valid_data_blkaddr(block_t blkaddr) { if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || blkaddr == COMPRESS_ADDR) return 0; return 1; } static inline int IS_CUR_SEGNO(struct f2fs_sb_info *sbi, u32 segno) { int i; for (i = 0; i < NO_CHECK_TYPE; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); if (segno == curseg->segno) return 1; } return 0; } static inline u64 BLKOFF_FROM_MAIN(struct f2fs_sb_info *sbi, u64 blk_addr) { ASSERT(blk_addr >= SM_I(sbi)->main_blkaddr); return blk_addr - SM_I(sbi)->main_blkaddr; } static inline u32 GET_SEGNO(struct f2fs_sb_info *sbi, u64 blk_addr) { return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr) >> sbi->log_blocks_per_seg); } static inline u32 OFFSET_IN_SEG(struct f2fs_sb_info *sbi, u64 blk_addr) { return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr) % (1 << sbi->log_blocks_per_seg)); } static inline void node_info_from_raw_nat(struct node_info *ni, struct f2fs_nat_entry *raw_nat) { ni->ino = le32_to_cpu(raw_nat->ino); ni->blk_addr = le32_to_cpu(raw_nat->block_addr); ni->version = raw_nat->version; } static inline void set_summary(struct f2fs_summary *sum, nid_t nid, unsigned int ofs_in_node, unsigned char version) { sum->nid = cpu_to_le32(nid); sum->ofs_in_node = cpu_to_le16(ofs_in_node); sum->version = version; } #define S_SHIFT 12 static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = { [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE, [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR, [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV, [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV, [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO, #ifdef S_IFSOCK [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK, #endif #ifdef S_IFLNK [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK, #endif }; static inline int map_de_type(umode_t mode) { return f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT]; } static inline void *inline_xattr_addr(struct f2fs_inode *inode) { return (void *)&(inode->i_addr[DEF_ADDRS_PER_INODE - get_inline_xattr_addrs(inode)]); } static inline int inline_xattr_size(struct f2fs_inode *inode) { return get_inline_xattr_addrs(inode) * sizeof(__le32); } extern int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *ne); #define IS_SUM_NODE_SEG(footer) (footer.entry_type == SUM_TYPE_NODE) #define IS_SUM_DATA_SEG(footer) (footer.entry_type == SUM_TYPE_DATA) static inline unsigned int dir_buckets(unsigned int level, int dir_level) { if (level + dir_level < MAX_DIR_HASH_DEPTH / 2) return 1 << (level + dir_level); else return MAX_DIR_BUCKETS; } static inline unsigned int bucket_blocks(unsigned int level) { if (level < MAX_DIR_HASH_DEPTH / 2) return 2; else return 4; } static inline unsigned long dir_block_index(unsigned int level, int dir_level, unsigned int idx) { unsigned long i; unsigned long bidx = 0; for (i = 0; i < level; i++) bidx += dir_buckets(i, dir_level) * bucket_blocks(i); bidx += idx * bucket_blocks(level); return bidx; } static inline int is_dot_dotdot(const unsigned char *name, const int len) { if (len == 1 && name[0] == '.') return 1; if (len == 2 && name[0] == '.' && name[1] == '.') return 1; return 0; } static inline int get_encoding(struct f2fs_sb_info *sbi) { return le16_to_cpu(F2FS_RAW_SUPER(sbi)->s_encoding); } #endif /* _F2FS_H_ */