/* * OpenEXR (.exr) image decoder * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC * Copyright (c) 2009 Jimmy Christensen * * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * OpenEXR decoder * @author Jimmy Christensen * * For more information on the OpenEXR format, visit: * http://openexr.com/ */ #include <float.h> #include <zlib.h> #include "libavutil/avassert.h" #include "libavutil/common.h" #include "libavutil/imgutils.h" #include "libavutil/intfloat.h" #include "libavutil/avstring.h" #include "libavutil/opt.h" #include "libavutil/color_utils.h" #include "avcodec.h" #include "bytestream.h" #if HAVE_BIGENDIAN #include "bswapdsp.h" #endif #include "exrdsp.h" #include "get_bits.h" #include "internal.h" #include "half2float.h" #include "mathops.h" #include "thread.h" enum ExrCompr { EXR_RAW, EXR_RLE, EXR_ZIP1, EXR_ZIP16, EXR_PIZ, EXR_PXR24, EXR_B44, EXR_B44A, EXR_DWAA, EXR_DWAB, EXR_UNKN, }; enum ExrPixelType { EXR_UINT, EXR_HALF, EXR_FLOAT, EXR_UNKNOWN, }; enum ExrTileLevelMode { EXR_TILE_LEVEL_ONE, EXR_TILE_LEVEL_MIPMAP, EXR_TILE_LEVEL_RIPMAP, EXR_TILE_LEVEL_UNKNOWN, }; enum ExrTileLevelRound { EXR_TILE_ROUND_UP, EXR_TILE_ROUND_DOWN, EXR_TILE_ROUND_UNKNOWN, }; typedef struct HuffEntry { uint8_t len; uint16_t sym; uint32_t code; } HuffEntry; typedef struct EXRChannel { int xsub, ysub; enum ExrPixelType pixel_type; } EXRChannel; typedef struct EXRTileAttribute { int32_t xSize; int32_t ySize; enum ExrTileLevelMode level_mode; enum ExrTileLevelRound level_round; } EXRTileAttribute; typedef struct EXRThreadData { uint8_t *uncompressed_data; int uncompressed_size; uint8_t *tmp; int tmp_size; uint8_t *bitmap; uint16_t *lut; uint8_t *ac_data; unsigned ac_size; uint8_t *dc_data; unsigned dc_size; uint8_t *rle_data; unsigned rle_size; uint8_t *rle_raw_data; unsigned rle_raw_size; float block[3][64]; int ysize, xsize; int channel_line_size; int run_sym; HuffEntry *he; uint64_t *freq; VLC vlc; } EXRThreadData; typedef struct EXRContext { AVClass *class; AVFrame *picture; AVCodecContext *avctx; ExrDSPContext dsp; #if HAVE_BIGENDIAN BswapDSPContext bbdsp; #endif enum ExrCompr compression; enum ExrPixelType pixel_type; int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha const AVPixFmtDescriptor *desc; int w, h; uint32_t sar; int32_t xmax, xmin; int32_t ymax, ymin; uint32_t xdelta, ydelta; int scan_lines_per_block; EXRTileAttribute tile_attr; /* header data attribute of tile */ int is_tile; /* 0 if scanline, 1 if tile */ int is_multipart; int current_part; int is_luma;/* 1 if there is an Y plane */ GetByteContext gb; const uint8_t *buf; int buf_size; EXRChannel *channels; int nb_channels; int current_channel_offset; uint32_t chunk_count; EXRThreadData *thread_data; const char *layer; int selected_part; enum AVColorTransferCharacteristic apply_trc_type; float gamma; union av_intfloat32 gamma_table[65536]; uint32_t mantissatable[2048]; uint32_t exponenttable[64]; uint16_t offsettable[64]; } EXRContext; static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { unsigned long dest_len = uncompressed_size; if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK || dest_len != uncompressed_size) return AVERROR_INVALIDDATA; av_assert1(uncompressed_size % 2 == 0); s->dsp.predictor(td->tmp, uncompressed_size); s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size); return 0; } static int rle(uint8_t *dst, const uint8_t *src, int compressed_size, int uncompressed_size) { uint8_t *d = dst; const int8_t *s = src; int ssize = compressed_size; int dsize = uncompressed_size; uint8_t *dend = d + dsize; int count; while (ssize > 0) { count = *s++; if (count < 0) { count = -count; if ((dsize -= count) < 0 || (ssize -= count + 1) < 0) return AVERROR_INVALIDDATA; while (count--) *d++ = *s++; } else { count++; if ((dsize -= count) < 0 || (ssize -= 2) < 0) return AVERROR_INVALIDDATA; while (count--) *d++ = *s; s++; } } if (dend != d) return AVERROR_INVALIDDATA; return 0; } static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { rle(td->tmp, src, compressed_size, uncompressed_size); av_assert1(uncompressed_size % 2 == 0); ctx->dsp.predictor(td->tmp, uncompressed_size); ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size); return 0; } #define USHORT_RANGE (1 << 16) #define BITMAP_SIZE (1 << 13) static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut) { int i, k = 0; for (i = 0; i < USHORT_RANGE; i++) if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i; i = k - 1; memset(lut + k, 0, (USHORT_RANGE - k) * 2); return i; } static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize) { int i; for (i = 0; i < dsize; ++i) dst[i] = lut[dst[i]]; } #define HUF_ENCBITS 16 // literal (value) bit length #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size static void huf_canonical_code_table(uint64_t *freq) { uint64_t c, n[59] = { 0 }; int i; for (i = 0; i < HUF_ENCSIZE; i++) n[freq[i]] += 1; c = 0; for (i = 58; i > 0; --i) { uint64_t nc = ((c + n[i]) >> 1); n[i] = c; c = nc; } for (i = 0; i < HUF_ENCSIZE; ++i) { int l = freq[i]; if (l > 0) freq[i] = l | (n[l]++ << 6); } } #define SHORT_ZEROCODE_RUN 59 #define LONG_ZEROCODE_RUN 63 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN) #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN) static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *freq) { GetBitContext gbit; int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb)); if (ret < 0) return ret; for (; im <= iM; im++) { uint64_t l = freq[im] = get_bits(&gbit, 6); if (l == LONG_ZEROCODE_RUN) { int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN; if (im + zerun > iM + 1) return AVERROR_INVALIDDATA; while (zerun--) freq[im++] = 0; im--; } else if (l >= SHORT_ZEROCODE_RUN) { int zerun = l - SHORT_ZEROCODE_RUN + 2; if (im + zerun > iM + 1) return AVERROR_INVALIDDATA; while (zerun--) freq[im++] = 0; im--; } } bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8); huf_canonical_code_table(freq); return 0; } static int huf_build_dec_table(EXRContext *s, EXRThreadData *td, int im, int iM) { int j = 0; td->run_sym = -1; for (int i = im; i < iM; i++) { td->he[j].sym = i; td->he[j].len = td->freq[i] & 63; td->he[j].code = td->freq[i] >> 6; if (td->he[j].len > 32) { avpriv_request_sample(s->avctx, "Too big code length"); return AVERROR_PATCHWELCOME; } if (td->he[j].len > 0) j++; else td->run_sym = i; } if (im > 0) td->run_sym = 0; else if (iM < 65535) td->run_sym = 65535; if (td->run_sym == -1) { avpriv_request_sample(s->avctx, "No place for run symbol"); return AVERROR_PATCHWELCOME; } td->he[j].sym = td->run_sym; td->he[j].len = td->freq[iM] & 63; if (td->he[j].len > 32) { avpriv_request_sample(s->avctx, "Too big code length"); return AVERROR_PATCHWELCOME; } td->he[j].code = td->freq[iM] >> 6; j++; ff_free_vlc(&td->vlc); return ff_init_vlc_sparse(&td->vlc, 12, j, &td->he[0].len, sizeof(td->he[0]), sizeof(td->he[0].len), &td->he[0].code, sizeof(td->he[0]), sizeof(td->he[0].code), &td->he[0].sym, sizeof(td->he[0]), sizeof(td->he[0].sym), 0); } static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym, int no, uint16_t *out) { GetBitContext gbit; int oe = 0; init_get_bits(&gbit, gb->buffer, nbits); while (get_bits_left(&gbit) > 0 && oe < no) { uint16_t x = get_vlc2(&gbit, vlc->table, 12, 3); if (x == run_sym) { int run = get_bits(&gbit, 8); uint16_t fill; if (oe == 0 || oe + run > no) return AVERROR_INVALIDDATA; fill = out[oe - 1]; while (run-- > 0) out[oe++] = fill; } else { out[oe++] = x; } } return 0; } static int huf_uncompress(EXRContext *s, EXRThreadData *td, GetByteContext *gb, uint16_t *dst, int dst_size) { int32_t im, iM; uint32_t nBits; int ret; im = bytestream2_get_le32(gb); iM = bytestream2_get_le32(gb); bytestream2_skip(gb, 4); nBits = bytestream2_get_le32(gb); if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) return AVERROR_INVALIDDATA; bytestream2_skip(gb, 4); if (!td->freq) td->freq = av_malloc_array(HUF_ENCSIZE, sizeof(*td->freq)); if (!td->he) td->he = av_calloc(HUF_ENCSIZE, sizeof(*td->he)); if (!td->freq || !td->he) { ret = AVERROR(ENOMEM); return ret; } memset(td->freq, 0, sizeof(*td->freq) * HUF_ENCSIZE); if ((ret = huf_unpack_enc_table(gb, im, iM, td->freq)) < 0) return ret; if (nBits > 8 * bytestream2_get_bytes_left(gb)) { ret = AVERROR_INVALIDDATA; return ret; } if ((ret = huf_build_dec_table(s, td, im, iM)) < 0) return ret; return huf_decode(&td->vlc, gb, nBits, td->run_sym, dst_size, dst); } static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b) { int16_t ls = l; int16_t hs = h; int hi = hs; int ai = ls + (hi & 1) + (hi >> 1); int16_t as = ai; int16_t bs = ai - hi; *a = as; *b = bs; } #define NBITS 16 #define A_OFFSET (1 << (NBITS - 1)) #define MOD_MASK ((1 << NBITS) - 1) static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b) { int m = l; int d = h; int bb = (m - (d >> 1)) & MOD_MASK; int aa = (d + bb - A_OFFSET) & MOD_MASK; *b = bb; *a = aa; } static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx) { int w14 = (mx < (1 << 14)); int n = (nx > ny) ? ny : nx; int p = 1; int p2; while (p <= n) p <<= 1; p >>= 1; p2 = p; p >>= 1; while (p >= 1) { uint16_t *py = in; uint16_t *ey = in + oy * (ny - p2); uint16_t i00, i01, i10, i11; int oy1 = oy * p; int oy2 = oy * p2; int ox1 = ox * p; int ox2 = ox * p2; for (; py <= ey; py += oy2) { uint16_t *px = py; uint16_t *ex = py + ox * (nx - p2); for (; px <= ex; px += ox2) { uint16_t *p01 = px + ox1; uint16_t *p10 = px + oy1; uint16_t *p11 = p10 + ox1; if (w14) { wdec14(*px, *p10, &i00, &i10); wdec14(*p01, *p11, &i01, &i11); wdec14(i00, i01, px, p01); wdec14(i10, i11, p10, p11); } else { wdec16(*px, *p10, &i00, &i10); wdec16(*p01, *p11, &i01, &i11); wdec16(i00, i01, px, p01); wdec16(i10, i11, p10, p11); } } if (nx & p) { uint16_t *p10 = px + oy1; if (w14) wdec14(*px, *p10, &i00, p10); else wdec16(*px, *p10, &i00, p10); *px = i00; } } if (ny & p) { uint16_t *px = py; uint16_t *ex = py + ox * (nx - p2); for (; px <= ex; px += ox2) { uint16_t *p01 = px + ox1; if (w14) wdec14(*px, *p01, &i00, p01); else wdec16(*px, *p01, &i00, p01); *px = i00; } } p2 = p; p >>= 1; } } static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td) { GetByteContext gb; uint16_t maxval, min_non_zero, max_non_zero; uint16_t *ptr; uint16_t *tmp = (uint16_t *)td->tmp; uint16_t *out; uint16_t *in; int ret, i, j; int pixel_half_size;/* 1 for half, 2 for float and uint32 */ EXRChannel *channel; int tmp_offset; if (!td->bitmap) td->bitmap = av_malloc(BITMAP_SIZE); if (!td->lut) td->lut = av_malloc(1 << 17); if (!td->bitmap || !td->lut) { av_freep(&td->bitmap); av_freep(&td->lut); return AVERROR(ENOMEM); } bytestream2_init(&gb, src, ssize); min_non_zero = bytestream2_get_le16(&gb); max_non_zero = bytestream2_get_le16(&gb); if (max_non_zero >= BITMAP_SIZE) return AVERROR_INVALIDDATA; memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE)); if (min_non_zero <= max_non_zero) bytestream2_get_buffer(&gb, td->bitmap + min_non_zero, max_non_zero - min_non_zero + 1); memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1); maxval = reverse_lut(td->bitmap, td->lut); bytestream2_skip(&gb, 4); ret = huf_uncompress(s, td, &gb, tmp, dsize / sizeof(uint16_t)); if (ret) return ret; ptr = tmp; for (i = 0; i < s->nb_channels; i++) { channel = &s->channels[i]; if (channel->pixel_type == EXR_HALF) pixel_half_size = 1; else pixel_half_size = 2; for (j = 0; j < pixel_half_size; j++) wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize, td->xsize * pixel_half_size, maxval); ptr += td->xsize * td->ysize * pixel_half_size; } apply_lut(td->lut, tmp, dsize / sizeof(uint16_t)); out = (uint16_t *)td->uncompressed_data; for (i = 0; i < td->ysize; i++) { tmp_offset = 0; for (j = 0; j < s->nb_channels; j++) { channel = &s->channels[j]; if (channel->pixel_type == EXR_HALF) pixel_half_size = 1; else pixel_half_size = 2; in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size; tmp_offset += pixel_half_size; #if HAVE_BIGENDIAN s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size); #else memcpy(out, in, td->xsize * 2 * pixel_half_size); #endif out += td->xsize * pixel_half_size; } } return 0; } static int pxr24_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { unsigned long dest_len, expected_len = 0; const uint8_t *in = td->tmp; uint8_t *out; int c, i, j; for (i = 0; i < s->nb_channels; i++) { if (s->channels[i].pixel_type == EXR_FLOAT) { expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */ } else if (s->channels[i].pixel_type == EXR_HALF) { expected_len += (td->xsize * td->ysize * 2); } else {//UINT 32 expected_len += (td->xsize * td->ysize * 4); } } dest_len = expected_len; if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) { return AVERROR_INVALIDDATA; } else if (dest_len != expected_len) { return AVERROR_INVALIDDATA; } out = td->uncompressed_data; for (i = 0; i < td->ysize; i++) for (c = 0; c < s->nb_channels; c++) { EXRChannel *channel = &s->channels[c]; const uint8_t *ptr[4]; uint32_t pixel = 0; switch (channel->pixel_type) { case EXR_FLOAT: ptr[0] = in; ptr[1] = ptr[0] + td->xsize; ptr[2] = ptr[1] + td->xsize; in = ptr[2] + td->xsize; for (j = 0; j < td->xsize; ++j) { uint32_t diff = ((unsigned)*(ptr[0]++) << 24) | (*(ptr[1]++) << 16) | (*(ptr[2]++) << 8); pixel += diff; bytestream_put_le32(&out, pixel); } break; case EXR_HALF: ptr[0] = in; ptr[1] = ptr[0] + td->xsize; in = ptr[1] + td->xsize; for (j = 0; j < td->xsize; j++) { uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++); pixel += diff; bytestream_put_le16(&out, pixel); } break; case EXR_UINT: ptr[0] = in; ptr[1] = ptr[0] + s->xdelta; ptr[2] = ptr[1] + s->xdelta; ptr[3] = ptr[2] + s->xdelta; in = ptr[3] + s->xdelta; for (j = 0; j < s->xdelta; ++j) { uint32_t diff = ((uint32_t)*(ptr[0]++) << 24) | (*(ptr[1]++) << 16) | (*(ptr[2]++) << 8 ) | (*(ptr[3]++)); pixel += diff; bytestream_put_le32(&out, pixel); } break; default: return AVERROR_INVALIDDATA; } } return 0; } static void unpack_14(const uint8_t b[14], uint16_t s[16]) { unsigned short shift = (b[ 2] >> 2) & 15; unsigned short bias = (0x20 << shift); int i; s[ 0] = (b[0] << 8) | b[1]; s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias; s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias; s[12] = s[ 8] + ((b[ 4] & 0x3f) << shift) - bias; s[ 1] = s[ 0] + ((b[ 5] >> 2) << shift) - bias; s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias; s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias; s[13] = s[12] + ((b[ 7] & 0x3f) << shift) - bias; s[ 2] = s[ 1] + ((b[ 8] >> 2) << shift) - bias; s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias; s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias; s[14] = s[13] + ((b[10] & 0x3f) << shift) - bias; s[ 3] = s[ 2] + ((b[11] >> 2) << shift) - bias; s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias; s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias; s[15] = s[14] + ((b[13] & 0x3f) << shift) - bias; for (i = 0; i < 16; ++i) { if (s[i] & 0x8000) s[i] &= 0x7fff; else s[i] = ~s[i]; } } static void unpack_3(const uint8_t b[3], uint16_t s[16]) { int i; s[0] = (b[0] << 8) | b[1]; if (s[0] & 0x8000) s[0] &= 0x7fff; else s[0] = ~s[0]; for (i = 1; i < 16; i++) s[i] = s[0]; } static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { const int8_t *sr = src; int stay_to_uncompress = compressed_size; int nb_b44_block_w, nb_b44_block_h; int index_tl_x, index_tl_y, index_out, index_tmp; uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */ int c, iY, iX, y, x; int target_channel_offset = 0; /* calc B44 block count */ nb_b44_block_w = td->xsize / 4; if ((td->xsize % 4) != 0) nb_b44_block_w++; nb_b44_block_h = td->ysize / 4; if ((td->ysize % 4) != 0) nb_b44_block_h++; for (c = 0; c < s->nb_channels; c++) { if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */ for (iY = 0; iY < nb_b44_block_h; iY++) { for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */ if (stay_to_uncompress < 3) { av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress); return AVERROR_INVALIDDATA; } if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */ unpack_3(sr, tmp_buffer); sr += 3; stay_to_uncompress -= 3; } else {/* B44 Block */ if (stay_to_uncompress < 14) { av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress); return AVERROR_INVALIDDATA; } unpack_14(sr, tmp_buffer); sr += 14; stay_to_uncompress -= 14; } /* copy data to uncompress buffer (B44 block can exceed target resolution)*/ index_tl_x = iX * 4; index_tl_y = iY * 4; for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) { for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) { index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x; index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x); td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff; td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8; } } } } target_channel_offset += 2; } else {/* Float or UINT 32 channel */ if (stay_to_uncompress < td->ysize * td->xsize * 4) { av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress); return AVERROR_INVALIDDATA; } for (y = 0; y < td->ysize; y++) { index_out = target_channel_offset * td->xsize + y * td->channel_line_size; memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4); sr += td->xsize * 4; } target_channel_offset += 4; stay_to_uncompress -= td->ysize * td->xsize * 4; } } return 0; } static int ac_uncompress(EXRContext *s, GetByteContext *gb, float *block) { int ret = 0, n = 1; while (n < 64) { uint16_t val = bytestream2_get_ne16(gb); if (val == 0xff00) { n = 64; } else if ((val >> 8) == 0xff) { n += val & 0xff; } else { ret = n; block[ff_zigzag_direct[n]] = av_int2float(half2float(val, s->mantissatable, s->exponenttable, s->offsettable)); n++; } } return ret; } static void idct_1d(float *blk, int step) { const float a = .5f * cosf( M_PI / 4.f); const float b = .5f * cosf( M_PI / 16.f); const float c = .5f * cosf( M_PI / 8.f); const float d = .5f * cosf(3.f*M_PI / 16.f); const float e = .5f * cosf(5.f*M_PI / 16.f); const float f = .5f * cosf(3.f*M_PI / 8.f); const float g = .5f * cosf(7.f*M_PI / 16.f); float alpha[4], beta[4], theta[4], gamma[4]; alpha[0] = c * blk[2 * step]; alpha[1] = f * blk[2 * step]; alpha[2] = c * blk[6 * step]; alpha[3] = f * blk[6 * step]; beta[0] = b * blk[1 * step] + d * blk[3 * step] + e * blk[5 * step] + g * blk[7 * step]; beta[1] = d * blk[1 * step] - g * blk[3 * step] - b * blk[5 * step] - e * blk[7 * step]; beta[2] = e * blk[1 * step] - b * blk[3 * step] + g * blk[5 * step] + d * blk[7 * step]; beta[3] = g * blk[1 * step] - e * blk[3 * step] + d * blk[5 * step] - b * blk[7 * step]; theta[0] = a * (blk[0 * step] + blk[4 * step]); theta[3] = a * (blk[0 * step] - blk[4 * step]); theta[1] = alpha[0] + alpha[3]; theta[2] = alpha[1] - alpha[2]; gamma[0] = theta[0] + theta[1]; gamma[1] = theta[3] + theta[2]; gamma[2] = theta[3] - theta[2]; gamma[3] = theta[0] - theta[1]; blk[0 * step] = gamma[0] + beta[0]; blk[1 * step] = gamma[1] + beta[1]; blk[2 * step] = gamma[2] + beta[2]; blk[3 * step] = gamma[3] + beta[3]; blk[4 * step] = gamma[3] - beta[3]; blk[5 * step] = gamma[2] - beta[2]; blk[6 * step] = gamma[1] - beta[1]; blk[7 * step] = gamma[0] - beta[0]; } static void dct_inverse(float *block) { for (int i = 0; i < 8; i++) idct_1d(block + i, 8); for (int i = 0; i < 8; i++) { idct_1d(block, 1); block += 8; } } static void convert(float y, float u, float v, float *b, float *g, float *r) { *r = y + 1.5747f * v; *g = y - 0.1873f * u - 0.4682f * v; *b = y + 1.8556f * u; } static float to_linear(float x, float scale) { float ax = fabsf(x); if (ax <= 1.f) { return FFSIGN(x) * powf(ax, 2.2f * scale); } else { const float log_base = expf(2.2f * scale); return FFSIGN(x) * powf(log_base, ax - 1.f); } } static int dwa_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td) { int64_t version, lo_usize, lo_size; int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size; int64_t ac_count, dc_count, ac_compression; const int dc_w = td->xsize >> 3; const int dc_h = td->ysize >> 3; GetByteContext gb, agb; int skip, ret; if (compressed_size <= 88) return AVERROR_INVALIDDATA; version = AV_RL64(src + 0); if (version != 2) return AVERROR_INVALIDDATA; lo_usize = AV_RL64(src + 8); lo_size = AV_RL64(src + 16); ac_size = AV_RL64(src + 24); dc_size = AV_RL64(src + 32); rle_csize = AV_RL64(src + 40); rle_usize = AV_RL64(src + 48); rle_raw_size = AV_RL64(src + 56); ac_count = AV_RL64(src + 64); dc_count = AV_RL64(src + 72); ac_compression = AV_RL64(src + 80); if ( compressed_size < (uint64_t)(lo_size | ac_size | dc_size | rle_csize) || compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize || ac_count > (uint64_t)INT_MAX/2 ) return AVERROR_INVALIDDATA; bytestream2_init(&gb, src + 88, compressed_size - 88); skip = bytestream2_get_le16(&gb); if (skip < 2) return AVERROR_INVALIDDATA; bytestream2_skip(&gb, skip - 2); if (lo_size > 0) { if (lo_usize > uncompressed_size) return AVERROR_INVALIDDATA; bytestream2_skip(&gb, lo_size); } if (ac_size > 0) { unsigned long dest_len; GetByteContext agb = gb; if (ac_count > 3LL * td->xsize * s->scan_lines_per_block) return AVERROR_INVALIDDATA; dest_len = ac_count * 2LL; av_fast_padded_malloc(&td->ac_data, &td->ac_size, dest_len); if (!td->ac_data) return AVERROR(ENOMEM); switch (ac_compression) { case 0: ret = huf_uncompress(s, td, &agb, (int16_t *)td->ac_data, ac_count); if (ret < 0) return ret; break; case 1: if (uncompress(td->ac_data, &dest_len, agb.buffer, ac_size) != Z_OK || dest_len != ac_count * 2LL) return AVERROR_INVALIDDATA; break; default: return AVERROR_INVALIDDATA; } bytestream2_skip(&gb, ac_size); } { unsigned long dest_len; GetByteContext agb = gb; if (dc_count != dc_w * dc_h * 3) return AVERROR_INVALIDDATA; dest_len = dc_count * 2LL; av_fast_padded_malloc(&td->dc_data, &td->dc_size, FFALIGN(dest_len, 64) * 2); if (!td->dc_data) return AVERROR(ENOMEM); if (uncompress(td->dc_data + FFALIGN(dest_len, 64), &dest_len, agb.buffer, dc_size) != Z_OK || (dest_len != dc_count * 2LL)) return AVERROR_INVALIDDATA; s->dsp.predictor(td->dc_data + FFALIGN(dest_len, 64), dest_len); s->dsp.reorder_pixels(td->dc_data, td->dc_data + FFALIGN(dest_len, 64), dest_len); bytestream2_skip(&gb, dc_size); } if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) { unsigned long dest_len = rle_usize; av_fast_padded_malloc(&td->rle_data, &td->rle_size, rle_usize); if (!td->rle_data) return AVERROR(ENOMEM); av_fast_padded_malloc(&td->rle_raw_data, &td->rle_raw_size, rle_raw_size); if (!td->rle_raw_data) return AVERROR(ENOMEM); if (uncompress(td->rle_data, &dest_len, gb.buffer, rle_csize) != Z_OK || (dest_len != rle_usize)) return AVERROR_INVALIDDATA; ret = rle(td->rle_raw_data, td->rle_data, rle_usize, rle_raw_size); if (ret < 0) return ret; bytestream2_skip(&gb, rle_csize); } bytestream2_init(&agb, td->ac_data, ac_count * 2); for (int y = 0; y < td->ysize; y += 8) { for (int x = 0; x < td->xsize; x += 8) { memset(td->block, 0, sizeof(td->block)); for (int j = 0; j < 3; j++) { float *block = td->block[j]; const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j; uint16_t *dc = (uint16_t *)td->dc_data; union av_intfloat32 dc_val; dc_val.i = half2float(dc[idx], s->mantissatable, s->exponenttable, s->offsettable); block[0] = dc_val.f; ac_uncompress(s, &agb, block); dct_inverse(block); } { const float scale = s->pixel_type == EXR_FLOAT ? 2.f : 1.f; const int o = s->nb_channels == 4; float *bo = ((float *)td->uncompressed_data) + y * td->xsize * s->nb_channels + td->xsize * (o + 0) + x; float *go = ((float *)td->uncompressed_data) + y * td->xsize * s->nb_channels + td->xsize * (o + 1) + x; float *ro = ((float *)td->uncompressed_data) + y * td->xsize * s->nb_channels + td->xsize * (o + 2) + x; float *yb = td->block[0]; float *ub = td->block[1]; float *vb = td->block[2]; for (int yy = 0; yy < 8; yy++) { for (int xx = 0; xx < 8; xx++) { const int idx = xx + yy * 8; convert(yb[idx], ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]); bo[xx] = to_linear(bo[xx], scale); go[xx] = to_linear(go[xx], scale); ro[xx] = to_linear(ro[xx], scale); } bo += td->xsize * s->nb_channels; go += td->xsize * s->nb_channels; ro += td->xsize * s->nb_channels; } } } } if (s->nb_channels < 4) return 0; for (int y = 0; y < td->ysize && td->rle_raw_data; y++) { uint32_t *ao = ((uint32_t *)td->uncompressed_data) + y * td->xsize * s->nb_channels; uint8_t *ai0 = td->rle_raw_data + y * td->xsize; uint8_t *ai1 = td->rle_raw_data + y * td->xsize + rle_raw_size / 2; for (int x = 0; x < td->xsize; x++) { uint16_t ha = ai0[x] | (ai1[x] << 8); ao[x] = half2float(ha, s->mantissatable, s->exponenttable, s->offsettable); } } return 0; } static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr) { EXRContext *s = avctx->priv_data; AVFrame *const p = s->picture; EXRThreadData *td = &s->thread_data[threadnr]; const uint8_t *channel_buffer[4] = { 0 }; const uint8_t *buf = s->buf; uint64_t line_offset, uncompressed_size; uint8_t *ptr; uint32_t data_size; int line, col = 0; uint64_t tile_x, tile_y, tile_level_x, tile_level_y; const uint8_t *src; int step = s->desc->flags & AV_PIX_FMT_FLAG_FLOAT ? 4 : 2 * s->desc->nb_components; int bxmin = 0, axmax = 0, window_xoffset = 0; int window_xmin, window_xmax, window_ymin, window_ymax; int data_xoffset, data_yoffset, data_window_offset, xsize, ysize; int i, x, buf_size = s->buf_size; int c, rgb_channel_count; float one_gamma = 1.0f / s->gamma; avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type); int ret; line_offset = AV_RL64(s->gb.buffer + jobnr * 8); if (s->is_tile) { if (buf_size < 20 || line_offset > buf_size - 20) return AVERROR_INVALIDDATA; src = buf + line_offset + 20; if (s->is_multipart) src += 4; tile_x = AV_RL32(src - 20); tile_y = AV_RL32(src - 16); tile_level_x = AV_RL32(src - 12); tile_level_y = AV_RL32(src - 8); data_size = AV_RL32(src - 4); if (data_size <= 0 || data_size > buf_size - line_offset - 20) return AVERROR_INVALIDDATA; if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */ avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile"); return AVERROR_PATCHWELCOME; } if (tile_x && s->tile_attr.xSize + (int64_t)FFMAX(s->xmin, 0) >= INT_MAX / tile_x ) return AVERROR_INVALIDDATA; if (tile_y && s->tile_attr.ySize + (int64_t)FFMAX(s->ymin, 0) >= INT_MAX / tile_y ) return AVERROR_INVALIDDATA; line = s->ymin + s->tile_attr.ySize * tile_y; col = s->tile_attr.xSize * tile_x; if (line < s->ymin || line > s->ymax || s->xmin + col < s->xmin || s->xmin + col > s->xmax) return AVERROR_INVALIDDATA; td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize); td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize); if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX) return AVERROR_INVALIDDATA; td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */ uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */ } else { if (buf_size < 8 || line_offset > buf_size - 8) return AVERROR_INVALIDDATA; src = buf + line_offset + 8; if (s->is_multipart) src += 4; line = AV_RL32(src - 8); if (line < s->ymin || line > s->ymax) return AVERROR_INVALIDDATA; data_size = AV_RL32(src - 4); if (data_size <= 0 || data_size > buf_size - line_offset - 8) return AVERROR_INVALIDDATA; td->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */ td->xsize = s->xdelta; if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX) return AVERROR_INVALIDDATA; td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */ uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */ if ((s->compression == EXR_RAW && (data_size != uncompressed_size || line_offset > buf_size - uncompressed_size)) || (s->compression != EXR_RAW && (data_size > uncompressed_size || line_offset > buf_size - data_size))) { return AVERROR_INVALIDDATA; } } window_xmin = FFMIN(avctx->width, FFMAX(0, s->xmin + col)); window_xmax = FFMIN(avctx->width, FFMAX(0, s->xmin + col + td->xsize)); window_ymin = FFMIN(avctx->height, FFMAX(0, line )); window_ymax = FFMIN(avctx->height, FFMAX(0, line + td->ysize)); xsize = window_xmax - window_xmin; ysize = window_ymax - window_ymin; /* tile or scanline not visible skip decoding */ if (xsize <= 0 || ysize <= 0) return 0; /* is the first tile or is a scanline */ if(col == 0) { window_xmin = 0; /* pixels to add at the left of the display window */ window_xoffset = FFMAX(0, s->xmin); /* bytes to add at the left of the display window */ bxmin = window_xoffset * step; } /* is the last tile or is a scanline */ if(col + td->xsize == s->xdelta) { window_xmax = avctx->width; /* bytes to add at the right of the display window */ axmax = FFMAX(0, (avctx->width - (s->xmax + 1))) * step; } if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */ av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size); if (!td->tmp) return AVERROR(ENOMEM); } if (data_size < uncompressed_size) { av_fast_padded_malloc(&td->uncompressed_data, &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */ if (!td->uncompressed_data) return AVERROR(ENOMEM); ret = AVERROR_INVALIDDATA; switch (s->compression) { case EXR_ZIP1: case EXR_ZIP16: ret = zip_uncompress(s, src, data_size, uncompressed_size, td); break; case EXR_PIZ: ret = piz_uncompress(s, src, data_size, uncompressed_size, td); break; case EXR_PXR24: ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td); break; case EXR_RLE: ret = rle_uncompress(s, src, data_size, uncompressed_size, td); break; case EXR_B44: case EXR_B44A: ret = b44_uncompress(s, src, data_size, uncompressed_size, td); break; case EXR_DWAA: case EXR_DWAB: ret = dwa_uncompress(s, src, data_size, uncompressed_size, td); break; } if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n"); return ret; } src = td->uncompressed_data; } /* offsets to crop data outside display window */ data_xoffset = FFABS(FFMIN(0, s->xmin + col)) * (s->pixel_type == EXR_HALF ? 2 : 4); data_yoffset = FFABS(FFMIN(0, line)); data_window_offset = (data_yoffset * td->channel_line_size) + data_xoffset; if (!s->is_luma) { channel_buffer[0] = src + (td->xsize * s->channel_offsets[0]) + data_window_offset; channel_buffer[1] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset; channel_buffer[2] = src + (td->xsize * s->channel_offsets[2]) + data_window_offset; rgb_channel_count = 3; } else { /* put y data in the first channel_buffer */ channel_buffer[0] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset; rgb_channel_count = 1; } if (s->channel_offsets[3] >= 0) channel_buffer[3] = src + (td->xsize * s->channel_offsets[3]) + data_window_offset; if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) { /* todo: change this when a floating point pixel format with luma with alpha is implemented */ int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count; if (s->is_luma) { channel_buffer[1] = channel_buffer[0]; channel_buffer[2] = channel_buffer[0]; } for (c = 0; c < channel_count; c++) { int plane = s->desc->comp[c].plane; ptr = p->data[plane] + window_ymin * p->linesize[plane] + (window_xmin * 4); for (i = 0; i < ysize; i++, ptr += p->linesize[plane]) { const uint8_t *src; union av_intfloat32 *ptr_x; src = channel_buffer[c]; ptr_x = (union av_intfloat32 *)ptr; // Zero out the start if xmin is not 0 memset(ptr_x, 0, bxmin); ptr_x += window_xoffset; if (s->pixel_type == EXR_FLOAT || s->compression == EXR_DWAA || s->compression == EXR_DWAB) { // 32-bit union av_intfloat32 t; if (trc_func && c < 3) { for (x = 0; x < xsize; x++) { t.i = bytestream_get_le32(&src); t.f = trc_func(t.f); *ptr_x++ = t; } } else if (one_gamma != 1.f) { for (x = 0; x < xsize; x++) { t.i = bytestream_get_le32(&src); if (t.f > 0.0f && c < 3) /* avoid negative values */ t.f = powf(t.f, one_gamma); *ptr_x++ = t; } } else { for (x = 0; x < xsize; x++) { t.i = bytestream_get_le32(&src); *ptr_x++ = t; } } } else if (s->pixel_type == EXR_HALF) { // 16-bit if (c < 3 || !trc_func) { for (x = 0; x < xsize; x++) { *ptr_x++ = s->gamma_table[bytestream_get_le16(&src)]; } } else { for (x = 0; x < xsize; x++) { ptr_x[0].i = half2float(bytestream_get_le16(&src), s->mantissatable, s->exponenttable, s->offsettable); ptr_x++; } } } // Zero out the end if xmax+1 is not w memset(ptr_x, 0, axmax); channel_buffer[c] += td->channel_line_size; } } } else { av_assert1(s->pixel_type == EXR_UINT); ptr = p->data[0] + window_ymin * p->linesize[0] + (window_xmin * s->desc->nb_components * 2); for (i = 0; i < ysize; i++, ptr += p->linesize[0]) { const uint8_t * a; const uint8_t *rgb[3]; uint16_t *ptr_x; for (c = 0; c < rgb_channel_count; c++) { rgb[c] = channel_buffer[c]; } if (channel_buffer[3]) a = channel_buffer[3]; ptr_x = (uint16_t *) ptr; // Zero out the start if xmin is not 0 memset(ptr_x, 0, bxmin); ptr_x += window_xoffset * s->desc->nb_components; for (x = 0; x < xsize; x++) { for (c = 0; c < rgb_channel_count; c++) { *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16; } if (channel_buffer[3]) *ptr_x++ = bytestream_get_le32(&a) >> 16; } // Zero out the end if xmax+1 is not w memset(ptr_x, 0, axmax); channel_buffer[0] += td->channel_line_size; channel_buffer[1] += td->channel_line_size; channel_buffer[2] += td->channel_line_size; if (channel_buffer[3]) channel_buffer[3] += td->channel_line_size; } } return 0; } static void skip_header_chunk(EXRContext *s) { GetByteContext *gb = &s->gb; while (bytestream2_get_bytes_left(gb) > 0) { if (!bytestream2_peek_byte(gb)) break; // Process unknown variables for (int i = 0; i < 2; i++) // value_name and value_type while (bytestream2_get_byte(gb) != 0); // Skip variable length bytestream2_skip(gb, bytestream2_get_le32(gb)); } } /** * Check if the variable name corresponds to its data type. * * @param s the EXRContext * @param value_name name of the variable to check * @param value_type type of the variable to check * @param minimum_length minimum length of the variable data * * @return bytes to read containing variable data * -1 if variable is not found * 0 if buffer ended prematurely */ static int check_header_variable(EXRContext *s, const char *value_name, const char *value_type, unsigned int minimum_length) { GetByteContext *gb = &s->gb; int var_size = -1; if (bytestream2_get_bytes_left(gb) >= minimum_length && !strcmp(gb->buffer, value_name)) { // found value_name, jump to value_type (null terminated strings) gb->buffer += strlen(value_name) + 1; if (!strcmp(gb->buffer, value_type)) { gb->buffer += strlen(value_type) + 1; var_size = bytestream2_get_le32(gb); // don't go read past boundaries if (var_size > bytestream2_get_bytes_left(gb)) var_size = 0; } else { // value_type not found, reset the buffer gb->buffer -= strlen(value_name) + 1; av_log(s->avctx, AV_LOG_WARNING, "Unknown data type %s for header variable %s.\n", value_type, value_name); } } return var_size; } static int decode_header(EXRContext *s, AVFrame *frame) { AVDictionary *metadata = NULL; GetByteContext *gb = &s->gb; int magic_number, version, flags; int layer_match = 0; int ret; int dup_channels = 0; s->current_channel_offset = 0; s->xmin = ~0; s->xmax = ~0; s->ymin = ~0; s->ymax = ~0; s->xdelta = ~0; s->ydelta = ~0; s->channel_offsets[0] = -1; s->channel_offsets[1] = -1; s->channel_offsets[2] = -1; s->channel_offsets[3] = -1; s->pixel_type = EXR_UNKNOWN; s->compression = EXR_UNKN; s->nb_channels = 0; s->w = 0; s->h = 0; s->tile_attr.xSize = -1; s->tile_attr.ySize = -1; s->is_tile = 0; s->is_multipart = 0; s->is_luma = 0; s->current_part = 0; if (bytestream2_get_bytes_left(gb) < 10) { av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n"); return AVERROR_INVALIDDATA; } magic_number = bytestream2_get_le32(gb); if (magic_number != 20000630) { /* As per documentation of OpenEXR, it is supposed to be * int 20000630 little-endian */ av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number); return AVERROR_INVALIDDATA; } version = bytestream2_get_byte(gb); if (version != 2) { avpriv_report_missing_feature(s->avctx, "Version %d", version); return AVERROR_PATCHWELCOME; } flags = bytestream2_get_le24(gb); if (flags & 0x02) s->is_tile = 1; if (flags & 0x10) s->is_multipart = 1; if (flags & 0x08) { avpriv_report_missing_feature(s->avctx, "deep data"); return AVERROR_PATCHWELCOME; } // Parse the header while (bytestream2_get_bytes_left(gb) > 0) { int var_size; while (s->is_multipart && s->current_part < s->selected_part && bytestream2_get_bytes_left(gb) > 0) { if (bytestream2_peek_byte(gb)) { skip_header_chunk(s); } else { bytestream2_skip(gb, 1); if (!bytestream2_peek_byte(gb)) break; } bytestream2_skip(gb, 1); s->current_part++; } if (!bytestream2_peek_byte(gb)) { if (!s->is_multipart) break; bytestream2_skip(gb, 1); if (s->current_part == s->selected_part) { while (bytestream2_get_bytes_left(gb) > 0) { if (bytestream2_peek_byte(gb)) { skip_header_chunk(s); } else { bytestream2_skip(gb, 1); if (!bytestream2_peek_byte(gb)) break; } } } if (!bytestream2_peek_byte(gb)) break; s->current_part++; } if ((var_size = check_header_variable(s, "channels", "chlist", 38)) >= 0) { GetByteContext ch_gb; if (!var_size) { ret = AVERROR_INVALIDDATA; goto fail; } bytestream2_init(&ch_gb, gb->buffer, var_size); while (bytestream2_get_bytes_left(&ch_gb) >= 19) { EXRChannel *channel; enum ExrPixelType current_pixel_type; int channel_index = -1; int xsub, ysub; if (strcmp(s->layer, "") != 0) { if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) { layer_match = 1; av_log(s->avctx, AV_LOG_INFO, "Channel match layer : %s.\n", ch_gb.buffer); ch_gb.buffer += strlen(s->layer); if (*ch_gb.buffer == '.') ch_gb.buffer++; /* skip dot if not given */ } else { layer_match = 0; av_log(s->avctx, AV_LOG_INFO, "Channel doesn't match layer : %s.\n", ch_gb.buffer); } } else { layer_match = 1; } if (layer_match) { /* only search channel if the layer match is valid */ if (!av_strcasecmp(ch_gb.buffer, "R") || !av_strcasecmp(ch_gb.buffer, "X") || !av_strcasecmp(ch_gb.buffer, "U")) { channel_index = 0; s->is_luma = 0; } else if (!av_strcasecmp(ch_gb.buffer, "G") || !av_strcasecmp(ch_gb.buffer, "V")) { channel_index = 1; s->is_luma = 0; } else if (!av_strcasecmp(ch_gb.buffer, "Y")) { channel_index = 1; s->is_luma = 1; } else if (!av_strcasecmp(ch_gb.buffer, "B") || !av_strcasecmp(ch_gb.buffer, "Z") || !av_strcasecmp(ch_gb.buffer, "W")) { channel_index = 2; s->is_luma = 0; } else if (!av_strcasecmp(ch_gb.buffer, "A")) { channel_index = 3; } else { av_log(s->avctx, AV_LOG_WARNING, "Unsupported channel %.256s.\n", ch_gb.buffer); } } /* skip until you get a 0 */ while (bytestream2_get_bytes_left(&ch_gb) > 0 && bytestream2_get_byte(&ch_gb)) continue; if (bytestream2_get_bytes_left(&ch_gb) < 4) { av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n"); ret = AVERROR_INVALIDDATA; goto fail; } current_pixel_type = bytestream2_get_le32(&ch_gb); if (current_pixel_type >= EXR_UNKNOWN) { avpriv_report_missing_feature(s->avctx, "Pixel type %d", current_pixel_type); ret = AVERROR_PATCHWELCOME; goto fail; } bytestream2_skip(&ch_gb, 4); xsub = bytestream2_get_le32(&ch_gb); ysub = bytestream2_get_le32(&ch_gb); if (xsub != 1 || ysub != 1) { avpriv_report_missing_feature(s->avctx, "Subsampling %dx%d", xsub, ysub); ret = AVERROR_PATCHWELCOME; goto fail; } if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */ if (s->pixel_type != EXR_UNKNOWN && s->pixel_type != current_pixel_type) { av_log(s->avctx, AV_LOG_ERROR, "RGB channels not of the same depth.\n"); ret = AVERROR_INVALIDDATA; goto fail; } s->pixel_type = current_pixel_type; s->channel_offsets[channel_index] = s->current_channel_offset; } else if (channel_index >= 0) { av_log(s->avctx, AV_LOG_WARNING, "Multiple channels with index %d.\n", channel_index); if (++dup_channels > 10) { ret = AVERROR_INVALIDDATA; goto fail; } } s->channels = av_realloc(s->channels, ++s->nb_channels * sizeof(EXRChannel)); if (!s->channels) { ret = AVERROR(ENOMEM); goto fail; } channel = &s->channels[s->nb_channels - 1]; channel->pixel_type = current_pixel_type; channel->xsub = xsub; channel->ysub = ysub; if (current_pixel_type == EXR_HALF) { s->current_channel_offset += 2; } else {/* Float or UINT32 */ s->current_channel_offset += 4; } } /* Check if all channels are set with an offset or if the channels * are causing an overflow */ if (!s->is_luma) {/* if we expected to have at least 3 channels */ if (FFMIN3(s->channel_offsets[0], s->channel_offsets[1], s->channel_offsets[2]) < 0) { if (s->channel_offsets[0] < 0) av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n"); if (s->channel_offsets[1] < 0) av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n"); if (s->channel_offsets[2] < 0) av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n"); ret = AVERROR_INVALIDDATA; goto fail; } } // skip one last byte and update main gb gb->buffer = ch_gb.buffer + 1; continue; } else if ((var_size = check_header_variable(s, "dataWindow", "box2i", 31)) >= 0) { int xmin, ymin, xmax, ymax; if (!var_size) { ret = AVERROR_INVALIDDATA; goto fail; } xmin = bytestream2_get_le32(gb); ymin = bytestream2_get_le32(gb); xmax = bytestream2_get_le32(gb); ymax = bytestream2_get_le32(gb); if (xmin > xmax || ymin > ymax || ymax == INT_MAX || xmax == INT_MAX || (unsigned)xmax - xmin >= INT_MAX || (unsigned)ymax - ymin >= INT_MAX) { ret = AVERROR_INVALIDDATA; goto fail; } s->xmin = xmin; s->xmax = xmax; s->ymin = ymin; s->ymax = ymax; s->xdelta = (s->xmax - s->xmin) + 1; s->ydelta = (s->ymax - s->ymin) + 1; continue; } else if ((var_size = check_header_variable(s, "displayWindow", "box2i", 34)) >= 0) { int32_t sx, sy, dx, dy; if (!var_size) { ret = AVERROR_INVALIDDATA; goto fail; } sx = bytestream2_get_le32(gb); sy = bytestream2_get_le32(gb); dx = bytestream2_get_le32(gb); dy = bytestream2_get_le32(gb); s->w = dx - sx + 1; s->h = dy - sy + 1; continue; } else if ((var_size = check_header_variable(s, "lineOrder", "lineOrder", 25)) >= 0) { int line_order; if (!var_size) { ret = AVERROR_INVALIDDATA; goto fail; } line_order = bytestream2_get_byte(gb); av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order); if (line_order > 2) { av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n"); ret = AVERROR_INVALIDDATA; goto fail; } continue; } else if ((var_size = check_header_variable(s, "pixelAspectRatio", "float", 31)) >= 0) { if (!var_size) { ret = AVERROR_INVALIDDATA; goto fail; } s->sar = bytestream2_get_le32(gb); continue; } else if ((var_size = check_header_variable(s, "compression", "compression", 29)) >= 0) { if (!var_size) { ret = AVERROR_INVALIDDATA; goto fail; } if (s->compression == EXR_UNKN) s->compression = bytestream2_get_byte(gb); else { bytestream2_skip(gb, 1); av_log(s->avctx, AV_LOG_WARNING, "Found more than one compression attribute.\n"); } continue; } else if ((var_size = check_header_variable(s, "tiles", "tiledesc", 22)) >= 0) { char tileLevel; if (!s->is_tile) av_log(s->avctx, AV_LOG_WARNING, "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n"); s->tile_attr.xSize = bytestream2_get_le32(gb); s->tile_attr.ySize = bytestream2_get_le32(gb); tileLevel = bytestream2_get_byte(gb); s->tile_attr.level_mode = tileLevel & 0x0f; s->tile_attr.level_round = (tileLevel >> 4) & 0x0f; if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN) { avpriv_report_missing_feature(s->avctx, "Tile level mode %d", s->tile_attr.level_mode); ret = AVERROR_PATCHWELCOME; goto fail; } if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) { avpriv_report_missing_feature(s->avctx, "Tile level round %d", s->tile_attr.level_round); ret = AVERROR_PATCHWELCOME; goto fail; } continue; } else if ((var_size = check_header_variable(s, "writer", "string", 1)) >= 0) { uint8_t key[256] = { 0 }; bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size)); av_dict_set(&metadata, "writer", key, 0); continue; } else if ((var_size = check_header_variable(s, "framesPerSecond", "rational", 33)) >= 0) { if (!var_size) { ret = AVERROR_INVALIDDATA; goto fail; } s->avctx->framerate.num = bytestream2_get_le32(gb); s->avctx->framerate.den = bytestream2_get_le32(gb); continue; } else if ((var_size = check_header_variable(s, "chunkCount", "int", 23)) >= 0) { s->chunk_count = bytestream2_get_le32(gb); continue; } else if ((var_size = check_header_variable(s, "type", "string", 16)) >= 0) { uint8_t key[256] = { 0 }; bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size)); if (strncmp("scanlineimage", key, var_size) && strncmp("tiledimage", key, var_size)) return AVERROR_PATCHWELCOME; continue; } else if ((var_size = check_header_variable(s, "preview", "preview", 16)) >= 0) { uint32_t pw = bytestream2_get_le32(gb); uint32_t ph = bytestream2_get_le32(gb); int64_t psize = 4LL * pw * ph; if (psize >= bytestream2_get_bytes_left(gb)) return AVERROR_INVALIDDATA; bytestream2_skip(gb, psize); continue; } // Check if there are enough bytes for a header if (bytestream2_get_bytes_left(gb) <= 9) { av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n"); ret = AVERROR_INVALIDDATA; goto fail; } // Process unknown variables { uint8_t name[256] = { 0 }; uint8_t type[256] = { 0 }; uint8_t value[256] = { 0 }; int i = 0, size; while (bytestream2_get_bytes_left(gb) > 0 && bytestream2_peek_byte(gb) && i < 255) { name[i++] = bytestream2_get_byte(gb); } bytestream2_skip(gb, 1); i = 0; while (bytestream2_get_bytes_left(gb) > 0 && bytestream2_peek_byte(gb) && i < 255) { type[i++] = bytestream2_get_byte(gb); } bytestream2_skip(gb, 1); size = bytestream2_get_le32(gb); bytestream2_get_buffer(gb, value, FFMIN(sizeof(value) - 1, size)); if (!strcmp(type, "string")) av_dict_set(&metadata, name, value, 0); } } if (s->compression == EXR_UNKN) { av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n"); ret = AVERROR_INVALIDDATA; goto fail; } if (s->is_tile) { if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) { av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n"); ret = AVERROR_INVALIDDATA; goto fail; } } if (bytestream2_get_bytes_left(gb) <= 0) { av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n"); ret = AVERROR_INVALIDDATA; goto fail; } frame->metadata = metadata; // aaand we are done bytestream2_skip(gb, 1); return 0; fail: av_dict_free(&metadata); return ret; } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { EXRContext *s = avctx->priv_data; GetByteContext *gb = &s->gb; ThreadFrame frame = { .f = data }; AVFrame *picture = data; uint8_t *ptr; int i, y, ret, ymax; int planes; int out_line_size; int nb_blocks; /* nb scanline or nb tile */ uint64_t start_offset_table; uint64_t start_next_scanline; PutByteContext offset_table_writer; bytestream2_init(gb, avpkt->data, avpkt->size); if ((ret = decode_header(s, picture)) < 0) return ret; if ((s->compression == EXR_DWAA || s->compression == EXR_DWAB) && s->pixel_type == EXR_HALF) { s->current_channel_offset *= 2; for (int i = 0; i < 4; i++) s->channel_offsets[i] *= 2; } switch (s->pixel_type) { case EXR_FLOAT: case EXR_HALF: if (s->channel_offsets[3] >= 0) { if (!s->is_luma) { avctx->pix_fmt = AV_PIX_FMT_GBRAPF32; } else { /* todo: change this when a floating point pixel format with luma with alpha is implemented */ avctx->pix_fmt = AV_PIX_FMT_GBRAPF32; } } else { if (!s->is_luma) { avctx->pix_fmt = AV_PIX_FMT_GBRPF32; } else { avctx->pix_fmt = AV_PIX_FMT_GRAYF32; } } break; case EXR_UINT: if (s->channel_offsets[3] >= 0) { if (!s->is_luma) { avctx->pix_fmt = AV_PIX_FMT_RGBA64; } else { avctx->pix_fmt = AV_PIX_FMT_YA16; } } else { if (!s->is_luma) { avctx->pix_fmt = AV_PIX_FMT_RGB48; } else { avctx->pix_fmt = AV_PIX_FMT_GRAY16; } } break; default: av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n"); return AVERROR_INVALIDDATA; } if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED) avctx->color_trc = s->apply_trc_type; switch (s->compression) { case EXR_RAW: case EXR_RLE: case EXR_ZIP1: s->scan_lines_per_block = 1; break; case EXR_PXR24: case EXR_ZIP16: s->scan_lines_per_block = 16; break; case EXR_PIZ: case EXR_B44: case EXR_B44A: case EXR_DWAA: s->scan_lines_per_block = 32; break; case EXR_DWAB: s->scan_lines_per_block = 256; break; default: avpriv_report_missing_feature(avctx, "Compression %d", s->compression); return AVERROR_PATCHWELCOME; } /* Verify the xmin, xmax, ymin and ymax before setting the actual image size. * It's possible for the data window can larger or outside the display window */ if (s->xmin > s->xmax || s->ymin > s->ymax || s->ydelta == 0xFFFFFFFF || s->xdelta == 0xFFFFFFFF) { av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n"); return AVERROR_INVALIDDATA; } if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0) return ret; ff_set_sar(s->avctx, av_d2q(av_int2float(s->sar), 255)); s->desc = av_pix_fmt_desc_get(avctx->pix_fmt); if (!s->desc) return AVERROR_INVALIDDATA; if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) { planes = s->desc->nb_components; out_line_size = avctx->width * 4; } else { planes = 1; out_line_size = avctx->width * 2 * s->desc->nb_components; } if (s->is_tile) { nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) * ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize); } else { /* scanline */ nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) / s->scan_lines_per_block; } if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; if (bytestream2_get_bytes_left(gb)/8 < nb_blocks) return AVERROR_INVALIDDATA; // check offset table and recreate it if need if (!s->is_tile && bytestream2_peek_le64(gb) == 0) { av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n"); start_offset_table = bytestream2_tell(gb); start_next_scanline = start_offset_table + nb_blocks * 8; bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8); for (y = 0; y < nb_blocks; y++) { /* write offset of prev scanline in offset table */ bytestream2_put_le64(&offset_table_writer, start_next_scanline); /* get len of next scanline */ bytestream2_seek(gb, start_next_scanline + 4, SEEK_SET);/* skip line number */ start_next_scanline += (bytestream2_get_le32(gb) + 8); } bytestream2_seek(gb, start_offset_table, SEEK_SET); } // save pointer we are going to use in decode_block s->buf = avpkt->data; s->buf_size = avpkt->size; // Zero out the start if ymin is not 0 for (i = 0; i < planes; i++) { ptr = picture->data[i]; for (y = 0; y < FFMIN(s->ymin, s->h); y++) { memset(ptr, 0, out_line_size); ptr += picture->linesize[i]; } } s->picture = picture; avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks); ymax = FFMAX(0, s->ymax + 1); // Zero out the end if ymax+1 is not h if (ymax < avctx->height) for (i = 0; i < planes; i++) { ptr = picture->data[i] + (ymax * picture->linesize[i]); for (y = ymax; y < avctx->height; y++) { memset(ptr, 0, out_line_size); ptr += picture->linesize[i]; } } picture->pict_type = AV_PICTURE_TYPE_I; *got_frame = 1; return avpkt->size; } static av_cold int decode_init(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; uint32_t i; union av_intfloat32 t; float one_gamma = 1.0f / s->gamma; avpriv_trc_function trc_func = NULL; half2float_table(s->mantissatable, s->exponenttable, s->offsettable); s->avctx = avctx; ff_exrdsp_init(&s->dsp); #if HAVE_BIGENDIAN ff_bswapdsp_init(&s->bbdsp); #endif trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type); if (trc_func) { for (i = 0; i < 65536; ++i) { t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable); t.f = trc_func(t.f); s->gamma_table[i] = t; } } else { if (one_gamma > 0.9999f && one_gamma < 1.0001f) { for (i = 0; i < 65536; ++i) { s->gamma_table[i].i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable); } } else { for (i = 0; i < 65536; ++i) { t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable); /* If negative value we reuse half value */ if (t.f <= 0.0f) { s->gamma_table[i] = t; } else { t.f = powf(t.f, one_gamma); s->gamma_table[i] = t; } } } } // allocate thread data, used for non EXR_RAW compression types s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData)); if (!s->thread_data) return AVERROR_INVALIDDATA; return 0; } static av_cold int decode_end(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; int i; for (i = 0; i < avctx->thread_count; i++) { EXRThreadData *td = &s->thread_data[i]; av_freep(&td->uncompressed_data); av_freep(&td->tmp); av_freep(&td->bitmap); av_freep(&td->lut); av_freep(&td->he); av_freep(&td->freq); av_freep(&td->ac_data); av_freep(&td->dc_data); av_freep(&td->rle_data); av_freep(&td->rle_raw_data); ff_free_vlc(&td->vlc); } av_freep(&s->thread_data); av_freep(&s->channels); return 0; } #define OFFSET(x) offsetof(EXRContext, x) #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM static const AVOption options[] = { { "layer", "Set the decoding layer", OFFSET(layer), AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD }, { "part", "Set the decoding part", OFFSET(selected_part), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VD }, { "gamma", "Set the float gamma value when decoding", OFFSET(gamma), AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD }, // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type), AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"}, { "bt709", "BT.709", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "gamma", "gamma", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "gamma22", "BT.470 M", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "gamma28", "BT.470 BG", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "smpte170m", "SMPTE 170 M", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "smpte240m", "SMPTE 240 M", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "linear", "Linear", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "log", "Log", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "log_sqrt", "Log square root", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "iec61966_2_4", "IEC 61966-2-4", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "bt1361", "BT.1361", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "iec61966_2_1", "IEC 61966-2-1", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "bt2020_10bit", "BT.2020 - 10 bit", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "bt2020_12bit", "BT.2020 - 12 bit", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "smpte2084", "SMPTE ST 2084", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { "smpte428_1", "SMPTE ST 428-1", 0, AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, { NULL }, }; static const AVClass exr_class = { .class_name = "EXR", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_exr_decoder = { .name = "exr", .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_EXR, .priv_data_size = sizeof(EXRContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS, .priv_class = &exr_class, };