Graphics state ============== The Mesa Vulkan runtime provides helpers for managing the numerous pieces of graphics state associated with a ``VkPipeline`` or set dynamically on a command buffer. No such helpers are provided for compute or ray-tracing because they have little or no state besides the shaders themselves. Pipeline state -------------- All (possibly dynamic) Vulkan graphics pipeline state is encapsulated into a single :cpp:struct:`vk_graphics_pipeline_state` structure which contains pointers to sub-structures for each of the different state categories. Unlike :cpp:type:`VkGraphicsPipelineCreateInfo`, the pointers in :cpp:struct:`vk_graphics_pipeline_state` are guaranteed to be either be NULL or point to valid and properly populated memory. When creating a pipeline, the :cpp:func:`vk_graphics_pipeline_state_fill()` function can be used to gather all of the state from the core structures as well as various `pNext` chains into a single state structure. Whenever an extension struct is missing, a reasonable default value is provided whenever possible. :cpp:func:`vk_graphics_pipeline_state_fill()` automatically handles both the render pass and dynamic rendering. For drivers which use :cpp:struct:`vk_render_pass`, the :cpp:struct:`vk_render_pass_state` structure will be populated as if for dynamic rendering, regardless of which path is used. Drivers which use their own render pass structure should parse the render pass, if available, and pass a :cpp:struct:`vk_subpass_info` into :cpp:func:`vk_graphics_pipeline_state_fill()` with the relevant information from the specified subpass. If a render pass is available, :cpp:struct:`vk_render_pass_state` will be populated with the :cpp:type:`VkRenderPass` handle and subpass index as well as the information from the :cpp:struct:`vk_render_pass_state`. If dynamic rendering is used or the driver does not provide a :cpp:struct:`vk_subpass_info` structure, :cpp:struct:`vk_render_pass_state` structure will be populated for dynamic rendering, including color, depth, and stencil attachment formats. .. doxygenstruct:: vk_subpass_info :members: The usual flow for creating a full graphics pipeline (not library) looks like this: .. code-block:: c struct vk_graphics_pipeline_state state = { }; struct vk_graphics_pipeline_all_state all; vk_graphics_pipeline_state_fill(&device->vk, &state, pCreateInfo, NULL, &all, NULL, 0, NULL); /* Emit stuff using the state in `state` */ The :cpp:struct:`vk_graphics_pipeline_all_state` structure exists to allow the state to sit on the stack instead of requiring a heap allocation. This is useful if you intend to use the state right away and don't need to store it. For pipeline libraries, it's likely more useful to use the dynamically allocated version and store the dynamically allocated memory in the library pipeline. .. code-block:: c /* Assuming we have a vk_graphics_pipeline_state in pipeline */ memset(&pipeline->state, 0, sizeof(pipeline->state)); for (uint32_t i = 0; i < lib_info->libraryCount; i++) { VK_FROM_HANDLE(drv_graphics_pipeline_library, lib, lib_info->pLibraries[i]); vk_graphics_pipeline_state_merge(&pipeline->state, &lib->state); } /* This assumes you have a void **state_mem in pipeline */ result = vk_graphics_pipeline_state_fill(&device->vk, &pipeline->state, pCreateInfo, NULL, NULL, pAllocator, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT, &pipeline->state_mem); if (result != VK_SUCCESS) return result; State from dependent libraries can be merged together using :cpp:func:`vk_graphics_pipeline_state_merge`. :cpp:func:`vk_graphics_pipeline_state_fill` will then only attempt to populate missing fields. You can also merge dependent pipeline libraries together but store the final state on the stack for immediate consumption: .. code-block:: c struct vk_graphics_pipeline_state state = { }; for (uint32_t i = 0; i < lib_info->libraryCount; i++) { VK_FROM_HANDLE(drv_graphics_pipeline_library, lib, lib_info->pLibraries[i]); vk_graphics_pipeline_state_merge(&state, &lib->state); } struct vk_graphics_pipeline_all_state all; vk_graphics_pipeline_state_fill(&device->vk, &state, pCreateInfo, NULL, &all, NULL, 0, NULL); .. doxygenfunction:: vk_graphics_pipeline_state_fill .. doxygenfunction:: vk_graphics_pipeline_state_merge Dynamic state ------------- All dynamic states in Vulkan, regardless of which API version or extension introduced them, are represented by the :cpp:enum:`mesa_vk_dynamic_graphics_state` enum. This corresponds to the :cpp:type:`VkDynamicState` enum in the Vulkan API only it's compact (has no holes due to extension namespacing) and a bit better organized. Each enumerant is named with the name of the state group to which the dynamic state belongs as well as the name of the dynamic state itself. The fact that it's compact allows us to use to index bitsets. .. doxygenfunction:: vk_get_dynamic_graphics_states We also provide a :cpp:struct:`vk_dynamic_graphics_state` structure which contains all the dynamic graphics states, regardless of which API version or extension introduced them. This structure can be populated from a :cpp:struct:`vk_graphics_pipeline_state` via :cpp:func:`vk_dynamic_graphics_state_init`. .. doxygenfunction:: vk_dynamic_graphics_state_init .. doxygenfunction:: vk_dynamic_graphics_state_copy There is also a :cpp:struct:`vk_dynamic_graphics_state` embedded in :cpp:struct:`vk_command_buffer`. Should you choose to use them, we provide common implementations for all ``vkCmdSet*()`` functions. Two additional functions are provided for the driver to call in ``CmdBindPipeline()`` and ``CmdBindVertexBuffers2()``: .. doxygenfunction:: vk_cmd_set_dynamic_graphics_state .. doxygenfunction:: vk_cmd_set_vertex_binding_strides To use the dynamic state framework, you will need the following in your pipeline structure: .. code-block:: c struct drv_graphics_pipeline { .... struct vk_vertex_input_state vi_state; struct vk_sample_locations_state sl_state; struct vk_dynamic_graphics_state dynamic; ... }; Then, in your pipeline create function, .. code-block:: c memset(&pipeline->dynamic, 0, sizeof(pipeline->dynamic)); pipeline->dynamic->vi = &pipeline->vi_state; pipeline->dynamic->ms.sample_locations = &pipeline->sl_state; vk_dynamic_graphics_state_init(&pipeline->dynamic, &state); In your implementation of ``vkCmdBindPipeline()``, .. code-block:: c vk_cmd_set_dynamic_graphics_state(&cmd->vk, &pipeline->dynamic_state); And, finally, at ``vkCmdDraw*()`` time, the code to emit dynamic state into your hardware command buffer will look something like this: .. code-block:: c static void emit_dynamic_state(struct drv_cmd_buffer *cmd) { struct vk_dynamic_graphics_state *dyn = &cmd->vk.dynamic_graphics_state; if (!vk_dynamic_graphics_state_any_dirty(dyn)) return; if (BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS) | BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_VIEWPORT_COUNT)) { /* Re-emit viewports */ } if (BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_SCISSORS) | BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_SCISSOR_COUNT)) { /* Re-emit scissors */ } /* etc... */ vk_dynamic_graphics_state_clear_dirty(dyn); } Any states used by the currently bound pipeline and attachments are always valid in ``vk_command_buffer::dynamic_graphics_state`` so you can always use a state even if it isn't dirty on this particular draw. .. doxygenfunction:: vk_dynamic_graphics_state_dirty_all .. doxygenfunction:: vk_dynamic_graphics_state_clear_dirty .. doxygenfunction:: vk_dynamic_graphics_state_any_dirty Depth stencil state optimization -------------------------------- .. doxygenfunction:: vk_optimize_depth_stencil_state Reference --------- .. doxygenstruct:: vk_graphics_pipeline_state :members: .. doxygenstruct:: vk_vertex_binding_state :members: .. doxygenstruct:: vk_vertex_attribute_state :members: .. doxygenstruct:: vk_vertex_input_state :members: .. doxygenstruct:: vk_input_assembly_state :members: .. doxygenstruct:: vk_tessellation_state :members: .. doxygenstruct:: vk_viewport_state :members: .. doxygenstruct:: vk_discard_rectangles_state :members: .. doxygenstruct:: vk_rasterization_state :members: .. doxygenstruct:: vk_fragment_shading_rate_state :members: .. doxygenstruct:: vk_sample_locations_state :members: .. doxygenstruct:: vk_multisample_state :members: .. doxygenstruct:: vk_stencil_test_face_state :members: .. doxygenstruct:: vk_depth_stencil_state :members: .. doxygenstruct:: vk_color_blend_state :members: .. doxygenstruct:: vk_render_pass_state :members: .. doxygenenum:: mesa_vk_dynamic_graphics_state .. doxygenstruct:: vk_dynamic_graphics_state :members: