/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir/nir_builder.h" #include "radv_meta.h" struct blit_region { VkOffset3D src_offset; VkExtent3D src_extent; VkOffset3D dest_offset; VkExtent3D dest_extent; }; static VkResult build_pipeline(struct radv_device *device, VkImageAspectFlagBits aspect, enum glsl_sampler_dim tex_dim, VkFormat format, VkPipeline *pipeline); static nir_shader * build_nir_vertex_shader(struct radv_device *dev) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_VERTEX, "meta_blit_vs"); nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "gl_Position"); pos_out->data.location = VARYING_SLOT_POS; nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "v_tex_pos"); tex_pos_out->data.location = VARYING_SLOT_VAR0; tex_pos_out->data.interpolation = INTERP_MODE_SMOOTH; nir_ssa_def *outvec = nir_gen_rect_vertices(&b, NULL, NULL); nir_store_var(&b, pos_out, outvec, 0xf); nir_ssa_def *src_box = nir_load_push_constant(&b, 4, 32, nir_imm_int(&b, 0), .range = 16); nir_ssa_def *src0_z = nir_load_push_constant(&b, 1, 32, nir_imm_int(&b, 0), .base = 16, .range = 4); nir_ssa_def *vertex_id = nir_load_vertex_id_zero_base(&b); /* vertex 0 - src0_x, src0_y, src0_z */ /* vertex 1 - src0_x, src1_y, src0_z*/ /* vertex 2 - src1_x, src0_y, src0_z */ /* so channel 0 is vertex_id != 2 ? src_x : src_x + w channel 1 is vertex id != 1 ? src_y : src_y + w */ nir_ssa_def *c0cmp = nir_ine_imm(&b, vertex_id, 2); nir_ssa_def *c1cmp = nir_ine_imm(&b, vertex_id, 1); nir_ssa_def *comp[4]; comp[0] = nir_bcsel(&b, c0cmp, nir_channel(&b, src_box, 0), nir_channel(&b, src_box, 2)); comp[1] = nir_bcsel(&b, c1cmp, nir_channel(&b, src_box, 1), nir_channel(&b, src_box, 3)); comp[2] = src0_z; comp[3] = nir_imm_float(&b, 1.0); nir_ssa_def *out_tex_vec = nir_vec(&b, comp, 4); nir_store_var(&b, tex_pos_out, out_tex_vec, 0xf); return b.shader; } static nir_shader * build_nir_copy_fragment_shader(struct radv_device *dev, enum glsl_sampler_dim tex_dim) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_FRAGMENT, "meta_blit_fs.%d", tex_dim); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec4, "v_tex_pos"); tex_pos_in->data.location = VARYING_SLOT_VAR0; /* Swizzle the array index which comes in as Z coordinate into the right * position. */ unsigned swz[] = {0, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 1), 2}; nir_ssa_def *const tex_pos = nir_swizzle(&b, nir_load_var(&b, tex_pos_in), swz, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 3)); const struct glsl_type *sampler_type = glsl_sampler_type(tex_dim, false, tex_dim != GLSL_SAMPLER_DIM_3D, glsl_get_base_type(vec4)); nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); sampler->data.descriptor_set = 0; sampler->data.binding = 0; nir_ssa_def *tex_deref = &nir_build_deref_var(&b, sampler)->dest.ssa; nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3); tex->sampler_dim = tex_dim; tex->op = nir_texop_tex; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(tex_pos); tex->src[1].src_type = nir_tex_src_texture_deref; tex->src[1].src = nir_src_for_ssa(tex_deref); tex->src[2].src_type = nir_tex_src_sampler_deref; tex->src[2].src = nir_src_for_ssa(tex_deref); tex->dest_type = nir_type_float32; /* TODO */ tex->is_array = glsl_sampler_type_is_array(sampler_type); tex->coord_components = tex_pos->num_components; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); color_out->data.location = FRAG_RESULT_DATA0; nir_store_var(&b, color_out, &tex->dest.ssa, 0xf); return b.shader; } static nir_shader * build_nir_copy_fragment_shader_depth(struct radv_device *dev, enum glsl_sampler_dim tex_dim) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_FRAGMENT, "meta_blit_depth_fs.%d", tex_dim); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec4, "v_tex_pos"); tex_pos_in->data.location = VARYING_SLOT_VAR0; /* Swizzle the array index which comes in as Z coordinate into the right * position. */ unsigned swz[] = {0, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 1), 2}; nir_ssa_def *const tex_pos = nir_swizzle(&b, nir_load_var(&b, tex_pos_in), swz, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 3)); const struct glsl_type *sampler_type = glsl_sampler_type(tex_dim, false, tex_dim != GLSL_SAMPLER_DIM_3D, glsl_get_base_type(vec4)); nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); sampler->data.descriptor_set = 0; sampler->data.binding = 0; nir_ssa_def *tex_deref = &nir_build_deref_var(&b, sampler)->dest.ssa; nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3); tex->sampler_dim = tex_dim; tex->op = nir_texop_tex; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(tex_pos); tex->src[1].src_type = nir_tex_src_texture_deref; tex->src[1].src = nir_src_for_ssa(tex_deref); tex->src[2].src_type = nir_tex_src_sampler_deref; tex->src[2].src = nir_src_for_ssa(tex_deref); tex->dest_type = nir_type_float32; /* TODO */ tex->is_array = glsl_sampler_type_is_array(sampler_type); tex->coord_components = tex_pos->num_components; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); color_out->data.location = FRAG_RESULT_DEPTH; nir_store_var(&b, color_out, &tex->dest.ssa, 0x1); return b.shader; } static nir_shader * build_nir_copy_fragment_shader_stencil(struct radv_device *dev, enum glsl_sampler_dim tex_dim) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_FRAGMENT, "meta_blit_stencil_fs.%d", tex_dim); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec4, "v_tex_pos"); tex_pos_in->data.location = VARYING_SLOT_VAR0; /* Swizzle the array index which comes in as Z coordinate into the right * position. */ unsigned swz[] = {0, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 1), 2}; nir_ssa_def *const tex_pos = nir_swizzle(&b, nir_load_var(&b, tex_pos_in), swz, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 3)); const struct glsl_type *sampler_type = glsl_sampler_type(tex_dim, false, tex_dim != GLSL_SAMPLER_DIM_3D, glsl_get_base_type(vec4)); nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); sampler->data.descriptor_set = 0; sampler->data.binding = 0; nir_ssa_def *tex_deref = &nir_build_deref_var(&b, sampler)->dest.ssa; nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3); tex->sampler_dim = tex_dim; tex->op = nir_texop_tex; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(tex_pos); tex->src[1].src_type = nir_tex_src_texture_deref; tex->src[1].src = nir_src_for_ssa(tex_deref); tex->src[2].src_type = nir_tex_src_sampler_deref; tex->src[2].src = nir_src_for_ssa(tex_deref); tex->dest_type = nir_type_float32; /* TODO */ tex->is_array = glsl_sampler_type_is_array(sampler_type); tex->coord_components = tex_pos->num_components; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); color_out->data.location = FRAG_RESULT_STENCIL; nir_store_var(&b, color_out, &tex->dest.ssa, 0x1); return b.shader; } static enum glsl_sampler_dim translate_sampler_dim(VkImageType type) { switch (type) { case VK_IMAGE_TYPE_1D: return GLSL_SAMPLER_DIM_1D; case VK_IMAGE_TYPE_2D: return GLSL_SAMPLER_DIM_2D; case VK_IMAGE_TYPE_3D: return GLSL_SAMPLER_DIM_3D; default: unreachable("Unhandled image type"); } } static void meta_emit_blit(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image, struct radv_image_view *src_iview, VkImageLayout src_image_layout, float src_offset_0[3], float src_offset_1[3], struct radv_image *dest_image, struct radv_image_view *dest_iview, VkImageLayout dest_image_layout, VkOffset2D dest_offset_0, VkOffset2D dest_offset_1, VkRect2D dest_box, VkSampler sampler) { struct radv_device *device = cmd_buffer->device; uint32_t src_width = radv_minify(src_iview->image->info.width, src_iview->vk.base_mip_level); uint32_t src_height = radv_minify(src_iview->image->info.height, src_iview->vk.base_mip_level); uint32_t src_depth = radv_minify(src_iview->image->info.depth, src_iview->vk.base_mip_level); uint32_t dst_width = radv_minify(dest_iview->image->info.width, dest_iview->vk.base_mip_level); uint32_t dst_height = radv_minify(dest_iview->image->info.height, dest_iview->vk.base_mip_level); assert(src_image->info.samples == dest_image->info.samples); float vertex_push_constants[5] = { src_offset_0[0] / (float)src_width, src_offset_0[1] / (float)src_height, src_offset_1[0] / (float)src_width, src_offset_1[1] / (float)src_height, src_offset_0[2] / (float)src_depth, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.blit.pipeline_layout, VK_SHADER_STAGE_VERTEX_BIT, 0, 20, vertex_push_constants); VkPipeline *pipeline = NULL; unsigned fs_key = 0; VkFormat format = VK_FORMAT_UNDEFINED; switch (src_iview->vk.aspects) { case VK_IMAGE_ASPECT_COLOR_BIT: { fs_key = radv_format_meta_fs_key(device, dest_image->vk.format); format = radv_fs_key_format_exemplars[fs_key]; switch (src_image->vk.image_type) { case VK_IMAGE_TYPE_1D: pipeline = &device->meta_state.blit.pipeline_1d_src[fs_key]; break; case VK_IMAGE_TYPE_2D: pipeline = &device->meta_state.blit.pipeline_2d_src[fs_key]; break; case VK_IMAGE_TYPE_3D: pipeline = &device->meta_state.blit.pipeline_3d_src[fs_key]; break; default: unreachable("bad VkImageType"); } break; } case VK_IMAGE_ASPECT_DEPTH_BIT: { format = VK_FORMAT_D32_SFLOAT; switch (src_image->vk.image_type) { case VK_IMAGE_TYPE_1D: pipeline = &device->meta_state.blit.depth_only_1d_pipeline; break; case VK_IMAGE_TYPE_2D: pipeline = &device->meta_state.blit.depth_only_2d_pipeline; break; case VK_IMAGE_TYPE_3D: pipeline = &device->meta_state.blit.depth_only_3d_pipeline; break; default: unreachable("bad VkImageType"); } break; } case VK_IMAGE_ASPECT_STENCIL_BIT: { format = VK_FORMAT_S8_UINT; switch (src_image->vk.image_type) { case VK_IMAGE_TYPE_1D: pipeline = &device->meta_state.blit.stencil_only_1d_pipeline; break; case VK_IMAGE_TYPE_2D: pipeline = &device->meta_state.blit.stencil_only_2d_pipeline; break; case VK_IMAGE_TYPE_3D: pipeline = &device->meta_state.blit.stencil_only_3d_pipeline; break; default: unreachable("bad VkImageType"); } break; } default: unreachable("bad VkImageType"); } if (!*pipeline) { VkResult ret = build_pipeline(device, src_iview->vk.aspects, translate_sampler_dim(src_image->vk.image_type), format, pipeline); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return; } } radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline); radv_meta_push_descriptor_set( cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, device->meta_state.blit.pipeline_layout, 0, /* set */ 1, /* descriptorWriteCount */ (VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .pImageInfo = (VkDescriptorImageInfo[]){ { .sampler = sampler, .imageView = radv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, }}}); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport){.x = dest_offset_0.x, .y = dest_offset_0.y, .width = dest_offset_1.x - dest_offset_0.x, .height = dest_offset_1.y - dest_offset_0.y, .minDepth = 0.0f, .maxDepth = 1.0f}); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D){ .offset = (VkOffset2D){MIN2(dest_offset_0.x, dest_offset_1.x), MIN2(dest_offset_0.y, dest_offset_1.y)}, .extent = (VkExtent2D){abs(dest_offset_1.x - dest_offset_0.x), abs(dest_offset_1.y - dest_offset_0.y)}, }); VkRenderingInfo rendering_info = { .sType = VK_STRUCTURE_TYPE_RENDERING_INFO, .renderArea = { .offset = { 0, 0 }, .extent = { dst_width, dst_height }, }, .layerCount = 1, }; VkRenderingAttachmentInfo color_att; if (src_iview->image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT) { unsigned dst_layout = radv_meta_dst_layout_from_layout(dest_image_layout); VkImageLayout layout = radv_meta_dst_layout_to_layout(dst_layout); color_att = (VkRenderingAttachmentInfo) { .sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO, .imageView = radv_image_view_to_handle(dest_iview), .imageLayout = layout, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, }; rendering_info.colorAttachmentCount = 1; rendering_info.pColorAttachments = &color_att; } VkRenderingAttachmentInfo depth_att; if (src_iview->image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { enum radv_blit_ds_layout ds_layout = radv_meta_blit_ds_to_type(dest_image_layout); VkImageLayout layout = radv_meta_blit_ds_to_layout(ds_layout); depth_att = (VkRenderingAttachmentInfo) { .sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO, .imageView = radv_image_view_to_handle(dest_iview), .imageLayout = layout, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, }; rendering_info.pDepthAttachment = &depth_att; } VkRenderingAttachmentInfo stencil_att; if (src_iview->image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { enum radv_blit_ds_layout ds_layout = radv_meta_blit_ds_to_type(dest_image_layout); VkImageLayout layout = radv_meta_blit_ds_to_layout(ds_layout); stencil_att = (VkRenderingAttachmentInfo) { .sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO, .imageView = radv_image_view_to_handle(dest_iview), .imageLayout = layout, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, }; rendering_info.pStencilAttachment = &stencil_att; } radv_CmdBeginRendering(radv_cmd_buffer_to_handle(cmd_buffer), &rendering_info); radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0); radv_CmdEndRendering(radv_cmd_buffer_to_handle(cmd_buffer)); } static bool flip_coords(unsigned *src0, unsigned *src1, unsigned *dst0, unsigned *dst1) { bool flip = false; if (*src0 > *src1) { unsigned tmp = *src0; *src0 = *src1; *src1 = tmp; flip = !flip; } if (*dst0 > *dst1) { unsigned tmp = *dst0; *dst0 = *dst1; *dst1 = tmp; flip = !flip; } return flip; } static void blit_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image, VkImageLayout src_image_layout, struct radv_image *dst_image, VkImageLayout dst_image_layout, const VkImageBlit2 *region, VkFilter filter) { const VkImageSubresourceLayers *src_res = ®ion->srcSubresource; const VkImageSubresourceLayers *dst_res = ®ion->dstSubresource; struct radv_device *device = cmd_buffer->device; struct radv_meta_saved_state saved_state; VkSampler sampler; /* From the Vulkan 1.0 spec: * * vkCmdBlitImage must not be used for multisampled source or * destination images. Use vkCmdResolveImage for this purpose. */ assert(src_image->info.samples == 1); assert(dst_image->info.samples == 1); radv_CreateSampler(radv_device_to_handle(device), &(VkSamplerCreateInfo){ .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, .magFilter = filter, .minFilter = filter, .addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, }, &cmd_buffer->pool->vk.alloc, &sampler); /* VK_EXT_conditional_rendering says that blit commands should not be * affected by conditional rendering. */ radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS | RADV_META_SUSPEND_PREDICATING); unsigned dst_start, dst_end; if (dst_image->vk.image_type == VK_IMAGE_TYPE_3D) { assert(dst_res->baseArrayLayer == 0); dst_start = region->dstOffsets[0].z; dst_end = region->dstOffsets[1].z; } else { dst_start = dst_res->baseArrayLayer; dst_end = dst_start + dst_res->layerCount; } unsigned src_start, src_end; if (src_image->vk.image_type == VK_IMAGE_TYPE_3D) { assert(src_res->baseArrayLayer == 0); src_start = region->srcOffsets[0].z; src_end = region->srcOffsets[1].z; } else { src_start = src_res->baseArrayLayer; src_end = src_start + src_res->layerCount; } bool flip_z = flip_coords(&src_start, &src_end, &dst_start, &dst_end); float src_z_step = (float)(src_end - src_start) / (float)(dst_end - dst_start); /* There is no interpolation to the pixel center during * rendering, so add the 0.5 offset ourselves here. */ float depth_center_offset = 0; if (src_image->vk.image_type == VK_IMAGE_TYPE_3D) depth_center_offset = 0.5 / (dst_end - dst_start) * (src_end - src_start); if (flip_z) { src_start = src_end; src_z_step *= -1; depth_center_offset *= -1; } unsigned src_x0 = region->srcOffsets[0].x; unsigned src_x1 = region->srcOffsets[1].x; unsigned dst_x0 = region->dstOffsets[0].x; unsigned dst_x1 = region->dstOffsets[1].x; unsigned src_y0 = region->srcOffsets[0].y; unsigned src_y1 = region->srcOffsets[1].y; unsigned dst_y0 = region->dstOffsets[0].y; unsigned dst_y1 = region->dstOffsets[1].y; VkRect2D dst_box; dst_box.offset.x = MIN2(dst_x0, dst_x1); dst_box.offset.y = MIN2(dst_y0, dst_y1); dst_box.extent.width = dst_x1 - dst_x0; dst_box.extent.height = dst_y1 - dst_y0; const unsigned num_layers = dst_end - dst_start; for (unsigned i = 0; i < num_layers; i++) { struct radv_image_view dst_iview, src_iview; const VkOffset2D dst_offset_0 = { .x = dst_x0, .y = dst_y0, }; const VkOffset2D dst_offset_1 = { .x = dst_x1, .y = dst_y1, }; float src_offset_0[3] = { src_x0, src_y0, src_start + i * src_z_step + depth_center_offset, }; float src_offset_1[3] = { src_x1, src_y1, src_start + i * src_z_step + depth_center_offset, }; const uint32_t dst_array_slice = dst_start + i; /* 3D images have just 1 layer */ const uint32_t src_array_slice = src_image->vk.image_type == VK_IMAGE_TYPE_3D ? 0 : src_start + i; radv_image_view_init(&dst_iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(dst_image), .viewType = radv_meta_get_view_type(dst_image), .format = dst_image->vk.format, .subresourceRange = {.aspectMask = dst_res->aspectMask, .baseMipLevel = dst_res->mipLevel, .levelCount = 1, .baseArrayLayer = dst_array_slice, .layerCount = 1}, }, 0, NULL); radv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo){ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(src_image), .viewType = radv_meta_get_view_type(src_image), .format = src_image->vk.format, .subresourceRange = {.aspectMask = src_res->aspectMask, .baseMipLevel = src_res->mipLevel, .levelCount = 1, .baseArrayLayer = src_array_slice, .layerCount = 1}, }, 0, NULL); meta_emit_blit(cmd_buffer, src_image, &src_iview, src_image_layout, src_offset_0, src_offset_1, dst_image, &dst_iview, dst_image_layout, dst_offset_0, dst_offset_1, dst_box, sampler); radv_image_view_finish(&dst_iview); radv_image_view_finish(&src_iview); } radv_meta_restore(&saved_state, cmd_buffer); radv_DestroySampler(radv_device_to_handle(device), sampler, &cmd_buffer->pool->vk.alloc); } VKAPI_ATTR void VKAPI_CALL radv_CmdBlitImage2(VkCommandBuffer commandBuffer, const VkBlitImageInfo2 *pBlitImageInfo) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_image, src_image, pBlitImageInfo->srcImage); RADV_FROM_HANDLE(radv_image, dst_image, pBlitImageInfo->dstImage); for (unsigned r = 0; r < pBlitImageInfo->regionCount; r++) { blit_image(cmd_buffer, src_image, pBlitImageInfo->srcImageLayout, dst_image, pBlitImageInfo->dstImageLayout, &pBlitImageInfo->pRegions[r], pBlitImageInfo->filter); } } void radv_device_finish_meta_blit_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (unsigned i = 0; i < NUM_META_FS_KEYS; ++i) { radv_DestroyPipeline(radv_device_to_handle(device), state->blit.pipeline_1d_src[i], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->blit.pipeline_2d_src[i], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->blit.pipeline_3d_src[i], &state->alloc); } radv_DestroyPipeline(radv_device_to_handle(device), state->blit.depth_only_1d_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->blit.depth_only_2d_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->blit.depth_only_3d_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->blit.stencil_only_1d_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->blit.stencil_only_2d_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->blit.stencil_only_3d_pipeline, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->blit.pipeline_layout, &state->alloc); device->vk.dispatch_table.DestroyDescriptorSetLayout(radv_device_to_handle(device), state->blit.ds_layout, &state->alloc); } static VkResult build_pipeline(struct radv_device *device, VkImageAspectFlagBits aspect, enum glsl_sampler_dim tex_dim, VkFormat format, VkPipeline *pipeline) { VkResult result = VK_SUCCESS; mtx_lock(&device->meta_state.mtx); if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } nir_shader *fs; nir_shader *vs = build_nir_vertex_shader(device); VkPipelineRenderingCreateInfo rendering_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO, }; switch (aspect) { case VK_IMAGE_ASPECT_COLOR_BIT: fs = build_nir_copy_fragment_shader(device, tex_dim); rendering_create_info.colorAttachmentCount = 1; rendering_create_info.pColorAttachmentFormats = &format; break; case VK_IMAGE_ASPECT_DEPTH_BIT: fs = build_nir_copy_fragment_shader_depth(device, tex_dim); rendering_create_info.depthAttachmentFormat = format; break; case VK_IMAGE_ASPECT_STENCIL_BIT: fs = build_nir_copy_fragment_shader_stencil(device, tex_dim); rendering_create_info.stencilAttachmentFormat = format; break; default: unreachable("Unhandled aspect"); } VkPipelineVertexInputStateCreateInfo vi_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }; VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = { {.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vk_shader_module_handle_from_nir(vs), .pName = "main", .pSpecializationInfo = NULL}, {.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = vk_shader_module_handle_from_nir(fs), .pName = "main", .pSpecializationInfo = NULL}, }; VkGraphicsPipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .pNext = &rendering_create_info, .stageCount = ARRAY_SIZE(pipeline_shader_stages), .pStages = pipeline_shader_stages, .pVertexInputState = &vi_create_info, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, .lineWidth = 1.0f}, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = (VkSampleMask[]){UINT32_MAX}, }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 2, .pDynamicStates = (VkDynamicState[]){ VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }, }, .flags = 0, .layout = device->meta_state.blit.pipeline_layout, .renderPass = VK_NULL_HANDLE, .subpass = 0, }; VkPipelineColorBlendStateCreateInfo color_blend_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkPipelineColorBlendAttachmentState[]){ {.colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT}, }, .blendConstants = { 0.0f, 0.0f, 0.0f, 0.0f }}; VkPipelineDepthStencilStateCreateInfo depth_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = true, .depthWriteEnable = true, .depthCompareOp = VK_COMPARE_OP_ALWAYS, }; VkPipelineDepthStencilStateCreateInfo stencil_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = false, .depthWriteEnable = false, .stencilTestEnable = true, .front = {.failOp = VK_STENCIL_OP_REPLACE, .passOp = VK_STENCIL_OP_REPLACE, .depthFailOp = VK_STENCIL_OP_REPLACE, .compareOp = VK_COMPARE_OP_ALWAYS, .compareMask = 0xff, .writeMask = 0xff, .reference = 0}, .back = {.failOp = VK_STENCIL_OP_REPLACE, .passOp = VK_STENCIL_OP_REPLACE, .depthFailOp = VK_STENCIL_OP_REPLACE, .compareOp = VK_COMPARE_OP_ALWAYS, .compareMask = 0xff, .writeMask = 0xff, .reference = 0}, .depthCompareOp = VK_COMPARE_OP_ALWAYS, }; switch (aspect) { case VK_IMAGE_ASPECT_COLOR_BIT: vk_pipeline_info.pColorBlendState = &color_blend_info; break; case VK_IMAGE_ASPECT_DEPTH_BIT: vk_pipeline_info.pDepthStencilState = &depth_info; break; case VK_IMAGE_ASPECT_STENCIL_BIT: vk_pipeline_info.pDepthStencilState = &stencil_info; break; default: unreachable("Unhandled aspect"); } const struct radv_graphics_pipeline_create_info radv_pipeline_info = {.use_rectlist = true}; result = radv_graphics_pipeline_create( radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), &vk_pipeline_info, &radv_pipeline_info, &device->meta_state.alloc, pipeline); ralloc_free(vs); ralloc_free(fs); mtx_unlock(&device->meta_state.mtx); return result; } static VkResult radv_device_init_meta_blit_color(struct radv_device *device, bool on_demand) { VkResult result; for (unsigned i = 0; i < NUM_META_FS_KEYS; ++i) { VkFormat format = radv_fs_key_format_exemplars[i]; unsigned key = radv_format_meta_fs_key(device, format); if (on_demand) continue; result = build_pipeline(device, VK_IMAGE_ASPECT_COLOR_BIT, GLSL_SAMPLER_DIM_1D, format, &device->meta_state.blit.pipeline_1d_src[key]); if (result != VK_SUCCESS) goto fail; result = build_pipeline(device, VK_IMAGE_ASPECT_COLOR_BIT, GLSL_SAMPLER_DIM_2D, format, &device->meta_state.blit.pipeline_2d_src[key]); if (result != VK_SUCCESS) goto fail; result = build_pipeline(device, VK_IMAGE_ASPECT_COLOR_BIT, GLSL_SAMPLER_DIM_3D, format, &device->meta_state.blit.pipeline_3d_src[key]); if (result != VK_SUCCESS) goto fail; } result = VK_SUCCESS; fail: return result; } static VkResult radv_device_init_meta_blit_depth(struct radv_device *device, bool on_demand) { VkResult result; if (on_demand) return VK_SUCCESS; result = build_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, GLSL_SAMPLER_DIM_1D, VK_FORMAT_D32_SFLOAT, &device->meta_state.blit.depth_only_1d_pipeline); if (result != VK_SUCCESS) goto fail; result = build_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, GLSL_SAMPLER_DIM_2D, VK_FORMAT_D32_SFLOAT, &device->meta_state.blit.depth_only_2d_pipeline); if (result != VK_SUCCESS) goto fail; result = build_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, GLSL_SAMPLER_DIM_3D, VK_FORMAT_D32_SFLOAT, &device->meta_state.blit.depth_only_3d_pipeline); if (result != VK_SUCCESS) goto fail; fail: return result; } static VkResult radv_device_init_meta_blit_stencil(struct radv_device *device, bool on_demand) { VkResult result; if (on_demand) return VK_SUCCESS; result = build_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, GLSL_SAMPLER_DIM_1D, VK_FORMAT_S8_UINT, &device->meta_state.blit.stencil_only_1d_pipeline); if (result != VK_SUCCESS) goto fail; result = build_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, GLSL_SAMPLER_DIM_2D, VK_FORMAT_S8_UINT, &device->meta_state.blit.stencil_only_2d_pipeline); if (result != VK_SUCCESS) goto fail; result = build_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, GLSL_SAMPLER_DIM_3D, VK_FORMAT_S8_UINT, &device->meta_state.blit.stencil_only_3d_pipeline); if (result != VK_SUCCESS) goto fail; fail: return result; } VkResult radv_device_init_meta_blit_state(struct radv_device *device, bool on_demand) { VkResult result; VkDescriptorSetLayoutCreateInfo ds_layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]){ {.binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = NULL}, }}; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info, &device->meta_state.alloc, &device->meta_state.blit.ds_layout); if (result != VK_SUCCESS) return result; const VkPushConstantRange push_constant_range = {VK_SHADER_STAGE_VERTEX_BIT, 0, 20}; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &(VkPipelineLayoutCreateInfo){ .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.blit.ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &push_constant_range, }, &device->meta_state.alloc, &device->meta_state.blit.pipeline_layout); if (result != VK_SUCCESS) return result; result = radv_device_init_meta_blit_color(device, on_demand); if (result != VK_SUCCESS) return result; result = radv_device_init_meta_blit_depth(device, on_demand); if (result != VK_SUCCESS) return result; return radv_device_init_meta_blit_stencil(device, on_demand); }