/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include "program/prog_instruction.h" #include "blorp_priv.h" #include "compiler/brw_compiler.h" #include "compiler/brw_nir.h" #include "dev/intel_debug.h" const char * blorp_shader_type_to_name(enum blorp_shader_type type) { static const char *shader_name[] = { [BLORP_SHADER_TYPE_COPY] = "BLORP-copy", [BLORP_SHADER_TYPE_BLIT] = "BLORP-blit", [BLORP_SHADER_TYPE_CLEAR] = "BLORP-clear", [BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE] = "BLORP-mcs-partial-resolve", [BLORP_SHADER_TYPE_LAYER_OFFSET_VS] = "BLORP-layer-offset-vs", [BLORP_SHADER_TYPE_GFX4_SF] = "BLORP-gfx4-sf", }; assert(type < ARRAY_SIZE(shader_name)); return shader_name[type]; } const char * blorp_shader_pipeline_to_name(enum blorp_shader_pipeline pipe) { static const char *pipeline_name[] = { [BLORP_SHADER_PIPELINE_RENDER] = "render", [BLORP_SHADER_PIPELINE_COMPUTE] = "compute", }; assert(pipe < ARRAY_SIZE(pipeline_name)); return pipeline_name[pipe]; } void blorp_init(struct blorp_context *blorp, void *driver_ctx, struct isl_device *isl_dev, const struct blorp_config *config) { memset(blorp, 0, sizeof(*blorp)); blorp->driver_ctx = driver_ctx; blorp->isl_dev = isl_dev; if (config) blorp->config = *config; } void blorp_finish(struct blorp_context *blorp) { blorp->driver_ctx = NULL; } void blorp_batch_init(struct blorp_context *blorp, struct blorp_batch *batch, void *driver_batch, enum blorp_batch_flags flags) { batch->blorp = blorp; batch->driver_batch = driver_batch; batch->flags = flags; } void blorp_batch_finish(struct blorp_batch *batch) { batch->blorp = NULL; } void brw_blorp_surface_info_init(struct blorp_batch *batch, struct brw_blorp_surface_info *info, const struct blorp_surf *surf, unsigned int level, float layer, enum isl_format format, bool is_dest) { struct blorp_context *blorp = batch->blorp; memset(info, 0, sizeof(*info)); assert(level < surf->surf->levels); assert(layer < MAX2(surf->surf->logical_level0_px.depth >> level, surf->surf->logical_level0_px.array_len)); info->enabled = true; if (format == ISL_FORMAT_UNSUPPORTED) format = surf->surf->format; info->surf = *surf->surf; info->addr = surf->addr; info->aux_usage = surf->aux_usage; if (info->aux_usage != ISL_AUX_USAGE_NONE) { info->aux_surf = *surf->aux_surf; info->aux_addr = surf->aux_addr; } info->clear_color = surf->clear_color; info->clear_color_addr = surf->clear_color_addr; isl_surf_usage_flags_t view_usage; if (is_dest) { if (batch->flags & BLORP_BATCH_USE_COMPUTE) view_usage = ISL_SURF_USAGE_STORAGE_BIT; else view_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT; } else { view_usage = ISL_SURF_USAGE_TEXTURE_BIT; } info->view = (struct isl_view) { .usage = view_usage, .format = format, .base_level = level, .levels = 1, .swizzle = ISL_SWIZZLE_IDENTITY, }; info->view.array_len = MAX2(info->surf.logical_level0_px.depth, info->surf.logical_level0_px.array_len); if (!is_dest && (info->surf.dim == ISL_SURF_DIM_3D || info->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)) { /* 3-D textures don't support base_array layer and neither do 2-D * multisampled textures on IVB so we need to pass it through the * sampler in those cases. These are also two cases where we are * guaranteed that we won't be doing any funny surface hacks. */ info->view.base_array_layer = 0; info->z_offset = layer; } else { info->view.base_array_layer = layer; assert(info->view.array_len >= info->view.base_array_layer); info->view.array_len -= info->view.base_array_layer; info->z_offset = 0; } /* Sandy Bridge and earlier have a limit of a maximum of 512 layers for * layered rendering. */ if (is_dest && blorp->isl_dev->info->ver <= 6) info->view.array_len = MIN2(info->view.array_len, 512); if (surf->tile_x_sa || surf->tile_y_sa) { /* This is only allowed on simple 2D surfaces without MSAA */ assert(info->surf.dim == ISL_SURF_DIM_2D); assert(info->surf.samples == 1); assert(info->surf.levels == 1); assert(info->surf.logical_level0_px.array_len == 1); assert(info->aux_usage == ISL_AUX_USAGE_NONE); info->tile_x_sa = surf->tile_x_sa; info->tile_y_sa = surf->tile_y_sa; /* Instead of using the X/Y Offset fields in RENDER_SURFACE_STATE, we * place the image at the tile boundary and offset our sampling or * rendering. For this reason, we need to grow the image by the offset * to ensure that the hardware doesn't think we've gone past the edge. */ info->surf.logical_level0_px.w += surf->tile_x_sa; info->surf.logical_level0_px.h += surf->tile_y_sa; info->surf.phys_level0_sa.w += surf->tile_x_sa; info->surf.phys_level0_sa.h += surf->tile_y_sa; } } void blorp_params_init(struct blorp_params *params) { memset(params, 0, sizeof(*params)); params->num_samples = 1; params->num_draw_buffers = 1; params->num_layers = 1; } static void blorp_init_base_prog_key(struct brw_base_prog_key *key) { for (int i = 0; i < BRW_MAX_SAMPLERS; i++) key->tex.swizzles[i] = SWIZZLE_XYZW; } void brw_blorp_init_wm_prog_key(struct brw_wm_prog_key *wm_key) { memset(wm_key, 0, sizeof(*wm_key)); wm_key->nr_color_regions = 1; blorp_init_base_prog_key(&wm_key->base); } void brw_blorp_init_cs_prog_key(struct brw_cs_prog_key *cs_key) { memset(cs_key, 0, sizeof(*cs_key)); blorp_init_base_prog_key(&cs_key->base); } const unsigned * blorp_compile_fs(struct blorp_context *blorp, void *mem_ctx, struct nir_shader *nir, struct brw_wm_prog_key *wm_key, bool use_repclear, struct brw_wm_prog_data *wm_prog_data) { const struct brw_compiler *compiler = blorp->compiler; nir->options = compiler->nir_options[MESA_SHADER_FRAGMENT]; memset(wm_prog_data, 0, sizeof(*wm_prog_data)); wm_prog_data->base.nr_params = 0; wm_prog_data->base.param = NULL; brw_preprocess_nir(compiler, nir, NULL); nir_remove_dead_variables(nir, nir_var_shader_in, NULL); nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); if (blorp->compiler->devinfo->ver < 6) { if (nir->info.fs.uses_discard) wm_key->iz_lookup |= BRW_WM_IZ_PS_KILL_ALPHATEST_BIT; wm_key->input_slots_valid = nir->info.inputs_read | VARYING_BIT_POS; } struct brw_compile_fs_params params = { .nir = nir, .key = wm_key, .prog_data = wm_prog_data, .use_rep_send = use_repclear, .log_data = blorp->driver_ctx, .debug_flag = DEBUG_BLORP, }; return brw_compile_fs(compiler, mem_ctx, ¶ms); } const unsigned * blorp_compile_vs(struct blorp_context *blorp, void *mem_ctx, struct nir_shader *nir, struct brw_vs_prog_data *vs_prog_data) { const struct brw_compiler *compiler = blorp->compiler; nir->options = compiler->nir_options[MESA_SHADER_VERTEX]; brw_preprocess_nir(compiler, nir, NULL); nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); vs_prog_data->inputs_read = nir->info.inputs_read; brw_compute_vue_map(compiler->devinfo, &vs_prog_data->base.vue_map, nir->info.outputs_written, nir->info.separate_shader, 1); struct brw_vs_prog_key vs_key = { 0, }; struct brw_compile_vs_params params = { .nir = nir, .key = &vs_key, .prog_data = vs_prog_data, .log_data = blorp->driver_ctx, .debug_flag = DEBUG_BLORP, }; return brw_compile_vs(compiler, mem_ctx, ¶ms); } const unsigned * blorp_compile_cs(struct blorp_context *blorp, void *mem_ctx, struct nir_shader *nir, struct brw_cs_prog_key *cs_key, struct brw_cs_prog_data *cs_prog_data) { const struct brw_compiler *compiler = blorp->compiler; nir->options = compiler->nir_options[MESA_SHADER_COMPUTE]; memset(cs_prog_data, 0, sizeof(*cs_prog_data)); brw_preprocess_nir(compiler, nir, NULL); nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); NIR_PASS_V(nir, nir_lower_io, nir_var_uniform, type_size_scalar_bytes, (nir_lower_io_options)0); STATIC_ASSERT(offsetof(struct brw_blorp_wm_inputs, subgroup_id) + 4 == sizeof(struct brw_blorp_wm_inputs)); nir->num_uniforms = offsetof(struct brw_blorp_wm_inputs, subgroup_id); unsigned nr_params = nir->num_uniforms / 4; cs_prog_data->base.nr_params = nr_params; cs_prog_data->base.param = rzalloc_array(NULL, uint32_t, nr_params); NIR_PASS_V(nir, brw_nir_lower_cs_intrinsics); struct brw_compile_cs_params params = { .nir = nir, .key = cs_key, .prog_data = cs_prog_data, .log_data = blorp->driver_ctx, .debug_flag = DEBUG_BLORP, }; const unsigned *program = brw_compile_cs(compiler, mem_ctx, ¶ms); ralloc_free(cs_prog_data->base.param); cs_prog_data->base.param = NULL; return program; } struct blorp_sf_key { struct brw_blorp_base_key base; struct brw_sf_prog_key key; }; bool blorp_ensure_sf_program(struct blorp_batch *batch, struct blorp_params *params) { struct blorp_context *blorp = batch->blorp; const struct brw_wm_prog_data *wm_prog_data = params->wm_prog_data; assert(params->wm_prog_data); /* Gfx6+ doesn't need a strips and fans program */ if (blorp->compiler->devinfo->ver >= 6) return true; struct blorp_sf_key key = { .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_GFX4_SF), }; /* Everything gets compacted in vertex setup, so we just need a * pass-through for the correct number of input varyings. */ const uint64_t slots_valid = VARYING_BIT_POS | ((1ull << wm_prog_data->num_varying_inputs) - 1) << VARYING_SLOT_VAR0; key.key.attrs = slots_valid; key.key.primitive = BRW_SF_PRIM_TRIANGLES; key.key.contains_flat_varying = wm_prog_data->contains_flat_varying; STATIC_ASSERT(sizeof(key.key.interp_mode) == sizeof(wm_prog_data->interp_mode)); memcpy(key.key.interp_mode, wm_prog_data->interp_mode, sizeof(key.key.interp_mode)); if (blorp->lookup_shader(batch, &key, sizeof(key), ¶ms->sf_prog_kernel, ¶ms->sf_prog_data)) return true; void *mem_ctx = ralloc_context(NULL); const unsigned *program; unsigned program_size; struct brw_vue_map vue_map; brw_compute_vue_map(blorp->compiler->devinfo, &vue_map, slots_valid, false, 1); struct brw_sf_prog_data prog_data_tmp; program = brw_compile_sf(blorp->compiler, mem_ctx, &key.key, &prog_data_tmp, &vue_map, &program_size); bool result = blorp->upload_shader(batch, MESA_SHADER_NONE, &key, sizeof(key), program, program_size, (void *)&prog_data_tmp, sizeof(prog_data_tmp), ¶ms->sf_prog_kernel, ¶ms->sf_prog_data); ralloc_free(mem_ctx); return result; } void blorp_hiz_op(struct blorp_batch *batch, struct blorp_surf *surf, uint32_t level, uint32_t start_layer, uint32_t num_layers, enum isl_aux_op op) { const struct intel_device_info *devinfo = batch->blorp->isl_dev->info; struct blorp_params params; blorp_params_init(¶ms); params.hiz_op = op; params.full_surface_hiz_op = true; switch (op) { case ISL_AUX_OP_FULL_RESOLVE: params.snapshot_type = INTEL_SNAPSHOT_HIZ_RESOLVE; break; case ISL_AUX_OP_AMBIGUATE: params.snapshot_type = INTEL_SNAPSHOT_HIZ_AMBIGUATE; break; case ISL_AUX_OP_FAST_CLEAR: params.snapshot_type = INTEL_SNAPSHOT_HIZ_CLEAR; break; case ISL_AUX_OP_PARTIAL_RESOLVE: case ISL_AUX_OP_NONE: unreachable("Invalid HiZ op"); } for (uint32_t a = 0; a < num_layers; a++) { const uint32_t layer = start_layer + a; brw_blorp_surface_info_init(batch, ¶ms.depth, surf, level, layer, surf->surf->format, true); /* Align the rectangle primitive to 8x4 pixels. * * During fast depth clears, the emitted rectangle primitive must be * aligned to 8x4 pixels. From the Ivybridge PRM, Vol 2 Part 1 Section * 11.5.3.1 Depth Buffer Clear (and the matching section in the * Sandybridge PRM): * * If Number of Multisamples is NUMSAMPLES_1, the rectangle must be * aligned to an 8x4 pixel block relative to the upper left corner * of the depth buffer [...] * * For hiz resolves, the rectangle must also be 8x4 aligned. Item * WaHizAmbiguate8x4Aligned from the Haswell workarounds page and the * Ivybridge simulator require the alignment. * * To be safe, let's just align the rect for all hiz operations and all * hardware generations. * * However, for some miptree slices of a Z24 texture, emitting an 8x4 * aligned rectangle that covers the slice may clobber adjacent slices * if we strictly adhered to the texture alignments specified in the * PRM. The Ivybridge PRM, Section "Alignment Unit Size", states that * SURFACE_STATE.Surface_Horizontal_Alignment should be 4 for Z24 * surfaces, not 8. But commit 1f112cc increased the alignment from 4 to * 8, which prevents the clobbering. */ params.x1 = u_minify(params.depth.surf.logical_level0_px.width, params.depth.view.base_level); params.y1 = u_minify(params.depth.surf.logical_level0_px.height, params.depth.view.base_level); params.x1 = ALIGN(params.x1, 8); params.y1 = ALIGN(params.y1, 4); if (params.depth.view.base_level == 0) { /* TODO: What about MSAA? */ params.depth.surf.logical_level0_px.width = params.x1; params.depth.surf.logical_level0_px.height = params.y1; } else if (devinfo->ver >= 8 && devinfo->ver <= 9 && op == ISL_AUX_OP_AMBIGUATE) { /* On some platforms, it's not enough to just adjust the clear * rectangle when the LOD is greater than 0. * * From the BDW and SKL PRMs, Vol 7, "Optimized Hierarchical Depth * Buffer Resolve": * * The following is required when performing a hierarchical depth * buffer resolve: * * - A rectangle primitive covering the full render target must be * programmed on Xmin, Ymin, Xmax, and Ymax in the * 3DSTATE_WM_HZ_OP command. * * - The rectangle primitive size must be aligned to 8x4 pixels. * * And from the Clear Rectangle programming note in 3DSTATE_WM_HZ_OP * (Vol 2a): * * Hence the max values must be less than or equal to: ( Surface * Width » LOD ) and ( Surface Height » LOD ) for X Max and Y Max * respectively. * * This means that the extent of the LOD must be naturally * 8x4-aligned after minification of the base LOD. Since the base LOD * dimensions affect the placement of smaller LODs, it's not trivial * (nor possible, at times) to satisfy the requirement by adjusting * the base LOD extent. Just assert that the caller is accessing an * LOD that satisfies this requirement. */ assert(u_minify(params.depth.surf.logical_level0_px.width, params.depth.view.base_level) == params.x1); assert(u_minify(params.depth.surf.logical_level0_px.height, params.depth.view.base_level) == params.y1); } params.dst.surf.samples = params.depth.surf.samples; params.dst.surf.logical_level0_px = params.depth.surf.logical_level0_px; params.depth_format = isl_format_get_depth_format(surf->surf->format, false); params.num_samples = params.depth.surf.samples; batch->blorp->exec(batch, ¶ms); } }