/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #ifdef MAJOR_IN_MKDEV #include #endif #ifdef MAJOR_IN_SYSMACROS #include #endif #include #include #include #include #include "drm-uapi/drm_fourcc.h" #include "drm-uapi/drm.h" #include #include "anv_private.h" #include "anv_measure.h" #include "util/debug.h" #include "util/build_id.h" #include "util/disk_cache.h" #include "util/mesa-sha1.h" #include "util/os_file.h" #include "util/os_misc.h" #include "util/u_atomic.h" #include "util/u_string.h" #include "util/driconf.h" #include "git_sha1.h" #include "vk_util.h" #include "vk_deferred_operation.h" #include "vk_drm_syncobj.h" #include "common/intel_aux_map.h" #include "common/intel_defines.h" #include "common/intel_uuid.h" #include "perf/intel_perf.h" #include "genxml/gen7_pack.h" #include "genxml/genX_bits.h" static const driOptionDescription anv_dri_options[] = { DRI_CONF_SECTION_PERFORMANCE DRI_CONF_ADAPTIVE_SYNC(true) DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0) DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false) DRI_CONF_VK_XWAYLAND_WAIT_READY(true) DRI_CONF_ANV_ASSUME_FULL_SUBGROUPS(false) DRI_CONF_ANV_SAMPLE_MASK_OUT_OPENGL_BEHAVIOUR(false) DRI_CONF_SECTION_END DRI_CONF_SECTION_DEBUG DRI_CONF_ALWAYS_FLUSH_CACHE(false) DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false) DRI_CONF_LIMIT_TRIG_INPUT_RANGE(false) DRI_CONF_SECTION_END }; /* This is probably far to big but it reflects the max size used for messages * in OpenGLs KHR_debug. */ #define MAX_DEBUG_MESSAGE_LENGTH 4096 /* Render engine timestamp register */ #define TIMESTAMP 0x2358 /* The "RAW" clocks on Linux are called "FAST" on FreeBSD */ #if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST) #define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST #endif static void compiler_debug_log(void *data, UNUSED unsigned *id, const char *fmt, ...) { char str[MAX_DEBUG_MESSAGE_LENGTH]; struct anv_device *device = (struct anv_device *)data; UNUSED struct anv_instance *instance = device->physical->instance; va_list args; va_start(args, fmt); (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args); va_end(args); //vk_logd(VK_LOG_NO_OBJS(&instance->vk), "%s", str); } static void compiler_perf_log(UNUSED void *data, UNUSED unsigned *id, const char *fmt, ...) { va_list args; va_start(args, fmt); if (INTEL_DEBUG(DEBUG_PERF)) mesa_logd_v(fmt, args); va_end(args); } #if defined(VK_USE_PLATFORM_WAYLAND_KHR) || \ defined(VK_USE_PLATFORM_XCB_KHR) || \ defined(VK_USE_PLATFORM_XLIB_KHR) || \ defined(VK_USE_PLATFORM_DISPLAY_KHR) #define ANV_USE_WSI_PLATFORM #endif #ifdef ANDROID #define ANV_API_VERSION VK_MAKE_VERSION(1, 1, VK_HEADER_VERSION) #else #define ANV_API_VERSION VK_MAKE_VERSION(1, 3, VK_HEADER_VERSION) #endif VkResult anv_EnumerateInstanceVersion( uint32_t* pApiVersion) { *pApiVersion = ANV_API_VERSION; return VK_SUCCESS; } static const struct vk_instance_extension_table instance_extensions = { .KHR_device_group_creation = true, .KHR_external_fence_capabilities = true, .KHR_external_memory_capabilities = true, .KHR_external_semaphore_capabilities = true, .KHR_get_physical_device_properties2 = true, .EXT_debug_report = true, .EXT_debug_utils = true, #ifdef ANV_USE_WSI_PLATFORM .KHR_get_surface_capabilities2 = true, .KHR_surface = true, .KHR_surface_protected_capabilities = true, #endif #ifdef VK_USE_PLATFORM_WAYLAND_KHR .KHR_wayland_surface = true, #endif #ifdef VK_USE_PLATFORM_XCB_KHR .KHR_xcb_surface = true, #endif #ifdef VK_USE_PLATFORM_XLIB_KHR .KHR_xlib_surface = true, #endif #ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT .EXT_acquire_xlib_display = true, #endif #ifdef VK_USE_PLATFORM_DISPLAY_KHR .KHR_display = true, .KHR_get_display_properties2 = true, .EXT_direct_mode_display = true, .EXT_display_surface_counter = true, .EXT_acquire_drm_display = true, #endif }; static void get_device_extensions(const struct anv_physical_device *device, struct vk_device_extension_table *ext) { const bool has_syncobj_wait = (device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT) != 0; const bool nv_mesh_shading_enabled = env_var_as_boolean("ANV_EXPERIMENTAL_NV_MESH_SHADER", false); *ext = (struct vk_device_extension_table) { .KHR_8bit_storage = device->info.ver >= 8, .KHR_16bit_storage = device->info.ver >= 8, .KHR_bind_memory2 = true, .KHR_buffer_device_address = device->has_a64_buffer_access, .KHR_copy_commands2 = true, .KHR_create_renderpass2 = true, .KHR_dedicated_allocation = true, .KHR_deferred_host_operations = true, .KHR_depth_stencil_resolve = true, .KHR_descriptor_update_template = true, .KHR_device_group = true, .KHR_draw_indirect_count = true, .KHR_driver_properties = true, .KHR_dynamic_rendering = true, .KHR_external_fence = has_syncobj_wait, .KHR_external_fence_fd = has_syncobj_wait, .KHR_external_memory = true, .KHR_external_memory_fd = true, .KHR_external_semaphore = true, .KHR_external_semaphore_fd = true, .KHR_format_feature_flags2 = true, .KHR_fragment_shading_rate = device->info.ver >= 11, .KHR_get_memory_requirements2 = true, .KHR_image_format_list = true, .KHR_imageless_framebuffer = true, #ifdef ANV_USE_WSI_PLATFORM .KHR_incremental_present = true, #endif .KHR_maintenance1 = true, .KHR_maintenance2 = true, .KHR_maintenance3 = true, .KHR_maintenance4 = true, .KHR_multiview = true, .KHR_performance_query = !anv_use_relocations(device) && device->perf && (device->perf->i915_perf_version >= 3 || INTEL_DEBUG(DEBUG_NO_OACONFIG)) && device->use_call_secondary, .KHR_pipeline_executable_properties = true, .KHR_push_descriptor = true, .KHR_ray_query = device->info.has_ray_tracing, .KHR_relaxed_block_layout = true, .KHR_sampler_mirror_clamp_to_edge = true, .KHR_sampler_ycbcr_conversion = true, .KHR_separate_depth_stencil_layouts = true, .KHR_shader_atomic_int64 = device->info.ver >= 9, .KHR_shader_clock = true, .KHR_shader_draw_parameters = true, .KHR_shader_float16_int8 = device->info.ver >= 8, .KHR_shader_float_controls = device->info.ver >= 8, .KHR_shader_integer_dot_product = true, .KHR_shader_non_semantic_info = true, .KHR_shader_subgroup_extended_types = device->info.ver >= 8, .KHR_shader_subgroup_uniform_control_flow = true, .KHR_shader_terminate_invocation = true, .KHR_spirv_1_4 = true, .KHR_storage_buffer_storage_class = true, #ifdef ANV_USE_WSI_PLATFORM .KHR_swapchain = true, .KHR_swapchain_mutable_format = true, #endif .KHR_synchronization2 = true, .KHR_timeline_semaphore = true, .KHR_uniform_buffer_standard_layout = true, .KHR_variable_pointers = true, .KHR_vulkan_memory_model = true, .KHR_workgroup_memory_explicit_layout = true, .KHR_zero_initialize_workgroup_memory = true, .EXT_4444_formats = true, .EXT_border_color_swizzle = device->info.ver >= 8, .EXT_buffer_device_address = device->has_a64_buffer_access, .EXT_calibrated_timestamps = device->has_reg_timestamp, .EXT_color_write_enable = true, .EXT_conditional_rendering = device->info.verx10 >= 75, .EXT_conservative_rasterization = device->info.ver >= 9, .EXT_custom_border_color = device->info.ver >= 8, .EXT_depth_clip_control = true, .EXT_depth_clip_enable = true, .EXT_descriptor_indexing = device->has_a64_buffer_access && device->has_bindless_images, #ifdef VK_USE_PLATFORM_DISPLAY_KHR .EXT_display_control = true, #endif .EXT_extended_dynamic_state = true, .EXT_extended_dynamic_state2 = true, .EXT_external_memory_dma_buf = true, .EXT_external_memory_host = true, .EXT_fragment_shader_interlock = device->info.ver >= 9, .EXT_global_priority = device->max_context_priority >= INTEL_CONTEXT_MEDIUM_PRIORITY, .EXT_global_priority_query = device->max_context_priority >= INTEL_CONTEXT_MEDIUM_PRIORITY, .EXT_host_query_reset = true, .EXT_image_2d_view_of_3d = true, .EXT_image_robustness = true, .EXT_image_drm_format_modifier = true, .EXT_image_view_min_lod = true, .EXT_index_type_uint8 = true, .EXT_inline_uniform_block = true, .EXT_line_rasterization = true, /* Enable the extension only if we have support on both the local & * system memory */ .EXT_memory_budget = (!device->info.has_local_mem || device->vram_mappable.available > 0) && device->sys.available, .EXT_non_seamless_cube_map = true, .EXT_pci_bus_info = true, .EXT_physical_device_drm = true, .EXT_pipeline_creation_cache_control = true, .EXT_pipeline_creation_feedback = true, .EXT_post_depth_coverage = device->info.ver >= 9, .EXT_primitives_generated_query = true, .EXT_primitive_topology_list_restart = true, .EXT_private_data = true, .EXT_provoking_vertex = true, .EXT_queue_family_foreign = true, .EXT_robustness2 = true, .EXT_sample_locations = true, .EXT_sampler_filter_minmax = device->info.ver >= 9, .EXT_scalar_block_layout = true, .EXT_separate_stencil_usage = true, .EXT_shader_atomic_float = true, .EXT_shader_atomic_float2 = device->info.ver >= 9, .EXT_shader_demote_to_helper_invocation = true, .EXT_shader_module_identifier = true, .EXT_shader_stencil_export = device->info.ver >= 9, .EXT_shader_subgroup_ballot = true, .EXT_shader_subgroup_vote = true, .EXT_shader_viewport_index_layer = true, .EXT_subgroup_size_control = true, .EXT_texel_buffer_alignment = true, .EXT_tooling_info = true, .EXT_transform_feedback = true, .EXT_vertex_attribute_divisor = true, .EXT_ycbcr_image_arrays = true, #ifdef ANDROID .ANDROID_external_memory_android_hardware_buffer = true, .ANDROID_native_buffer = true, #endif .GOOGLE_decorate_string = true, .GOOGLE_hlsl_functionality1 = true, .GOOGLE_user_type = true, .INTEL_performance_query = device->perf && device->perf->i915_perf_version >= 3, .INTEL_shader_integer_functions2 = device->info.ver >= 8, .EXT_multi_draw = true, .NV_compute_shader_derivatives = true, .NV_mesh_shader = device->info.has_mesh_shading && nv_mesh_shading_enabled, .VALVE_mutable_descriptor_type = true, }; } static uint64_t anv_compute_sys_heap_size(struct anv_physical_device *device, uint64_t total_ram) { /* We don't want to burn too much ram with the GPU. If the user has 4GiB * or less, we use at most half. If they have more than 4GiB, we use 3/4. */ uint64_t available_ram; if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull) available_ram = total_ram / 2; else available_ram = total_ram * 3 / 4; /* We also want to leave some padding for things we allocate in the driver, * so don't go over 3/4 of the GTT either. */ available_ram = MIN2(available_ram, device->gtt_size * 3 / 4); if (available_ram > (2ull << 30) && !device->supports_48bit_addresses) { /* When running with an overridden PCI ID, we may get a GTT size from * the kernel that is greater than 2 GiB but the execbuf check for 48bit * address support can still fail. Just clamp the address space size to * 2 GiB if we don't have 48-bit support. */ mesa_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but " "not support for 48-bit addresses", __FILE__, __LINE__); available_ram = 2ull << 30; } return available_ram; } static VkResult MUST_CHECK anv_init_meminfo(struct anv_physical_device *device, int fd) { const struct intel_device_info *devinfo = &device->info; device->sys.region.memory_class = devinfo->mem.sram.mem_class; device->sys.region.memory_instance = devinfo->mem.sram.mem_instance; device->sys.size = anv_compute_sys_heap_size(device, devinfo->mem.sram.mappable.size); device->sys.available = devinfo->mem.sram.mappable.free; device->vram_mappable.region.memory_class = devinfo->mem.vram.mem_class; device->vram_mappable.region.memory_instance = devinfo->mem.vram.mem_instance; device->vram_mappable.size = devinfo->mem.vram.mappable.size; device->vram_mappable.available = devinfo->mem.vram.mappable.free; device->vram_non_mappable.region.memory_class = devinfo->mem.vram.mem_class; device->vram_non_mappable.region.memory_instance = devinfo->mem.vram.mem_instance; device->vram_non_mappable.size = devinfo->mem.vram.unmappable.size; device->vram_non_mappable.available = devinfo->mem.vram.unmappable.free; return VK_SUCCESS; } static void anv_update_meminfo(struct anv_physical_device *device, int fd) { if (!intel_device_info_update_memory_info(&device->info, fd)) return; const struct intel_device_info *devinfo = &device->info; device->sys.available = devinfo->mem.sram.mappable.free; device->vram_mappable.available = devinfo->mem.vram.mappable.free; device->vram_non_mappable.available = devinfo->mem.vram.unmappable.free; } static VkResult anv_physical_device_init_heaps(struct anv_physical_device *device, int fd) { VkResult result = anv_init_meminfo(device, fd); if (result != VK_SUCCESS) return result; assert(device->sys.size != 0); if (anv_physical_device_has_vram(device)) { /* We can create 2 or 3 different heaps when we have local memory * support, first heap with local memory size and second with system * memory size and the third is added only if part of the vram is * mappable to the host. */ device->memory.heap_count = 2; device->memory.heaps[0] = (struct anv_memory_heap) { /* If there is a vram_non_mappable, use that for the device only * heap. Otherwise use the vram_mappable. */ .size = device->vram_non_mappable.size != 0 ? device->vram_non_mappable.size : device->vram_mappable.size, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, .is_local_mem = true, }; device->memory.heaps[1] = (struct anv_memory_heap) { .size = device->sys.size, .flags = 0, .is_local_mem = false, }; /* Add an additional smaller vram mappable heap if we can't map all the * vram to the host. */ if (device->vram_non_mappable.size > 0) { device->memory.heap_count++; device->memory.heaps[2] = (struct anv_memory_heap) { .size = device->vram_mappable.size, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, .is_local_mem = true, }; } device->memory.type_count = 3; device->memory.types[0] = (struct anv_memory_type) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, .heapIndex = 0, }; device->memory.types[1] = (struct anv_memory_type) { .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, .heapIndex = 1, }; device->memory.types[2] = (struct anv_memory_type) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, /* This memory type either comes from heaps[0] if there is only * mappable vram region, or from heaps[2] if there is both mappable & * non-mappable vram regions. */ .heapIndex = device->vram_non_mappable.size > 0 ? 2 : 0, }; } else if (device->info.has_llc) { device->memory.heap_count = 1; device->memory.heaps[0] = (struct anv_memory_heap) { .size = device->sys.size, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, .is_local_mem = false, }; /* Big core GPUs share LLC with the CPU and thus one memory type can be * both cached and coherent at the same time. */ device->memory.type_count = 1; device->memory.types[0] = (struct anv_memory_type) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, .heapIndex = 0, }; } else { device->memory.heap_count = 1; device->memory.heaps[0] = (struct anv_memory_heap) { .size = device->sys.size, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, .is_local_mem = false, }; /* The spec requires that we expose a host-visible, coherent memory * type, but Atom GPUs don't share LLC. Thus we offer two memory types * to give the application a choice between cached, but not coherent and * coherent but uncached (WC though). */ device->memory.type_count = 2; device->memory.types[0] = (struct anv_memory_type) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, .heapIndex = 0, }; device->memory.types[1] = (struct anv_memory_type) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, .heapIndex = 0, }; } device->memory.need_clflush = false; for (unsigned i = 0; i < device->memory.type_count; i++) { VkMemoryPropertyFlags props = device->memory.types[i].propertyFlags; if ((props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) && !(props & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) device->memory.need_clflush = true; } return VK_SUCCESS; } static VkResult anv_physical_device_init_uuids(struct anv_physical_device *device) { const struct build_id_note *note = build_id_find_nhdr_for_addr(anv_physical_device_init_uuids); if (!note) { return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED, "Failed to find build-id"); } unsigned build_id_len = build_id_length(note); if (build_id_len < 20) { return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED, "build-id too short. It needs to be a SHA"); } memcpy(device->driver_build_sha1, build_id_data(note), 20); struct mesa_sha1 sha1_ctx; uint8_t sha1[20]; STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1)); /* The pipeline cache UUID is used for determining when a pipeline cache is * invalid. It needs both a driver build and the PCI ID of the device. */ _mesa_sha1_init(&sha1_ctx); _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len); _mesa_sha1_update(&sha1_ctx, &device->info.pci_device_id, sizeof(device->info.pci_device_id)); _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless, sizeof(device->always_use_bindless)); _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access, sizeof(device->has_a64_buffer_access)); _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images, sizeof(device->has_bindless_images)); _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers, sizeof(device->has_bindless_samplers)); _mesa_sha1_final(&sha1_ctx, sha1); memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE); intel_uuid_compute_driver_id(device->driver_uuid, &device->info, VK_UUID_SIZE); intel_uuid_compute_device_id(device->device_uuid, &device->info, VK_UUID_SIZE); return VK_SUCCESS; } static void anv_physical_device_init_disk_cache(struct anv_physical_device *device) { #ifdef ENABLE_SHADER_CACHE char renderer[10]; ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x", device->info.pci_device_id); assert(len == sizeof(renderer) - 2); char timestamp[41]; _mesa_sha1_format(timestamp, device->driver_build_sha1); const uint64_t driver_flags = brw_get_compiler_config_value(device->compiler); device->vk.disk_cache = disk_cache_create(renderer, timestamp, driver_flags); #endif } static void anv_physical_device_free_disk_cache(struct anv_physical_device *device) { #ifdef ENABLE_SHADER_CACHE if (device->vk.disk_cache) { disk_cache_destroy(device->vk.disk_cache); device->vk.disk_cache = NULL; } #else assert(device->vk.disk_cache == NULL); #endif } /* The ANV_QUEUE_OVERRIDE environment variable is a comma separated list of * queue overrides. * * To override the number queues: * * "gc" is for graphics queues with compute support * * "g" is for graphics queues with no compute support * * "c" is for compute queues with no graphics support * * For example, ANV_QUEUE_OVERRIDE=gc=2,c=1 would override the number of * advertised queues to be 2 queues with graphics+compute support, and 1 queue * with compute-only support. * * ANV_QUEUE_OVERRIDE=c=1 would override the number of advertised queues to * include 1 queue with compute-only support, but it will not change the * number of graphics+compute queues. * * ANV_QUEUE_OVERRIDE=gc=0,c=1 would override the number of advertised queues * to include 1 queue with compute-only support, and it would override the * number of graphics+compute queues to be 0. */ static void anv_override_engine_counts(int *gc_count, int *g_count, int *c_count) { int gc_override = -1; int g_override = -1; int c_override = -1; char *env = getenv("ANV_QUEUE_OVERRIDE"); if (env == NULL) return; env = strdup(env); char *save = NULL; char *next = strtok_r(env, ",", &save); while (next != NULL) { if (strncmp(next, "gc=", 3) == 0) { gc_override = strtol(next + 3, NULL, 0); } else if (strncmp(next, "g=", 2) == 0) { g_override = strtol(next + 2, NULL, 0); } else if (strncmp(next, "c=", 2) == 0) { c_override = strtol(next + 2, NULL, 0); } else { mesa_logw("Ignoring unsupported ANV_QUEUE_OVERRIDE token: %s", next); } next = strtok_r(NULL, ",", &save); } free(env); if (gc_override >= 0) *gc_count = gc_override; if (g_override >= 0) *g_count = g_override; if (*g_count > 0 && *gc_count <= 0 && (gc_override >= 0 || g_override >= 0)) mesa_logw("ANV_QUEUE_OVERRIDE: gc=0 with g > 0 violates the " "Vulkan specification"); if (c_override >= 0) *c_count = c_override; } static void anv_physical_device_init_queue_families(struct anv_physical_device *pdevice) { uint32_t family_count = 0; if (pdevice->engine_info) { int gc_count = intel_gem_count_engines(pdevice->engine_info, I915_ENGINE_CLASS_RENDER); int g_count = 0; int c_count = 0; if (env_var_as_boolean("INTEL_COMPUTE_CLASS", false)) c_count = intel_gem_count_engines(pdevice->engine_info, I915_ENGINE_CLASS_COMPUTE); enum drm_i915_gem_engine_class compute_class = c_count < 1 ? I915_ENGINE_CLASS_RENDER : I915_ENGINE_CLASS_COMPUTE; anv_override_engine_counts(&gc_count, &g_count, &c_count); if (gc_count > 0) { pdevice->queue.families[family_count++] = (struct anv_queue_family) { .queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT, .queueCount = gc_count, .engine_class = I915_ENGINE_CLASS_RENDER, }; } if (g_count > 0) { pdevice->queue.families[family_count++] = (struct anv_queue_family) { .queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_TRANSFER_BIT, .queueCount = g_count, .engine_class = I915_ENGINE_CLASS_RENDER, }; } if (c_count > 0) { pdevice->queue.families[family_count++] = (struct anv_queue_family) { .queueFlags = VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT, .queueCount = c_count, .engine_class = compute_class, }; } /* Increase count below when other families are added as a reminder to * increase the ANV_MAX_QUEUE_FAMILIES value. */ STATIC_ASSERT(ANV_MAX_QUEUE_FAMILIES >= 3); } else { /* Default to a single render queue */ pdevice->queue.families[family_count++] = (struct anv_queue_family) { .queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT, .queueCount = 1, .engine_class = I915_ENGINE_CLASS_RENDER, }; family_count = 1; } assert(family_count <= ANV_MAX_QUEUE_FAMILIES); pdevice->queue.family_count = family_count; } static VkResult anv_physical_device_try_create(struct anv_instance *instance, drmDevicePtr drm_device, struct anv_physical_device **device_out) { const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY]; const char *path = drm_device->nodes[DRM_NODE_RENDER]; VkResult result; int fd; int master_fd = -1; brw_process_intel_debug_variable(); fd = open(path, O_RDWR | O_CLOEXEC); if (fd < 0) { if (errno == ENOMEM) { return vk_errorf(instance, VK_ERROR_OUT_OF_HOST_MEMORY, "Unable to open device %s: out of memory", path); } return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER, "Unable to open device %s: %m", path); } struct intel_device_info devinfo; if (!intel_get_device_info_from_fd(fd, &devinfo)) { result = vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER); goto fail_fd; } bool is_alpha = true; if (devinfo.platform == INTEL_PLATFORM_HSW) { mesa_logw("Haswell Vulkan support is incomplete"); } else if (devinfo.platform == INTEL_PLATFORM_IVB) { mesa_logw("Ivy Bridge Vulkan support is incomplete"); } else if (devinfo.platform == INTEL_PLATFORM_BYT) { mesa_logw("Bay Trail Vulkan support is incomplete"); } else if (devinfo.ver >= 8 && devinfo.ver <= 12) { /* Gfx8-12 fully supported */ is_alpha = false; } else { result = vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER, "Vulkan not yet supported on %s", devinfo.name); goto fail_fd; } struct anv_physical_device *device = vk_zalloc(&instance->vk.alloc, sizeof(*device), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (device == NULL) { result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY); goto fail_fd; } struct vk_physical_device_dispatch_table dispatch_table; vk_physical_device_dispatch_table_from_entrypoints( &dispatch_table, &anv_physical_device_entrypoints, true); vk_physical_device_dispatch_table_from_entrypoints( &dispatch_table, &wsi_physical_device_entrypoints, false); result = vk_physical_device_init(&device->vk, &instance->vk, NULL, /* We set up extensions later */ &dispatch_table); if (result != VK_SUCCESS) { vk_error(instance, result); goto fail_alloc; } device->instance = instance; assert(strlen(path) < ARRAY_SIZE(device->path)); snprintf(device->path, ARRAY_SIZE(device->path), "%s", path); device->info = devinfo; device->is_alpha = is_alpha; device->cmd_parser_version = -1; if (device->info.ver == 7) { device->cmd_parser_version = anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION); if (device->cmd_parser_version == -1) { result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED, "failed to get command parser version"); goto fail_base; } } if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) { result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED, "kernel missing gem wait"); goto fail_base; } if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) { result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED, "kernel missing execbuf2"); goto fail_base; } if (!device->info.has_llc && anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) { result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED, "kernel missing wc mmap"); goto fail_base; } device->use_relocations = device->info.ver < 8 || device->info.platform == INTEL_PLATFORM_CHV; if (!device->use_relocations && !anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)) { result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED, "kernel missing softpin"); goto fail_alloc; } if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY)) { result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED, "kernel missing syncobj support"); goto fail_base; } device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC); device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE); /* Start with medium; sorted low to high */ const int priorities[] = { INTEL_CONTEXT_MEDIUM_PRIORITY, INTEL_CONTEXT_HIGH_PRIORITY, INTEL_CONTEXT_REALTIME_PRIORITY, }; device->max_context_priority = INT_MIN; for (unsigned i = 0; i < ARRAY_SIZE(priorities); i++) { if (!anv_gem_has_context_priority(fd, priorities[i])) break; device->max_context_priority = priorities[i]; } device->gtt_size = device->info.gtt_size ? device->info.gtt_size : device->info.aperture_bytes; /* We only allow 48-bit addresses with softpin because knowing the actual * address is required for the vertex cache flush workaround. */ device->supports_48bit_addresses = (device->info.ver >= 8) && device->gtt_size > (4ULL << 30 /* GiB */); /* Initialize memory regions struct to 0. */ memset(&device->vram_non_mappable, 0, sizeof(device->vram_non_mappable)); memset(&device->vram_mappable, 0, sizeof(device->vram_mappable)); memset(&device->sys, 0, sizeof(device->sys)); result = anv_physical_device_init_heaps(device, fd); if (result != VK_SUCCESS) goto fail_base; assert(device->supports_48bit_addresses == !device->use_relocations); device->use_softpin = !device->use_relocations; device->has_context_isolation = anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION); device->has_exec_timeline = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_TIMELINE_FENCES); if (env_var_as_boolean("ANV_QUEUE_THREAD_DISABLE", false)) device->has_exec_timeline = false; unsigned st_idx = 0; device->sync_syncobj_type = vk_drm_syncobj_get_type(fd); if (!device->has_exec_timeline) device->sync_syncobj_type.features &= ~VK_SYNC_FEATURE_TIMELINE; device->sync_types[st_idx++] = &device->sync_syncobj_type; if (!(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT)) device->sync_types[st_idx++] = &anv_bo_sync_type; if (!(device->sync_syncobj_type.features & VK_SYNC_FEATURE_TIMELINE)) { device->sync_timeline_type = vk_sync_timeline_get_type(&anv_bo_sync_type); device->sync_types[st_idx++] = &device->sync_timeline_type.sync; } device->sync_types[st_idx++] = NULL; assert(st_idx <= ARRAY_SIZE(device->sync_types)); device->vk.supported_sync_types = device->sync_types; device->vk.pipeline_cache_import_ops = anv_cache_import_ops; device->always_use_bindless = env_var_as_boolean("ANV_ALWAYS_BINDLESS", false); device->use_call_secondary = device->use_softpin && !env_var_as_boolean("ANV_DISABLE_SECONDARY_CMD_BUFFER_CALLS", false); /* We first got the A64 messages on broadwell and we can only use them if * we can pass addresses directly into the shader which requires softpin. */ device->has_a64_buffer_access = device->info.ver >= 8 && device->use_softpin; /* We first get bindless image access on Skylake. */ device->has_bindless_images = device->info.ver >= 9; /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms) * because it's just a matter of setting the sampler address in the sample * message header. However, we've not bothered to wire it up for vec4 so * we leave it disabled on gfx7. */ device->has_bindless_samplers = device->info.ver >= 8; device->has_implicit_ccs = device->info.has_aux_map || device->info.verx10 >= 125; /* Check if we can read the GPU timestamp register from the CPU */ uint64_t u64_ignore; device->has_reg_timestamp = anv_gem_reg_read(fd, TIMESTAMP | I915_REG_READ_8B_WA, &u64_ignore) == 0; device->always_flush_cache = INTEL_DEBUG(DEBUG_STALL) || driQueryOptionb(&instance->dri_options, "always_flush_cache"); device->has_mmap_offset = anv_gem_get_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4; device->has_userptr_probe = anv_gem_get_param(fd, I915_PARAM_HAS_USERPTR_PROBE); device->compiler = brw_compiler_create(NULL, &device->info); if (device->compiler == NULL) { result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY); goto fail_base; } device->compiler->shader_debug_log = compiler_debug_log; device->compiler->shader_perf_log = compiler_perf_log; device->compiler->constant_buffer_0_is_relative = device->info.ver < 8 || !device->has_context_isolation; device->compiler->supports_shader_constants = true; device->compiler->indirect_ubos_use_sampler = device->info.ver < 12; isl_device_init(&device->isl_dev, &device->info); result = anv_physical_device_init_uuids(device); if (result != VK_SUCCESS) goto fail_compiler; anv_physical_device_init_disk_cache(device); if (instance->vk.enabled_extensions.KHR_display) { master_fd = open(primary_path, O_RDWR | O_CLOEXEC); if (master_fd >= 0) { /* prod the device with a GETPARAM call which will fail if * we don't have permission to even render on this device */ if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) { close(master_fd); master_fd = -1; } } } device->master_fd = master_fd; device->engine_info = anv_gem_get_engine_info(fd); anv_physical_device_init_queue_families(device); device->local_fd = fd; anv_physical_device_init_perf(device, fd); get_device_extensions(device, &device->vk.supported_extensions); result = anv_init_wsi(device); if (result != VK_SUCCESS) goto fail_perf; anv_measure_device_init(device); anv_genX(&device->info, init_physical_device_state)(device); *device_out = device; struct stat st; if (stat(primary_path, &st) == 0) { device->has_master = true; device->master_major = major(st.st_rdev); device->master_minor = minor(st.st_rdev); } else { device->has_master = false; device->master_major = 0; device->master_minor = 0; } if (stat(path, &st) == 0) { device->has_local = true; device->local_major = major(st.st_rdev); device->local_minor = minor(st.st_rdev); } else { device->has_local = false; device->local_major = 0; device->local_minor = 0; } return VK_SUCCESS; fail_perf: ralloc_free(device->perf); free(device->engine_info); anv_physical_device_free_disk_cache(device); fail_compiler: ralloc_free(device->compiler); fail_base: vk_physical_device_finish(&device->vk); fail_alloc: vk_free(&instance->vk.alloc, device); fail_fd: close(fd); if (master_fd != -1) close(master_fd); return result; } static void anv_physical_device_destroy(struct anv_physical_device *device) { anv_finish_wsi(device); anv_measure_device_destroy(device); free(device->engine_info); anv_physical_device_free_disk_cache(device); ralloc_free(device->compiler); ralloc_free(device->perf); close(device->local_fd); if (device->master_fd >= 0) close(device->master_fd); vk_physical_device_finish(&device->vk); vk_free(&device->instance->vk.alloc, device); } VkResult anv_EnumerateInstanceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { if (pLayerName) return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT); return vk_enumerate_instance_extension_properties( &instance_extensions, pPropertyCount, pProperties); } static void anv_init_dri_options(struct anv_instance *instance) { driParseOptionInfo(&instance->available_dri_options, anv_dri_options, ARRAY_SIZE(anv_dri_options)); driParseConfigFiles(&instance->dri_options, &instance->available_dri_options, 0, "anv", NULL, NULL, instance->vk.app_info.app_name, instance->vk.app_info.app_version, instance->vk.app_info.engine_name, instance->vk.app_info.engine_version); instance->assume_full_subgroups = driQueryOptionb(&instance->dri_options, "anv_assume_full_subgroups"); instance->limit_trig_input_range = driQueryOptionb(&instance->dri_options, "limit_trig_input_range"); instance->sample_mask_out_opengl_behaviour = driQueryOptionb(&instance->dri_options, "anv_sample_mask_out_opengl_behaviour"); } VkResult anv_CreateInstance( const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkInstance* pInstance) { struct anv_instance *instance; VkResult result; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO); if (pAllocator == NULL) pAllocator = vk_default_allocator(); instance = vk_alloc(pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!instance) return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY); struct vk_instance_dispatch_table dispatch_table; vk_instance_dispatch_table_from_entrypoints( &dispatch_table, &anv_instance_entrypoints, true); vk_instance_dispatch_table_from_entrypoints( &dispatch_table, &wsi_instance_entrypoints, false); result = vk_instance_init(&instance->vk, &instance_extensions, &dispatch_table, pCreateInfo, pAllocator); if (result != VK_SUCCESS) { vk_free(pAllocator, instance); return vk_error(NULL, result); } instance->physical_devices_enumerated = false; list_inithead(&instance->physical_devices); VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false)); anv_init_dri_options(instance); intel_driver_ds_init(); *pInstance = anv_instance_to_handle(instance); return VK_SUCCESS; } void anv_DestroyInstance( VkInstance _instance, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_instance, instance, _instance); if (!instance) return; list_for_each_entry_safe(struct anv_physical_device, pdevice, &instance->physical_devices, link) anv_physical_device_destroy(pdevice); VG(VALGRIND_DESTROY_MEMPOOL(instance)); driDestroyOptionCache(&instance->dri_options); driDestroyOptionInfo(&instance->available_dri_options); vk_instance_finish(&instance->vk); vk_free(&instance->vk.alloc, instance); } static VkResult anv_enumerate_physical_devices(struct anv_instance *instance) { if (instance->physical_devices_enumerated) return VK_SUCCESS; instance->physical_devices_enumerated = true; /* TODO: Check for more devices ? */ drmDevicePtr devices[8]; int max_devices; max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices)); if (max_devices < 1) return VK_SUCCESS; VkResult result = VK_SUCCESS; for (unsigned i = 0; i < (unsigned)max_devices; i++) { if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER && devices[i]->bustype == DRM_BUS_PCI && devices[i]->deviceinfo.pci->vendor_id == 0x8086) { struct anv_physical_device *pdevice; result = anv_physical_device_try_create(instance, devices[i], &pdevice); /* Incompatible DRM device, skip. */ if (result == VK_ERROR_INCOMPATIBLE_DRIVER) { result = VK_SUCCESS; continue; } /* Error creating the physical device, report the error. */ if (result != VK_SUCCESS) break; list_addtail(&pdevice->link, &instance->physical_devices); } } drmFreeDevices(devices, max_devices); /* If we successfully enumerated any devices, call it success */ return result; } VkResult anv_EnumeratePhysicalDevices( VkInstance _instance, uint32_t* pPhysicalDeviceCount, VkPhysicalDevice* pPhysicalDevices) { ANV_FROM_HANDLE(anv_instance, instance, _instance); VK_OUTARRAY_MAKE_TYPED(VkPhysicalDevice, out, pPhysicalDevices, pPhysicalDeviceCount); VkResult result = anv_enumerate_physical_devices(instance); if (result != VK_SUCCESS) return result; list_for_each_entry(struct anv_physical_device, pdevice, &instance->physical_devices, link) { vk_outarray_append_typed(VkPhysicalDevice, &out, i) { *i = anv_physical_device_to_handle(pdevice); } } return vk_outarray_status(&out); } VkResult anv_EnumeratePhysicalDeviceGroups( VkInstance _instance, uint32_t* pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties) { ANV_FROM_HANDLE(anv_instance, instance, _instance); VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceGroupProperties, out, pPhysicalDeviceGroupProperties, pPhysicalDeviceGroupCount); VkResult result = anv_enumerate_physical_devices(instance); if (result != VK_SUCCESS) return result; list_for_each_entry(struct anv_physical_device, pdevice, &instance->physical_devices, link) { vk_outarray_append_typed(VkPhysicalDeviceGroupProperties, &out, p) { p->physicalDeviceCount = 1; memset(p->physicalDevices, 0, sizeof(p->physicalDevices)); p->physicalDevices[0] = anv_physical_device_to_handle(pdevice); p->subsetAllocation = false; vk_foreach_struct(ext, p->pNext) anv_debug_ignored_stype(ext->sType); } } return vk_outarray_status(&out); } void anv_GetPhysicalDeviceFeatures( VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); /* Just pick one; they're all the same */ const bool has_astc_ldr = isl_format_supports_sampling(&pdevice->info, ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16); *pFeatures = (VkPhysicalDeviceFeatures) { .robustBufferAccess = true, .fullDrawIndexUint32 = true, .imageCubeArray = true, .independentBlend = true, .geometryShader = true, .tessellationShader = true, .sampleRateShading = true, .dualSrcBlend = true, .logicOp = true, .multiDrawIndirect = true, .drawIndirectFirstInstance = true, .depthClamp = true, .depthBiasClamp = true, .fillModeNonSolid = true, .depthBounds = pdevice->info.ver >= 12, .wideLines = true, .largePoints = true, .alphaToOne = true, .multiViewport = true, .samplerAnisotropy = true, .textureCompressionETC2 = pdevice->info.ver >= 8 || pdevice->info.platform == INTEL_PLATFORM_BYT, .textureCompressionASTC_LDR = has_astc_ldr, .textureCompressionBC = true, .occlusionQueryPrecise = true, .pipelineStatisticsQuery = true, .fragmentStoresAndAtomics = true, .shaderTessellationAndGeometryPointSize = true, .shaderImageGatherExtended = true, .shaderStorageImageExtendedFormats = true, .shaderStorageImageMultisample = false, .shaderStorageImageReadWithoutFormat = false, .shaderStorageImageWriteWithoutFormat = true, .shaderUniformBufferArrayDynamicIndexing = true, .shaderSampledImageArrayDynamicIndexing = true, .shaderStorageBufferArrayDynamicIndexing = true, .shaderStorageImageArrayDynamicIndexing = true, .shaderClipDistance = true, .shaderCullDistance = true, .shaderFloat64 = pdevice->info.ver >= 8 && pdevice->info.has_64bit_float, .shaderInt64 = pdevice->info.ver >= 8, .shaderInt16 = pdevice->info.ver >= 8, .shaderResourceMinLod = pdevice->info.ver >= 9, .variableMultisampleRate = true, .inheritedQueries = true, }; /* We can't do image stores in vec4 shaders */ pFeatures->vertexPipelineStoresAndAtomics = pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] && pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY]; struct vk_app_info *app_info = &pdevice->instance->vk.app_info; /* The new DOOM and Wolfenstein games require depthBounds without * checking for it. They seem to run fine without it so just claim it's * there and accept the consequences. */ if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0) pFeatures->depthBounds = true; } static void anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice, VkPhysicalDeviceVulkan11Features *f) { assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES); f->storageBuffer16BitAccess = pdevice->info.ver >= 8; f->uniformAndStorageBuffer16BitAccess = pdevice->info.ver >= 8; f->storagePushConstant16 = pdevice->info.ver >= 8; f->storageInputOutput16 = false; f->multiview = true; f->multiviewGeometryShader = true; f->multiviewTessellationShader = true; f->variablePointersStorageBuffer = true; f->variablePointers = true; f->protectedMemory = false; f->samplerYcbcrConversion = true; f->shaderDrawParameters = true; } static void anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice, VkPhysicalDeviceVulkan12Features *f) { assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES); f->samplerMirrorClampToEdge = true; f->drawIndirectCount = true; f->storageBuffer8BitAccess = pdevice->info.ver >= 8; f->uniformAndStorageBuffer8BitAccess = pdevice->info.ver >= 8; f->storagePushConstant8 = pdevice->info.ver >= 8; f->shaderBufferInt64Atomics = pdevice->info.ver >= 9; f->shaderSharedInt64Atomics = false; f->shaderFloat16 = pdevice->info.ver >= 8; f->shaderInt8 = pdevice->info.ver >= 8; bool descIndexing = pdevice->has_a64_buffer_access && pdevice->has_bindless_images; f->descriptorIndexing = descIndexing; f->shaderInputAttachmentArrayDynamicIndexing = false; f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing; f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing; f->shaderUniformBufferArrayNonUniformIndexing = false; f->shaderSampledImageArrayNonUniformIndexing = descIndexing; f->shaderStorageBufferArrayNonUniformIndexing = descIndexing; f->shaderStorageImageArrayNonUniformIndexing = descIndexing; f->shaderInputAttachmentArrayNonUniformIndexing = false; f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing; f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing; f->descriptorBindingUniformBufferUpdateAfterBind = descIndexing; f->descriptorBindingSampledImageUpdateAfterBind = descIndexing; f->descriptorBindingStorageImageUpdateAfterBind = descIndexing; f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing; f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing; f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing; f->descriptorBindingUpdateUnusedWhilePending = descIndexing; f->descriptorBindingPartiallyBound = descIndexing; f->descriptorBindingVariableDescriptorCount = descIndexing; f->runtimeDescriptorArray = descIndexing; f->samplerFilterMinmax = pdevice->info.ver >= 9; f->scalarBlockLayout = true; f->imagelessFramebuffer = true; f->uniformBufferStandardLayout = true; f->shaderSubgroupExtendedTypes = true; f->separateDepthStencilLayouts = true; f->hostQueryReset = true; f->timelineSemaphore = true; f->bufferDeviceAddress = pdevice->has_a64_buffer_access; f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access; f->bufferDeviceAddressMultiDevice = false; f->vulkanMemoryModel = true; f->vulkanMemoryModelDeviceScope = true; f->vulkanMemoryModelAvailabilityVisibilityChains = true; f->shaderOutputViewportIndex = true; f->shaderOutputLayer = true; f->subgroupBroadcastDynamicId = true; } static void anv_get_physical_device_features_1_3(struct anv_physical_device *pdevice, VkPhysicalDeviceVulkan13Features *f) { assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES); f->robustImageAccess = true; f->inlineUniformBlock = true; f->descriptorBindingInlineUniformBlockUpdateAfterBind = true; f->pipelineCreationCacheControl = true; f->privateData = true; f->shaderDemoteToHelperInvocation = true; f->shaderTerminateInvocation = true; f->subgroupSizeControl = true; f->computeFullSubgroups = true; f->synchronization2 = true; f->textureCompressionASTC_HDR = false; f->shaderZeroInitializeWorkgroupMemory = true; f->dynamicRendering = true; f->shaderIntegerDotProduct = true; f->maintenance4 = true; } void anv_GetPhysicalDeviceFeatures2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2* pFeatures) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features); VkPhysicalDeviceVulkan11Features core_1_1 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES, }; anv_get_physical_device_features_1_1(pdevice, &core_1_1); VkPhysicalDeviceVulkan12Features core_1_2 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES, }; anv_get_physical_device_features_1_2(pdevice, &core_1_2); VkPhysicalDeviceVulkan13Features core_1_3 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES, }; anv_get_physical_device_features_1_3(pdevice, &core_1_3); vk_foreach_struct(ext, pFeatures->pNext) { if (vk_get_physical_device_core_1_1_feature_ext(ext, &core_1_1)) continue; if (vk_get_physical_device_core_1_2_feature_ext(ext, &core_1_2)) continue; if (vk_get_physical_device_core_1_3_feature_ext(ext, &core_1_3)) continue; switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: { VkPhysicalDevice4444FormatsFeaturesEXT *features = (VkPhysicalDevice4444FormatsFeaturesEXT *)ext; features->formatA4R4G4B4 = true; features->formatA4B4G4R4 = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR: { VkPhysicalDeviceAccelerationStructureFeaturesKHR *features = (void *)ext; features->accelerationStructure = false; features->accelerationStructureCaptureReplay = false; features->accelerationStructureIndirectBuild = false; features->accelerationStructureHostCommands = false; features->descriptorBindingAccelerationStructureUpdateAfterBind = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: { VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext; features->bufferDeviceAddress = pdevice->has_a64_buffer_access; features->bufferDeviceAddressCaptureReplay = false; features->bufferDeviceAddressMultiDevice = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BORDER_COLOR_SWIZZLE_FEATURES_EXT: { VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *features = (VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *)ext; features->borderColorSwizzle = true; features->borderColorSwizzleFromImage = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COLOR_WRITE_ENABLE_FEATURES_EXT: { VkPhysicalDeviceColorWriteEnableFeaturesEXT *features = (VkPhysicalDeviceColorWriteEnableFeaturesEXT *)ext; features->colorWriteEnable = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT: { VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *features = (VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *)ext; features->image2DViewOf3D = true; features->sampler2DViewOf3D = pdevice->info.ver >= 9; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: { VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features = (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext; features->computeDerivativeGroupQuads = true; features->computeDerivativeGroupLinear = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: { VkPhysicalDeviceConditionalRenderingFeaturesEXT *features = (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext; features->conditionalRendering = pdevice->info.verx10 >= 75; features->inheritedConditionalRendering = pdevice->info.verx10 >= 75; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: { VkPhysicalDeviceCustomBorderColorFeaturesEXT *features = (VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext; features->customBorderColors = pdevice->info.ver >= 8; features->customBorderColorWithoutFormat = pdevice->info.ver >= 8; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: { VkPhysicalDeviceDepthClipEnableFeaturesEXT *features = (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext; features->depthClipEnable = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: { VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features = (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext; features->fragmentShaderSampleInterlock = pdevice->info.ver >= 9; features->fragmentShaderPixelInterlock = pdevice->info.ver >= 9; features->fragmentShaderShadingRateInterlock = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_KHR: { VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *features = (VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *)ext; features->globalPriorityQuery = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: { VkPhysicalDeviceFragmentShadingRateFeaturesKHR *features = (VkPhysicalDeviceFragmentShadingRateFeaturesKHR *)ext; features->attachmentFragmentShadingRate = false; features->pipelineFragmentShadingRate = true; features->primitiveFragmentShadingRate = pdevice->info.has_coarse_pixel_primitive_and_cb; features->attachmentFragmentShadingRate = pdevice->info.has_coarse_pixel_primitive_and_cb; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_MIN_LOD_FEATURES_EXT: { VkPhysicalDeviceImageViewMinLodFeaturesEXT *features = (VkPhysicalDeviceImageViewMinLodFeaturesEXT *)ext; features->minLod = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: { VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features = (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext; features->indexTypeUint8 = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: { VkPhysicalDeviceLineRasterizationFeaturesEXT *features = (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext; /* Rectangular lines must use the strict algorithm, which is not * supported for wide lines prior to ICL. See rasterization_mode for * details and how the HW states are programmed. */ features->rectangularLines = pdevice->info.ver >= 10; features->bresenhamLines = true; /* Support for Smooth lines with MSAA was removed on gfx11. From the * BSpec section "Multisample ModesState" table for "AA Line Support * Requirements": * * GFX10:BUG:######## NUM_MULTISAMPLES == 1 * * Fortunately, this isn't a case most people care about. */ features->smoothLines = pdevice->info.ver < 10; features->stippledRectangularLines = false; features->stippledBresenhamLines = true; features->stippledSmoothLines = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_NV: { VkPhysicalDeviceMeshShaderFeaturesNV *features = (VkPhysicalDeviceMeshShaderFeaturesNV *)ext; features->taskShader = pdevice->vk.supported_extensions.NV_mesh_shader; features->meshShader = pdevice->vk.supported_extensions.NV_mesh_shader; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_VALVE: { VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *features = (VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *)ext; features->mutableDescriptorType = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: { VkPhysicalDevicePerformanceQueryFeaturesKHR *feature = (VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext; feature->performanceCounterQueryPools = true; /* HW only supports a single configuration at a time. */ feature->performanceCounterMultipleQueryPools = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: { VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features = (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext; features->pipelineExecutableInfo = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT: { VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *features = (VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *)ext; features->primitivesGeneratedQuery = true; features->primitivesGeneratedQueryWithRasterizerDiscard = false; features->primitivesGeneratedQueryWithNonZeroStreams = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT: { VkPhysicalDeviceProvokingVertexFeaturesEXT *features = (VkPhysicalDeviceProvokingVertexFeaturesEXT *)ext; features->provokingVertexLast = true; features->transformFeedbackPreservesProvokingVertex = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR: { VkPhysicalDeviceRayQueryFeaturesKHR *features = (void *)ext; features->rayQuery = pdevice->info.has_ray_tracing; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: { VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext; features->robustBufferAccess2 = true; features->robustImageAccess2 = true; features->nullDescriptor = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: { VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features = (void *)ext; features->shaderBufferFloat32Atomics = true; features->shaderBufferFloat32AtomicAdd = pdevice->info.has_lsc; features->shaderBufferFloat64Atomics = pdevice->info.has_64bit_float && pdevice->info.has_lsc; features->shaderBufferFloat64AtomicAdd = false; features->shaderSharedFloat32Atomics = true; features->shaderSharedFloat32AtomicAdd = false; features->shaderSharedFloat64Atomics = false; features->shaderSharedFloat64AtomicAdd = false; features->shaderImageFloat32Atomics = true; features->shaderImageFloat32AtomicAdd = false; features->sparseImageFloat32Atomics = false; features->sparseImageFloat32AtomicAdd = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT: { VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *features = (void *)ext; features->shaderBufferFloat16Atomics = false; features->shaderBufferFloat16AtomicAdd = false; features->shaderBufferFloat16AtomicMinMax = false; features->shaderBufferFloat32AtomicMinMax = pdevice->info.ver >= 9; features->shaderBufferFloat64AtomicMinMax = pdevice->info.has_64bit_float && pdevice->info.has_lsc; features->shaderSharedFloat16Atomics = false; features->shaderSharedFloat16AtomicAdd = false; features->shaderSharedFloat16AtomicMinMax = false; features->shaderSharedFloat32AtomicMinMax = pdevice->info.ver >= 9; features->shaderSharedFloat64AtomicMinMax = false; features->shaderImageFloat32AtomicMinMax = false; features->sparseImageFloat32AtomicMinMax = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: { VkPhysicalDeviceShaderClockFeaturesKHR *features = (VkPhysicalDeviceShaderClockFeaturesKHR *)ext; features->shaderSubgroupClock = true; features->shaderDeviceClock = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL: { VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *features = (VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *)ext; features->shaderIntegerFunctions2 = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_FEATURES_EXT: { VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *features = (VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *)ext; features->shaderModuleIdentifier = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_FEATURES_KHR: { VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *features = (VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *)ext; features->shaderSubgroupUniformControlFlow = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: { VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features = (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext; features->texelBufferAlignment = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: { VkPhysicalDeviceTransformFeedbackFeaturesEXT *features = (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext; features->transformFeedback = true; features->geometryStreams = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: { VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features = (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext; features->vertexAttributeInstanceRateDivisor = true; features->vertexAttributeInstanceRateZeroDivisor = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR: { VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *features = (VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *)ext; features->workgroupMemoryExplicitLayout = true; features->workgroupMemoryExplicitLayoutScalarBlockLayout = true; features->workgroupMemoryExplicitLayout8BitAccess = true; features->workgroupMemoryExplicitLayout16BitAccess = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: { VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features = (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext; features->ycbcrImageArrays = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: { VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features = (VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *)ext; features->extendedDynamicState = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_2_FEATURES_EXT: { VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *features = (VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *)ext; features->extendedDynamicState2 = true; features->extendedDynamicState2LogicOp = true; features->extendedDynamicState2PatchControlPoints = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_FEATURES_EXT: { VkPhysicalDeviceMultiDrawFeaturesEXT *features = (VkPhysicalDeviceMultiDrawFeaturesEXT *)ext; features->multiDraw = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NON_SEAMLESS_CUBE_MAP_FEATURES_EXT : { VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *features = (VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *)ext; features->nonSeamlessCubeMap = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVE_TOPOLOGY_LIST_RESTART_FEATURES_EXT: { VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *features = (VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *)ext; features->primitiveTopologyListRestart = true; features->primitiveTopologyPatchListRestart = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_CONTROL_FEATURES_EXT: { VkPhysicalDeviceDepthClipControlFeaturesEXT *features = (VkPhysicalDeviceDepthClipControlFeaturesEXT *)ext; features->depthClipControl = true; break; } default: anv_debug_ignored_stype(ext->sType); break; } } } #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256 #define MAX_CUSTOM_BORDER_COLORS 4096 void anv_GetPhysicalDeviceProperties( VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties* pProperties) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); const struct intel_device_info *devinfo = &pdevice->info; const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64; const uint32_t max_textures = pdevice->has_bindless_images ? UINT16_MAX : 128; const uint32_t max_samplers = pdevice->has_bindless_samplers ? UINT16_MAX : (devinfo->verx10 >= 75) ? 128 : 16; const uint32_t max_images = pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES; /* If we can use bindless for everything, claim a high per-stage limit, * otherwise use the binding table size, minus the slots reserved for * render targets and one slot for the descriptor buffer. */ const uint32_t max_per_stage = pdevice->has_bindless_images && pdevice->has_a64_buffer_access ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1; const uint32_t max_workgroup_size = MIN2(1024, 32 * devinfo->max_cs_workgroup_threads); VkSampleCountFlags sample_counts = isl_device_get_sample_counts(&pdevice->isl_dev); VkPhysicalDeviceLimits limits = { .maxImageDimension1D = (1 << 14), .maxImageDimension2D = (1 << 14), .maxImageDimension3D = (1 << 11), .maxImageDimensionCube = (1 << 14), .maxImageArrayLayers = (1 << 11), .maxTexelBufferElements = 128 * 1024 * 1024, .maxUniformBufferRange = pdevice->compiler->indirect_ubos_use_sampler ? (1u << 27) : (1u << 30), .maxStorageBufferRange = pdevice->isl_dev.max_buffer_size, .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE, .maxMemoryAllocationCount = UINT32_MAX, .maxSamplerAllocationCount = 64 * 1024, .bufferImageGranularity = 1, .sparseAddressSpaceSize = 0, .maxBoundDescriptorSets = MAX_SETS, .maxPerStageDescriptorSamplers = max_samplers, .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, .maxPerStageDescriptorStorageBuffers = max_ssbos, .maxPerStageDescriptorSampledImages = max_textures, .maxPerStageDescriptorStorageImages = max_images, .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS, .maxPerStageResources = max_per_stage, .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */ .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */ .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2, .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */ .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2, .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */ .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */ .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS, .maxVertexInputAttributes = MAX_VES, .maxVertexInputBindings = MAX_VBS, /* Broadwell PRMs: Volume 2d: Command Reference: Structures: * * VERTEX_ELEMENT_STATE::Source Element Offset: [0,2047] */ .maxVertexInputAttributeOffset = 2047, /* Broadwell PRMs: Volume 2d: Command Reference: Structures: * * VERTEX_BUFFER_STATE::Buffer Pitch: [0,2048] * * Skylake PRMs: Volume 2d: Command Reference: Structures: * * VERTEX_BUFFER_STATE::Buffer Pitch: [0,4095] */ .maxVertexInputBindingStride = devinfo->ver < 9 ? 2048 : 4095, .maxVertexOutputComponents = 128, .maxTessellationGenerationLevel = 64, .maxTessellationPatchSize = 32, .maxTessellationControlPerVertexInputComponents = 128, .maxTessellationControlPerVertexOutputComponents = 128, .maxTessellationControlPerPatchOutputComponents = 128, .maxTessellationControlTotalOutputComponents = 2048, .maxTessellationEvaluationInputComponents = 128, .maxTessellationEvaluationOutputComponents = 128, .maxGeometryShaderInvocations = 32, .maxGeometryInputComponents = devinfo->ver >= 8 ? 128 : 64, .maxGeometryOutputComponents = 128, .maxGeometryOutputVertices = 256, .maxGeometryTotalOutputComponents = 1024, .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */ .maxFragmentOutputAttachments = 8, .maxFragmentDualSrcAttachments = 1, .maxFragmentCombinedOutputResources = MAX_RTS + max_ssbos + max_images, .maxComputeSharedMemorySize = 64 * 1024, .maxComputeWorkGroupCount = { 65535, 65535, 65535 }, .maxComputeWorkGroupInvocations = max_workgroup_size, .maxComputeWorkGroupSize = { max_workgroup_size, max_workgroup_size, max_workgroup_size, }, .subPixelPrecisionBits = 8, .subTexelPrecisionBits = 8, .mipmapPrecisionBits = 8, .maxDrawIndexedIndexValue = UINT32_MAX, .maxDrawIndirectCount = UINT32_MAX, .maxSamplerLodBias = 16, .maxSamplerAnisotropy = 16, .maxViewports = MAX_VIEWPORTS, .maxViewportDimensions = { (1 << 14), (1 << 14) }, .viewportBoundsRange = { INT16_MIN, INT16_MAX }, .viewportSubPixelBits = 13, /* We take a float? */ .minMemoryMapAlignment = 4096, /* A page */ /* The dataport requires texel alignment so we need to assume a worst * case of R32G32B32A32 which is 16 bytes. */ .minTexelBufferOffsetAlignment = 16, .minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT, .minStorageBufferOffsetAlignment = ANV_SSBO_ALIGNMENT, .minTexelOffset = -8, .maxTexelOffset = 7, .minTexelGatherOffset = -32, .maxTexelGatherOffset = 31, .minInterpolationOffset = -0.5, .maxInterpolationOffset = 0.4375, .subPixelInterpolationOffsetBits = 4, .maxFramebufferWidth = (1 << 14), .maxFramebufferHeight = (1 << 14), .maxFramebufferLayers = (1 << 11), .framebufferColorSampleCounts = sample_counts, .framebufferDepthSampleCounts = sample_counts, .framebufferStencilSampleCounts = sample_counts, .framebufferNoAttachmentsSampleCounts = sample_counts, .maxColorAttachments = MAX_RTS, .sampledImageColorSampleCounts = sample_counts, .sampledImageIntegerSampleCounts = sample_counts, .sampledImageDepthSampleCounts = sample_counts, .sampledImageStencilSampleCounts = sample_counts, .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT, .maxSampleMaskWords = 1, .timestampComputeAndGraphics = true, .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency, .maxClipDistances = 8, .maxCullDistances = 8, .maxCombinedClipAndCullDistances = 8, .discreteQueuePriorities = 2, .pointSizeRange = { 0.125, 255.875 }, /* While SKL and up support much wider lines than we are setting here, * in practice we run into conformance issues if we go past this limit. * Since the Windows driver does the same, it's probably fair to assume * that no one needs more than this. */ .lineWidthRange = { 0.0, devinfo->ver >= 9 ? 8.0 : 7.9921875 }, .pointSizeGranularity = (1.0 / 8.0), .lineWidthGranularity = (1.0 / 128.0), .strictLines = false, .standardSampleLocations = true, .optimalBufferCopyOffsetAlignment = 128, .optimalBufferCopyRowPitchAlignment = 128, .nonCoherentAtomSize = 64, }; *pProperties = (VkPhysicalDeviceProperties) { .apiVersion = ANV_API_VERSION, .driverVersion = vk_get_driver_version(), .vendorID = 0x8086, .deviceID = pdevice->info.pci_device_id, .deviceType = pdevice->info.has_local_mem ? VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU : VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU, .limits = limits, .sparseProperties = {0}, /* Broadwell doesn't do sparse. */ }; snprintf(pProperties->deviceName, sizeof(pProperties->deviceName), "%s", pdevice->info.name); memcpy(pProperties->pipelineCacheUUID, pdevice->pipeline_cache_uuid, VK_UUID_SIZE); } static void anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice, VkPhysicalDeviceVulkan11Properties *p) { assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES); memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE); memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE); memset(p->deviceLUID, 0, VK_LUID_SIZE); p->deviceNodeMask = 0; p->deviceLUIDValid = false; p->subgroupSize = BRW_SUBGROUP_SIZE; VkShaderStageFlags scalar_stages = 0; for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) { if (pdevice->compiler->scalar_stage[stage]) scalar_stages |= mesa_to_vk_shader_stage(stage); } if (pdevice->vk.supported_extensions.KHR_ray_tracing_pipeline) { scalar_stages |= VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR | VK_SHADER_STAGE_CALLABLE_BIT_KHR; } if (pdevice->vk.supported_extensions.NV_mesh_shader) { scalar_stages |= VK_SHADER_STAGE_TASK_BIT_NV | VK_SHADER_STAGE_MESH_BIT_NV; } p->subgroupSupportedStages = scalar_stages; p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_VOTE_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT | VK_SUBGROUP_FEATURE_QUAD_BIT; if (pdevice->info.ver >= 8) { /* TODO: There's no technical reason why these can't be made to * work on gfx7 but they don't at the moment so it's best to leave * the feature disabled than enabled and broken. */ p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_CLUSTERED_BIT; } p->subgroupQuadOperationsInAllStages = pdevice->info.ver >= 8; p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY; p->maxMultiviewViewCount = 16; p->maxMultiviewInstanceIndex = UINT32_MAX / 16; p->protectedNoFault = false; /* This value doesn't matter for us today as our per-stage descriptors are * the real limit. */ p->maxPerSetDescriptors = 1024; p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE; } static void anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice, VkPhysicalDeviceVulkan12Properties *p) { assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES); p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA; memset(p->driverName, 0, sizeof(p->driverName)); snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE, "Intel open-source Mesa driver"); memset(p->driverInfo, 0, sizeof(p->driverInfo)); snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1); /* Don't advertise conformance with a particular version if the hardware's * support is incomplete/alpha. */ if (pdevice->is_alpha) { p->conformanceVersion = (VkConformanceVersion) { .major = 0, .minor = 0, .subminor = 0, .patch = 0, }; } else { p->conformanceVersion = (VkConformanceVersion) { .major = 1, .minor = 3, .subminor = 0, .patch = 0, }; } p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL; p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE; /* Broadwell does not support HF denorms and there are restrictions * other gens. According to Kabylake's PRM: * * "math - Extended Math Function * [...] * Restriction : Half-float denorms are always retained." */ p->shaderDenormFlushToZeroFloat16 = false; p->shaderDenormPreserveFloat16 = pdevice->info.ver > 8; p->shaderRoundingModeRTEFloat16 = true; p->shaderRoundingModeRTZFloat16 = true; p->shaderSignedZeroInfNanPreserveFloat16 = true; p->shaderDenormFlushToZeroFloat32 = true; p->shaderDenormPreserveFloat32 = true; p->shaderRoundingModeRTEFloat32 = true; p->shaderRoundingModeRTZFloat32 = true; p->shaderSignedZeroInfNanPreserveFloat32 = true; p->shaderDenormFlushToZeroFloat64 = true; p->shaderDenormPreserveFloat64 = true; p->shaderRoundingModeRTEFloat64 = true; p->shaderRoundingModeRTZFloat64 = true; p->shaderSignedZeroInfNanPreserveFloat64 = true; /* It's a bit hard to exactly map our implementation to the limits * described by Vulkan. The bindless surface handle in the extended * message descriptors is 20 bits and it's an index into the table of * RENDER_SURFACE_STATE structs that starts at bindless surface base * address. This means that we can have at must 1M surface states * allocated at any given time. Since most image views take two * descriptors, this means we have a limit of about 500K image views. * * However, since we allocate surface states at vkCreateImageView time, * this means our limit is actually something on the order of 500K image * views allocated at any time. The actual limit describe by Vulkan, on * the other hand, is a limit of how many you can have in a descriptor set. * Assuming anyone using 1M descriptors will be using the same image view * twice a bunch of times (or a bunch of null descriptors), we can safely * advertise a larger limit here. */ const unsigned max_bindless_views = 1 << 20; p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views; p->shaderUniformBufferArrayNonUniformIndexingNative = false; p->shaderSampledImageArrayNonUniformIndexingNative = false; p->shaderStorageBufferArrayNonUniformIndexingNative = true; p->shaderStorageImageArrayNonUniformIndexingNative = false; p->shaderInputAttachmentArrayNonUniformIndexingNative = false; p->robustBufferAccessUpdateAfterBind = true; p->quadDivergentImplicitLod = false; p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views; p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS; p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX; p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views; p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views; p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS; p->maxPerStageUpdateAfterBindResources = UINT32_MAX; p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views; p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS; p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2; p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX; p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2; p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views; p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views; p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS; /* We support all of the depth resolve modes */ p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT | VK_RESOLVE_MODE_AVERAGE_BIT | VK_RESOLVE_MODE_MIN_BIT | VK_RESOLVE_MODE_MAX_BIT; /* Average doesn't make sense for stencil so we don't support that */ p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT; if (pdevice->info.ver >= 8) { /* The advanced stencil resolve modes currently require stencil * sampling be supported by the hardware. */ p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT | VK_RESOLVE_MODE_MAX_BIT; } p->independentResolveNone = true; p->independentResolve = true; p->filterMinmaxSingleComponentFormats = pdevice->info.ver >= 9; p->filterMinmaxImageComponentMapping = pdevice->info.ver >= 9; p->maxTimelineSemaphoreValueDifference = UINT64_MAX; p->framebufferIntegerColorSampleCounts = isl_device_get_sample_counts(&pdevice->isl_dev); } static void anv_get_physical_device_properties_1_3(struct anv_physical_device *pdevice, VkPhysicalDeviceVulkan13Properties *p) { assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES); p->minSubgroupSize = 8; p->maxSubgroupSize = 32; p->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_workgroup_threads; p->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT | VK_SHADER_STAGE_TASK_BIT_NV | VK_SHADER_STAGE_MESH_BIT_NV; p->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE; p->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS; p->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS; p->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS; p->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS; p->maxInlineUniformTotalSize = UINT16_MAX; p->integerDotProduct8BitUnsignedAccelerated = false; p->integerDotProduct8BitSignedAccelerated = false; p->integerDotProduct8BitMixedSignednessAccelerated = false; p->integerDotProduct4x8BitPackedUnsignedAccelerated = pdevice->info.ver >= 12; p->integerDotProduct4x8BitPackedSignedAccelerated = pdevice->info.ver >= 12; p->integerDotProduct4x8BitPackedMixedSignednessAccelerated = pdevice->info.ver >= 12; p->integerDotProduct16BitUnsignedAccelerated = false; p->integerDotProduct16BitSignedAccelerated = false; p->integerDotProduct16BitMixedSignednessAccelerated = false; p->integerDotProduct32BitUnsignedAccelerated = false; p->integerDotProduct32BitSignedAccelerated = false; p->integerDotProduct32BitMixedSignednessAccelerated = false; p->integerDotProduct64BitUnsignedAccelerated = false; p->integerDotProduct64BitSignedAccelerated = false; p->integerDotProduct64BitMixedSignednessAccelerated = false; p->integerDotProductAccumulatingSaturating8BitUnsignedAccelerated = false; p->integerDotProductAccumulatingSaturating8BitSignedAccelerated = false; p->integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated = false; p->integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated = pdevice->info.ver >= 12; p->integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated = pdevice->info.ver >= 12; p->integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated = pdevice->info.ver >= 12; p->integerDotProductAccumulatingSaturating16BitUnsignedAccelerated = false; p->integerDotProductAccumulatingSaturating16BitSignedAccelerated = false; p->integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated = false; p->integerDotProductAccumulatingSaturating32BitUnsignedAccelerated = false; p->integerDotProductAccumulatingSaturating32BitSignedAccelerated = false; p->integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated = false; p->integerDotProductAccumulatingSaturating64BitUnsignedAccelerated = false; p->integerDotProductAccumulatingSaturating64BitSignedAccelerated = false; p->integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated = false; /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface * Base Address: * * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field * specifies the base address of the first element of the surface, * computed in software by adding the surface base address to the * byte offset of the element in the buffer. The base address must * be aligned to element size." * * The typed dataport messages require that things be texel aligned. * Otherwise, we may just load/store the wrong data or, in the worst * case, there may be hangs. */ p->storageTexelBufferOffsetAlignmentBytes = 16; p->storageTexelBufferOffsetSingleTexelAlignment = true; /* The sampler, however, is much more forgiving and it can handle * arbitrary byte alignment for linear and buffer surfaces. It's * hard to find a good PRM citation for this but years of empirical * experience demonstrate that this is true. */ p->uniformTexelBufferOffsetAlignmentBytes = 1; p->uniformTexelBufferOffsetSingleTexelAlignment = false; p->maxBufferSize = pdevice->isl_dev.max_buffer_size; } void anv_GetPhysicalDeviceProperties2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2* pProperties) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties); VkPhysicalDeviceVulkan11Properties core_1_1 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES, }; anv_get_physical_device_properties_1_1(pdevice, &core_1_1); VkPhysicalDeviceVulkan12Properties core_1_2 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES, }; anv_get_physical_device_properties_1_2(pdevice, &core_1_2); VkPhysicalDeviceVulkan13Properties core_1_3 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES, }; anv_get_physical_device_properties_1_3(pdevice, &core_1_3); vk_foreach_struct(ext, pProperties->pNext) { if (vk_get_physical_device_core_1_1_property_ext(ext, &core_1_1)) continue; if (vk_get_physical_device_core_1_2_property_ext(ext, &core_1_2)) continue; if (vk_get_physical_device_core_1_3_property_ext(ext, &core_1_3)) continue; switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR: { VkPhysicalDeviceAccelerationStructurePropertiesKHR *props = (void *)ext; props->maxGeometryCount = (1u << 24) - 1; props->maxInstanceCount = (1u << 24) - 1; props->maxPrimitiveCount = (1u << 29) - 1; props->maxPerStageDescriptorAccelerationStructures = UINT16_MAX; props->maxPerStageDescriptorUpdateAfterBindAccelerationStructures = UINT16_MAX; props->maxDescriptorSetAccelerationStructures = UINT16_MAX; props->maxDescriptorSetUpdateAfterBindAccelerationStructures = UINT16_MAX; props->minAccelerationStructureScratchOffsetAlignment = 64; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: { /* TODO: Real limits */ VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties = (VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext; /* There's nothing in the public docs about this value as far as I * can tell. However, this is the value the Windows driver reports * and there's a comment on a rejected HW feature in the internal * docs that says: * * "This is similar to conservative rasterization, except the * primitive area is not extended by 1/512 and..." * * That's a bit of an obtuse reference but it's the best we've got * for now. */ properties->primitiveOverestimationSize = 1.0f / 512.0f; properties->maxExtraPrimitiveOverestimationSize = 0.0f; properties->extraPrimitiveOverestimationSizeGranularity = 0.0f; properties->primitiveUnderestimation = false; properties->conservativePointAndLineRasterization = false; properties->degenerateTrianglesRasterized = true; properties->degenerateLinesRasterized = false; properties->fullyCoveredFragmentShaderInputVariable = false; properties->conservativeRasterizationPostDepthCoverage = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: { VkPhysicalDeviceCustomBorderColorPropertiesEXT *properties = (VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext; properties->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR: { VkPhysicalDeviceFragmentShadingRatePropertiesKHR *props = (VkPhysicalDeviceFragmentShadingRatePropertiesKHR *)ext; props->primitiveFragmentShadingRateWithMultipleViewports = pdevice->info.has_coarse_pixel_primitive_and_cb; props->layeredShadingRateAttachments = pdevice->info.has_coarse_pixel_primitive_and_cb; props->fragmentShadingRateNonTrivialCombinerOps = pdevice->info.has_coarse_pixel_primitive_and_cb; props->maxFragmentSize = (VkExtent2D) { 4, 4 }; props->maxFragmentSizeAspectRatio = pdevice->info.has_coarse_pixel_primitive_and_cb ? 2 : 4; props->maxFragmentShadingRateCoverageSamples = 4 * 4 * (pdevice->info.has_coarse_pixel_primitive_and_cb ? 4 : 16); props->maxFragmentShadingRateRasterizationSamples = pdevice->info.has_coarse_pixel_primitive_and_cb ? VK_SAMPLE_COUNT_4_BIT : VK_SAMPLE_COUNT_16_BIT; props->fragmentShadingRateWithShaderDepthStencilWrites = false; props->fragmentShadingRateWithSampleMask = true; props->fragmentShadingRateWithShaderSampleMask = false; props->fragmentShadingRateWithConservativeRasterization = true; props->fragmentShadingRateWithFragmentShaderInterlock = true; props->fragmentShadingRateWithCustomSampleLocations = true; /* Fix in DG2_G10_C0 and DG2_G11_B0. Consider any other Sku as having * the fix. */ props->fragmentShadingRateStrictMultiplyCombiner = pdevice->info.platform == INTEL_PLATFORM_DG2_G10 ? pdevice->info.revision >= 8 : pdevice->info.platform == INTEL_PLATFORM_DG2_G11 ? pdevice->info.revision >= 4 : true; if (pdevice->info.has_coarse_pixel_primitive_and_cb) { props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 8, 8 }; props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 8, 8 }; props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1; } else { /* Those must be 0 if attachmentFragmentShadingRate is not * supported. */ props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 0, 0 }; props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 0, 0 }; props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 0; } break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT: { VkPhysicalDeviceDrmPropertiesEXT *props = (VkPhysicalDeviceDrmPropertiesEXT *)ext; props->hasPrimary = pdevice->has_master; props->primaryMajor = pdevice->master_major; props->primaryMinor = pdevice->master_minor; props->hasRender = pdevice->has_local; props->renderMajor = pdevice->local_major; props->renderMinor = pdevice->local_minor; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: { VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props = (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext; /* Userptr needs page aligned memory. */ props->minImportedHostPointerAlignment = 4096; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: { VkPhysicalDeviceLineRasterizationPropertiesEXT *props = (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext; /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond) * Sampling Rules - Legacy Mode", it says the following: * * "Note that the device divides a pixel into a 16x16 array of * subpixels, referenced by their upper left corners." * * This is the only known reference in the PRMs to the subpixel * precision of line rasterization and a "16x16 array of subpixels" * implies 4 subpixel precision bits. Empirical testing has shown * that 4 subpixel precision bits applies to all line rasterization * types. */ props->lineSubPixelPrecisionBits = 4; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES: { VkPhysicalDeviceMaintenance4Properties *properties = (VkPhysicalDeviceMaintenance4Properties *)ext; properties->maxBufferSize = pdevice->isl_dev.max_buffer_size; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_NV: { VkPhysicalDeviceMeshShaderPropertiesNV *props = (VkPhysicalDeviceMeshShaderPropertiesNV *)ext; /* Bounded by the maximum representable size in * 3DSTATE_MESH_SHADER_BODY::SharedLocalMemorySize. Same for Task. */ const uint32_t max_slm_size = 64 * 1024; /* Bounded by the maximum representable size in * 3DSTATE_MESH_SHADER_BODY::LocalXMaximum. Same for Task. */ const uint32_t max_workgroup_size = 1 << 10; /* Bounded by the maximum representable count in * 3DSTATE_MESH_SHADER_BODY::MaximumPrimitiveCount. */ const uint32_t max_primitives = 1024; /* TODO(mesh): Multiview. */ const uint32_t max_view_count = 1; props->maxDrawMeshTasksCount = UINT32_MAX; /* TODO(mesh): Implement workgroup Y and Z sizes larger than one by * mapping them to/from the single value that HW provides us * (currently used for X). */ props->maxTaskWorkGroupInvocations = max_workgroup_size; props->maxTaskWorkGroupSize[0] = max_workgroup_size; props->maxTaskWorkGroupSize[1] = 1; props->maxTaskWorkGroupSize[2] = 1; props->maxTaskTotalMemorySize = max_slm_size; props->maxTaskOutputCount = UINT16_MAX; props->maxMeshWorkGroupInvocations = max_workgroup_size; props->maxMeshWorkGroupSize[0] = max_workgroup_size; props->maxMeshWorkGroupSize[1] = 1; props->maxMeshWorkGroupSize[2] = 1; props->maxMeshTotalMemorySize = max_slm_size / max_view_count; props->maxMeshOutputPrimitives = max_primitives / max_view_count; props->maxMeshMultiviewViewCount = max_view_count; /* Depends on what indices can be represented with IndexFormat. For * now we always use U32, so bound to the maximum unique vertices we * need for the maximum primitives. * * TODO(mesh): Revisit this if we drop "U32" IndexFormat when adding * support for others. */ props->maxMeshOutputVertices = 3 * props->maxMeshOutputPrimitives; props->meshOutputPerVertexGranularity = 32; props->meshOutputPerPrimitiveGranularity = 32; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: { VkPhysicalDevicePCIBusInfoPropertiesEXT *properties = (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext; properties->pciDomain = pdevice->info.pci_domain; properties->pciBus = pdevice->info.pci_bus; properties->pciDevice = pdevice->info.pci_dev; properties->pciFunction = pdevice->info.pci_func; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: { VkPhysicalDevicePerformanceQueryPropertiesKHR *properties = (VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext; /* We could support this by spawning a shader to do the equation * normalization. */ properties->allowCommandBufferQueryCopies = false; break; } #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wswitch" case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: { VkPhysicalDevicePresentationPropertiesANDROID *props = (VkPhysicalDevicePresentationPropertiesANDROID *)ext; props->sharedImage = VK_FALSE; break; } #pragma GCC diagnostic pop case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT: { VkPhysicalDeviceProvokingVertexPropertiesEXT *properties = (VkPhysicalDeviceProvokingVertexPropertiesEXT *)ext; properties->provokingVertexModePerPipeline = true; properties->transformFeedbackPreservesTriangleFanProvokingVertex = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: { VkPhysicalDevicePushDescriptorPropertiesKHR *properties = (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext; properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: { VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext; properties->robustStorageBufferAccessSizeAlignment = ANV_SSBO_BOUNDS_CHECK_ALIGNMENT; properties->robustUniformBufferAccessSizeAlignment = ANV_UBO_ALIGNMENT; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: { VkPhysicalDeviceSampleLocationsPropertiesEXT *props = (VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext; props->sampleLocationSampleCounts = isl_device_get_sample_counts(&pdevice->isl_dev); /* See also anv_GetPhysicalDeviceMultisamplePropertiesEXT */ props->maxSampleLocationGridSize.width = 1; props->maxSampleLocationGridSize.height = 1; props->sampleLocationCoordinateRange[0] = 0; props->sampleLocationCoordinateRange[1] = 0.9375; props->sampleLocationSubPixelBits = 4; props->variableSampleLocations = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT: { VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *props = (VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *)ext; STATIC_ASSERT(sizeof(vk_shaderModuleIdentifierAlgorithmUUID) == sizeof(props->shaderModuleIdentifierAlgorithmUUID)); memcpy(props->shaderModuleIdentifierAlgorithmUUID, vk_shaderModuleIdentifierAlgorithmUUID, sizeof(props->shaderModuleIdentifierAlgorithmUUID)); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: { VkPhysicalDeviceTransformFeedbackPropertiesEXT *props = (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext; props->maxTransformFeedbackStreams = MAX_XFB_STREAMS; props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS; props->maxTransformFeedbackBufferSize = (1ull << 32); props->maxTransformFeedbackStreamDataSize = 128 * 4; props->maxTransformFeedbackBufferDataSize = 128 * 4; props->maxTransformFeedbackBufferDataStride = 2048; props->transformFeedbackQueries = true; props->transformFeedbackStreamsLinesTriangles = false; props->transformFeedbackRasterizationStreamSelect = false; /* This requires MI_MATH */ props->transformFeedbackDraw = pdevice->info.verx10 >= 75; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: { VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props = (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext; /* We have to restrict this a bit for multiview */ props->maxVertexAttribDivisor = UINT32_MAX / 16; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT: { VkPhysicalDeviceMultiDrawPropertiesEXT *props = (VkPhysicalDeviceMultiDrawPropertiesEXT *)ext; props->maxMultiDrawCount = 2048; break; } default: anv_debug_ignored_stype(ext->sType); break; } } } static int vk_priority_to_gen(int priority) { switch (priority) { case VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR: return INTEL_CONTEXT_LOW_PRIORITY; case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR: return INTEL_CONTEXT_MEDIUM_PRIORITY; case VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR: return INTEL_CONTEXT_HIGH_PRIORITY; case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR: return INTEL_CONTEXT_REALTIME_PRIORITY; default: unreachable("Invalid priority"); } } static const VkQueueFamilyProperties anv_queue_family_properties_template = { .timestampValidBits = 36, /* XXX: Real value here */ .minImageTransferGranularity = { 1, 1, 1 }, }; void anv_GetPhysicalDeviceQueueFamilyProperties2( VkPhysicalDevice physicalDevice, uint32_t* pQueueFamilyPropertyCount, VkQueueFamilyProperties2* pQueueFamilyProperties) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); VK_OUTARRAY_MAKE_TYPED(VkQueueFamilyProperties2, out, pQueueFamilyProperties, pQueueFamilyPropertyCount); for (uint32_t i = 0; i < pdevice->queue.family_count; i++) { struct anv_queue_family *queue_family = &pdevice->queue.families[i]; vk_outarray_append_typed(VkQueueFamilyProperties2, &out, p) { p->queueFamilyProperties = anv_queue_family_properties_template; p->queueFamilyProperties.queueFlags = queue_family->queueFlags; p->queueFamilyProperties.queueCount = queue_family->queueCount; vk_foreach_struct(ext, p->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR: { VkQueueFamilyGlobalPriorityPropertiesKHR *properties = (VkQueueFamilyGlobalPriorityPropertiesKHR *)ext; /* Deliberately sorted low to high */ VkQueueGlobalPriorityKHR all_priorities[] = { VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR, VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR, VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR, VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR, }; uint32_t count = 0; for (unsigned i = 0; i < ARRAY_SIZE(all_priorities); i++) { if (vk_priority_to_gen(all_priorities[i]) > pdevice->max_context_priority) break; properties->priorities[count++] = all_priorities[i]; } properties->priorityCount = count; break; } default: anv_debug_ignored_stype(ext->sType); } } } } } void anv_GetPhysicalDeviceMemoryProperties( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties* pMemoryProperties) { ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice); pMemoryProperties->memoryTypeCount = physical_device->memory.type_count; for (uint32_t i = 0; i < physical_device->memory.type_count; i++) { pMemoryProperties->memoryTypes[i] = (VkMemoryType) { .propertyFlags = physical_device->memory.types[i].propertyFlags, .heapIndex = physical_device->memory.types[i].heapIndex, }; } pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count; for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) { pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) { .size = physical_device->memory.heaps[i].size, .flags = physical_device->memory.heaps[i].flags, }; } } static void anv_get_memory_budget(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget) { ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice); if (!device->vk.supported_extensions.EXT_memory_budget) return; anv_update_meminfo(device, device->local_fd); VkDeviceSize total_sys_heaps_size = 0, total_vram_heaps_size = 0; for (size_t i = 0; i < device->memory.heap_count; i++) { if (device->memory.heaps[i].is_local_mem) { total_vram_heaps_size += device->memory.heaps[i].size; } else { total_sys_heaps_size += device->memory.heaps[i].size; } } for (size_t i = 0; i < device->memory.heap_count; i++) { VkDeviceSize heap_size = device->memory.heaps[i].size; VkDeviceSize heap_used = device->memory.heaps[i].used; VkDeviceSize heap_budget, total_heaps_size; uint64_t mem_available = 0; if (device->memory.heaps[i].is_local_mem) { total_heaps_size = total_vram_heaps_size; if (device->vram_non_mappable.size > 0 && i == 0) { mem_available = device->vram_non_mappable.available; } else { mem_available = device->vram_mappable.available; } } else { total_heaps_size = total_sys_heaps_size; mem_available = device->sys.available; } double heap_proportion = (double) heap_size / total_heaps_size; VkDeviceSize available_prop = mem_available * heap_proportion; /* * Let's not incite the app to starve the system: report at most 90% of * the available heap memory. */ uint64_t heap_available = available_prop * 9 / 10; heap_budget = MIN2(heap_size, heap_used + heap_available); /* * Round down to the nearest MB */ heap_budget &= ~((1ull << 20) - 1); /* * The heapBudget value must be non-zero for array elements less than * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget * value must be less than or equal to VkMemoryHeap::size for each heap. */ assert(0 < heap_budget && heap_budget <= heap_size); memoryBudget->heapUsage[i] = heap_used; memoryBudget->heapBudget[i] = heap_budget; } /* The heapBudget and heapUsage values must be zero for array elements * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount */ for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) { memoryBudget->heapBudget[i] = 0; memoryBudget->heapUsage[i] = 0; } } void anv_GetPhysicalDeviceMemoryProperties2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2* pMemoryProperties) { anv_GetPhysicalDeviceMemoryProperties(physicalDevice, &pMemoryProperties->memoryProperties); vk_foreach_struct(ext, pMemoryProperties->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT: anv_get_memory_budget(physicalDevice, (void*)ext); break; default: anv_debug_ignored_stype(ext->sType); break; } } } void anv_GetDeviceGroupPeerMemoryFeatures( VkDevice device, uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, VkPeerMemoryFeatureFlags* pPeerMemoryFeatures) { assert(localDeviceIndex == 0 && remoteDeviceIndex == 0); *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT | VK_PEER_MEMORY_FEATURE_COPY_DST_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT; } PFN_vkVoidFunction anv_GetInstanceProcAddr( VkInstance _instance, const char* pName) { ANV_FROM_HANDLE(anv_instance, instance, _instance); return vk_instance_get_proc_addr(&instance->vk, &anv_instance_entrypoints, pName); } /* With version 1+ of the loader interface the ICD should expose * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps. */ PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( VkInstance instance, const char* pName); PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( VkInstance instance, const char* pName) { return anv_GetInstanceProcAddr(instance, pName); } /* With version 4+ of the loader interface the ICD should expose * vk_icdGetPhysicalDeviceProcAddr() */ PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr( VkInstance _instance, const char* pName); PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr( VkInstance _instance, const char* pName) { ANV_FROM_HANDLE(anv_instance, instance, _instance); return vk_instance_get_physical_device_proc_addr(&instance->vk, pName); } static struct anv_state anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p) { struct anv_state state; state = anv_state_pool_alloc(pool, size, align); memcpy(state.map, p, size); return state; } static void anv_device_init_border_colors(struct anv_device *device) { if (device->info.platform == INTEL_PLATFORM_HSW) { static const struct hsw_border_color border_colors[] = { [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } }, [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } }, [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } }, [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } }, [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } }, [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } }, }; device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool, sizeof(border_colors), 512, border_colors); } else { static const struct gfx8_border_color border_colors[] = { [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } }, [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } }, [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } }, [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } }, [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } }, [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } }, }; device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool, sizeof(border_colors), 64, border_colors); } } static VkResult anv_device_init_trivial_batch(struct anv_device *device) { VkResult result = anv_device_alloc_bo(device, "trivial-batch", 4096, ANV_BO_ALLOC_MAPPED, 0 /* explicit_address */, &device->trivial_batch_bo); if (result != VK_SUCCESS) return result; struct anv_batch batch = { .start = device->trivial_batch_bo->map, .next = device->trivial_batch_bo->map, .end = device->trivial_batch_bo->map + 4096, }; anv_batch_emit(&batch, GFX7_MI_BATCH_BUFFER_END, bbe); anv_batch_emit(&batch, GFX7_MI_NOOP, noop); if (device->physical->memory.need_clflush) intel_clflush_range(batch.start, batch.next - batch.start); return VK_SUCCESS; } static bool get_bo_from_pool(struct intel_batch_decode_bo *ret, struct anv_block_pool *pool, uint64_t address) { anv_block_pool_foreach_bo(bo, pool) { uint64_t bo_address = intel_48b_address(bo->offset); if (address >= bo_address && address < (bo_address + bo->size)) { *ret = (struct intel_batch_decode_bo) { .addr = bo_address, .size = bo->size, .map = bo->map, }; return true; } } return false; } /* Finding a buffer for batch decoding */ static struct intel_batch_decode_bo decode_get_bo(void *v_batch, bool ppgtt, uint64_t address) { struct anv_device *device = v_batch; struct intel_batch_decode_bo ret_bo = {}; assert(ppgtt); if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address)) return ret_bo; if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address)) return ret_bo; if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address)) return ret_bo; if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address)) return ret_bo; if (!device->cmd_buffer_being_decoded) return (struct intel_batch_decode_bo) { }; struct anv_batch_bo **bo; u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) { /* The decoder zeroes out the top 16 bits, so we need to as well */ uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16); if (address >= bo_address && address < bo_address + (*bo)->bo->size) { return (struct intel_batch_decode_bo) { .addr = bo_address, .size = (*bo)->bo->size, .map = (*bo)->bo->map, }; } } return (struct intel_batch_decode_bo) { }; } struct intel_aux_map_buffer { struct intel_buffer base; struct anv_state state; }; static struct intel_buffer * intel_aux_map_buffer_alloc(void *driver_ctx, uint32_t size) { struct intel_aux_map_buffer *buf = malloc(sizeof(struct intel_aux_map_buffer)); if (!buf) return NULL; struct anv_device *device = (struct anv_device*)driver_ctx; assert(device->physical->supports_48bit_addresses && device->physical->use_softpin); struct anv_state_pool *pool = &device->dynamic_state_pool; buf->state = anv_state_pool_alloc(pool, size, size); buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset; buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size; buf->base.map = buf->state.map; buf->base.driver_bo = &buf->state; return &buf->base; } static void intel_aux_map_buffer_free(void *driver_ctx, struct intel_buffer *buffer) { struct intel_aux_map_buffer *buf = (struct intel_aux_map_buffer*)buffer; struct anv_device *device = (struct anv_device*)driver_ctx; struct anv_state_pool *pool = &device->dynamic_state_pool; anv_state_pool_free(pool, buf->state); free(buf); } static struct intel_mapped_pinned_buffer_alloc aux_map_allocator = { .alloc = intel_aux_map_buffer_alloc, .free = intel_aux_map_buffer_free, }; static VkResult anv_device_check_status(struct vk_device *vk_device); VkResult anv_CreateDevice( VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) { ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice); VkResult result; struct anv_device *device; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO); /* Check enabled features */ bool robust_buffer_access = false; if (pCreateInfo->pEnabledFeatures) { if (pCreateInfo->pEnabledFeatures->robustBufferAccess) robust_buffer_access = true; } vk_foreach_struct_const(ext, pCreateInfo->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: { const VkPhysicalDeviceFeatures2 *features = (const void *)ext; if (features->features.robustBufferAccess) robust_buffer_access = true; break; } default: /* Don't warn */ break; } } /* Check requested queues and fail if we are requested to create any * queues with flags we don't support. */ assert(pCreateInfo->queueCreateInfoCount > 0); for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) { if (pCreateInfo->pQueueCreateInfos[i].flags != 0) return vk_error(physical_device, VK_ERROR_INITIALIZATION_FAILED); } /* Check if client specified queue priority. */ const VkDeviceQueueGlobalPriorityCreateInfoKHR *queue_priority = vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR); VkQueueGlobalPriorityKHR priority = queue_priority ? queue_priority->globalPriority : VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR; device = vk_zalloc2(&physical_device->instance->vk.alloc, pAllocator, sizeof(*device), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!device) return vk_error(physical_device, VK_ERROR_OUT_OF_HOST_MEMORY); struct vk_device_dispatch_table dispatch_table; vk_device_dispatch_table_from_entrypoints(&dispatch_table, anv_genX(&physical_device->info, device_entrypoints), true); vk_device_dispatch_table_from_entrypoints(&dispatch_table, &anv_device_entrypoints, false); vk_device_dispatch_table_from_entrypoints(&dispatch_table, &wsi_device_entrypoints, false); result = vk_device_init(&device->vk, &physical_device->vk, &dispatch_table, pCreateInfo, pAllocator); if (result != VK_SUCCESS) goto fail_alloc; if (INTEL_DEBUG(DEBUG_BATCH)) { const unsigned decode_flags = INTEL_BATCH_DECODE_FULL | (INTEL_DEBUG(DEBUG_COLOR) ? INTEL_BATCH_DECODE_IN_COLOR : 0) | INTEL_BATCH_DECODE_OFFSETS | INTEL_BATCH_DECODE_FLOATS; intel_batch_decode_ctx_init(&device->decoder_ctx, &physical_device->compiler->isa, &physical_device->info, stderr, decode_flags, NULL, decode_get_bo, NULL, device); device->decoder_ctx.dynamic_base = DYNAMIC_STATE_POOL_MIN_ADDRESS; device->decoder_ctx.surface_base = SURFACE_STATE_POOL_MIN_ADDRESS; device->decoder_ctx.instruction_base = INSTRUCTION_STATE_POOL_MIN_ADDRESS; } device->physical = physical_device; /* XXX(chadv): Can we dup() physicalDevice->fd here? */ device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC); if (device->fd == -1) { result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED); goto fail_device; } device->vk.check_status = anv_device_check_status; device->vk.create_sync_for_memory = anv_create_sync_for_memory; vk_device_set_drm_fd(&device->vk, device->fd); uint32_t num_queues = 0; for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) num_queues += pCreateInfo->pQueueCreateInfos[i].queueCount; if (device->physical->engine_info) { /* The kernel API supports at most 64 engines */ assert(num_queues <= 64); uint16_t engine_classes[64]; int engine_count = 0; for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) { const VkDeviceQueueCreateInfo *queueCreateInfo = &pCreateInfo->pQueueCreateInfos[i]; assert(queueCreateInfo->queueFamilyIndex < physical_device->queue.family_count); struct anv_queue_family *queue_family = &physical_device->queue.families[queueCreateInfo->queueFamilyIndex]; for (uint32_t j = 0; j < queueCreateInfo->queueCount; j++) engine_classes[engine_count++] = queue_family->engine_class; } device->context_id = intel_gem_create_context_engines(device->fd, physical_device->engine_info, engine_count, engine_classes); } else { assert(num_queues == 1); device->context_id = anv_gem_create_context(device); } if (device->context_id == -1) { result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED); goto fail_fd; } /* Here we tell the kernel not to attempt to recover our context but * immediately (on the next batchbuffer submission) report that the * context is lost, and we will do the recovery ourselves. In the case * of Vulkan, recovery means throwing VK_ERROR_DEVICE_LOST and letting * the client clean up the pieces. */ anv_gem_set_context_param(device->fd, device->context_id, I915_CONTEXT_PARAM_RECOVERABLE, false); device->queues = vk_zalloc(&device->vk.alloc, num_queues * sizeof(*device->queues), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (device->queues == NULL) { result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); goto fail_context_id; } device->queue_count = 0; for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) { const VkDeviceQueueCreateInfo *queueCreateInfo = &pCreateInfo->pQueueCreateInfos[i]; for (uint32_t j = 0; j < queueCreateInfo->queueCount; j++) { /* When using legacy contexts, we use I915_EXEC_RENDER but, with * engine-based contexts, the bottom 6 bits of exec_flags are used * for the engine ID. */ uint32_t exec_flags = device->physical->engine_info ? device->queue_count : I915_EXEC_RENDER; result = anv_queue_init(device, &device->queues[device->queue_count], exec_flags, queueCreateInfo, j); if (result != VK_SUCCESS) goto fail_queues; device->queue_count++; } } if (!anv_use_relocations(physical_device)) { if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) { result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED); goto fail_queues; } /* keep the page with address zero out of the allocator */ util_vma_heap_init(&device->vma_lo, LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE); util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS, CLIENT_VISIBLE_HEAP_SIZE); /* Leave the last 4GiB out of the high vma range, so that no state * base address + size can overflow 48 bits. For more information see * the comment about Wa32bitGeneralStateOffset in anv_allocator.c */ util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS, physical_device->gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS); } list_inithead(&device->memory_objects); /* As per spec, the driver implementation may deny requests to acquire * a priority above the default priority (MEDIUM) if the caller does not * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_KHR * is returned. */ if (physical_device->max_context_priority >= INTEL_CONTEXT_MEDIUM_PRIORITY) { int err = anv_gem_set_context_param(device->fd, device->context_id, I915_CONTEXT_PARAM_PRIORITY, vk_priority_to_gen(priority)); if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR) { result = vk_error(device, VK_ERROR_NOT_PERMITTED_KHR); goto fail_vmas; } } device->info = physical_device->info; device->isl_dev = physical_device->isl_dev; /* On Broadwell and later, we can use batch chaining to more efficiently * implement growing command buffers. Prior to Haswell, the kernel * command parser gets in the way and we have to fall back to growing * the batch. */ device->can_chain_batches = device->info.ver >= 8; device->robust_buffer_access = robust_buffer_access; if (pthread_mutex_init(&device->mutex, NULL) != 0) { result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED); goto fail_queues; } pthread_condattr_t condattr; if (pthread_condattr_init(&condattr) != 0) { result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED); goto fail_mutex; } if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) { pthread_condattr_destroy(&condattr); result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED); goto fail_mutex; } if (pthread_cond_init(&device->queue_submit, &condattr) != 0) { pthread_condattr_destroy(&condattr); result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED); goto fail_mutex; } pthread_condattr_destroy(&condattr); result = anv_bo_cache_init(&device->bo_cache, device); if (result != VK_SUCCESS) goto fail_queue_cond; anv_bo_pool_init(&device->batch_bo_pool, device, "batch"); /* Because scratch is also relative to General State Base Address, we leave * the base address 0 and start the pool memory at an offset. This way we * get the correct offsets in the anv_states that get allocated from it. */ result = anv_state_pool_init(&device->general_state_pool, device, "general pool", 0, GENERAL_STATE_POOL_MIN_ADDRESS, 16384); if (result != VK_SUCCESS) goto fail_batch_bo_pool; result = anv_state_pool_init(&device->dynamic_state_pool, device, "dynamic pool", DYNAMIC_STATE_POOL_MIN_ADDRESS, 0, 16384); if (result != VK_SUCCESS) goto fail_general_state_pool; if (device->info.ver >= 8) { /* The border color pointer is limited to 24 bits, so we need to make * sure that any such color used at any point in the program doesn't * exceed that limit. * We achieve that by reserving all the custom border colors we support * right off the bat, so they are close to the base address. */ anv_state_reserved_pool_init(&device->custom_border_colors, &device->dynamic_state_pool, MAX_CUSTOM_BORDER_COLORS, sizeof(struct gfx8_border_color), 64); } result = anv_state_pool_init(&device->instruction_state_pool, device, "instruction pool", INSTRUCTION_STATE_POOL_MIN_ADDRESS, 0, 16384); if (result != VK_SUCCESS) goto fail_dynamic_state_pool; result = anv_state_pool_init(&device->surface_state_pool, device, "surface state pool", SURFACE_STATE_POOL_MIN_ADDRESS, 0, 4096); if (result != VK_SUCCESS) goto fail_instruction_state_pool; if (device->info.verx10 >= 125) { /* We're using 3DSTATE_BINDING_TABLE_POOL_ALLOC to give the binding * table its own base address separately from surface state base. */ result = anv_state_pool_init(&device->binding_table_pool, device, "binding table pool", BINDING_TABLE_POOL_MIN_ADDRESS, 0, BINDING_TABLE_POOL_BLOCK_SIZE); } else if (!anv_use_relocations(physical_device)) { int64_t bt_pool_offset = (int64_t)BINDING_TABLE_POOL_MIN_ADDRESS - (int64_t)SURFACE_STATE_POOL_MIN_ADDRESS; assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0); result = anv_state_pool_init(&device->binding_table_pool, device, "binding table pool", SURFACE_STATE_POOL_MIN_ADDRESS, bt_pool_offset, BINDING_TABLE_POOL_BLOCK_SIZE); } if (result != VK_SUCCESS) goto fail_surface_state_pool; if (device->info.has_aux_map) { device->aux_map_ctx = intel_aux_map_init(device, &aux_map_allocator, &physical_device->info); if (!device->aux_map_ctx) goto fail_binding_table_pool; } result = anv_device_alloc_bo(device, "workaround", 4096, ANV_BO_ALLOC_CAPTURE | ANV_BO_ALLOC_MAPPED | ANV_BO_ALLOC_LOCAL_MEM, 0 /* explicit_address */, &device->workaround_bo); if (result != VK_SUCCESS) goto fail_surface_aux_map_pool; device->workaround_address = (struct anv_address) { .bo = device->workaround_bo, .offset = align_u32( intel_debug_write_identifiers(device->workaround_bo->map, device->workaround_bo->size, "Anv") + 8, 8), }; device->debug_frame_desc = intel_debug_get_identifier_block(device->workaround_bo->map, device->workaround_bo->size, INTEL_DEBUG_BLOCK_TYPE_FRAME); if (device->vk.enabled_extensions.KHR_ray_query) { uint32_t ray_queries_size = align_u32(brw_rt_ray_queries_hw_stacks_size(&device->info), 4096); result = anv_device_alloc_bo(device, "ray queries", ray_queries_size, ANV_BO_ALLOC_LOCAL_MEM, 0 /* explicit_address */, &device->ray_query_bo); if (result != VK_SUCCESS) goto fail_workaround_bo; } result = anv_device_init_trivial_batch(device); if (result != VK_SUCCESS) goto fail_ray_query_bo; if (device->info.ver >= 12 && device->vk.enabled_extensions.KHR_fragment_shading_rate) { uint32_t n_cps_states = 3 * 3; /* All combinaisons of X by Y CP sizes (1, 2, 4) */ if (device->info.has_coarse_pixel_primitive_and_cb) n_cps_states *= 5 * 5; /* 5 combiners by 2 operators */ n_cps_states += 1; /* Disable CPS */ /* Each of the combinaison must be replicated on all viewports */ n_cps_states *= MAX_VIEWPORTS; device->cps_states = anv_state_pool_alloc(&device->dynamic_state_pool, n_cps_states * CPS_STATE_length(&device->info) * 4, 32); if (device->cps_states.map == NULL) goto fail_trivial_batch; anv_genX(&device->info, init_cps_device_state)(device); } /* Allocate a null surface state at surface state offset 0. This makes * NULL descriptor handling trivial because we can just memset structures * to zero and they have a valid descriptor. */ device->null_surface_state = anv_state_pool_alloc(&device->surface_state_pool, device->isl_dev.ss.size, device->isl_dev.ss.align); isl_null_fill_state(&device->isl_dev, device->null_surface_state.map, .size = isl_extent3d(1, 1, 1) /* This shouldn't matter */); assert(device->null_surface_state.offset == 0); anv_scratch_pool_init(device, &device->scratch_pool); /* TODO(RT): Do we want some sort of data structure for this? */ memset(device->rt_scratch_bos, 0, sizeof(device->rt_scratch_bos)); result = anv_genX(&device->info, init_device_state)(device); if (result != VK_SUCCESS) goto fail_trivial_batch_bo_and_scratch_pool; struct vk_pipeline_cache_create_info pcc_info = { }; device->default_pipeline_cache = vk_pipeline_cache_create(&device->vk, &pcc_info, NULL); if (!device->default_pipeline_cache) { result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); goto fail_trivial_batch_bo_and_scratch_pool; } /* Internal shaders need their own pipeline cache because, unlike the rest * of ANV, it won't work at all without the cache. It depends on it for * shaders to remain resident while it runs. Therefore, we need a special * cache just for BLORP/RT that's forced to always be enabled. */ pcc_info.force_enable = true; device->internal_cache = vk_pipeline_cache_create(&device->vk, &pcc_info, NULL); if (device->internal_cache == NULL) { result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); goto fail_default_pipeline_cache; } result = anv_device_init_rt_shaders(device); if (result != VK_SUCCESS) { result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); goto fail_internal_cache; } anv_device_init_blorp(device); anv_device_init_border_colors(device); anv_device_perf_init(device); anv_device_utrace_init(device); *pDevice = anv_device_to_handle(device); return VK_SUCCESS; fail_internal_cache: vk_pipeline_cache_destroy(device->internal_cache, NULL); fail_default_pipeline_cache: vk_pipeline_cache_destroy(device->default_pipeline_cache, NULL); fail_trivial_batch_bo_and_scratch_pool: anv_scratch_pool_finish(device, &device->scratch_pool); fail_trivial_batch: anv_device_release_bo(device, device->trivial_batch_bo); fail_ray_query_bo: if (device->ray_query_bo) anv_device_release_bo(device, device->ray_query_bo); fail_workaround_bo: anv_device_release_bo(device, device->workaround_bo); fail_surface_aux_map_pool: if (device->info.has_aux_map) { intel_aux_map_finish(device->aux_map_ctx); device->aux_map_ctx = NULL; } fail_binding_table_pool: if (!anv_use_relocations(physical_device)) anv_state_pool_finish(&device->binding_table_pool); fail_surface_state_pool: anv_state_pool_finish(&device->surface_state_pool); fail_instruction_state_pool: anv_state_pool_finish(&device->instruction_state_pool); fail_dynamic_state_pool: if (device->info.ver >= 8) anv_state_reserved_pool_finish(&device->custom_border_colors); anv_state_pool_finish(&device->dynamic_state_pool); fail_general_state_pool: anv_state_pool_finish(&device->general_state_pool); fail_batch_bo_pool: anv_bo_pool_finish(&device->batch_bo_pool); anv_bo_cache_finish(&device->bo_cache); fail_queue_cond: pthread_cond_destroy(&device->queue_submit); fail_mutex: pthread_mutex_destroy(&device->mutex); fail_vmas: if (!anv_use_relocations(physical_device)) { util_vma_heap_finish(&device->vma_hi); util_vma_heap_finish(&device->vma_cva); util_vma_heap_finish(&device->vma_lo); } fail_queues: for (uint32_t i = 0; i < device->queue_count; i++) anv_queue_finish(&device->queues[i]); vk_free(&device->vk.alloc, device->queues); fail_context_id: anv_gem_destroy_context(device, device->context_id); fail_fd: close(device->fd); fail_device: vk_device_finish(&device->vk); fail_alloc: vk_free(&device->vk.alloc, device); return result; } void anv_DestroyDevice( VkDevice _device, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); if (!device) return; anv_device_utrace_finish(device); anv_device_finish_blorp(device); anv_device_finish_rt_shaders(device); vk_pipeline_cache_destroy(device->internal_cache, NULL); vk_pipeline_cache_destroy(device->default_pipeline_cache, NULL); #ifdef HAVE_VALGRIND /* We only need to free these to prevent valgrind errors. The backing * BO will go away in a couple of lines so we don't actually leak. */ if (device->info.ver >= 8) anv_state_reserved_pool_finish(&device->custom_border_colors); anv_state_pool_free(&device->dynamic_state_pool, device->border_colors); anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash); anv_state_pool_free(&device->dynamic_state_pool, device->cps_states); #endif for (unsigned i = 0; i < ARRAY_SIZE(device->rt_scratch_bos); i++) { if (device->rt_scratch_bos[i] != NULL) anv_device_release_bo(device, device->rt_scratch_bos[i]); } anv_scratch_pool_finish(device, &device->scratch_pool); if (device->vk.enabled_extensions.KHR_ray_query) { for (unsigned i = 0; i < ARRAY_SIZE(device->ray_query_shadow_bos); i++) { if (device->ray_query_shadow_bos[i] != NULL) anv_device_release_bo(device, device->ray_query_shadow_bos[i]); } anv_device_release_bo(device, device->ray_query_bo); } anv_device_release_bo(device, device->workaround_bo); anv_device_release_bo(device, device->trivial_batch_bo); if (device->info.has_aux_map) { intel_aux_map_finish(device->aux_map_ctx); device->aux_map_ctx = NULL; } if (!anv_use_relocations(device->physical)) anv_state_pool_finish(&device->binding_table_pool); anv_state_pool_finish(&device->surface_state_pool); anv_state_pool_finish(&device->instruction_state_pool); anv_state_pool_finish(&device->dynamic_state_pool); anv_state_pool_finish(&device->general_state_pool); anv_bo_pool_finish(&device->batch_bo_pool); anv_bo_cache_finish(&device->bo_cache); if (!anv_use_relocations(device->physical)) { util_vma_heap_finish(&device->vma_hi); util_vma_heap_finish(&device->vma_cva); util_vma_heap_finish(&device->vma_lo); } pthread_cond_destroy(&device->queue_submit); pthread_mutex_destroy(&device->mutex); for (uint32_t i = 0; i < device->queue_count; i++) anv_queue_finish(&device->queues[i]); vk_free(&device->vk.alloc, device->queues); anv_gem_destroy_context(device, device->context_id); if (INTEL_DEBUG(DEBUG_BATCH)) intel_batch_decode_ctx_finish(&device->decoder_ctx); close(device->fd); vk_device_finish(&device->vk); vk_free(&device->vk.alloc, device); } VkResult anv_EnumerateInstanceLayerProperties( uint32_t* pPropertyCount, VkLayerProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = 0; return VK_SUCCESS; } /* None supported at this time */ return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT); } static VkResult anv_device_check_status(struct vk_device *vk_device) { struct anv_device *device = container_of(vk_device, struct anv_device, vk); uint32_t active, pending; int ret = anv_gem_context_get_reset_stats(device->fd, device->context_id, &active, &pending); if (ret == -1) { /* We don't know the real error. */ return vk_device_set_lost(&device->vk, "get_reset_stats failed: %m"); } if (active) { return vk_device_set_lost(&device->vk, "GPU hung on one of our command buffers"); } else if (pending) { return vk_device_set_lost(&device->vk, "GPU hung with commands in-flight"); } return VK_SUCCESS; } VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo, int64_t timeout) { int ret = anv_gem_wait(device, bo->gem_handle, &timeout); if (ret == -1 && errno == ETIME) { return VK_TIMEOUT; } else if (ret == -1) { /* We don't know the real error. */ return vk_device_set_lost(&device->vk, "gem wait failed: %m"); } else { return VK_SUCCESS; } } uint64_t anv_vma_alloc(struct anv_device *device, uint64_t size, uint64_t align, enum anv_bo_alloc_flags alloc_flags, uint64_t client_address) { pthread_mutex_lock(&device->vma_mutex); uint64_t addr = 0; if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) { if (client_address) { if (util_vma_heap_alloc_addr(&device->vma_cva, client_address, size)) { addr = client_address; } } else { addr = util_vma_heap_alloc(&device->vma_cva, size, align); } /* We don't want to fall back to other heaps */ goto done; } assert(client_address == 0); if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS)) addr = util_vma_heap_alloc(&device->vma_hi, size, align); if (addr == 0) addr = util_vma_heap_alloc(&device->vma_lo, size, align); done: pthread_mutex_unlock(&device->vma_mutex); assert(addr == intel_48b_address(addr)); return intel_canonical_address(addr); } void anv_vma_free(struct anv_device *device, uint64_t address, uint64_t size) { const uint64_t addr_48b = intel_48b_address(address); pthread_mutex_lock(&device->vma_mutex); if (addr_48b >= LOW_HEAP_MIN_ADDRESS && addr_48b <= LOW_HEAP_MAX_ADDRESS) { util_vma_heap_free(&device->vma_lo, addr_48b, size); } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS && addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) { util_vma_heap_free(&device->vma_cva, addr_48b, size); } else { assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS); util_vma_heap_free(&device->vma_hi, addr_48b, size); } pthread_mutex_unlock(&device->vma_mutex); } VkResult anv_AllocateMemory( VkDevice _device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMem) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_physical_device *pdevice = device->physical; struct anv_device_memory *mem; VkResult result = VK_SUCCESS; assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO); /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */ assert(pAllocateInfo->allocationSize > 0); VkDeviceSize aligned_alloc_size = align_u64(pAllocateInfo->allocationSize, 4096); if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE) return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count); struct anv_memory_type *mem_type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex]; assert(mem_type->heapIndex < pdevice->memory.heap_count); struct anv_memory_heap *mem_heap = &pdevice->memory.heaps[mem_type->heapIndex]; uint64_t mem_heap_used = p_atomic_read(&mem_heap->used); if (mem_heap_used + aligned_alloc_size > mem_heap->size) return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); mem = vk_object_alloc(&device->vk, pAllocator, sizeof(*mem), VK_OBJECT_TYPE_DEVICE_MEMORY); if (mem == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); mem->type = mem_type; mem->map = NULL; mem->map_size = 0; mem->map_delta = 0; mem->ahw = NULL; mem->host_ptr = NULL; enum anv_bo_alloc_flags alloc_flags = 0; const VkExportMemoryAllocateInfo *export_info = NULL; const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL; const VkImportMemoryFdInfoKHR *fd_info = NULL; const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL; const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL; VkMemoryAllocateFlags vk_flags = 0; uint64_t client_address = 0; vk_foreach_struct_const(ext, pAllocateInfo->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO: export_info = (void *)ext; break; case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID: ahw_import_info = (void *)ext; break; case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR: fd_info = (void *)ext; break; case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT: host_ptr_info = (void *)ext; break; case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: { const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext; vk_flags = flags_info->flags; break; } case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO: dedicated_info = (void *)ext; break; case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO: { const VkMemoryOpaqueCaptureAddressAllocateInfo *addr_info = (const VkMemoryOpaqueCaptureAddressAllocateInfo *)ext; client_address = addr_info->opaqueCaptureAddress; break; } default: if (ext->sType != VK_STRUCTURE_TYPE_WSI_MEMORY_ALLOCATE_INFO_MESA) /* this isn't a real enum value, * so use conditional to avoid compiler warn */ anv_debug_ignored_stype(ext->sType); break; } } /* By default, we want all VkDeviceMemory objects to support CCS */ if (device->physical->has_implicit_ccs && device->info.has_aux_map) alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS; /* If i915 reported a mappable/non_mappable vram regions and the * application want lmem mappable, then we need to use the * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS flag to create our BO. */ if (pdevice->vram_mappable.size > 0 && pdevice->vram_non_mappable.size > 0 && (mem_type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) && (mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) alloc_flags |= ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE; if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT) alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS; if ((export_info && export_info->handleTypes) || (fd_info && fd_info->handleType) || (host_ptr_info && host_ptr_info->handleType)) { /* Anything imported or exported is EXTERNAL */ alloc_flags |= ANV_BO_ALLOC_EXTERNAL; } /* Check if we need to support Android HW buffer export. If so, * create AHardwareBuffer and import memory from it. */ bool android_export = false; if (export_info && export_info->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) android_export = true; if (ahw_import_info) { result = anv_import_ahw_memory(_device, mem, ahw_import_info); if (result != VK_SUCCESS) goto fail; goto success; } else if (android_export) { result = anv_create_ahw_memory(_device, mem, pAllocateInfo); if (result != VK_SUCCESS) goto fail; goto success; } /* The Vulkan spec permits handleType to be 0, in which case the struct is * ignored. */ if (fd_info && fd_info->handleType) { /* At the moment, we support only the below handle types. */ assert(fd_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT || fd_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); result = anv_device_import_bo(device, fd_info->fd, alloc_flags, client_address, &mem->bo); if (result != VK_SUCCESS) goto fail; /* For security purposes, we reject importing the bo if it's smaller * than the requested allocation size. This prevents a malicious client * from passing a buffer to a trusted client, lying about the size, and * telling the trusted client to try and texture from an image that goes * out-of-bounds. This sort of thing could lead to GPU hangs or worse * in the trusted client. The trusted client can protect itself against * this sort of attack but only if it can trust the buffer size. */ if (mem->bo->size < aligned_alloc_size) { result = vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, "aligned allocationSize too large for " "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: " "%"PRIu64"B > %"PRIu64"B", aligned_alloc_size, mem->bo->size); anv_device_release_bo(device, mem->bo); goto fail; } /* From the Vulkan spec: * * "Importing memory from a file descriptor transfers ownership of * the file descriptor from the application to the Vulkan * implementation. The application must not perform any operations on * the file descriptor after a successful import." * * If the import fails, we leave the file descriptor open. */ close(fd_info->fd); goto success; } if (host_ptr_info && host_ptr_info->handleType) { if (host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) { result = vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE); goto fail; } assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT); result = anv_device_import_bo_from_host_ptr(device, host_ptr_info->pHostPointer, pAllocateInfo->allocationSize, alloc_flags, client_address, &mem->bo); if (result != VK_SUCCESS) goto fail; mem->host_ptr = host_ptr_info->pHostPointer; goto success; } /* Set ALLOC_LOCAL_MEM flag if heap has device local bit set and requested * memory property flag has DEVICE_LOCAL_BIT set. */ if (mem_type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) alloc_flags |= ANV_BO_ALLOC_LOCAL_MEM; /* Regular allocate (not importing memory). */ result = anv_device_alloc_bo(device, "user", pAllocateInfo->allocationSize, alloc_flags, client_address, &mem->bo); if (result != VK_SUCCESS) goto fail; if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) { ANV_FROM_HANDLE(anv_image, image, dedicated_info->image); /* Some legacy (non-modifiers) consumers need the tiling to be set on * the BO. In this case, we have a dedicated allocation. */ if (image->vk.wsi_legacy_scanout) { const struct isl_surf *surf = &image->planes[0].primary_surface.isl; result = anv_device_set_bo_tiling(device, mem->bo, surf->row_pitch_B, surf->tiling); if (result != VK_SUCCESS) { anv_device_release_bo(device, mem->bo); goto fail; } } } success: mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size); if (mem_heap_used > mem_heap->size) { p_atomic_add(&mem_heap->used, -mem->bo->size); anv_device_release_bo(device, mem->bo); result = vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY, "Out of heap memory"); goto fail; } pthread_mutex_lock(&device->mutex); list_addtail(&mem->link, &device->memory_objects); pthread_mutex_unlock(&device->mutex); *pMem = anv_device_memory_to_handle(mem); return VK_SUCCESS; fail: vk_object_free(&device->vk, pAllocator, mem); return result; } VkResult anv_GetMemoryFdKHR( VkDevice device_h, const VkMemoryGetFdInfoKHR* pGetFdInfo, int* pFd) { ANV_FROM_HANDLE(anv_device, dev, device_h); ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory); assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR); assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT || pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); return anv_device_export_bo(dev, mem->bo, pFd); } VkResult anv_GetMemoryFdPropertiesKHR( VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, int fd, VkMemoryFdPropertiesKHR* pMemoryFdProperties) { ANV_FROM_HANDLE(anv_device, device, _device); switch (handleType) { case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: /* dma-buf can be imported as any memory type */ pMemoryFdProperties->memoryTypeBits = (1 << device->physical->memory.type_count) - 1; return VK_SUCCESS; default: /* The valid usage section for this function says: * * "handleType must not be one of the handle types defined as * opaque." * * So opaque handle types fall into the default "unsupported" case. */ return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE); } } VkResult anv_GetMemoryHostPointerPropertiesEXT( VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, const void* pHostPointer, VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties) { ANV_FROM_HANDLE(anv_device, device, _device); assert(pMemoryHostPointerProperties->sType == VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT); switch (handleType) { case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: /* Host memory can be imported as any memory type. */ pMemoryHostPointerProperties->memoryTypeBits = (1ull << device->physical->memory.type_count) - 1; return VK_SUCCESS; default: return VK_ERROR_INVALID_EXTERNAL_HANDLE; } } void anv_FreeMemory( VkDevice _device, VkDeviceMemory _mem, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_device_memory, mem, _mem); if (mem == NULL) return; pthread_mutex_lock(&device->mutex); list_del(&mem->link); pthread_mutex_unlock(&device->mutex); if (mem->map) anv_UnmapMemory(_device, _mem); p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used, -mem->bo->size); anv_device_release_bo(device, mem->bo); #if defined(ANDROID) && ANDROID_API_LEVEL >= 26 if (mem->ahw) AHardwareBuffer_release(mem->ahw); #endif vk_object_free(&device->vk, pAllocator, mem); } VkResult anv_MapMemory( VkDevice _device, VkDeviceMemory _memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void** ppData) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_device_memory, mem, _memory); if (mem == NULL) { *ppData = NULL; return VK_SUCCESS; } if (mem->host_ptr) { *ppData = mem->host_ptr + offset; return VK_SUCCESS; } if (size == VK_WHOLE_SIZE) size = mem->bo->size - offset; /* From the Vulkan spec version 1.0.32 docs for MapMemory: * * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0 * assert(size != 0); * * If size is not equal to VK_WHOLE_SIZE, size must be less than or * equal to the size of the memory minus offset */ assert(size > 0); assert(offset + size <= mem->bo->size); if (size != (size_t)size) { return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED, "requested size 0x%"PRIx64" does not fit in %u bits", size, (unsigned)(sizeof(size_t) * 8)); } /* From the Vulkan 1.2.194 spec: * * "memory must not be currently host mapped" */ if (mem->map != NULL) { return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED, "Memory object already mapped."); } uint32_t gem_flags = 0; if (!device->info.has_llc && (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) gem_flags |= I915_MMAP_WC; /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */ uint64_t map_offset; if (!device->physical->has_mmap_offset) map_offset = offset & ~4095ull; else map_offset = 0; assert(offset >= map_offset); uint64_t map_size = (offset + size) - map_offset; /* Let's map whole pages */ map_size = align_u64(map_size, 4096); void *map; VkResult result = anv_device_map_bo(device, mem->bo, map_offset, map_size, gem_flags, &map); if (result != VK_SUCCESS) return result; mem->map = map; mem->map_size = map_size; mem->map_delta = (offset - map_offset); *ppData = mem->map + mem->map_delta; return VK_SUCCESS; } void anv_UnmapMemory( VkDevice _device, VkDeviceMemory _memory) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_device_memory, mem, _memory); if (mem == NULL || mem->host_ptr) return; anv_device_unmap_bo(device, mem->bo, mem->map, mem->map_size); mem->map = NULL; mem->map_size = 0; mem->map_delta = 0; } VkResult anv_FlushMappedMemoryRanges( VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { ANV_FROM_HANDLE(anv_device, device, _device); if (!device->physical->memory.need_clflush) return VK_SUCCESS; /* Make sure the writes we're flushing have landed. */ __builtin_ia32_mfence(); for (uint32_t i = 0; i < memoryRangeCount; i++) { ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryRanges[i].memory); if (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) continue; uint64_t map_offset = pMemoryRanges[i].offset + mem->map_delta; if (map_offset >= mem->map_size) continue; intel_clflush_range(mem->map + map_offset, MIN2(pMemoryRanges[i].size, mem->map_size - map_offset)); } return VK_SUCCESS; } VkResult anv_InvalidateMappedMemoryRanges( VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { ANV_FROM_HANDLE(anv_device, device, _device); if (!device->physical->memory.need_clflush) return VK_SUCCESS; for (uint32_t i = 0; i < memoryRangeCount; i++) { ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryRanges[i].memory); if (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) continue; uint64_t map_offset = pMemoryRanges[i].offset + mem->map_delta; if (map_offset >= mem->map_size) continue; intel_invalidate_range(mem->map + map_offset, MIN2(pMemoryRanges[i].size, mem->map_size - map_offset)); } /* Make sure no reads get moved up above the invalidate. */ __builtin_ia32_mfence(); return VK_SUCCESS; } void anv_GetDeviceMemoryCommitment( VkDevice device, VkDeviceMemory memory, VkDeviceSize* pCommittedMemoryInBytes) { *pCommittedMemoryInBytes = 0; } static void anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo) { ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory); ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer); assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO); if (mem) { assert(pBindInfo->memoryOffset < mem->bo->size); assert(mem->bo->size - pBindInfo->memoryOffset >= buffer->vk.size); buffer->address = (struct anv_address) { .bo = mem->bo, .offset = pBindInfo->memoryOffset, }; } else { buffer->address = ANV_NULL_ADDRESS; } } VkResult anv_BindBufferMemory2( VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo* pBindInfos) { for (uint32_t i = 0; i < bindInfoCount; i++) anv_bind_buffer_memory(&pBindInfos[i]); return VK_SUCCESS; } VkResult anv_QueueBindSparse( VkQueue _queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo, VkFence fence) { ANV_FROM_HANDLE(anv_queue, queue, _queue); if (vk_device_is_lost(&queue->device->vk)) return VK_ERROR_DEVICE_LOST; return vk_error(queue, VK_ERROR_FEATURE_NOT_PRESENT); } // Event functions VkResult anv_CreateEvent( VkDevice _device, const VkEventCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkEvent* pEvent) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_event *event; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO); event = vk_object_alloc(&device->vk, pAllocator, sizeof(*event), VK_OBJECT_TYPE_EVENT); if (event == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); event->state = anv_state_pool_alloc(&device->dynamic_state_pool, sizeof(uint64_t), 8); *(uint64_t *)event->state.map = VK_EVENT_RESET; *pEvent = anv_event_to_handle(event); return VK_SUCCESS; } void anv_DestroyEvent( VkDevice _device, VkEvent _event, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_event, event, _event); if (!event) return; anv_state_pool_free(&device->dynamic_state_pool, event->state); vk_object_free(&device->vk, pAllocator, event); } VkResult anv_GetEventStatus( VkDevice _device, VkEvent _event) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_event, event, _event); if (vk_device_is_lost(&device->vk)) return VK_ERROR_DEVICE_LOST; return *(uint64_t *)event->state.map; } VkResult anv_SetEvent( VkDevice _device, VkEvent _event) { ANV_FROM_HANDLE(anv_event, event, _event); *(uint64_t *)event->state.map = VK_EVENT_SET; return VK_SUCCESS; } VkResult anv_ResetEvent( VkDevice _device, VkEvent _event) { ANV_FROM_HANDLE(anv_event, event, _event); *(uint64_t *)event->state.map = VK_EVENT_RESET; return VK_SUCCESS; } // Buffer functions static void anv_get_buffer_memory_requirements(struct anv_device *device, VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryRequirements2* pMemoryRequirements) { /* The Vulkan spec (git aaed022) says: * * memoryTypeBits is a bitfield and contains one bit set for every * supported memory type for the resource. The bit `1<physical->memory.type_count) - 1; /* Base alignment requirement of a cache line */ uint32_t alignment = 16; if (usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) alignment = MAX2(alignment, ANV_UBO_ALIGNMENT); pMemoryRequirements->memoryRequirements.size = size; pMemoryRequirements->memoryRequirements.alignment = alignment; /* Storage and Uniform buffers should have their size aligned to * 32-bits to avoid boundary checks when last DWord is not complete. * This would ensure that not internal padding would be needed for * 16-bit types. */ if (device->robust_buffer_access && (usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT || usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT)) pMemoryRequirements->memoryRequirements.size = align_u64(size, 4); pMemoryRequirements->memoryRequirements.memoryTypeBits = memory_types; vk_foreach_struct(ext, pMemoryRequirements->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { VkMemoryDedicatedRequirements *requirements = (void *)ext; requirements->prefersDedicatedAllocation = false; requirements->requiresDedicatedAllocation = false; break; } default: anv_debug_ignored_stype(ext->sType); break; } } } void anv_GetBufferMemoryRequirements2( VkDevice _device, const VkBufferMemoryRequirementsInfo2* pInfo, VkMemoryRequirements2* pMemoryRequirements) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer); anv_get_buffer_memory_requirements(device, buffer->vk.size, buffer->vk.usage, pMemoryRequirements); } void anv_GetDeviceBufferMemoryRequirementsKHR( VkDevice _device, const VkDeviceBufferMemoryRequirements* pInfo, VkMemoryRequirements2* pMemoryRequirements) { ANV_FROM_HANDLE(anv_device, device, _device); anv_get_buffer_memory_requirements(device, pInfo->pCreateInfo->size, pInfo->pCreateInfo->usage, pMemoryRequirements); } VkResult anv_CreateBuffer( VkDevice _device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_buffer *buffer; /* Don't allow creating buffers bigger than our address space. The real * issue here is that we may align up the buffer size and we don't want * doing so to cause roll-over. However, no one has any business * allocating a buffer larger than our GTT size. */ if (pCreateInfo->size > device->physical->gtt_size) return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); buffer = vk_buffer_create(&device->vk, pCreateInfo, pAllocator, sizeof(*buffer)); if (buffer == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); buffer->address = ANV_NULL_ADDRESS; *pBuffer = anv_buffer_to_handle(buffer); return VK_SUCCESS; } void anv_DestroyBuffer( VkDevice _device, VkBuffer _buffer, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); if (!buffer) return; vk_buffer_destroy(&device->vk, pAllocator, &buffer->vk); } VkDeviceAddress anv_GetBufferDeviceAddress( VkDevice device, const VkBufferDeviceAddressInfo* pInfo) { ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer); assert(!anv_address_is_null(buffer->address)); assert(anv_bo_is_pinned(buffer->address.bo)); return anv_address_physical(buffer->address); } uint64_t anv_GetBufferOpaqueCaptureAddress( VkDevice device, const VkBufferDeviceAddressInfo* pInfo) { return 0; } uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress( VkDevice device, const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo) { ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory); assert(anv_bo_is_pinned(memory->bo)); assert(memory->bo->has_client_visible_address); return intel_48b_address(memory->bo->offset); } void anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state, enum isl_format format, struct isl_swizzle swizzle, isl_surf_usage_flags_t usage, struct anv_address address, uint32_t range, uint32_t stride) { isl_buffer_fill_state(&device->isl_dev, state.map, .address = anv_address_physical(address), .mocs = isl_mocs(&device->isl_dev, usage, address.bo && address.bo->is_external), .size_B = range, .format = format, .swizzle = swizzle, .stride_B = stride); } void anv_DestroySampler( VkDevice _device, VkSampler _sampler, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_sampler, sampler, _sampler); if (!sampler) return; if (sampler->bindless_state.map) { anv_state_pool_free(&device->dynamic_state_pool, sampler->bindless_state); } if (sampler->custom_border_color.map) { anv_state_reserved_pool_free(&device->custom_border_colors, sampler->custom_border_color); } vk_object_free(&device->vk, pAllocator, sampler); } static const VkTimeDomainEXT anv_time_domains[] = { VK_TIME_DOMAIN_DEVICE_EXT, VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT, #ifdef CLOCK_MONOTONIC_RAW VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT, #endif }; VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT( VkPhysicalDevice physicalDevice, uint32_t *pTimeDomainCount, VkTimeDomainEXT *pTimeDomains) { int d; VK_OUTARRAY_MAKE_TYPED(VkTimeDomainEXT, out, pTimeDomains, pTimeDomainCount); for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) { vk_outarray_append_typed(VkTimeDomainEXT, &out, i) { *i = anv_time_domains[d]; } } return vk_outarray_status(&out); } static uint64_t anv_clock_gettime(clockid_t clock_id) { struct timespec current; int ret; ret = clock_gettime(clock_id, ¤t); #ifdef CLOCK_MONOTONIC_RAW if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW) ret = clock_gettime(CLOCK_MONOTONIC, ¤t); #endif if (ret < 0) return 0; return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec; } VkResult anv_GetCalibratedTimestampsEXT( VkDevice _device, uint32_t timestampCount, const VkCalibratedTimestampInfoEXT *pTimestampInfos, uint64_t *pTimestamps, uint64_t *pMaxDeviation) { ANV_FROM_HANDLE(anv_device, device, _device); uint64_t timestamp_frequency = device->info.timestamp_frequency; int ret; int d; uint64_t begin, end; uint64_t max_clock_period = 0; #ifdef CLOCK_MONOTONIC_RAW begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW); #else begin = anv_clock_gettime(CLOCK_MONOTONIC); #endif for (d = 0; d < timestampCount; d++) { switch (pTimestampInfos[d].timeDomain) { case VK_TIME_DOMAIN_DEVICE_EXT: ret = anv_gem_reg_read(device->fd, TIMESTAMP | I915_REG_READ_8B_WA, &pTimestamps[d]); if (ret != 0) { return vk_device_set_lost(&device->vk, "Failed to read the " "TIMESTAMP register: %m"); } uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency); max_clock_period = MAX2(max_clock_period, device_period); break; case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT: pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC); max_clock_period = MAX2(max_clock_period, 1); break; #ifdef CLOCK_MONOTONIC_RAW case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT: pTimestamps[d] = begin; break; #endif default: pTimestamps[d] = 0; break; } } #ifdef CLOCK_MONOTONIC_RAW end = anv_clock_gettime(CLOCK_MONOTONIC_RAW); #else end = anv_clock_gettime(CLOCK_MONOTONIC); #endif /* * The maximum deviation is the sum of the interval over which we * perform the sampling and the maximum period of any sampled * clock. That's because the maximum skew between any two sampled * clock edges is when the sampled clock with the largest period is * sampled at the end of that period but right at the beginning of the * sampling interval and some other clock is sampled right at the * beginning of its sampling period and right at the end of the * sampling interval. Let's assume the GPU has the longest clock * period and that the application is sampling GPU and monotonic: * * s e * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_- * * g * 0 1 2 3 * GPU -----_____-----_____-----_____-----_____ * * m * x y z 0 1 2 3 4 5 6 7 8 9 a b c * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_- * * Interval <-----------------> * Deviation <--------------------------> * * s = read(raw) 2 * g = read(GPU) 1 * m = read(monotonic) 2 * e = read(raw) b * * We round the sample interval up by one tick to cover sampling error * in the interval clock */ uint64_t sample_interval = end - begin + 1; *pMaxDeviation = sample_interval + max_clock_period; return VK_SUCCESS; } void anv_GetPhysicalDeviceMultisamplePropertiesEXT( VkPhysicalDevice physicalDevice, VkSampleCountFlagBits samples, VkMultisamplePropertiesEXT* pMultisampleProperties) { ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice); assert(pMultisampleProperties->sType == VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT); VkExtent2D grid_size; if (samples & isl_device_get_sample_counts(&physical_device->isl_dev)) { grid_size.width = 1; grid_size.height = 1; } else { grid_size.width = 0; grid_size.height = 0; } pMultisampleProperties->maxSampleLocationGridSize = grid_size; vk_foreach_struct(ext, pMultisampleProperties->pNext) anv_debug_ignored_stype(ext->sType); } /* vk_icd.h does not declare this function, so we declare it here to * suppress Wmissing-prototypes. */ PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion); PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion) { /* For the full details on loader interface versioning, see * . * What follows is a condensed summary, to help you navigate the large and * confusing official doc. * * - Loader interface v0 is incompatible with later versions. We don't * support it. * * - In loader interface v1: * - The first ICD entrypoint called by the loader is * vk_icdGetInstanceProcAddr(). The ICD must statically expose this * entrypoint. * - The ICD must statically expose no other Vulkan symbol unless it is * linked with -Bsymbolic. * - Each dispatchable Vulkan handle created by the ICD must be * a pointer to a struct whose first member is VK_LOADER_DATA. The * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC. * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and * vkDestroySurfaceKHR(). The ICD must be capable of working with * such loader-managed surfaces. * * - Loader interface v2 differs from v1 in: * - The first ICD entrypoint called by the loader is * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must * statically expose this entrypoint. * * - Loader interface v3 differs from v2 in: * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(), * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR, * because the loader no longer does so. * * - Loader interface v4 differs from v3 in: * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr(). * * - Loader interface v5 differs from v4 in: * - The ICD must support Vulkan API version 1.1 and must not return * VK_ERROR_INCOMPATIBLE_DRIVER from vkCreateInstance() unless a * Vulkan Loader with interface v4 or smaller is being used and the * application provides an API version that is greater than 1.0. */ *pSupportedVersion = MIN2(*pSupportedVersion, 5u); return VK_SUCCESS; } VkResult anv_GetPhysicalDeviceFragmentShadingRatesKHR( VkPhysicalDevice physicalDevice, uint32_t* pFragmentShadingRateCount, VkPhysicalDeviceFragmentShadingRateKHR* pFragmentShadingRates) { ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice); VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceFragmentShadingRateKHR, out, pFragmentShadingRates, pFragmentShadingRateCount); #define append_rate(_samples, _width, _height) \ do { \ vk_outarray_append_typed(VkPhysicalDeviceFragmentShadingRateKHR, &out, __r) { \ __r->sampleCounts = _samples; \ __r->fragmentSize = (VkExtent2D) { \ .width = _width, \ .height = _height, \ }; \ } \ } while (0) VkSampleCountFlags sample_counts = isl_device_get_sample_counts(&physical_device->isl_dev); /* BSpec 47003: There are a number of restrictions on the sample count * based off the coarse pixel size. */ static const VkSampleCountFlags cp_size_sample_limits[] = { [1] = ISL_SAMPLE_COUNT_16_BIT | ISL_SAMPLE_COUNT_8_BIT | ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT, [2] = ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT, [4] = ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT, [8] = ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT, [16] = ISL_SAMPLE_COUNT_1_BIT, }; for (uint32_t x = 4; x >= 1; x /= 2) { for (uint32_t y = 4; y >= 1; y /= 2) { if (physical_device->info.has_coarse_pixel_primitive_and_cb) { /* BSpec 47003: * "CPsize 1x4 and 4x1 are not supported" */ if ((x == 1 && y == 4) || (x == 4 && y == 1)) continue; /* For size {1, 1}, the sample count must be ~0 * * 4x2 is also a specially case. */ if (x == 1 && y == 1) append_rate(~0, x, y); else if (x == 4 && y == 2) append_rate(ISL_SAMPLE_COUNT_1_BIT, x, y); else append_rate(cp_size_sample_limits[x * y], x, y); } else { /* For size {1, 1}, the sample count must be ~0 */ if (x == 1 && y == 1) append_rate(~0, x, y); else append_rate(sample_counts, x, y); } } } #undef append_rate return vk_outarray_status(&out); }