.section #gk110_builtin_code // DIV U32 // // UNR recurrence (q = a / b): // look for z such that 2^32 - b <= b * z < 2^32 // then q - 1 <= (a * z) / 2^32 <= q // // INPUT: $r0: dividend, $r1: divisor // OUTPUT: $r0: result, $r1: modulus // CLOBBER: $r2 - $r3, $p0 - $p1 // SIZE: 22 / 14 * 8 bytes // gk110_div_u32: sched 0x28 0x04 0x28 0x04 0x28 0x28 0x28 bfind u32 $r2 $r1 xor b32 $r2 $r2 0x1f mov b32 $r3 0x1 shl b32 $r2 $r3 clamp $r2 cvt u32 $r1 neg u32 $r1 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 sched 0x28 0x28 0x28 0x28 0x28 0x28 0x28 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 sched 0x04 0x28 0x04 0x28 0x28 0x2c 0x04 add $r2 (mul high u32 $r2 u32 $r3) $r2 mov b32 $r3 $r0 mul high $r0 u32 $r0 u32 $r2 cvt u32 $r2 neg u32 $r1 add $r1 (mul u32 $r1 u32 $r0) $r3 set $p0 0x1 ge u32 $r1 $r2 $p0 sub b32 $r1 $r1 $r2 sched 0x28 0x2c 0x04 0x20 0x2e 0x28 0x20 $p0 add b32 $r0 $r0 0x1 $p0 set $p0 0x1 ge u32 $r1 $r2 $p0 sub b32 $r1 $r1 $r2 $p0 add b32 $r0 $r0 0x1 ret // DIV S32, like DIV U32 after taking ABS(inputs) // // INPUT: $r0: dividend, $r1: divisor // OUTPUT: $r0: result, $r1: modulus // CLOBBER: $r2 - $r3, $p0 - $p3 // gk110_div_s32: set $p2 0x1 lt s32 $r0 0x0 set $p3 0x1 lt s32 $r1 0x0 xor $p2 sched 0x20 0x28 0x28 0x04 0x28 0x04 0x28 cvt s32 $r0 abs s32 $r0 cvt s32 $r1 abs s32 $r1 bfind u32 $r2 $r1 xor b32 $r2 $r2 0x1f mov b32 $r3 0x1 shl b32 $r2 $r3 clamp $r2 cvt u32 $r1 neg u32 $r1 sched 0x28 0x28 0x28 0x28 0x28 0x28 0x28 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 sched 0x28 0x28 0x04 0x28 0x04 0x28 0x28 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mov b32 $r3 $r0 mul high $r0 u32 $r0 u32 $r2 cvt u32 $r2 neg u32 $r1 add $r1 (mul u32 $r1 u32 $r0) $r3 sched 0x2c 0x04 0x28 0x2c 0x04 0x28 0x20 set $p0 0x1 ge u32 $r1 $r2 $p0 sub b32 $r1 $r1 $r2 $p0 add b32 $r0 $r0 0x1 $p0 set $p0 0x1 ge u32 $r1 $r2 $p0 sub b32 $r1 $r1 $r2 $p0 add b32 $r0 $r0 0x1 $p3 cvt s32 $r0 neg s32 $r0 sched 0x04 0x2e 0x28 0x04 0x28 0x28 0x28 $p2 cvt s32 $r1 neg s32 $r1 ret // RCP F64 // // INPUT: $r0d // OUTPUT: $r0d // CLOBBER: $r2 - $r9, $p0 // // The core of RCP and RSQ implementation is Newton-Raphson step, which is // used to find successively better approximation from an imprecise initial // value (single precision rcp in RCP and rsqrt64h in RSQ). // gk110_rcp_f64: // Step 1: classify input according to exponent and value, and calculate // result for 0/inf/nan. $r2 holds the exponent value, which starts at // bit 52 (bit 20 of the upper half) and is 11 bits in length ext u32 $r2 $r1 0xb14 add b32 $r3 $r2 0xffffffff joinat #rcp_rejoin // We want to check whether the exponent is 0 or 0x7ff (i.e. NaN, inf, // denorm, or 0). Do this by subtracting 1 from the exponent, which will // mean that it's > 0x7fd in those cases when doing unsigned comparison set b32 $p0 0x1 gt u32 $r3 0x7fd // $r3: 0 for norms, 0x36 for denorms, -1 for others mov b32 $r3 0x0 sched 0x2f 0x04 0x2d 0x2b 0x2f 0x28 0x28 join (not $p0) nop // Process all special values: NaN, inf, denorm, 0 mov b32 $r3 0xffffffff // A number is NaN if its abs value is greater than or unordered with inf set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000 (not $p0) bra #rcp_inf_or_denorm_or_zero // NaN -> NaN, the next line sets the "quiet" bit of the result. This // behavior is both seen on the CPU and the blob join or b32 $r1 $r1 0x80000 rcp_inf_or_denorm_or_zero: and b32 $r4 $r1 0x7ff00000 // Other values with nonzero in exponent field should be inf set b32 $p0 0x1 eq s32 $r4 0x0 sched 0x2b 0x04 0x2f 0x2d 0x2b 0x2f 0x20 $p0 bra #rcp_denorm_or_zero // +/-Inf -> +/-0 xor b32 $r1 $r1 0x7ff00000 join mov b32 $r0 0x0 rcp_denorm_or_zero: set $p0 0x1 gtu f64 abs $r0d 0x0 $p0 bra #rcp_denorm // +/-0 -> +/-Inf join or b32 $r1 $r1 0x7ff00000 rcp_denorm: // non-0 denorms: multiply with 2^54 (the 0x36 in $r3), join with norms mul rn f64 $r0d $r0d 0x4350000000000000 sched 0x2f 0x28 0x2b 0x28 0x28 0x04 0x28 join mov b32 $r3 0x36 rcp_rejoin: // All numbers with -1 in $r3 have their result ready in $r0d, return them // others need further calculation set b32 $p0 0x1 lt s32 $r3 0x0 $p0 bra #rcp_end // Step 2: Before the real calculation goes on, renormalize the values to // range [1, 2) by setting exponent field to 0x3ff (the exponent of 1) // result in $r6d. The exponent will be recovered later. ext u32 $r2 $r1 0xb14 and b32 $r7 $r1 0x800fffff add b32 $r7 $r7 0x3ff00000 mov b32 $r6 $r0 sched 0x2b 0x04 0x28 0x28 0x2a 0x2b 0x2e // Step 3: Convert new value to float (no overflow will occur due to step // 2), calculate rcp and do newton-raphson step once cvt rz f32 $r5 f64 $r6d rcp f32 $r4 $r5 mov b32 $r0 0xbf800000 fma rn f32 $r5 $r4 $r5 $r0 fma rn f32 $r0 neg $r4 $r5 $r4 // Step 4: convert result $r0 back to double, do newton-raphson steps cvt f64 $r0d f32 $r0 cvt f64 $r6d f64 neg $r6d sched 0x2e 0x29 0x29 0x29 0x29 0x29 0x29 cvt f64 $r8d f32 0x3f800000 // 4 Newton-Raphson Steps, tmp in $r4d, result in $r0d // The formula used here (and above) is: // RCP_{n + 1} = 2 * RCP_{n} - x * RCP_{n} * RCP_{n} // The following code uses 2 FMAs for each step, and it will basically // looks like: // tmp = -src * RCP_{n} + 1 // RCP_{n + 1} = RCP_{n} * tmp + RCP_{n} fma rn f64 $r4d $r6d $r0d $r8d fma rn f64 $r0d $r0d $r4d $r0d fma rn f64 $r4d $r6d $r0d $r8d fma rn f64 $r0d $r0d $r4d $r0d fma rn f64 $r4d $r6d $r0d $r8d fma rn f64 $r0d $r0d $r4d $r0d sched 0x29 0x20 0x28 0x28 0x28 0x28 0x28 fma rn f64 $r4d $r6d $r0d $r8d fma rn f64 $r0d $r0d $r4d $r0d // Step 5: Exponent recovery and final processing // The exponent is recovered by adding what we added to the exponent. // Suppose we want to calculate rcp(x), but we have rcp(cx), then // rcp(x) = c * rcp(cx) // The delta in exponent comes from two sources: // 1) The renormalization in step 2. The delta is: // 0x3ff - $r2 // 2) (For the denorm input) The 2^54 we multiplied at rcp_denorm, stored // in $r3 // These 2 sources are calculated in the first two lines below, and then // added to the exponent extracted from the result above. // Note that after processing, the new exponent may >= 0x7ff (inf) // or <= 0 (denorm). Those cases will be handled respectively below subr b32 $r2 $r2 0x3ff add b32 $r4 $r2 $r3 ext u32 $r3 $r1 0xb14 // New exponent in $r3 add b32 $r3 $r3 $r4 add b32 $r2 $r3 0xffffffff sched 0x28 0x2b 0x28 0x2b 0x28 0x28 0x2b // (exponent-1) < 0x7fe (unsigned) means the result is in norm range // (same logic as in step 1) set b32 $p0 0x1 lt u32 $r2 0x7fe (not $p0) bra #rcp_result_inf_or_denorm // Norms: convert exponents back and return shl b32 $r4 $r4 clamp 0x14 add b32 $r1 $r4 $r1 bra #rcp_end rcp_result_inf_or_denorm: // New exponent >= 0x7ff means that result is inf set b32 $p0 0x1 ge s32 $r3 0x7ff (not $p0) bra #rcp_result_denorm sched 0x20 0x25 0x28 0x2b 0x23 0x25 0x2f // Infinity and b32 $r1 $r1 0x80000000 mov b32 $r0 0x0 add b32 $r1 $r1 0x7ff00000 bra #rcp_end rcp_result_denorm: // Denorm result comes from huge input. The greatest possible fp64, i.e. // 0x7fefffffffffffff's rcp is 0x0004000000000000, 1/4 of the smallest // normal value. Other rcp result should be greater than that. If we // set the exponent field to 1, we can recover the result by multiplying // it with 1/2 or 1/4. 1/2 is used if the "exponent" $r3 is 0, otherwise // 1/4 ($r3 should be -1 then). This is quite tricky but greatly simplifies // the logic here. set b32 $p0 0x1 ne u32 $r3 0x0 and b32 $r1 $r1 0x800fffff // 0x3e800000: 1/4 $p0 cvt f64 $r6d f32 0x3e800000 sched 0x2f 0x28 0x2c 0x2e 0x2a 0x20 0x27 // 0x3f000000: 1/2 (not $p0) cvt f64 $r6d f32 0x3f000000 add b32 $r1 $r1 0x00100000 mul rn f64 $r0d $r0d $r6d rcp_end: ret // RSQ F64 // // INPUT: $r0d // OUTPUT: $r0d // CLOBBER: $r2 - $r9, $p0 - $p1 // gk110_rsq_f64: // Before getting initial result rsqrt64h, two special cases should be // handled first. // 1. NaN: set the highest bit in mantissa so it'll be surely recognized // as NaN in rsqrt64h set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000 $p0 or b32 $r1 $r1 0x00080000 and b32 $r2 $r1 0x7fffffff sched 0x27 0x20 0x28 0x2c 0x25 0x28 0x28 // 2. denorms and small normal values: using their original value will // lose precision either at rsqrt64h or the first step in newton-raphson // steps below. Take 2 as a threshold in exponent field, and multiply // with 2^54 if the exponent is smaller or equal. (will multiply 2^27 // to recover in the end) ext u32 $r3 $r1 0xb14 set b32 $p1 0x1 le u32 $r3 0x2 or b32 $r2 $r0 $r2 $p1 mul rn f64 $r0d $r0d 0x4350000000000000 rsqrt64h f32 $r5 $r1 // rsqrt64h will give correct result for 0/inf/nan, the following logic // checks whether the input is one of those (exponent is 0x7ff or all 0 // except for the sign bit) set b32 $r6 ne u32 $r3 0x7ff and b32 $r2 $r2 $r6 sched 0x28 0x2b 0x20 0x27 0x28 0x2e 0x28 set b32 $p0 0x1 ne u32 $r2 0x0 $p0 bra #rsq_norm // For 0/inf/nan, make sure the sign bit agrees with input and return and b32 $r1 $r1 0x80000000 mov b32 $r0 0x0 or b32 $r1 $r1 $r5 ret rsq_norm: // For others, do 4 Newton-Raphson steps with the formula: // RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n}) // In the code below, each step is written as: // tmp1 = 0.5 * x * RSQ_{n} // tmp2 = -RSQ_{n} * tmp1 + 0.5 // RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n} mov b32 $r4 0x0 sched 0x2f 0x29 0x29 0x29 0x29 0x29 0x29 // 0x3f000000: 1/2 cvt f64 $r8d f32 0x3f000000 mul rn f64 $r2d $r0d $r8d mul rn f64 $r0d $r2d $r4d fma rn f64 $r6d neg $r4d $r0d $r8d fma rn f64 $r4d $r4d $r6d $r4d mul rn f64 $r0d $r2d $r4d fma rn f64 $r6d neg $r4d $r0d $r8d sched 0x29 0x29 0x29 0x29 0x29 0x29 0x29 fma rn f64 $r4d $r4d $r6d $r4d mul rn f64 $r0d $r2d $r4d fma rn f64 $r6d neg $r4d $r0d $r8d fma rn f64 $r4d $r4d $r6d $r4d mul rn f64 $r0d $r2d $r4d fma rn f64 $r6d neg $r4d $r0d $r8d fma rn f64 $r4d $r4d $r6d $r4d sched 0x29 0x20 0x28 0x2e 0x00 0x00 0x00 // Multiply 2^27 to result for small inputs to recover $p1 mul rn f64 $r4d $r4d 0x41a0000000000000 mov b32 $r1 $r5 mov b32 $r0 $r4 ret .section #gk110_builtin_offsets .b64 #gk110_div_u32 .b64 #gk110_div_s32 .b64 #gk110_rcp_f64 .b64 #gk110_rsq_f64