// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #include "src/codegen/mips64/assembler-mips64.h" #if V8_TARGET_ARCH_MIPS64 #include "src/base/cpu.h" #include "src/codegen/machine-type.h" #include "src/codegen/mips64/assembler-mips64-inl.h" #include "src/codegen/safepoint-table.h" #include "src/codegen/string-constants.h" #include "src/deoptimizer/deoptimizer.h" #include "src/objects/heap-number-inl.h" namespace v8 { namespace internal { // Get the CPU features enabled by the build. For cross compilation the // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS // can be defined to enable FPU instructions when building the // snapshot. static unsigned CpuFeaturesImpliedByCompiler() { unsigned answer = 0; #ifdef CAN_USE_FPU_INSTRUCTIONS answer |= 1u << FPU; #endif // def CAN_USE_FPU_INSTRUCTIONS // If the compiler is allowed to use FPU then we can use FPU too in our code // generation even when generating snapshots. This won't work for cross // compilation. #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0 answer |= 1u << FPU; #endif return answer; } bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); } void CpuFeatures::ProbeImpl(bool cross_compile) { supported_ |= CpuFeaturesImpliedByCompiler(); // Only use statically determined features for cross compile (snapshot). if (cross_compile) return; // If the compiler is allowed to use fpu then we can use fpu too in our // code generation. #ifndef __mips__ // For the simulator build, use FPU. supported_ |= 1u << FPU; #if defined(_MIPS_ARCH_MIPS64R6) && defined(_MIPS_MSA) supported_ |= 1u << MIPS_SIMD; #endif #else // Probe for additional features at runtime. base::CPU cpu; if (cpu.has_fpu()) supported_ |= 1u << FPU; #if defined(_MIPS_MSA) supported_ |= 1u << MIPS_SIMD; #else if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD; #endif #endif // Set a static value on whether Simd is supported. // This variable is only used for certain archs to query SupportWasmSimd128() // at runtime in builtins using an extern ref. Other callers should use // CpuFeatures::SupportWasmSimd128(). CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128(); } void CpuFeatures::PrintTarget() {} void CpuFeatures::PrintFeatures() {} int ToNumber(Register reg) { DCHECK(reg.is_valid()); const int kNumbers[] = { 0, // zero_reg 1, // at 2, // v0 3, // v1 4, // a0 5, // a1 6, // a2 7, // a3 8, // a4 9, // a5 10, // a6 11, // a7 12, // t0 13, // t1 14, // t2 15, // t3 16, // s0 17, // s1 18, // s2 19, // s3 20, // s4 21, // s5 22, // s6 23, // s7 24, // t8 25, // t9 26, // k0 27, // k1 28, // gp 29, // sp 30, // fp 31, // ra }; return kNumbers[reg.code()]; } Register ToRegister(int num) { DCHECK(num >= 0 && num < kNumRegisters); const Register kRegisters[] = { zero_reg, at, v0, v1, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3, s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra}; return kRegisters[num]; } // ----------------------------------------------------------------------------- // Implementation of RelocInfo. const int RelocInfo::kApplyMask = RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED); bool RelocInfo::IsCodedSpecially() { // The deserializer needs to know whether a pointer is specially coded. Being // specially coded on MIPS means that it is a lui/ori instruction, and that is // always the case inside code objects. return true; } bool RelocInfo::IsInConstantPool() { return false; } uint32_t RelocInfo::wasm_call_tag() const { DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL); return static_cast( Assembler::target_address_at(pc_, constant_pool_)); } // ----------------------------------------------------------------------------- // Implementation of Operand and MemOperand. // See assembler-mips-inl.h for inlined constructors. Operand::Operand(Handle handle) : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) { value_.immediate = static_cast(handle.address()); } Operand Operand::EmbeddedNumber(double value) { int32_t smi; if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi)); Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); result.is_heap_object_request_ = true; result.value_.heap_object_request = HeapObjectRequest(value); return result; } Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) { Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); result.is_heap_object_request_ = true; result.value_.heap_object_request = HeapObjectRequest(str); return result; } MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) { offset_ = offset; } MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier, OffsetAddend offset_addend) : Operand(rm) { offset_ = unit * multiplier + offset_addend; } void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty()); for (auto& request : heap_object_requests_) { Handle object; switch (request.kind()) { case HeapObjectRequest::kHeapNumber: object = isolate->factory()->NewHeapNumber( request.heap_number()); break; case HeapObjectRequest::kStringConstant: const StringConstantBase* str = request.string(); CHECK_NOT_NULL(str); object = str->AllocateStringConstant(isolate); break; } Address pc = reinterpret_cast
(buffer_start_) + request.offset(); set_target_value_at(pc, reinterpret_cast(object.location())); } } // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. // daddiu(sp, sp, 8) aka Pop() operation or part of Pop(r) // operations as post-increment of sp. const Instr kPopInstruction = DADDIU | (sp.code() << kRsShift) | (sp.code() << kRtShift) | (kPointerSize & kImm16Mask); // daddiu(sp, sp, -8) part of Push(r) operation as pre-decrement of sp. const Instr kPushInstruction = DADDIU | (sp.code() << kRsShift) | (sp.code() << kRtShift) | (-kPointerSize & kImm16Mask); // Sd(r, MemOperand(sp, 0)) const Instr kPushRegPattern = SD | (sp.code() << kRsShift) | (0 & kImm16Mask); // Ld(r, MemOperand(sp, 0)) const Instr kPopRegPattern = LD | (sp.code() << kRsShift) | (0 & kImm16Mask); const Instr kLwRegFpOffsetPattern = LW | (fp.code() << kRsShift) | (0 & kImm16Mask); const Instr kSwRegFpOffsetPattern = SW | (fp.code() << kRsShift) | (0 & kImm16Mask); const Instr kLwRegFpNegOffsetPattern = LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask); const Instr kSwRegFpNegOffsetPattern = SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask); // A mask for the Rt register for push, pop, lw, sw instructions. const Instr kRtMask = kRtFieldMask; const Instr kLwSwInstrTypeMask = 0xFFE00000; const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask; const Instr kLwSwOffsetMask = kImm16Mask; Assembler::Assembler(const AssemblerOptions& options, std::unique_ptr buffer) : AssemblerBase(options, std::move(buffer)), scratch_register_list_({at, s0}) { if (CpuFeatures::IsSupported(MIPS_SIMD)) { EnableCpuFeature(MIPS_SIMD); } reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_); last_trampoline_pool_end_ = 0; no_trampoline_pool_before_ = 0; trampoline_pool_blocked_nesting_ = 0; // We leave space (16 * kTrampolineSlotsSize) // for BlockTrampolinePoolScope buffer. next_buffer_check_ = FLAG_force_long_branches ? kMaxInt : kMaxBranchOffset - kTrampolineSlotsSize * 16; internal_trampoline_exception_ = false; last_bound_pos_ = 0; trampoline_emitted_ = FLAG_force_long_branches; unbound_labels_count_ = 0; block_buffer_growth_ = false; } void Assembler::GetCode(Isolate* isolate, CodeDesc* desc, SafepointTableBuilder* safepoint_table_builder, int handler_table_offset) { // As a crutch to avoid having to add manual Align calls wherever we use a // raw workflow to create Code objects (mostly in tests), add another Align // call here. It does no harm - the end of the Code object is aligned to the // (larger) kCodeAlignment anyways. // TODO(jgruber): Consider moving responsibility for proper alignment to // metadata table builders (safepoint, handler, constant pool, code // comments). DataAlign(Code::kMetadataAlignment); EmitForbiddenSlotInstruction(); int code_comments_size = WriteCodeComments(); DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap. AllocateAndInstallRequestedHeapObjects(isolate); // Set up code descriptor. // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to // this point to make CodeDesc initialization less fiddly. static constexpr int kConstantPoolSize = 0; const int instruction_size = pc_offset(); const int code_comments_offset = instruction_size - code_comments_size; const int constant_pool_offset = code_comments_offset - kConstantPoolSize; const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable) ? constant_pool_offset : handler_table_offset; const int safepoint_table_offset = (safepoint_table_builder == kNoSafepointTable) ? handler_table_offset2 : safepoint_table_builder->safepoint_table_offset(); const int reloc_info_offset = static_cast(reloc_info_writer.pos() - buffer_->start()); CodeDesc::Initialize(desc, this, safepoint_table_offset, handler_table_offset2, constant_pool_offset, code_comments_offset, reloc_info_offset); } void Assembler::Align(int m) { DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m)); EmitForbiddenSlotInstruction(); while ((pc_offset() & (m - 1)) != 0) { nop(); } } void Assembler::CodeTargetAlign() { // No advantage to aligning branch/call targets to more than // single instruction, that I am aware of. Align(4); } Register Assembler::GetRtReg(Instr instr) { return Register::from_code((instr & kRtFieldMask) >> kRtShift); } Register Assembler::GetRsReg(Instr instr) { return Register::from_code((instr & kRsFieldMask) >> kRsShift); } Register Assembler::GetRdReg(Instr instr) { return Register::from_code((instr & kRdFieldMask) >> kRdShift); } uint32_t Assembler::GetRt(Instr instr) { return (instr & kRtFieldMask) >> kRtShift; } uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; } uint32_t Assembler::GetRs(Instr instr) { return (instr & kRsFieldMask) >> kRsShift; } uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; } uint32_t Assembler::GetRd(Instr instr) { return (instr & kRdFieldMask) >> kRdShift; } uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; } uint32_t Assembler::GetSa(Instr instr) { return (instr & kSaFieldMask) >> kSaShift; } uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; } uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; } uint32_t Assembler::GetFunction(Instr instr) { return (instr & kFunctionFieldMask) >> kFunctionShift; } uint32_t Assembler::GetFunctionField(Instr instr) { return instr & kFunctionFieldMask; } uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; } uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; } bool Assembler::IsPop(Instr instr) { return (instr & ~kRtMask) == kPopRegPattern; } bool Assembler::IsPush(Instr instr) { return (instr & ~kRtMask) == kPushRegPattern; } bool Assembler::IsSwRegFpOffset(Instr instr) { return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern); } bool Assembler::IsLwRegFpOffset(Instr instr) { return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern); } bool Assembler::IsSwRegFpNegOffset(Instr instr) { return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == kSwRegFpNegOffsetPattern); } bool Assembler::IsLwRegFpNegOffset(Instr instr) { return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == kLwRegFpNegOffsetPattern); } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the last // instruction using the label. // The link chain is terminated by a value in the instruction of -1, // which is an otherwise illegal value (branch -1 is inf loop). // The instruction 16-bit offset field addresses 32-bit words, but in // code is conv to an 18-bit value addressing bytes, hence the -4 value. const int kEndOfChain = -4; // Determines the end of the Jump chain (a subset of the label link chain). const int kEndOfJumpChain = 0; bool Assembler::IsMsaBranch(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rs_field = GetRsField(instr); if (opcode == COP1) { switch (rs_field) { case BZ_V: case BZ_B: case BZ_H: case BZ_W: case BZ_D: case BNZ_V: case BNZ_B: case BNZ_H: case BNZ_W: case BNZ_D: return true; default: return false; } } else { return false; } } bool Assembler::IsBranch(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rt_field = GetRtField(instr); uint32_t rs_field = GetRsField(instr); // Checks if the instruction is a branch. bool isBranch = opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ || opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL || (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || rt_field == BLTZAL || rt_field == BGEZAL)) || (opcode == COP1 && rs_field == BC1) || // Coprocessor branch. (opcode == COP1 && rs_field == BC1EQZ) || (opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr); if (!isBranch && kArchVariant == kMips64r6) { // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and // POP30 (BNVC, BNEC, BNEZALC) are branch ops. isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC || opcode == BALC || (opcode == POP66 && rs_field != 0) || // BEQZC (opcode == POP76 && rs_field != 0); // BNEZC } return isBranch; } bool Assembler::IsBc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a BC or BALC. return opcode == BC || opcode == BALC; } bool Assembler::IsNal(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rt_field = GetRtField(instr); uint32_t rs_field = GetRsField(instr); return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0; } bool Assembler::IsBzc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is BEQZC or BNEZC. return (opcode == POP66 && GetRsField(instr) != 0) || (opcode == POP76 && GetRsField(instr) != 0); } bool Assembler::IsEmittedConstant(Instr instr) { uint32_t label_constant = GetLabelConst(instr); return label_constant == 0; // Emitted label const in reg-exp engine. } bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; } bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; } bool Assembler::IsBeqzc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); return opcode == POP66 && GetRsField(instr) != 0; } bool Assembler::IsBnezc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); return opcode == POP76 && GetRsField(instr) != 0; } bool Assembler::IsBeqc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rs = GetRsField(instr); uint32_t rt = GetRtField(instr); return opcode == POP10 && rs != 0 && rs < rt; // && rt != 0 } bool Assembler::IsBnec(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rs = GetRsField(instr); uint32_t rt = GetRtField(instr); return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0 } bool Assembler::IsMov(Instr instr, Register rd, Register rs) { uint32_t opcode = GetOpcodeField(instr); uint32_t rd_field = GetRd(instr); uint32_t rs_field = GetRs(instr); uint32_t rt_field = GetRt(instr); uint32_t rd_reg = static_cast(rd.code()); uint32_t rs_reg = static_cast(rs.code()); uint32_t function_field = GetFunctionField(instr); // Checks if the instruction is a OR with zero_reg argument (aka MOV). bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg && rs_field == rs_reg && rt_field == 0; return res; } bool Assembler::IsJump(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rt_field = GetRtField(instr); uint32_t rd_field = GetRdField(instr); uint32_t function_field = GetFunctionField(instr); // Checks if the instruction is a jump. return opcode == J || opcode == JAL || (opcode == SPECIAL && rt_field == 0 && ((function_field == JALR) || (rd_field == 0 && (function_field == JR)))); } bool Assembler::IsJ(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a jump. return opcode == J; } bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; } bool Assembler::IsJr(Instr instr) { return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR; } bool Assembler::IsJalr(Instr instr) { return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR; } bool Assembler::IsLui(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a load upper immediate. return opcode == LUI; } bool Assembler::IsOri(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a load upper immediate. return opcode == ORI; } bool Assembler::IsNop(Instr instr, unsigned int type) { // See Assembler::nop(type). DCHECK_LT(type, 32); uint32_t opcode = GetOpcodeField(instr); uint32_t function = GetFunctionField(instr); uint32_t rt = GetRt(instr); uint32_t rd = GetRd(instr); uint32_t sa = GetSa(instr); // Traditional mips nop == sll(zero_reg, zero_reg, 0) // When marking non-zero type, use sll(zero_reg, at, type) // to avoid use of mips ssnop and ehb special encodings // of the sll instruction. Register nop_rt_reg = (type == 0) ? zero_reg : at; bool ret = (opcode == SPECIAL && function == SLL && rd == static_cast(ToNumber(zero_reg)) && rt == static_cast(ToNumber(nop_rt_reg)) && sa == type); return ret; } int32_t Assembler::GetBranchOffset(Instr instr) { DCHECK(IsBranch(instr)); return (static_cast(instr & kImm16Mask)) << 2; } bool Assembler::IsLw(Instr instr) { return (static_cast(instr & kOpcodeMask) == LW); } int16_t Assembler::GetLwOffset(Instr instr) { DCHECK(IsLw(instr)); return ((instr & kImm16Mask)); } Instr Assembler::SetLwOffset(Instr instr, int16_t offset) { DCHECK(IsLw(instr)); // We actually create a new lw instruction based on the original one. Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) | (offset & kImm16Mask); return temp_instr; } bool Assembler::IsSw(Instr instr) { return (static_cast(instr & kOpcodeMask) == SW); } Instr Assembler::SetSwOffset(Instr instr, int16_t offset) { DCHECK(IsSw(instr)); return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); } bool Assembler::IsAddImmediate(Instr instr) { return ((instr & kOpcodeMask) == ADDIU || (instr & kOpcodeMask) == DADDIU); } Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) { DCHECK(IsAddImmediate(instr)); return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); } bool Assembler::IsAndImmediate(Instr instr) { return GetOpcodeField(instr) == ANDI; } static Assembler::OffsetSize OffsetSizeInBits(Instr instr) { if (kArchVariant == kMips64r6) { if (Assembler::IsBc(instr)) { return Assembler::OffsetSize::kOffset26; } else if (Assembler::IsBzc(instr)) { return Assembler::OffsetSize::kOffset21; } } return Assembler::OffsetSize::kOffset16; } static inline int32_t AddBranchOffset(int pos, Instr instr) { int bits = OffsetSizeInBits(instr); const int32_t mask = (1 << bits) - 1; bits = 32 - bits; // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming // the compiler uses arithmetic shifts for signed integers. int32_t imm = ((instr & mask) << bits) >> (bits - 2); if (imm == kEndOfChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } else { return pos + Assembler::kBranchPCOffset + imm; } } int Assembler::target_at(int pos, bool is_internal) { if (is_internal) { int64_t* p = reinterpret_cast(buffer_start_ + pos); int64_t address = *p; if (address == kEndOfJumpChain) { return kEndOfChain; } else { int64_t instr_address = reinterpret_cast(p); DCHECK(instr_address - address < INT_MAX); int delta = static_cast(instr_address - address); DCHECK(pos > delta); return pos - delta; } } Instr instr = instr_at(pos); if ((instr & ~kImm16Mask) == 0) { // Emitted label constant, not part of a branch. if (instr == 0) { return kEndOfChain; } else { int32_t imm18 = ((instr & static_cast(kImm16Mask)) << 16) >> 14; return (imm18 + pos); } } // Check we have a branch or jump instruction. DCHECK(IsBranch(instr) || IsJ(instr) || IsJal(instr) || IsLui(instr) || IsMov(instr, t8, ra)); // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming // the compiler uses arithmetic shifts for signed integers. if (IsBranch(instr)) { return AddBranchOffset(pos, instr); } else if (IsMov(instr, t8, ra)) { int32_t imm32; Instr instr_lui = instr_at(pos + 2 * kInstrSize); Instr instr_ori = instr_at(pos + 3 * kInstrSize); DCHECK(IsLui(instr_lui)); DCHECK(IsOri(instr_ori)); imm32 = (instr_lui & static_cast(kImm16Mask)) << kLuiShift; imm32 |= (instr_ori & static_cast(kImm16Mask)); if (imm32 == kEndOfJumpChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } return pos + Assembler::kLongBranchPCOffset + imm32; } else if (IsLui(instr)) { if (IsNal(instr_at(pos + kInstrSize))) { int32_t imm32; Instr instr_lui = instr_at(pos + 0 * kInstrSize); Instr instr_ori = instr_at(pos + 2 * kInstrSize); DCHECK(IsLui(instr_lui)); DCHECK(IsOri(instr_ori)); imm32 = (instr_lui & static_cast(kImm16Mask)) << kLuiShift; imm32 |= (instr_ori & static_cast(kImm16Mask)); if (imm32 == kEndOfJumpChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } return pos + Assembler::kLongBranchPCOffset + imm32; } else { Instr instr_lui = instr_at(pos + 0 * kInstrSize); Instr instr_ori = instr_at(pos + 1 * kInstrSize); Instr instr_ori2 = instr_at(pos + 3 * kInstrSize); DCHECK(IsOri(instr_ori)); DCHECK(IsOri(instr_ori2)); // TODO(plind) create named constants for shift values. int64_t imm = static_cast(instr_lui & kImm16Mask) << 48; imm |= static_cast(instr_ori & kImm16Mask) << 32; imm |= static_cast(instr_ori2 & kImm16Mask) << 16; // Sign extend address; imm >>= 16; if (imm == kEndOfJumpChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } else { uint64_t instr_address = reinterpret_cast(buffer_start_ + pos); DCHECK(instr_address - imm < INT_MAX); int delta = static_cast(instr_address - imm); DCHECK(pos > delta); return pos - delta; } } } else { DCHECK(IsJ(instr) || IsJal(instr)); int32_t imm28 = (instr & static_cast(kImm26Mask)) << 2; if (imm28 == kEndOfJumpChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } else { // Sign extend 28-bit offset. int32_t delta = static_cast((imm28 << 4) >> 4); return pos + delta; } } } static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos, Instr instr) { int32_t bits = OffsetSizeInBits(instr); int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset); DCHECK_EQ(imm & 3, 0); imm >>= 2; const int32_t mask = (1 << bits) - 1; instr &= ~mask; DCHECK(is_intn(imm, bits)); return instr | (imm & mask); } void Assembler::target_at_put(int pos, int target_pos, bool is_internal) { if (is_internal) { uint64_t imm = reinterpret_cast(buffer_start_) + target_pos; *reinterpret_cast(buffer_start_ + pos) = imm; return; } Instr instr = instr_at(pos); if ((instr & ~kImm16Mask) == 0) { DCHECK(target_pos == kEndOfChain || target_pos >= 0); // Emitted label constant, not part of a branch. // Make label relative to Code pointer of generated Code object. instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); return; } if (IsBranch(instr)) { instr = SetBranchOffset(pos, target_pos, instr); instr_at_put(pos, instr); } else if (IsLui(instr)) { if (IsNal(instr_at(pos + kInstrSize))) { Instr instr_lui = instr_at(pos + 0 * kInstrSize); Instr instr_ori = instr_at(pos + 2 * kInstrSize); DCHECK(IsLui(instr_lui)); DCHECK(IsOri(instr_ori)); int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset); DCHECK_EQ(imm & 3, 0); if (is_int16(imm + Assembler::kLongBranchPCOffset - Assembler::kBranchPCOffset)) { // Optimize by converting to regular branch and link with 16-bit // offset. Instr instr_b = REGIMM | BGEZAL; // Branch and link. instr_b = SetBranchOffset(pos, target_pos, instr_b); // Correct ra register to point to one instruction after jalr from // TurboAssembler::BranchAndLinkLong. Instr instr_a = DADDIU | ra.code() << kRsShift | ra.code() << kRtShift | kOptimizedBranchAndLinkLongReturnOffset; instr_at_put(pos, instr_b); instr_at_put(pos + 1 * kInstrSize, instr_a); } else { instr_lui &= ~kImm16Mask; instr_ori &= ~kImm16Mask; instr_at_put(pos + 0 * kInstrSize, instr_lui | ((imm >> kLuiShift) & kImm16Mask)); instr_at_put(pos + 2 * kInstrSize, instr_ori | (imm & kImm16Mask)); } } else { Instr instr_lui = instr_at(pos + 0 * kInstrSize); Instr instr_ori = instr_at(pos + 1 * kInstrSize); Instr instr_ori2 = instr_at(pos + 3 * kInstrSize); DCHECK(IsOri(instr_ori)); DCHECK(IsOri(instr_ori2)); uint64_t imm = reinterpret_cast(buffer_start_) + target_pos; DCHECK_EQ(imm & 3, 0); instr_lui &= ~kImm16Mask; instr_ori &= ~kImm16Mask; instr_ori2 &= ~kImm16Mask; instr_at_put(pos + 0 * kInstrSize, instr_lui | ((imm >> 32) & kImm16Mask)); instr_at_put(pos + 1 * kInstrSize, instr_ori | ((imm >> 16) & kImm16Mask)); instr_at_put(pos + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask)); } } else if (IsMov(instr, t8, ra)) { Instr instr_lui = instr_at(pos + 2 * kInstrSize); Instr instr_ori = instr_at(pos + 3 * kInstrSize); DCHECK(IsLui(instr_lui)); DCHECK(IsOri(instr_ori)); int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset); if (is_int16(imm_short)) { // Optimize by converting to regular branch with 16-bit // offset Instr instr_b = BEQ; instr_b = SetBranchOffset(pos, target_pos, instr_b); Instr instr_j = instr_at(pos + 5 * kInstrSize); Instr instr_branch_delay; if (IsJump(instr_j)) { // Case when branch delay slot is protected. instr_branch_delay = nopInstr; } else { // Case when branch delay slot is used. instr_branch_delay = instr_at(pos + 7 * kInstrSize); } instr_at_put(pos, instr_b); instr_at_put(pos + 1 * kInstrSize, instr_branch_delay); } else { int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset); DCHECK_EQ(imm & 3, 0); instr_lui &= ~kImm16Mask; instr_ori &= ~kImm16Mask; instr_at_put(pos + 2 * kInstrSize, instr_lui | ((imm >> kLuiShift) & kImm16Mask)); instr_at_put(pos + 3 * kInstrSize, instr_ori | (imm & kImm16Mask)); } } else if (IsJ(instr) || IsJal(instr)) { int32_t imm28 = target_pos - pos; DCHECK_EQ(imm28 & 3, 0); uint32_t imm26 = static_cast(imm28 >> 2); DCHECK(is_uint26(imm26)); // Place 26-bit signed offset with markings. // When code is committed it will be resolved to j/jal. int32_t mark = IsJ(instr) ? kJRawMark : kJalRawMark; instr_at_put(pos, mark | (imm26 & kImm26Mask)); } else { int32_t imm28 = target_pos - pos; DCHECK_EQ(imm28 & 3, 0); uint32_t imm26 = static_cast(imm28 >> 2); DCHECK(is_uint26(imm26)); // Place raw 26-bit signed offset. // When code is committed it will be resolved to j/jal. instr &= ~kImm26Mask; instr_at_put(pos, instr | (imm26 & kImm26Mask)); } } void Assembler::print(const Label* L) { if (L->is_unused()) { PrintF("unused label\n"); } else if (L->is_bound()) { PrintF("bound label to %d\n", L->pos()); } else if (L->is_linked()) { Label l; l.link_to(L->pos()); PrintF("unbound label"); while (l.is_linked()) { PrintF("@ %d ", l.pos()); Instr instr = instr_at(l.pos()); if ((instr & ~kImm16Mask) == 0) { PrintF("value\n"); } else { PrintF("%d\n", instr); } next(&l, is_internal_reference(&l)); } } else { PrintF("label in inconsistent state (pos = %d)\n", L->pos_); } } void Assembler::bind_to(Label* L, int pos) { DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position. int trampoline_pos = kInvalidSlotPos; bool is_internal = false; if (L->is_linked() && !trampoline_emitted_) { unbound_labels_count_--; if (!is_internal_reference(L)) { next_buffer_check_ += kTrampolineSlotsSize; } } while (L->is_linked()) { int fixup_pos = L->pos(); int dist = pos - fixup_pos; is_internal = is_internal_reference(L); next(L, is_internal); // Call next before overwriting link with target at // fixup_pos. Instr instr = instr_at(fixup_pos); if (is_internal) { target_at_put(fixup_pos, pos, is_internal); } else { if (IsBranch(instr)) { int branch_offset = BranchOffset(instr); if (dist > branch_offset) { if (trampoline_pos == kInvalidSlotPos) { trampoline_pos = get_trampoline_entry(fixup_pos); CHECK_NE(trampoline_pos, kInvalidSlotPos); } CHECK((trampoline_pos - fixup_pos) <= branch_offset); target_at_put(fixup_pos, trampoline_pos, false); fixup_pos = trampoline_pos; } target_at_put(fixup_pos, pos, false); } else { DCHECK(IsJ(instr) || IsJal(instr) || IsLui(instr) || IsEmittedConstant(instr) || IsMov(instr, t8, ra)); target_at_put(fixup_pos, pos, false); } } } L->bind_to(pos); // Keep track of the last bound label so we don't eliminate any instructions // before a bound label. if (pos > last_bound_pos_) last_bound_pos_ = pos; } void Assembler::bind(Label* L) { DCHECK(!L->is_bound()); // Label can only be bound once. bind_to(L, pc_offset()); } void Assembler::next(Label* L, bool is_internal) { DCHECK(L->is_linked()); int link = target_at(L->pos(), is_internal); if (link == kEndOfChain) { L->Unuse(); } else { DCHECK_GE(link, 0); L->link_to(link); } } bool Assembler::is_near(Label* L) { DCHECK(L->is_bound()); return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize; } bool Assembler::is_near(Label* L, OffsetSize bits) { if (L == nullptr || !L->is_bound()) return true; return ((pc_offset() - L->pos()) < (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize); } bool Assembler::is_near_branch(Label* L) { DCHECK(L->is_bound()); return kArchVariant == kMips64r6 ? is_near_r6(L) : is_near_pre_r6(L); } int Assembler::BranchOffset(Instr instr) { // At pre-R6 and for other R6 branches the offset is 16 bits. int bits = OffsetSize::kOffset16; if (kArchVariant == kMips64r6) { uint32_t opcode = GetOpcodeField(instr); switch (opcode) { // Checks BC or BALC. case BC: case BALC: bits = OffsetSize::kOffset26; break; // Checks BEQZC or BNEZC. case POP66: case POP76: if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21; break; default: break; } } return (1 << (bits + 2 - 1)) - 1; } // We have to use a temporary register for things that can be relocated even // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction // space. There is no guarantee that the relocated location can be similarly // encoded. bool Assembler::MustUseReg(RelocInfo::Mode rmode) { return !RelocInfo::IsNoInfo(rmode); } void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd, uint16_t sa, SecondaryField func) { DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb, uint16_t lsb, SecondaryField func) { DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb)); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (msb << kRdShift) | (lsb << kSaShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft, FPURegister fs, FPURegister fd, SecondaryField func) { DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid()); Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft, FPURegister fs, FPURegister fd, SecondaryField func) { DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid()); Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPURegister fs, FPURegister fd, SecondaryField func) { DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid()); Instr instr = opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPUControlRegister fs, SecondaryField func) { DCHECK(fs.is_valid() && rt.is_valid()); Instr instr = opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func; emit(instr); } // Instructions with immediate value. // Registers are in the order of the instruction encoding, from left to right. void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt, int32_t j, CompactBranchType is_compact_branch) { DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (j & kImm16Mask); emit(instr, is_compact_branch); } void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt, int32_t offset9, int bit6, SecondaryField func) { DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) && is_uint1(bit6)); Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) | ((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift | func; emit(instr); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF, int32_t j, CompactBranchType is_compact_branch) { DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); emit(instr, is_compact_branch); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft, int32_t j, CompactBranchType is_compact_branch) { DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) | (j & kImm16Mask); emit(instr, is_compact_branch); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21, CompactBranchType is_compact_branch) { DCHECK(rs.is_valid() && (is_int21(offset21))); Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask); emit(instr, is_compact_branch); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21) { DCHECK(rs.is_valid() && (is_uint21(offset21))); Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask); emit(instr); } void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26, CompactBranchType is_compact_branch) { DCHECK(is_int26(offset26)); Instr instr = opcode | (offset26 & kImm26Mask); emit(instr, is_compact_branch); } void Assembler::GenInstrJump(Opcode opcode, uint32_t address) { BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(is_uint26(address)); Instr instr = opcode | address; emit(instr); BlockTrampolinePoolFor(1); // For associated delay slot. } // MSA instructions void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8, MSARegister ws, MSARegister wd) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8)); Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) | (ws.code() << kWsShift) | (wd.code() << kWdShift); emit(instr); } void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df, int32_t imm5, MSARegister ws, MSARegister wd) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(ws.is_valid() && wd.is_valid()); DCHECK((operation == MAXI_S) || (operation == MINI_S) || (operation == CEQI) || (operation == CLTI_S) || (operation == CLEI_S) ? is_int5(imm5) : is_uint5(imm5)); Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) | (ws.code() << kWsShift) | (wd.code() << kWdShift); emit(instr); } void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df, uint32_t m, MSARegister ws, MSARegister wd) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m)); Instr instr = MSA | operation | df | (m << kWtShift) | (ws.code() << kWsShift) | (wd.code() << kWdShift); emit(instr); } void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df, int32_t imm10, MSARegister wd) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(wd.is_valid() && is_int10(imm10)); Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) | (wd.code() << kWdShift); emit(instr); } template void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df, RegType t, MSARegister ws, MSARegister wd) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid()); Instr instr = MSA | operation | df | (t.code() << kWtShift) | (ws.code() << kWsShift) | (wd.code() << kWdShift); emit(instr); } template void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df, uint32_t n, SrcType src, DstType dst) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n)); Instr instr = MSA | operation | df | (n << kWtShift) | (src.code() << kWsShift) | (dst.code() << kWdShift) | MSA_ELM_MINOR; emit(instr); } void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df, MSARegister wt, MSARegister ws, MSARegister wd) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid()); DCHECK_LT(df, 2); Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) | (ws.code() << kWsShift) | (wd.code() << kWdShift); emit(instr); } void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt, MSARegister ws, MSARegister wd) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid()); Instr instr = MSA | operation | (wt.code() << kWtShift) | (ws.code() << kWsShift) | (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR; emit(instr); } void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10, Register rs, MSARegister wd) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10)); Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) | (rs.code() << kWsShift) | (wd.code() << kWdShift); emit(instr); } void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df, MSARegister ws, MSARegister wd) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(ws.is_valid() && wd.is_valid()); Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) | (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR; emit(instr); } void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df, MSARegister ws, MSARegister wd) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(ws.is_valid() && wd.is_valid()); Instr instr = MSA | MSA_2RF_FORMAT | operation | df | (ws.code() << kWsShift) | (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR; emit(instr); } void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt, int32_t offset16) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(wt.is_valid() && is_int16(offset16)); BlockTrampolinePoolScope block_trampoline_pool(this); Instr instr = COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask); emit(instr); BlockTrampolinePoolFor(1); // For associated delay slot. } // Returns the next free trampoline entry. int32_t Assembler::get_trampoline_entry(int32_t pos) { int32_t trampoline_entry = kInvalidSlotPos; if (!internal_trampoline_exception_) { if (trampoline_.start() > pos) { trampoline_entry = trampoline_.take_slot(); } if (kInvalidSlotPos == trampoline_entry) { internal_trampoline_exception_ = true; } } return trampoline_entry; } uint64_t Assembler::jump_address(Label* L) { int64_t target_pos; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link. L->link_to(pc_offset()); } else { L->link_to(pc_offset()); return kEndOfJumpChain; } } uint64_t imm = reinterpret_cast(buffer_start_) + target_pos; DCHECK_EQ(imm & 3, 0); return imm; } uint64_t Assembler::jump_offset(Label* L) { int64_t target_pos; int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link. L->link_to(pc_offset() + pad); } else { L->link_to(pc_offset() + pad); return kEndOfJumpChain; } } int64_t imm = target_pos - (pc_offset() + pad); DCHECK_EQ(imm & 3, 0); return static_cast(imm); } uint64_t Assembler::branch_long_offset(Label* L) { int64_t target_pos; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link. L->link_to(pc_offset()); } else { L->link_to(pc_offset()); return kEndOfJumpChain; } } int64_t offset = target_pos - (pc_offset() + kLongBranchPCOffset); DCHECK_EQ(offset & 3, 0); return static_cast(offset); } int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) { int32_t target_pos; int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); L->link_to(pc_offset() + pad); } else { L->link_to(pc_offset() + pad); if (!trampoline_emitted_) { unbound_labels_count_++; next_buffer_check_ -= kTrampolineSlotsSize; } return kEndOfChain; } } int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad); DCHECK(is_intn(offset, bits + 2)); DCHECK_EQ(offset & 3, 0); return offset; } void Assembler::label_at_put(Label* L, int at_offset) { int target_pos; if (L->is_bound()) { target_pos = L->pos(); instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link. int32_t imm18 = target_pos - at_offset; DCHECK_EQ(imm18 & 3, 0); int32_t imm16 = imm18 >> 2; DCHECK(is_int16(imm16)); instr_at_put(at_offset, (imm16 & kImm16Mask)); } else { target_pos = kEndOfChain; instr_at_put(at_offset, 0); if (!trampoline_emitted_) { unbound_labels_count_++; next_buffer_check_ -= kTrampolineSlotsSize; } } L->link_to(at_offset); } } //------- Branch and jump instructions -------- void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); } void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); } void Assembler::bc(int32_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::balc(int32_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::beq(Register rs, Register rt, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BEQ, rs, rt, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgez(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BGEZ, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgezc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rt != zero_reg); GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgeuc(Register rs, Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs != zero_reg); DCHECK(rt != zero_reg); DCHECK(rs.code() != rt.code()); GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgec(Register rs, Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs != zero_reg); DCHECK(rt != zero_reg); DCHECK(rs.code() != rt.code()); GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgezal(Register rs, int16_t offset) { DCHECK(kArchVariant != kMips64r6 || rs == zero_reg); DCHECK(rs != ra); BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BGEZAL, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgtz(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BGTZ, rs, zero_reg, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgtzc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rt != zero_reg); GenInstrImmediate(BGTZL, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::blez(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BLEZ, rs, zero_reg, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::blezc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rt != zero_reg); GenInstrImmediate(BLEZL, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bltzc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rt != zero_reg); GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bltuc(Register rs, Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs != zero_reg); DCHECK(rt != zero_reg); DCHECK(rs.code() != rt.code()); GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bltc(Register rs, Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs != zero_reg); DCHECK(rt != zero_reg); DCHECK(rs.code() != rt.code()); GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bltz(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BLTZ, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bltzal(Register rs, int16_t offset) { DCHECK(kArchVariant != kMips64r6 || rs == zero_reg); DCHECK(rs != ra); BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BLTZAL, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bne(Register rs, Register rt, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BNE, rs, rt, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bovc(Register rs, Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); if (rs.code() >= rt.code()) { GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } else { GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); } } void Assembler::bnvc(Register rs, Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); if (rs.code() >= rt.code()) { GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } else { GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); } } void Assembler::blezalc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rt != zero_reg); DCHECK(rt != ra); GenInstrImmediate(BLEZ, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgezalc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rt != zero_reg); DCHECK(rt != ra); GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgezall(Register rs, int16_t offset) { DCHECK_NE(kArchVariant, kMips64r6); DCHECK(rs != zero_reg); DCHECK(rs != ra); BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BGEZALL, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bltzalc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rt != zero_reg); DCHECK(rt != ra); GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgtzalc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rt != zero_reg); DCHECK(rt != ra); GenInstrImmediate(BGTZ, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::beqzalc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rt != zero_reg); DCHECK(rt != ra); GenInstrImmediate(ADDI, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bnezalc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rt != zero_reg); DCHECK(rt != ra); GenInstrImmediate(DADDI, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::beqc(Register rs, Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0); if (rs.code() < rt.code()) { GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } else { GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); } } void Assembler::beqzc(Register rs, int32_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs != zero_reg); GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bnec(Register rs, Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0); if (rs.code() < rt.code()) { GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } else { GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); } } void Assembler::bnezc(Register rs, int32_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs != zero_reg); GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::j(int64_t target) { // Deprecated. Use PC-relative jumps instead. UNREACHABLE(); } void Assembler::j(Label* target) { // Deprecated. Use PC-relative jumps instead. UNREACHABLE(); } void Assembler::jal(Label* target) { // Deprecated. Use PC-relative jumps instead. UNREACHABLE(); } void Assembler::jal(int64_t target) { // Deprecated. Use PC-relative jumps instead. UNREACHABLE(); } void Assembler::jr(Register rs) { if (kArchVariant != kMips64r6) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); BlockTrampolinePoolFor(1); // For associated delay slot. } else { jalr(rs, zero_reg); } } void Assembler::jalr(Register rs, Register rd) { DCHECK(rs.code() != rd.code()); BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::jic(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrImmediate(POP66, zero_reg, rt, offset); } void Assembler::jialc(Register rt, int16_t offset) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrImmediate(POP76, zero_reg, rt, offset); } // -------Data-processing-instructions--------- // Arithmetic. void Assembler::addu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); } void Assembler::addiu(Register rd, Register rs, int32_t j) { GenInstrImmediate(ADDIU, rs, rd, j); } void Assembler::subu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); } void Assembler::mul(Register rd, Register rs, Register rt) { if (kArchVariant == kMips64r6) { GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH); } else { GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); } } void Assembler::muh(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH); } void Assembler::mulu(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U); } void Assembler::muhu(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U); } void Assembler::dmul(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH); } void Assembler::dmuh(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH); } void Assembler::dmulu(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH_U); } void Assembler::dmuhu(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH_U); } void Assembler::mult(Register rs, Register rt) { DCHECK_NE(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); } void Assembler::multu(Register rs, Register rt) { DCHECK_NE(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); } void Assembler::daddiu(Register rd, Register rs, int32_t j) { GenInstrImmediate(DADDIU, rs, rd, j); } void Assembler::div(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); } void Assembler::div(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD); } void Assembler::mod(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD); } void Assembler::divu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); } void Assembler::divu(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U); } void Assembler::modu(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U); } void Assembler::daddu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, DADDU); } void Assembler::dsubu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSUBU); } void Assembler::dmult(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULT); } void Assembler::dmultu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULTU); } void Assembler::ddiv(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIV); } void Assembler::ddiv(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD); } void Assembler::dmod(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD); } void Assembler::ddivu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIVU); } void Assembler::ddivu(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD_U); } void Assembler::dmodu(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD_U); } // Logical. void Assembler::and_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); } void Assembler::andi(Register rt, Register rs, int32_t j) { DCHECK(is_uint16(j)); GenInstrImmediate(ANDI, rs, rt, j); } void Assembler::or_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); } void Assembler::ori(Register rt, Register rs, int32_t j) { DCHECK(is_uint16(j)); GenInstrImmediate(ORI, rs, rt, j); } void Assembler::xor_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); } void Assembler::xori(Register rt, Register rs, int32_t j) { DCHECK(is_uint16(j)); GenInstrImmediate(XORI, rs, rt, j); } void Assembler::nor(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); } // Shifts. void Assembler::sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop) { // Don't allow nop instructions in the form sll zero_reg, zero_reg to be // generated using the sll instruction. They must be generated using // nop(int/NopMarkerTypes). DCHECK(coming_from_nop || (rd != zero_reg && rt != zero_reg)); GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL); } void Assembler::sllv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); } void Assembler::srl(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL); } void Assembler::srlv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); } void Assembler::sra(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA); } void Assembler::srav(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); } void Assembler::rotr(Register rd, Register rt, uint16_t sa) { // Should be called via MacroAssembler::Ror. DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa)); DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | SRL; emit(instr); } void Assembler::rotrv(Register rd, Register rt, Register rs) { // Should be called via MacroAssembler::Ror. DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid()); DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV; emit(instr); } void Assembler::dsll(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL); } void Assembler::dsllv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSLLV); } void Assembler::dsrl(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL); } void Assembler::dsrlv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRLV); } void Assembler::drotr(Register rd, Register rt, uint16_t sa) { DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa)); Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | DSRL; emit(instr); } void Assembler::drotr32(Register rd, Register rt, uint16_t sa) { DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa)); Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | DSRL32; emit(instr); } void Assembler::drotrv(Register rd, Register rt, Register rs) { DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid()); Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (1 << kSaShift) | DSRLV; emit(instr); } void Assembler::dsra(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA); } void Assembler::dsrav(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRAV); } void Assembler::dsll32(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL32); } void Assembler::dsrl32(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL32); } void Assembler::dsra32(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA32); } void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) { DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid()); DCHECK_LE(sa, 3); DCHECK_EQ(kArchVariant, kMips64r6); Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift | rd.code() << kRdShift | sa << kSaShift | LSA; emit(instr); } void Assembler::dlsa(Register rd, Register rt, Register rs, uint8_t sa) { DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid()); DCHECK_LE(sa, 3); DCHECK_EQ(kArchVariant, kMips64r6); Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift | rd.code() << kRdShift | sa << kSaShift | DLSA; emit(instr); } // ------------Memory-instructions------------- void Assembler::AdjustBaseAndOffset(MemOperand* src, OffsetAccessType access_type, int second_access_add_to_offset) { // This method is used to adjust the base register and offset pair // for a load/store when the offset doesn't fit into int16_t. // It is assumed that 'base + offset' is sufficiently aligned for memory // operands that are machine word in size or smaller. For doubleword-sized // operands it's assumed that 'base' is a multiple of 8, while 'offset' // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments // and spilled variables on the stack accessed relative to the stack // pointer register). // We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8. bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0; bool two_accesses = static_cast(access_type) || !doubleword_aligned; DCHECK_LE(second_access_add_to_offset, 7); // Must be <= 7. // is_int16 must be passed a signed value, hence the static cast below. if (is_int16(src->offset()) && (!two_accesses || is_int16(static_cast( src->offset() + second_access_add_to_offset)))) { // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified // value) fits into int16_t. return; } DCHECK(src->rm() != at); // Must not overwrite the register 'base' while loading 'offset'. #ifdef DEBUG // Remember the "(mis)alignment" of 'offset', it will be checked at the end. uint32_t misalignment = src->offset() & (kDoubleSize - 1); #endif // Do not load the whole 32-bit 'offset' if it can be represented as // a sum of two 16-bit signed offsets. This can save an instruction or two. // To simplify matters, only do this for a symmetric range of offsets from // about -64KB to about +64KB, allowing further addition of 4 when accessing // 64-bit variables with two 32-bit accesses. constexpr int32_t kMinOffsetForSimpleAdjustment = 0x7FF8; // Max int16_t that's a multiple of 8. constexpr int32_t kMaxOffsetForSimpleAdjustment = 2 * kMinOffsetForSimpleAdjustment; UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) { daddiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment); src->offset_ -= kMinOffsetForSimpleAdjustment; } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() && src->offset() < 0) { daddiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment); src->offset_ += kMinOffsetForSimpleAdjustment; } else if (kArchVariant == kMips64r6) { // On r6 take advantage of the daui instruction, e.g.: // daui at, base, offset_high // [dahi at, 1] // When `offset` is close to +2GB. // lw reg_lo, offset_low(at) // [lw reg_hi, (offset_low+4)(at)] // If misaligned 64-bit load. // or when offset_low+4 overflows int16_t: // daui at, base, offset_high // daddiu at, at, 8 // lw reg_lo, (offset_low-8)(at) // lw reg_hi, (offset_low-4)(at) int16_t offset_low = static_cast(src->offset()); int32_t offset_low32 = offset_low; int16_t offset_high = static_cast(src->offset() >> 16); bool increment_hi16 = offset_low < 0; bool overflow_hi16 = false; if (increment_hi16) { offset_high++; overflow_hi16 = (offset_high == -32768); } daui(scratch, src->rm(), static_cast(offset_high)); if (overflow_hi16) { dahi(scratch, 1); } if (two_accesses && !is_int16(static_cast( offset_low32 + second_access_add_to_offset))) { // Avoid overflow in the 16-bit offset of the load/store instruction when // adding 4. daddiu(scratch, scratch, kDoubleSize); offset_low32 -= kDoubleSize; } src->offset_ = offset_low32; } else { // Do not load the whole 32-bit 'offset' if it can be represented as // a sum of three 16-bit signed offsets. This can save an instruction. // To simplify matters, only do this for a symmetric range of offsets from // about -96KB to about +96KB, allowing further addition of 4 when accessing // 64-bit variables with two 32-bit accesses. constexpr int32_t kMinOffsetForMediumAdjustment = 2 * kMinOffsetForSimpleAdjustment; constexpr int32_t kMaxOffsetForMediumAdjustment = 3 * kMinOffsetForSimpleAdjustment; if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) { daddiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2); daddiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2); src->offset_ -= kMinOffsetForMediumAdjustment; } else if (-kMaxOffsetForMediumAdjustment <= src->offset() && src->offset() < 0) { daddiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2); daddiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2); src->offset_ += kMinOffsetForMediumAdjustment; } else { // Now that all shorter options have been exhausted, load the full 32-bit // offset. int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize); lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask); ori(scratch, scratch, loaded_offset & kImm16Mask); // Load 32-bit offset. daddu(scratch, scratch, src->rm()); src->offset_ -= loaded_offset; } } src->rm_ = scratch; DCHECK(is_int16(src->offset())); if (two_accesses) { DCHECK(is_int16( static_cast(src->offset() + second_access_add_to_offset))); } DCHECK(misalignment == (src->offset() & (kDoubleSize - 1))); } void Assembler::lb(Register rd, const MemOperand& rs) { GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); } void Assembler::lbu(Register rd, const MemOperand& rs) { GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); } void Assembler::lh(Register rd, const MemOperand& rs) { GenInstrImmediate(LH, rs.rm(), rd, rs.offset_); } void Assembler::lhu(Register rd, const MemOperand& rs) { GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_); } void Assembler::lw(Register rd, const MemOperand& rs) { GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); } void Assembler::lwu(Register rd, const MemOperand& rs) { GenInstrImmediate(LWU, rs.rm(), rd, rs.offset_); } void Assembler::lwl(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK_EQ(kArchVariant, kMips64r2); GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_); } void Assembler::lwr(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK_EQ(kArchVariant, kMips64r2); GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_); } void Assembler::sb(Register rd, const MemOperand& rs) { GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); } void Assembler::sh(Register rd, const MemOperand& rs) { GenInstrImmediate(SH, rs.rm(), rd, rs.offset_); } void Assembler::sw(Register rd, const MemOperand& rs) { GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); } void Assembler::swl(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK_EQ(kArchVariant, kMips64r2); GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_); } void Assembler::swr(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK_EQ(kArchVariant, kMips64r2); GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_); } void Assembler::ll(Register rd, const MemOperand& rs) { if (kArchVariant == kMips64r6) { DCHECK(is_int9(rs.offset_)); GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6); } else { DCHECK_EQ(kArchVariant, kMips64r2); DCHECK(is_int16(rs.offset_)); GenInstrImmediate(LL, rs.rm(), rd, rs.offset_); } } void Assembler::lld(Register rd, const MemOperand& rs) { if (kArchVariant == kMips64r6) { DCHECK(is_int9(rs.offset_)); GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LLD_R6); } else { DCHECK_EQ(kArchVariant, kMips64r2); DCHECK(is_int16(rs.offset_)); GenInstrImmediate(LLD, rs.rm(), rd, rs.offset_); } } void Assembler::sc(Register rd, const MemOperand& rs) { if (kArchVariant == kMips64r6) { DCHECK(is_int9(rs.offset_)); GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6); } else { DCHECK_EQ(kArchVariant, kMips64r2); GenInstrImmediate(SC, rs.rm(), rd, rs.offset_); } } void Assembler::scd(Register rd, const MemOperand& rs) { if (kArchVariant == kMips64r6) { DCHECK(is_int9(rs.offset_)); GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SCD_R6); } else { DCHECK_EQ(kArchVariant, kMips64r2); GenInstrImmediate(SCD, rs.rm(), rd, rs.offset_); } } void Assembler::lui(Register rd, int32_t j) { DCHECK(is_uint16(j) || is_int16(j)); GenInstrImmediate(LUI, zero_reg, rd, j); } void Assembler::aui(Register rt, Register rs, int32_t j) { // This instruction uses same opcode as 'lui'. The difference in encoding is // 'lui' has zero reg. for rs field. DCHECK(is_uint16(j)); GenInstrImmediate(LUI, rs, rt, j); } void Assembler::daui(Register rt, Register rs, int32_t j) { DCHECK(is_uint16(j)); DCHECK(rs != zero_reg); GenInstrImmediate(DAUI, rs, rt, j); } void Assembler::dahi(Register rs, int32_t j) { DCHECK(is_uint16(j)); GenInstrImmediate(REGIMM, rs, DAHI, j); } void Assembler::dati(Register rs, int32_t j) { DCHECK(is_uint16(j)); GenInstrImmediate(REGIMM, rs, DATI, j); } void Assembler::ldl(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK_EQ(kArchVariant, kMips64r2); GenInstrImmediate(LDL, rs.rm(), rd, rs.offset_); } void Assembler::ldr(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK_EQ(kArchVariant, kMips64r2); GenInstrImmediate(LDR, rs.rm(), rd, rs.offset_); } void Assembler::sdl(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK_EQ(kArchVariant, kMips64r2); GenInstrImmediate(SDL, rs.rm(), rd, rs.offset_); } void Assembler::sdr(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK_EQ(kArchVariant, kMips64r2); GenInstrImmediate(SDR, rs.rm(), rd, rs.offset_); } void Assembler::ld(Register rd, const MemOperand& rs) { GenInstrImmediate(LD, rs.rm(), rd, rs.offset_); } void Assembler::sd(Register rd, const MemOperand& rs) { GenInstrImmediate(SD, rs.rm(), rd, rs.offset_); } // ---------PC-Relative instructions----------- void Assembler::addiupc(Register rs, int32_t imm19) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs.is_valid() && is_int19(imm19)); uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask); GenInstrImmediate(PCREL, rs, imm21); } void Assembler::lwpc(Register rs, int32_t offset19) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs.is_valid() && is_int19(offset19)); uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask); GenInstrImmediate(PCREL, rs, imm21); } void Assembler::lwupc(Register rs, int32_t offset19) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs.is_valid() && is_int19(offset19)); uint32_t imm21 = LWUPC << kImm19Bits | (offset19 & kImm19Mask); GenInstrImmediate(PCREL, rs, imm21); } void Assembler::ldpc(Register rs, int32_t offset18) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs.is_valid() && is_int18(offset18)); uint32_t imm21 = LDPC << kImm18Bits | (offset18 & kImm18Mask); GenInstrImmediate(PCREL, rs, imm21); } void Assembler::auipc(Register rs, int16_t imm16) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs.is_valid()); uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask); GenInstrImmediate(PCREL, rs, imm21); } void Assembler::aluipc(Register rs, int16_t imm16) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(rs.is_valid()); uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask); GenInstrImmediate(PCREL, rs, imm21); } // -------------Misc-instructions-------------- // Break / Trap instructions. void Assembler::break_(uint32_t code, bool break_as_stop) { DCHECK_EQ(code & ~0xFFFFF, 0); // We need to invalidate breaks that could be stops as well because the // simulator expects a char pointer after the stop instruction. // See constants-mips.h for explanation. DCHECK( (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) || (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode))); Instr break_instr = SPECIAL | BREAK | (code << 6); emit(break_instr); } void Assembler::stop(uint32_t code) { DCHECK_GT(code, kMaxWatchpointCode); DCHECK_LE(code, kMaxStopCode); #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64) break_(0x54321); #else // V8_HOST_ARCH_MIPS break_(code, true); #endif } void Assembler::tge(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tgeu(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tlt(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tltu(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::teq(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tne(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::sync() { Instr sync_instr = SPECIAL | SYNC; emit(sync_instr); } // Move from HI/LO register. void Assembler::mfhi(Register rd) { GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); } void Assembler::mflo(Register rd) { GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); } // Set on less than instructions. void Assembler::slt(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); } void Assembler::sltu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); } void Assembler::slti(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTI, rs, rt, j); } void Assembler::sltiu(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTIU, rs, rt, j); } // Conditional move. void Assembler::movz(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ); } void Assembler::movn(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN); } void Assembler::movt(Register rd, Register rs, uint16_t cc) { Register rt = Register::from_code((cc & 0x0007) << 2 | 1); GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); } void Assembler::movf(Register rd, Register rs, uint16_t cc) { Register rt = Register::from_code((cc & 0x0007) << 2 | 0); GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); } void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) { min(S, fd, fs, ft); } void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) { min(D, fd, fs, ft); } void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) { max(S, fd, fs, ft); } void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) { max(D, fd, fs, ft); } void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) { mina(S, fd, fs, ft); } void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) { mina(D, fd, fs, ft); } void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) { maxa(S, fd, fs, ft); } void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) { maxa(D, fd, fs, ft); } void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, MAX); } void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, MIN); } // GPR. void Assembler::seleqz(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S); } // GPR. void Assembler::selnez(Register rd, Register rs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S); } // Bit twiddling. void Assembler::clz(Register rd, Register rs) { if (kArchVariant != kMips64r6) { // clz instr requires same GPR number in 'rd' and 'rt' fields. GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ); } else { GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6); } } void Assembler::dclz(Register rd, Register rs) { if (kArchVariant != kMips64r6) { // dclz instr requires same GPR number in 'rd' and 'rt' fields. GenInstrRegister(SPECIAL2, rs, rd, rd, 0, DCLZ); } else { GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, DCLZ_R6); } } void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Ins. // ins instr has 'rt' field as dest, and two uint5: msb, lsb. DCHECK((kArchVariant == kMips64r2) || (kArchVariant == kMips64r6)); GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS); } void Assembler::dins_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Dins. // dins instr has 'rt' field as dest, and two uint5: msb, lsb. DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, DINS); } void Assembler::dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Dins. // dinsm instr has 'rt' field as dest, and two uint5: msbminus32, lsb. DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos, DINSM); } void Assembler::dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Dins. // dinsu instr has 'rt' field as dest, and two uint5: msbminus32, lsbminus32. DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos - 32, DINSU); } void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Ext. // ext instr has 'rt' field as dest, and two uint5: msbd, lsb. DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT); } void Assembler::dext_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Dext. // dext instr has 'rt' field as dest, and two uint5: msbd, lsb. DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, DEXT); } void Assembler::dextm_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Dextm. // dextm instr has 'rt' field as dest, and two uint5: msbdminus32, lsb. DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, rs, rt, size - 1 - 32, pos, DEXTM); } void Assembler::dextu_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Dextu. // dextu instr has 'rt' field as dest, and two uint5: msbd, lsbminus32. DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos - 32, DEXTU); } void Assembler::bitswap(Register rd, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL); } void Assembler::dbitswap(Register rd, Register rt) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, DBSHFL); } void Assembler::pref(int32_t hint, const MemOperand& rs) { DCHECK(is_uint5(hint) && is_uint16(rs.offset_)); Instr instr = PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift) | (rs.offset_); emit(instr); } void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(is_uint3(bp)); uint16_t sa = (ALIGN << kBp2Bits) | bp; GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL); } void Assembler::dalign(Register rd, Register rs, Register rt, uint8_t bp) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK(is_uint3(bp)); uint16_t sa = (DALIGN << kBp3Bits) | bp; GenInstrRegister(SPECIAL3, rs, rt, rd, sa, DBSHFL); } void Assembler::wsbh(Register rd, Register rt) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL); } void Assembler::dsbh(Register rd, Register rt) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSBH, DBSHFL); } void Assembler::dshd(Register rd, Register rt) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSHD, DBSHFL); } void Assembler::seh(Register rd, Register rt) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL); } void Assembler::seb(Register rd, Register rt) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL); } // --------Coprocessor-instructions---------------- // Load, store, move. void Assembler::lwc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); } void Assembler::ldc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(LDC1, src.rm(), fd, src.offset_); } void Assembler::swc1(FPURegister fs, const MemOperand& src) { GenInstrImmediate(SWC1, src.rm(), fs, src.offset_); } void Assembler::sdc1(FPURegister fs, const MemOperand& src) { GenInstrImmediate(SDC1, src.rm(), fs, src.offset_); } void Assembler::mtc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MTC1, rt, fs, f0); } void Assembler::mthc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MTHC1, rt, fs, f0); } void Assembler::dmtc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, DMTC1, rt, fs, f0); } void Assembler::mfc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MFC1, rt, fs, f0); } void Assembler::mfhc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MFHC1, rt, fs, f0); } void Assembler::dmfc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, DMFC1, rt, fs, f0); } void Assembler::ctc1(Register rt, FPUControlRegister fs) { GenInstrRegister(COP1, CTC1, rt, fs); } void Assembler::cfc1(Register rt, FPUControlRegister fs) { GenInstrRegister(COP1, CFC1, rt, fs); } void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, SEL); } void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) { sel(S, fd, fs, ft); } void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) { sel(D, fd, fs, ft); } // FPR. void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C); } void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) { seleqz(D, fd, fs, ft); } void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) { seleqz(S, fd, fs, ft); } void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) { selnez(D, fd, fs, ft); } void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) { selnez(S, fd, fs, ft); } void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r2); GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C); } void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r2); GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C); } void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) { DCHECK_EQ(kArchVariant, kMips64r2); FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1); GenInstrRegister(COP1, S, ft, fs, fd, MOVF); } void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) { DCHECK_EQ(kArchVariant, kMips64r2); FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1); GenInstrRegister(COP1, D, ft, fs, fd, MOVF); } void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) { DCHECK_EQ(kArchVariant, kMips64r2); FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0); GenInstrRegister(COP1, S, ft, fs, fd, MOVF); } void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) { DCHECK_EQ(kArchVariant, kMips64r2); FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0); GenInstrRegister(COP1, D, ft, fs, fd, MOVF); } void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r2); GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C); } void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) { DCHECK_EQ(kArchVariant, kMips64r2); GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C); } // FPR. void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C); } // Arithmetic. void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, S, ft, fs, fd, ADD_D); } void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, ADD_D); } void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, S, ft, fs, fd, SUB_D); } void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, SUB_D); } void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, S, ft, fs, fd, MUL_D); } void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, MUL_D); } void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft) { // On Loongson 3A (MIPS64R2), MADD.S instruction is actually fused MADD.S and // this causes failure in some of the tests. Since this optimization is rarely // used, and not used at all on MIPS64R6, this isntruction is removed. UNREACHABLE(); } void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft) { // On Loongson 3A (MIPS64R2), MADD.D instruction is actually fused MADD.D and // this causes failure in some of the tests. Since this optimization is rarely // used, and not used at all on MIPS64R6, this isntruction is removed. UNREACHABLE(); } void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft) { // See explanation for instruction madd_s. UNREACHABLE(); } void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft) { // See explanation for instruction madd_d. UNREACHABLE(); } void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S); } void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D); } void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S); } void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D); } void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, S, ft, fs, fd, DIV_D); } void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, DIV_D); } void Assembler::abs_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, ABS_D); } void Assembler::abs_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ABS_D); } void Assembler::mov_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, MOV_D); } void Assembler::mov_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, MOV_S); } void Assembler::neg_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, NEG_D); } void Assembler::neg_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, NEG_D); } void Assembler::sqrt_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, SQRT_D); } void Assembler::sqrt_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D); } void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S); } void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D); } void Assembler::recip_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D); } void Assembler::recip_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S); } // Conversions. void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); } void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); } void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S); } void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D); } void Assembler::round_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S); } void Assembler::round_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D); } void Assembler::floor_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S); } void Assembler::floor_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D); } void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S); } void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D); } void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); } void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); } void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(COP1, fmt, f0, fs, fd, RINT); } void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); } void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); } void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S); } void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D); } void Assembler::round_l_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S); } void Assembler::round_l_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D); } void Assembler::floor_l_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S); } void Assembler::floor_l_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D); } void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S); } void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D); } void Assembler::class_s(FPURegister fd, FPURegister fs) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S); } void Assembler::class_d(FPURegister fd, FPURegister fs) { DCHECK_EQ(kArchVariant, kMips64r6); GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D); } void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, MINA); } void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA); } void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); } void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); } void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D); } void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); } void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6); GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); } void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S); } // Conditions for >= MIPSr6. void Assembler::cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); DCHECK_EQ(fmt & ~(31 << kRsShift), 0); Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift | fd.code() << kFdShift | (0 << 5) | cond; emit(instr); } void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft) { cmp(cond, W, fd, fs, ft); } void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft) { cmp(cond, L, fd, fs, ft); } void Assembler::bc1eqz(int16_t offset, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); BlockTrampolinePoolScope block_trampoline_pool(this); Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask); emit(instr); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bc1nez(int16_t offset, FPURegister ft) { DCHECK_EQ(kArchVariant, kMips64r6); BlockTrampolinePoolScope block_trampoline_pool(this); Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask); emit(instr); BlockTrampolinePoolFor(1); // For associated delay slot. } // Conditions for < MIPSr6. void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs, FPURegister ft, uint16_t cc) { DCHECK_NE(kArchVariant, kMips64r6); DCHECK(is_uint3(cc)); DCHECK(fmt == S || fmt == D); DCHECK_EQ(fmt & ~(31 << kRsShift), 0); Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift | cc << 8 | 3 << 4 | cond; emit(instr); } void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft, uint16_t cc) { c(cond, S, fs, ft, cc); } void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft, uint16_t cc) { c(cond, D, fs, ft, cc); } void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) { DCHECK_EQ(src2, 0.0); mtc1(zero_reg, f14); cvt_d_w(f14, f14); c(cond, D, src1, f14, 0); } void Assembler::bc1f(int16_t offset, uint16_t cc) { BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); emit(instr); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bc1t(int16_t offset, uint16_t cc) { BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); emit(instr); BlockTrampolinePoolFor(1); // For associated delay slot. } // ---------- MSA instructions ------------ #define MSA_BRANCH_LIST(V) \ V(bz_v, BZ_V) \ V(bz_b, BZ_B) \ V(bz_h, BZ_H) \ V(bz_w, BZ_W) \ V(bz_d, BZ_D) \ V(bnz_v, BNZ_V) \ V(bnz_b, BNZ_B) \ V(bnz_h, BNZ_H) \ V(bnz_w, BNZ_W) \ V(bnz_d, BNZ_D) #define MSA_BRANCH(name, opcode) \ void Assembler::name(MSARegister wt, int16_t offset) { \ GenInstrMsaBranch(opcode, wt, offset); \ } MSA_BRANCH_LIST(MSA_BRANCH) #undef MSA_BRANCH #undef MSA_BRANCH_LIST #define MSA_LD_ST_LIST(V) \ V(ld_b, LD_B, 1) \ V(ld_h, LD_H, 2) \ V(ld_w, LD_W, 4) \ V(ld_d, LD_D, 8) \ V(st_b, ST_B, 1) \ V(st_h, ST_H, 2) \ V(st_w, ST_W, 4) \ V(st_d, ST_D, 8) #define MSA_LD_ST(name, opcode, b) \ void Assembler::name(MSARegister wd, const MemOperand& rs) { \ MemOperand source = rs; \ AdjustBaseAndOffset(&source); \ if (is_int10(source.offset())) { \ DCHECK_EQ(source.offset() % b, 0); \ GenInstrMsaMI10(opcode, source.offset() / b, source.rm(), wd); \ } else { \ UseScratchRegisterScope temps(this); \ Register scratch = temps.Acquire(); \ DCHECK_NE(rs.rm(), scratch); \ daddiu(scratch, source.rm(), source.offset()); \ GenInstrMsaMI10(opcode, 0, scratch, wd); \ } \ } MSA_LD_ST_LIST(MSA_LD_ST) #undef MSA_LD_ST #undef MSA_LD_ST_LIST #define MSA_I10_LIST(V) \ V(ldi_b, I5_DF_b) \ V(ldi_h, I5_DF_h) \ V(ldi_w, I5_DF_w) \ V(ldi_d, I5_DF_d) #define MSA_I10(name, format) \ void Assembler::name(MSARegister wd, int32_t imm10) { \ GenInstrMsaI10(LDI, format, imm10, wd); \ } MSA_I10_LIST(MSA_I10) #undef MSA_I10 #undef MSA_I10_LIST #define MSA_I5_LIST(V) \ V(addvi, ADDVI) \ V(subvi, SUBVI) \ V(maxi_s, MAXI_S) \ V(maxi_u, MAXI_U) \ V(mini_s, MINI_S) \ V(mini_u, MINI_U) \ V(ceqi, CEQI) \ V(clti_s, CLTI_S) \ V(clti_u, CLTI_U) \ V(clei_s, CLEI_S) \ V(clei_u, CLEI_U) #define MSA_I5_FORMAT(name, opcode, format) \ void Assembler::name##_##format(MSARegister wd, MSARegister ws, \ uint32_t imm5) { \ GenInstrMsaI5(opcode, I5_DF_##format, imm5, ws, wd); \ } #define MSA_I5(name, opcode) \ MSA_I5_FORMAT(name, opcode, b) \ MSA_I5_FORMAT(name, opcode, h) \ MSA_I5_FORMAT(name, opcode, w) \ MSA_I5_FORMAT(name, opcode, d) MSA_I5_LIST(MSA_I5) #undef MSA_I5 #undef MSA_I5_FORMAT #undef MSA_I5_LIST #define MSA_I8_LIST(V) \ V(andi_b, ANDI_B) \ V(ori_b, ORI_B) \ V(nori_b, NORI_B) \ V(xori_b, XORI_B) \ V(bmnzi_b, BMNZI_B) \ V(bmzi_b, BMZI_B) \ V(bseli_b, BSELI_B) \ V(shf_b, SHF_B) \ V(shf_h, SHF_H) \ V(shf_w, SHF_W) #define MSA_I8(name, opcode) \ void Assembler::name(MSARegister wd, MSARegister ws, uint32_t imm8) { \ GenInstrMsaI8(opcode, imm8, ws, wd); \ } MSA_I8_LIST(MSA_I8) #undef MSA_I8 #undef MSA_I8_LIST #define MSA_VEC_LIST(V) \ V(and_v, AND_V) \ V(or_v, OR_V) \ V(nor_v, NOR_V) \ V(xor_v, XOR_V) \ V(bmnz_v, BMNZ_V) \ V(bmz_v, BMZ_V) \ V(bsel_v, BSEL_V) #define MSA_VEC(name, opcode) \ void Assembler::name(MSARegister wd, MSARegister ws, MSARegister wt) { \ GenInstrMsaVec(opcode, wt, ws, wd); \ } MSA_VEC_LIST(MSA_VEC) #undef MSA_VEC #undef MSA_VEC_LIST #define MSA_2R_LIST(V) \ V(pcnt, PCNT) \ V(nloc, NLOC) \ V(nlzc, NLZC) #define MSA_2R_FORMAT(name, opcode, format) \ void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \ GenInstrMsa2R(opcode, MSA_2R_DF_##format, ws, wd); \ } #define MSA_2R(name, opcode) \ MSA_2R_FORMAT(name, opcode, b) \ MSA_2R_FORMAT(name, opcode, h) \ MSA_2R_FORMAT(name, opcode, w) \ MSA_2R_FORMAT(name, opcode, d) MSA_2R_LIST(MSA_2R) #undef MSA_2R #undef MSA_2R_FORMAT #undef MSA_2R_LIST #define MSA_FILL(format) \ void Assembler::fill_##format(MSARegister wd, Register rs) { \ DCHECK(IsEnabled(MIPS_SIMD)); \ DCHECK(rs.is_valid() && wd.is_valid()); \ Instr instr = MSA | MSA_2R_FORMAT | FILL | MSA_2R_DF_##format | \ (rs.code() << kWsShift) | (wd.code() << kWdShift) | \ MSA_VEC_2R_2RF_MINOR; \ emit(instr); \ } MSA_FILL(b) MSA_FILL(h) MSA_FILL(w) MSA_FILL(d) #undef MSA_FILL #define MSA_2RF_LIST(V) \ V(fclass, FCLASS) \ V(ftrunc_s, FTRUNC_S) \ V(ftrunc_u, FTRUNC_U) \ V(fsqrt, FSQRT) \ V(frsqrt, FRSQRT) \ V(frcp, FRCP) \ V(frint, FRINT) \ V(flog2, FLOG2) \ V(fexupl, FEXUPL) \ V(fexupr, FEXUPR) \ V(ffql, FFQL) \ V(ffqr, FFQR) \ V(ftint_s, FTINT_S) \ V(ftint_u, FTINT_U) \ V(ffint_s, FFINT_S) \ V(ffint_u, FFINT_U) #define MSA_2RF_FORMAT(name, opcode, format) \ void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \ GenInstrMsa2RF(opcode, MSA_2RF_DF_##format, ws, wd); \ } #define MSA_2RF(name, opcode) \ MSA_2RF_FORMAT(name, opcode, w) \ MSA_2RF_FORMAT(name, opcode, d) MSA_2RF_LIST(MSA_2RF) #undef MSA_2RF #undef MSA_2RF_FORMAT #undef MSA_2RF_LIST #define MSA_3R_LIST(V) \ V(sll, SLL_MSA) \ V(sra, SRA_MSA) \ V(srl, SRL_MSA) \ V(bclr, BCLR) \ V(bset, BSET) \ V(bneg, BNEG) \ V(binsl, BINSL) \ V(binsr, BINSR) \ V(addv, ADDV) \ V(subv, SUBV) \ V(max_s, MAX_S) \ V(max_u, MAX_U) \ V(min_s, MIN_S) \ V(min_u, MIN_U) \ V(max_a, MAX_A) \ V(min_a, MIN_A) \ V(ceq, CEQ) \ V(clt_s, CLT_S) \ V(clt_u, CLT_U) \ V(cle_s, CLE_S) \ V(cle_u, CLE_U) \ V(add_a, ADD_A) \ V(adds_a, ADDS_A) \ V(adds_s, ADDS_S) \ V(adds_u, ADDS_U) \ V(ave_s, AVE_S) \ V(ave_u, AVE_U) \ V(aver_s, AVER_S) \ V(aver_u, AVER_U) \ V(subs_s, SUBS_S) \ V(subs_u, SUBS_U) \ V(subsus_u, SUBSUS_U) \ V(subsuu_s, SUBSUU_S) \ V(asub_s, ASUB_S) \ V(asub_u, ASUB_U) \ V(mulv, MULV) \ V(maddv, MADDV) \ V(msubv, MSUBV) \ V(div_s, DIV_S_MSA) \ V(div_u, DIV_U) \ V(mod_s, MOD_S) \ V(mod_u, MOD_U) \ V(dotp_s, DOTP_S) \ V(dotp_u, DOTP_U) \ V(dpadd_s, DPADD_S) \ V(dpadd_u, DPADD_U) \ V(dpsub_s, DPSUB_S) \ V(dpsub_u, DPSUB_U) \ V(pckev, PCKEV) \ V(pckod, PCKOD) \ V(ilvl, ILVL) \ V(ilvr, ILVR) \ V(ilvev, ILVEV) \ V(ilvod, ILVOD) \ V(vshf, VSHF) \ V(srar, SRAR) \ V(srlr, SRLR) \ V(hadd_s, HADD_S) \ V(hadd_u, HADD_U) \ V(hsub_s, HSUB_S) \ V(hsub_u, HSUB_U) #define MSA_3R_FORMAT(name, opcode, format) \ void Assembler::name##_##format(MSARegister wd, MSARegister ws, \ MSARegister wt) { \ GenInstrMsa3R(opcode, MSA_3R_DF_##format, wt, ws, wd); \ } #define MSA_3R_FORMAT_SLD_SPLAT(name, opcode, format) \ void Assembler::name##_##format(MSARegister wd, MSARegister ws, \ Register rt) { \ GenInstrMsa3R(opcode, MSA_3R_DF_##format, rt, ws, wd); \ } #define MSA_3R(name, opcode) \ MSA_3R_FORMAT(name, opcode, b) \ MSA_3R_FORMAT(name, opcode, h) \ MSA_3R_FORMAT(name, opcode, w) \ MSA_3R_FORMAT(name, opcode, d) #define MSA_3R_SLD_SPLAT(name, opcode) \ MSA_3R_FORMAT_SLD_SPLAT(name, opcode, b) \ MSA_3R_FORMAT_SLD_SPLAT(name, opcode, h) \ MSA_3R_FORMAT_SLD_SPLAT(name, opcode, w) \ MSA_3R_FORMAT_SLD_SPLAT(name, opcode, d) MSA_3R_LIST(MSA_3R) MSA_3R_SLD_SPLAT(sld, SLD) MSA_3R_SLD_SPLAT(splat, SPLAT) #undef MSA_3R #undef MSA_3R_FORMAT #undef MSA_3R_FORMAT_SLD_SPLAT #undef MSA_3R_SLD_SPLAT #undef MSA_3R_LIST #define MSA_3RF_LIST1(V) \ V(fcaf, FCAF) \ V(fcun, FCUN) \ V(fceq, FCEQ) \ V(fcueq, FCUEQ) \ V(fclt, FCLT) \ V(fcult, FCULT) \ V(fcle, FCLE) \ V(fcule, FCULE) \ V(fsaf, FSAF) \ V(fsun, FSUN) \ V(fseq, FSEQ) \ V(fsueq, FSUEQ) \ V(fslt, FSLT) \ V(fsult, FSULT) \ V(fsle, FSLE) \ V(fsule, FSULE) \ V(fadd, FADD) \ V(fsub, FSUB) \ V(fmul, FMUL) \ V(fdiv, FDIV) \ V(fmadd, FMADD) \ V(fmsub, FMSUB) \ V(fexp2, FEXP2) \ V(fmin, FMIN) \ V(fmin_a, FMIN_A) \ V(fmax, FMAX) \ V(fmax_a, FMAX_A) \ V(fcor, FCOR) \ V(fcune, FCUNE) \ V(fcne, FCNE) \ V(fsor, FSOR) \ V(fsune, FSUNE) \ V(fsne, FSNE) #define MSA_3RF_LIST2(V) \ V(fexdo, FEXDO) \ V(ftq, FTQ) \ V(mul_q, MUL_Q) \ V(madd_q, MADD_Q) \ V(msub_q, MSUB_Q) \ V(mulr_q, MULR_Q) \ V(maddr_q, MADDR_Q) \ V(msubr_q, MSUBR_Q) #define MSA_3RF_FORMAT(name, opcode, df, df_c) \ void Assembler::name##_##df(MSARegister wd, MSARegister ws, \ MSARegister wt) { \ GenInstrMsa3RF(opcode, df_c, wt, ws, wd); \ } #define MSA_3RF_1(name, opcode) \ MSA_3RF_FORMAT(name, opcode, w, 0) \ MSA_3RF_FORMAT(name, opcode, d, 1) #define MSA_3RF_2(name, opcode) \ MSA_3RF_FORMAT(name, opcode, h, 0) \ MSA_3RF_FORMAT(name, opcode, w, 1) MSA_3RF_LIST1(MSA_3RF_1) MSA_3RF_LIST2(MSA_3RF_2) #undef MSA_3RF_1 #undef MSA_3RF_2 #undef MSA_3RF_FORMAT #undef MSA_3RF_LIST1 #undef MSA_3RF_LIST2 void Assembler::sldi_b(MSARegister wd, MSARegister ws, uint32_t n) { GenInstrMsaElm(SLDI, ELM_DF_B, n, ws, wd); } void Assembler::sldi_h(MSARegister wd, MSARegister ws, uint32_t n) { GenInstrMsaElm(SLDI, ELM_DF_H, n, ws, wd); } void Assembler::sldi_w(MSARegister wd, MSARegister ws, uint32_t n) { GenInstrMsaElm(SLDI, ELM_DF_W, n, ws, wd); } void Assembler::sldi_d(MSARegister wd, MSARegister ws, uint32_t n) { GenInstrMsaElm(SLDI, ELM_DF_D, n, ws, wd); } void Assembler::splati_b(MSARegister wd, MSARegister ws, uint32_t n) { GenInstrMsaElm(SPLATI, ELM_DF_B, n, ws, wd); } void Assembler::splati_h(MSARegister wd, MSARegister ws, uint32_t n) { GenInstrMsaElm(SPLATI, ELM_DF_H, n, ws, wd); } void Assembler::splati_w(MSARegister wd, MSARegister ws, uint32_t n) { GenInstrMsaElm(SPLATI, ELM_DF_W, n, ws, wd); } void Assembler::splati_d(MSARegister wd, MSARegister ws, uint32_t n) { GenInstrMsaElm(SPLATI, ELM_DF_D, n, ws, wd); } void Assembler::copy_s_b(Register rd, MSARegister ws, uint32_t n) { GenInstrMsaElm(COPY_S, ELM_DF_B, n, ws, rd); } void Assembler::copy_s_h(Register rd, MSARegister ws, uint32_t n) { GenInstrMsaElm(COPY_S, ELM_DF_H, n, ws, rd); } void Assembler::copy_s_w(Register rd, MSARegister ws, uint32_t n) { GenInstrMsaElm(COPY_S, ELM_DF_W, n, ws, rd); } void Assembler::copy_s_d(Register rd, MSARegister ws, uint32_t n) { GenInstrMsaElm(COPY_S, ELM_DF_D, n, ws, rd); } void Assembler::copy_u_b(Register rd, MSARegister ws, uint32_t n) { GenInstrMsaElm(COPY_U, ELM_DF_B, n, ws, rd); } void Assembler::copy_u_h(Register rd, MSARegister ws, uint32_t n) { GenInstrMsaElm(COPY_U, ELM_DF_H, n, ws, rd); } void Assembler::copy_u_w(Register rd, MSARegister ws, uint32_t n) { GenInstrMsaElm(COPY_U, ELM_DF_W, n, ws, rd); } void Assembler::insert_b(MSARegister wd, uint32_t n, Register rs) { GenInstrMsaElm(INSERT, ELM_DF_B, n, rs, wd); } void Assembler::insert_h(MSARegister wd, uint32_t n, Register rs) { GenInstrMsaElm(INSERT, ELM_DF_H, n, rs, wd); } void Assembler::insert_w(MSARegister wd, uint32_t n, Register rs) { GenInstrMsaElm(INSERT, ELM_DF_W, n, rs, wd); } void Assembler::insert_d(MSARegister wd, uint32_t n, Register rs) { GenInstrMsaElm(INSERT, ELM_DF_D, n, rs, wd); } void Assembler::insve_b(MSARegister wd, uint32_t n, MSARegister ws) { GenInstrMsaElm(INSVE, ELM_DF_B, n, ws, wd); } void Assembler::insve_h(MSARegister wd, uint32_t n, MSARegister ws) { GenInstrMsaElm(INSVE, ELM_DF_H, n, ws, wd); } void Assembler::insve_w(MSARegister wd, uint32_t n, MSARegister ws) { GenInstrMsaElm(INSVE, ELM_DF_W, n, ws, wd); } void Assembler::insve_d(MSARegister wd, uint32_t n, MSARegister ws) { GenInstrMsaElm(INSVE, ELM_DF_D, n, ws, wd); } void Assembler::move_v(MSARegister wd, MSARegister ws) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(ws.is_valid() && wd.is_valid()); Instr instr = MSA | MOVE_V | (ws.code() << kWsShift) | (wd.code() << kWdShift) | MSA_ELM_MINOR; emit(instr); } void Assembler::ctcmsa(MSAControlRegister cd, Register rs) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(cd.is_valid() && rs.is_valid()); Instr instr = MSA | CTCMSA | (rs.code() << kWsShift) | (cd.code() << kWdShift) | MSA_ELM_MINOR; emit(instr); } void Assembler::cfcmsa(Register rd, MSAControlRegister cs) { DCHECK(IsEnabled(MIPS_SIMD)); DCHECK(rd.is_valid() && cs.is_valid()); Instr instr = MSA | CFCMSA | (cs.code() << kWsShift) | (rd.code() << kWdShift) | MSA_ELM_MINOR; emit(instr); } #define MSA_BIT_LIST(V) \ V(slli, SLLI) \ V(srai, SRAI) \ V(srli, SRLI) \ V(bclri, BCLRI) \ V(bseti, BSETI) \ V(bnegi, BNEGI) \ V(binsli, BINSLI) \ V(binsri, BINSRI) \ V(sat_s, SAT_S) \ V(sat_u, SAT_U) \ V(srari, SRARI) \ V(srlri, SRLRI) #define MSA_BIT_FORMAT(name, opcode, format) \ void Assembler::name##_##format(MSARegister wd, MSARegister ws, \ uint32_t m) { \ GenInstrMsaBit(opcode, BIT_DF_##format, m, ws, wd); \ } #define MSA_BIT(name, opcode) \ MSA_BIT_FORMAT(name, opcode, b) \ MSA_BIT_FORMAT(name, opcode, h) \ MSA_BIT_FORMAT(name, opcode, w) \ MSA_BIT_FORMAT(name, opcode, d) MSA_BIT_LIST(MSA_BIT) #undef MSA_BIT #undef MSA_BIT_FORMAT #undef MSA_BIT_LIST int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc, intptr_t pc_delta) { if (RelocInfo::IsInternalReference(rmode)) { int64_t* p = reinterpret_cast(pc); if (*p == kEndOfJumpChain) { return 0; // Number of instructions patched. } *p += pc_delta; return 2; // Number of instructions patched. } Instr instr = instr_at(pc); DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode)); if (IsLui(instr)) { Instr instr_lui = instr_at(pc + 0 * kInstrSize); Instr instr_ori = instr_at(pc + 1 * kInstrSize); Instr instr_ori2 = instr_at(pc + 3 * kInstrSize); DCHECK(IsOri(instr_ori)); DCHECK(IsOri(instr_ori2)); // TODO(plind): symbolic names for the shifts. int64_t imm = (instr_lui & static_cast(kImm16Mask)) << 48; imm |= (instr_ori & static_cast(kImm16Mask)) << 32; imm |= (instr_ori2 & static_cast(kImm16Mask)) << 16; // Sign extend address. imm >>= 16; if (imm == kEndOfJumpChain) { return 0; // Number of instructions patched. } imm += pc_delta; DCHECK_EQ(imm & 3, 0); instr_lui &= ~kImm16Mask; instr_ori &= ~kImm16Mask; instr_ori2 &= ~kImm16Mask; instr_at_put(pc + 0 * kInstrSize, instr_lui | ((imm >> 32) & kImm16Mask)); instr_at_put(pc + 1 * kInstrSize, instr_ori | (imm >> 16 & kImm16Mask)); instr_at_put(pc + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask)); return 4; // Number of instructions patched. } else if (IsJ(instr) || IsJal(instr)) { // Regular j/jal relocation. uint32_t imm28 = (instr & static_cast(kImm26Mask)) << 2; imm28 += pc_delta; imm28 &= kImm28Mask; instr &= ~kImm26Mask; DCHECK_EQ(imm28 & 3, 0); uint32_t imm26 = static_cast(imm28 >> 2); instr_at_put(pc, instr | (imm26 & kImm26Mask)); return 1; // Number of instructions patched. } else { DCHECK(((instr & kJumpRawMask) == kJRawMark) || ((instr & kJumpRawMask) == kJalRawMark)); // Unbox raw offset and emit j/jal. int32_t imm28 = (instr & static_cast(kImm26Mask)) << 2; // Sign extend 28-bit offset to 32-bit. imm28 = (imm28 << 4) >> 4; uint64_t target = static_cast(imm28) + reinterpret_cast(pc); target &= kImm28Mask; DCHECK_EQ(imm28 & 3, 0); uint32_t imm26 = static_cast(target >> 2); // Check markings whether to emit j or jal. uint32_t unbox = (instr & kJRawMark) ? J : JAL; instr_at_put(pc, unbox | (imm26 & kImm26Mask)); return 1; // Number of instructions patched. } } void Assembler::GrowBuffer() { // Compute new buffer size. int old_size = buffer_->size(); int new_size = std::min(2 * old_size, old_size + 1 * MB); // Some internal data structures overflow for very large buffers, // they must ensure that kMaximalBufferSize is not too large. if (new_size > kMaximalBufferSize) { V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer"); } // Set up new buffer. std::unique_ptr new_buffer = buffer_->Grow(new_size); DCHECK_EQ(new_size, new_buffer->size()); byte* new_start = new_buffer->start(); // Copy the data. intptr_t pc_delta = new_start - buffer_start_; intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size); size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos(); MemMove(new_start, buffer_start_, pc_offset()); MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(), reloc_size); // Switch buffers. buffer_ = std::move(new_buffer); buffer_start_ = new_start; pc_ += pc_delta; pc_for_safepoint_ += pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // Relocate runtime entries. base::Vector instructions{buffer_start_, static_cast(pc_offset())}; base::Vector reloc_info{reloc_info_writer.pos(), reloc_size}; for (RelocIterator it(instructions, reloc_info, 0); !it.done(); it.next()) { RelocInfo::Mode rmode = it.rinfo()->rmode(); if (rmode == RelocInfo::INTERNAL_REFERENCE) { RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta); } } DCHECK(!overflow()); } void Assembler::db(uint8_t data) { CheckForEmitInForbiddenSlot(); *reinterpret_cast(pc_) = data; pc_ += sizeof(uint8_t); } void Assembler::dd(uint32_t data, RelocInfo::Mode rmode) { CheckForEmitInForbiddenSlot(); if (!RelocInfo::IsNoInfo(rmode)) { DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) || RelocInfo::IsLiteralConstant(rmode)); RecordRelocInfo(rmode); } *reinterpret_cast(pc_) = data; pc_ += sizeof(uint32_t); } void Assembler::dq(uint64_t data, RelocInfo::Mode rmode) { CheckForEmitInForbiddenSlot(); if (!RelocInfo::IsNoInfo(rmode)) { DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) || RelocInfo::IsLiteralConstant(rmode)); RecordRelocInfo(rmode); } *reinterpret_cast(pc_) = data; pc_ += sizeof(uint64_t); } void Assembler::dd(Label* label) { uint64_t data; CheckForEmitInForbiddenSlot(); if (label->is_bound()) { data = reinterpret_cast(buffer_start_ + label->pos()); } else { data = jump_address(label); unbound_labels_count_++; internal_reference_positions_.insert(label->pos()); } RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); EmitHelper(data); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { if (!ShouldRecordRelocInfo(rmode)) return; // We do not try to reuse pool constants. RelocInfo rinfo(reinterpret_cast
(pc_), rmode, data, Code()); DCHECK_GE(buffer_space(), kMaxRelocSize); // Too late to grow buffer here. reloc_info_writer.Write(&rinfo); } void Assembler::BlockTrampolinePoolFor(int instructions) { CheckTrampolinePoolQuick(instructions); BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize); } void Assembler::CheckTrampolinePool() { // Some small sequences of instructions must not be broken up by the // insertion of a trampoline pool; such sequences are protected by setting // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, // which are both checked here. Also, recursive calls to CheckTrampolinePool // are blocked by trampoline_pool_blocked_nesting_. if ((trampoline_pool_blocked_nesting_ > 0) || (pc_offset() < no_trampoline_pool_before_)) { // Emission is currently blocked; make sure we try again as soon as // possible. if (trampoline_pool_blocked_nesting_ > 0) { next_buffer_check_ = pc_offset() + kInstrSize; } else { next_buffer_check_ = no_trampoline_pool_before_; } return; } DCHECK(!trampoline_emitted_); DCHECK_GE(unbound_labels_count_, 0); if (unbound_labels_count_ > 0) { // First we emit jump (2 instructions), then we emit trampoline pool. { BlockTrampolinePoolScope block_trampoline_pool(this); Label after_pool; if (kArchVariant == kMips64r6) { bc(&after_pool); } else { b(&after_pool); } nop(); int pool_start = pc_offset(); for (int i = 0; i < unbound_labels_count_; i++) { { if (kArchVariant == kMips64r6) { bc(&after_pool); nop(); } else { or_(t8, ra, zero_reg); nal(); // Read PC into ra register. lui(t9, 0); // Branch delay slot. ori(t9, t9, 0); daddu(t9, ra, t9); or_(ra, t8, zero_reg); // Instruction jr will take or_ from the next trampoline. // in its branch delay slot. This is the expected behavior // in order to decrease size of trampoline pool. jr(t9); } } } nop(); // If unbound_labels_count_ is big enough, label after_pool will // need a trampoline too, so we must create the trampoline before // the bind operation to make sure function 'bind' can get this // information. trampoline_ = Trampoline(pool_start, unbound_labels_count_); bind(&after_pool); trampoline_emitted_ = true; // As we are only going to emit trampoline once, we need to prevent any // further emission. next_buffer_check_ = kMaxInt; } } else { // Number of branches to unbound label at this point is zero, so we can // move next buffer check to maximum. next_buffer_check_ = pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16; } return; } Address Assembler::target_address_at(Address pc) { Instr instr0 = instr_at(pc); Instr instr1 = instr_at(pc + 1 * kInstrSize); Instr instr3 = instr_at(pc + 3 * kInstrSize); // Interpret 4 instructions for address generated by li: See listing in // Assembler::set_target_address_at() just below. if ((GetOpcodeField(instr0) == LUI) && (GetOpcodeField(instr1) == ORI) && (GetOpcodeField(instr3) == ORI)) { // Assemble the 48 bit value. int64_t addr = static_cast(((uint64_t)(GetImmediate16(instr0)) << 32) | ((uint64_t)(GetImmediate16(instr1)) << 16) | ((uint64_t)(GetImmediate16(instr3)))); // Sign extend to get canonical address. addr = (addr << 16) >> 16; return static_cast
(addr); } // We should never get here, force a bad address if we do. UNREACHABLE(); } // On Mips64, a target address is stored in a 4-instruction sequence: // 0: lui(rd, (j.imm64_ >> 32) & kImm16Mask); // 1: ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask); // 2: dsll(rd, rd, 16); // 3: ori(rd, rd, j.imm32_ & kImm16Mask); // // Patching the address must replace all the lui & ori instructions, // and flush the i-cache. // // There is an optimization below, which emits a nop when the address // fits in just 16 bits. This is unlikely to help, and should be benchmarked, // and possibly removed. void Assembler::set_target_value_at(Address pc, uint64_t target, ICacheFlushMode icache_flush_mode) { // There is an optimization where only 4 instructions are used to load address // in code on MIP64 because only 48-bits of address is effectively used. // It relies on fact the upper [63:48] bits are not used for virtual address // translation and they have to be set according to value of bit 47 in order // get canonical address. Instr instr1 = instr_at(pc + kInstrSize); uint32_t rt_code = GetRt(instr1); uint32_t* p = reinterpret_cast(pc); #ifdef DEBUG // Check we have the result from a li macro-instruction. Instr instr0 = instr_at(pc); Instr instr3 = instr_at(pc + kInstrSize * 3); DCHECK((GetOpcodeField(instr0) == LUI && GetOpcodeField(instr1) == ORI && GetOpcodeField(instr3) == ORI)); #endif // Must use 4 instructions to insure patchable code. // lui rt, upper-16. // ori rt, rt, lower-16. // dsll rt, rt, 16. // ori rt rt, lower-16. *p = LUI | (rt_code << kRtShift) | ((target >> 32) & kImm16Mask); *(p + 1) = ORI | (rt_code << kRtShift) | (rt_code << kRsShift) | ((target >> 16) & kImm16Mask); *(p + 3) = ORI | (rt_code << kRsShift) | (rt_code << kRtShift) | (target & kImm16Mask); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { FlushInstructionCache(pc, 4 * kInstrSize); } } UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler) : available_(assembler->GetScratchRegisterList()), old_available_(*available_) {} UseScratchRegisterScope::~UseScratchRegisterScope() { *available_ = old_available_; } Register UseScratchRegisterScope::Acquire() { DCHECK_NOT_NULL(available_); return available_->PopFirst(); } bool UseScratchRegisterScope::hasAvailable() const { return !available_->is_empty(); } LoadStoreLaneParams::LoadStoreLaneParams(MachineRepresentation rep, uint8_t laneidx) { switch (rep) { case MachineRepresentation::kWord8: *this = LoadStoreLaneParams(laneidx, MSA_B, 16); break; case MachineRepresentation::kWord16: *this = LoadStoreLaneParams(laneidx, MSA_H, 8); break; case MachineRepresentation::kWord32: *this = LoadStoreLaneParams(laneidx, MSA_W, 4); break; case MachineRepresentation::kWord64: *this = LoadStoreLaneParams(laneidx, MSA_D, 2); break; default: UNREACHABLE(); } } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS64