// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/base/iterator.h" #include "src/base/logging.h" #include "src/base/overflowing-math.h" #include "src/base/platform/wrappers.h" #include "src/codegen/cpu-features.h" #include "src/codegen/machine-type.h" #include "src/compiler/backend/instruction-codes.h" #include "src/compiler/backend/instruction-selector-impl.h" #include "src/compiler/backend/instruction.h" #include "src/compiler/machine-operator.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node-properties.h" #include "src/compiler/opcodes.h" #include "src/roots/roots-inl.h" #if V8_ENABLE_WEBASSEMBLY #include "src/wasm/simd-shuffle.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { namespace compiler { // Adds X64-specific methods for generating operands. class X64OperandGenerator final : public OperandGenerator { public: explicit X64OperandGenerator(InstructionSelector* selector) : OperandGenerator(selector) {} bool CanBeImmediate(Node* node) { switch (node->opcode()) { case IrOpcode::kInt32Constant: case IrOpcode::kRelocatableInt32Constant: { const int32_t value = OpParameter(node->op()); // int32_t min will overflow if displacement mode is // kNegativeDisplacement. return value != std::numeric_limits::min(); } case IrOpcode::kInt64Constant: { const int64_t value = OpParameter(node->op()); return std::numeric_limits::min() < value && value <= std::numeric_limits::max(); } case IrOpcode::kNumberConstant: { const double value = OpParameter(node->op()); return bit_cast(value) == 0; } default: return false; } } int32_t GetImmediateIntegerValue(Node* node) { DCHECK(CanBeImmediate(node)); if (node->opcode() == IrOpcode::kInt32Constant) { return OpParameter(node->op()); } DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode()); return static_cast(OpParameter(node->op())); } bool CanBeMemoryOperand(InstructionCode opcode, Node* node, Node* input, int effect_level) { if ((input->opcode() != IrOpcode::kLoad && input->opcode() != IrOpcode::kLoadImmutable) || !selector()->CanCover(node, input)) { return false; } if (effect_level != selector()->GetEffectLevel(input)) { return false; } MachineRepresentation rep = LoadRepresentationOf(input->op()).representation(); switch (opcode) { case kX64And: case kX64Or: case kX64Xor: case kX64Add: case kX64Sub: case kX64Push: case kX64Cmp: case kX64Test: // When pointer compression is enabled 64-bit memory operands can't be // used for tagged values. return rep == MachineRepresentation::kWord64 || (!COMPRESS_POINTERS_BOOL && IsAnyTagged(rep)); case kX64And32: case kX64Or32: case kX64Xor32: case kX64Add32: case kX64Sub32: case kX64Cmp32: case kX64Test32: // When pointer compression is enabled 32-bit memory operands can be // used for tagged values. return rep == MachineRepresentation::kWord32 || (COMPRESS_POINTERS_BOOL && (IsAnyTagged(rep) || IsAnyCompressed(rep))); case kAVXFloat64Add: case kAVXFloat64Sub: case kAVXFloat64Mul: DCHECK_EQ(MachineRepresentation::kFloat64, rep); return true; case kAVXFloat32Add: case kAVXFloat32Sub: case kAVXFloat32Mul: DCHECK_EQ(MachineRepresentation::kFloat32, rep); return true; case kX64Cmp16: case kX64Test16: return rep == MachineRepresentation::kWord16; case kX64Cmp8: case kX64Test8: return rep == MachineRepresentation::kWord8; default: break; } return false; } AddressingMode GenerateMemoryOperandInputs( Node* index, int scale_exponent, Node* base, Node* displacement, DisplacementMode displacement_mode, InstructionOperand inputs[], size_t* input_count, RegisterUseKind reg_kind = RegisterUseKind::kUseRegister) { AddressingMode mode = kMode_MRI; if (base != nullptr && (index != nullptr || displacement != nullptr)) { if (base->opcode() == IrOpcode::kInt32Constant && OpParameter(base->op()) == 0) { base = nullptr; } else if (base->opcode() == IrOpcode::kInt64Constant && OpParameter(base->op()) == 0) { base = nullptr; } } if (base != nullptr) { inputs[(*input_count)++] = UseRegister(base, reg_kind); if (index != nullptr) { DCHECK(scale_exponent >= 0 && scale_exponent <= 3); inputs[(*input_count)++] = UseRegister(index, reg_kind); if (displacement != nullptr) { inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement ? UseNegatedImmediate(displacement) : UseImmediate(displacement); static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I, kMode_MR4I, kMode_MR8I}; mode = kMRnI_modes[scale_exponent]; } else { static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2, kMode_MR4, kMode_MR8}; mode = kMRn_modes[scale_exponent]; } } else { if (displacement == nullptr) { mode = kMode_MR; } else { inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement ? UseNegatedImmediate(displacement) : UseImmediate(displacement); mode = kMode_MRI; } } } else { DCHECK(scale_exponent >= 0 && scale_exponent <= 3); if (displacement != nullptr) { if (index == nullptr) { inputs[(*input_count)++] = UseRegister(displacement, reg_kind); mode = kMode_MR; } else { inputs[(*input_count)++] = UseRegister(index, reg_kind); inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement ? UseNegatedImmediate(displacement) : UseImmediate(displacement); static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I, kMode_M4I, kMode_M8I}; mode = kMnI_modes[scale_exponent]; } } else { inputs[(*input_count)++] = UseRegister(index, reg_kind); static const AddressingMode kMn_modes[] = {kMode_MR, kMode_MR1, kMode_M4, kMode_M8}; mode = kMn_modes[scale_exponent]; if (mode == kMode_MR1) { // [%r1 + %r1*1] has a smaller encoding than [%r1*2+0] inputs[(*input_count)++] = UseRegister(index, reg_kind); } } } return mode; } AddressingMode GetEffectiveAddressMemoryOperand( Node* operand, InstructionOperand inputs[], size_t* input_count, RegisterUseKind reg_kind = RegisterUseKind::kUseRegister) { { LoadMatcher m(operand); if (m.index().HasResolvedValue() && m.object().HasResolvedValue() && selector()->CanAddressRelativeToRootsRegister( m.object().ResolvedValue())) { ptrdiff_t const delta = m.index().ResolvedValue() + TurboAssemblerBase::RootRegisterOffsetForExternalReference( selector()->isolate(), m.object().ResolvedValue()); if (is_int32(delta)) { inputs[(*input_count)++] = TempImmediate(static_cast(delta)); return kMode_Root; } } } BaseWithIndexAndDisplacement64Matcher m(operand, AddressOption::kAllowAll); DCHECK(m.matches()); if (m.displacement() == nullptr || CanBeImmediate(m.displacement())) { return GenerateMemoryOperandInputs( m.index(), m.scale(), m.base(), m.displacement(), m.displacement_mode(), inputs, input_count, reg_kind); } else if (m.base() == nullptr && m.displacement_mode() == kPositiveDisplacement) { // The displacement cannot be an immediate, but we can use the // displacement as base instead and still benefit from addressing // modes for the scale. return GenerateMemoryOperandInputs(m.index(), m.scale(), m.displacement(), nullptr, m.displacement_mode(), inputs, input_count, reg_kind); } else { inputs[(*input_count)++] = UseRegister(operand->InputAt(0), reg_kind); inputs[(*input_count)++] = UseRegister(operand->InputAt(1), reg_kind); return kMode_MR1; } } InstructionOperand GetEffectiveIndexOperand(Node* index, AddressingMode* mode) { if (CanBeImmediate(index)) { *mode = kMode_MRI; return UseImmediate(index); } else { *mode = kMode_MR1; return UseUniqueRegister(index); } } bool CanBeBetterLeftOperand(Node* node) const { return !selector()->IsLive(node); } }; namespace { ArchOpcode GetLoadOpcode(LoadRepresentation load_rep) { ArchOpcode opcode; switch (load_rep.representation()) { case MachineRepresentation::kFloat32: opcode = kX64Movss; break; case MachineRepresentation::kFloat64: opcode = kX64Movsd; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kX64Movsxbl : kX64Movzxbl; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kX64Movsxwl : kX64Movzxwl; break; case MachineRepresentation::kWord32: opcode = kX64Movl; break; case MachineRepresentation::kCompressedPointer: // Fall through. case MachineRepresentation::kCompressed: #ifdef V8_COMPRESS_POINTERS opcode = kX64Movl; break; #else UNREACHABLE(); #endif #ifdef V8_COMPRESS_POINTERS case MachineRepresentation::kTaggedSigned: opcode = kX64MovqDecompressTaggedSigned; break; case MachineRepresentation::kTaggedPointer: opcode = kX64MovqDecompressTaggedPointer; break; case MachineRepresentation::kTagged: opcode = kX64MovqDecompressAnyTagged; break; #else case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. #endif case MachineRepresentation::kWord64: opcode = kX64Movq; break; case MachineRepresentation::kSandboxedPointer: opcode = kX64MovqDecodeSandboxedPointer; break; case MachineRepresentation::kSimd128: opcode = kX64Movdqu; break; case MachineRepresentation::kNone: // Fall through. case MachineRepresentation::kMapWord: UNREACHABLE(); } return opcode; } ArchOpcode GetStoreOpcode(StoreRepresentation store_rep) { switch (store_rep.representation()) { case MachineRepresentation::kFloat32: return kX64Movss; case MachineRepresentation::kFloat64: return kX64Movsd; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: return kX64Movb; case MachineRepresentation::kWord16: return kX64Movw; case MachineRepresentation::kWord32: return kX64Movl; case MachineRepresentation::kCompressedPointer: // Fall through. case MachineRepresentation::kCompressed: #ifdef V8_COMPRESS_POINTERS return kX64MovqCompressTagged; #else UNREACHABLE(); #endif case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: return kX64MovqCompressTagged; case MachineRepresentation::kWord64: return kX64Movq; case MachineRepresentation::kSandboxedPointer: return kX64MovqEncodeSandboxedPointer; case MachineRepresentation::kSimd128: return kX64Movdqu; case MachineRepresentation::kNone: // Fall through. case MachineRepresentation::kMapWord: UNREACHABLE(); } UNREACHABLE(); } ArchOpcode GetSeqCstStoreOpcode(StoreRepresentation store_rep) { switch (store_rep.representation()) { case MachineRepresentation::kWord8: return kAtomicStoreWord8; case MachineRepresentation::kWord16: return kAtomicStoreWord16; case MachineRepresentation::kWord32: return kAtomicStoreWord32; case MachineRepresentation::kWord64: return kX64Word64AtomicStoreWord64; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: if (COMPRESS_POINTERS_BOOL) return kAtomicStoreWord32; return kX64Word64AtomicStoreWord64; case MachineRepresentation::kCompressedPointer: // Fall through. case MachineRepresentation::kCompressed: CHECK(COMPRESS_POINTERS_BOOL); return kAtomicStoreWord32; default: UNREACHABLE(); } } } // namespace void InstructionSelector::VisitStackSlot(Node* node) { StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); int slot = frame_->AllocateSpillSlot(rep.size(), rep.alignment()); OperandGenerator g(this); Emit(kArchStackSlot, g.DefineAsRegister(node), sequence()->AddImmediate(Constant(slot)), 0, nullptr); } void InstructionSelector::VisitAbortCSADcheck(Node* node) { X64OperandGenerator g(this); Emit(kArchAbortCSADcheck, g.NoOutput(), g.UseFixed(node->InputAt(0), rdx)); } void InstructionSelector::VisitLoadLane(Node* node) { LoadLaneParameters params = LoadLaneParametersOf(node->op()); InstructionCode opcode = kArchNop; if (params.rep == MachineType::Int8()) { opcode = kX64Pinsrb; } else if (params.rep == MachineType::Int16()) { opcode = kX64Pinsrw; } else if (params.rep == MachineType::Int32()) { opcode = kX64Pinsrd; } else if (params.rep == MachineType::Int64()) { opcode = kX64Pinsrq; } else { UNREACHABLE(); } X64OperandGenerator g(this); InstructionOperand outputs[] = {g.DefineAsRegister(node)}; // Input 0 is value node, 1 is lane idx, and GetEffectiveAddressMemoryOperand // uses up to 3 inputs. This ordering is consistent with other operations that // use the same opcode. InstructionOperand inputs[5]; size_t input_count = 0; inputs[input_count++] = g.UseRegister(node->InputAt(2)); inputs[input_count++] = g.UseImmediate(params.laneidx); AddressingMode mode = g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); opcode |= AddressingModeField::encode(mode); DCHECK_GE(5, input_count); // x64 supports unaligned loads. DCHECK_NE(params.kind, MemoryAccessKind::kUnaligned); if (params.kind == MemoryAccessKind::kProtected) { opcode |= AccessModeField::encode(kMemoryAccessProtected); } Emit(opcode, 1, outputs, input_count, inputs); } void InstructionSelector::VisitLoadTransform(Node* node) { LoadTransformParameters params = LoadTransformParametersOf(node->op()); ArchOpcode opcode; switch (params.transformation) { case LoadTransformation::kS128Load8Splat: opcode = kX64S128Load8Splat; break; case LoadTransformation::kS128Load16Splat: opcode = kX64S128Load16Splat; break; case LoadTransformation::kS128Load32Splat: opcode = kX64S128Load32Splat; break; case LoadTransformation::kS128Load64Splat: opcode = kX64S128Load64Splat; break; case LoadTransformation::kS128Load8x8S: opcode = kX64S128Load8x8S; break; case LoadTransformation::kS128Load8x8U: opcode = kX64S128Load8x8U; break; case LoadTransformation::kS128Load16x4S: opcode = kX64S128Load16x4S; break; case LoadTransformation::kS128Load16x4U: opcode = kX64S128Load16x4U; break; case LoadTransformation::kS128Load32x2S: opcode = kX64S128Load32x2S; break; case LoadTransformation::kS128Load32x2U: opcode = kX64S128Load32x2U; break; case LoadTransformation::kS128Load32Zero: opcode = kX64Movss; break; case LoadTransformation::kS128Load64Zero: opcode = kX64Movsd; break; default: UNREACHABLE(); } // x64 supports unaligned loads DCHECK_NE(params.kind, MemoryAccessKind::kUnaligned); InstructionCode code = opcode; if (params.kind == MemoryAccessKind::kProtected) { code |= AccessModeField::encode(kMemoryAccessProtected); } VisitLoad(node, node, code); } void InstructionSelector::VisitLoad(Node* node, Node* value, InstructionCode opcode) { X64OperandGenerator g(this); #ifdef V8_IS_TSAN // On TSAN builds we require one scratch register. Because of this we also // have to modify the inputs to take into account possible aliasing and use // UseUniqueRegister which is not required for non-TSAN builds. InstructionOperand temps[] = {g.TempRegister()}; size_t temp_count = arraysize(temps); auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister; #else InstructionOperand* temps = nullptr; size_t temp_count = 0; auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister; #endif // V8_IS_TSAN InstructionOperand outputs[] = {g.DefineAsRegister(node)}; InstructionOperand inputs[3]; size_t input_count = 0; AddressingMode mode = g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count, reg_kind); InstructionCode code = opcode | AddressingModeField::encode(mode); if (node->opcode() == IrOpcode::kProtectedLoad) { code |= AccessModeField::encode(kMemoryAccessProtected); } Emit(code, 1, outputs, input_count, inputs, temp_count, temps); } void InstructionSelector::VisitLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); DCHECK(!load_rep.IsMapWord()); VisitLoad(node, node, GetLoadOpcode(load_rep)); } void InstructionSelector::VisitProtectedLoad(Node* node) { VisitLoad(node); } namespace { // Shared routine for Word32/Word64 Atomic Exchange void VisitAtomicExchange(InstructionSelector* selector, Node* node, ArchOpcode opcode, AtomicWidth width) { X64OperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); AddressingMode addressing_mode; InstructionOperand inputs[] = { g.UseUniqueRegister(value), g.UseUniqueRegister(base), g.GetEffectiveIndexOperand(index, &addressing_mode)}; InstructionOperand outputs[] = {g.DefineSameAsFirst(node)}; InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) | AtomicWidthField::encode(width); selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs); } void VisitStoreCommon(InstructionSelector* selector, Node* node, StoreRepresentation store_rep, base::Optional atomic_order) { X64OperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); DCHECK_NE(store_rep.representation(), MachineRepresentation::kMapWord); WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); const bool is_seqcst = atomic_order && *atomic_order == AtomicMemoryOrder::kSeqCst; if (FLAG_enable_unconditional_write_barriers && CanBeTaggedOrCompressedPointer(store_rep.representation())) { write_barrier_kind = kFullWriteBarrier; } if (write_barrier_kind != kNoWriteBarrier && !FLAG_disable_write_barriers) { DCHECK(CanBeTaggedOrCompressedPointer(store_rep.representation())); AddressingMode addressing_mode; InstructionOperand inputs[] = { g.UseUniqueRegister(base), g.GetEffectiveIndexOperand(index, &addressing_mode), g.UseUniqueRegister(value)}; RecordWriteMode record_write_mode = WriteBarrierKindToRecordWriteMode(write_barrier_kind); InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; InstructionCode code = is_seqcst ? kArchAtomicStoreWithWriteBarrier : kArchStoreWithWriteBarrier; code |= AddressingModeField::encode(addressing_mode); code |= MiscField::encode(static_cast(record_write_mode)); selector->Emit(code, 0, nullptr, arraysize(inputs), inputs, arraysize(temps), temps); } else { #ifdef V8_IS_TSAN // On TSAN builds we require two scratch registers. Because of this we also // have to modify the inputs to take into account possible aliasing and use // UseUniqueRegister which is not required for non-TSAN builds. InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; size_t temp_count = arraysize(temps); auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister; #else InstructionOperand* temps = nullptr; size_t temp_count = 0; auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister; #endif // V8_IS_TSAN // Release and non-atomic stores emit MOV and sequentially consistent stores // emit XCHG. // https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html ArchOpcode opcode; AddressingMode addressing_mode; InstructionOperand inputs[4]; size_t input_count = 0; if (is_seqcst) { // SeqCst stores emit XCHG instead of MOV, so encode the inputs as we // would for XCHG. XCHG can't encode the value as an immediate and has // fewer addressing modes available. inputs[input_count++] = g.UseUniqueRegister(value); inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.GetEffectiveIndexOperand(index, &addressing_mode); opcode = GetSeqCstStoreOpcode(store_rep); } else { if ((ElementSizeLog2Of(store_rep.representation()) < kSystemPointerSizeLog2) && value->opcode() == IrOpcode::kTruncateInt64ToInt32) { value = value->InputAt(0); } addressing_mode = g.GetEffectiveAddressMemoryOperand( node, inputs, &input_count, reg_kind); InstructionOperand value_operand = g.CanBeImmediate(value) ? g.UseImmediate(value) : g.UseRegister(value, reg_kind); inputs[input_count++] = value_operand; opcode = GetStoreOpcode(store_rep); } InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); selector->Emit(code, 0, static_cast(nullptr), input_count, inputs, temp_count, temps); } } } // namespace void InstructionSelector::VisitStore(Node* node) { return VisitStoreCommon(this, node, StoreRepresentationOf(node->op()), base::nullopt); } void InstructionSelector::VisitProtectedStore(Node* node) { X64OperandGenerator g(this); Node* value = node->InputAt(2); StoreRepresentation store_rep = StoreRepresentationOf(node->op()); #ifdef V8_IS_TSAN // On TSAN builds we require two scratch registers. Because of this we also // have to modify the inputs to take into account possible aliasing and use // UseUniqueRegister which is not required for non-TSAN builds. InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; size_t temp_count = arraysize(temps); auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister; #else InstructionOperand* temps = nullptr; size_t temp_count = 0; auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister; #endif // V8_IS_TSAN InstructionOperand inputs[4]; size_t input_count = 0; AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count, reg_kind); InstructionOperand value_operand = g.CanBeImmediate(value) ? g.UseImmediate(value) : g.UseRegister(value, reg_kind); inputs[input_count++] = value_operand; ArchOpcode opcode = GetStoreOpcode(store_rep); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) | AccessModeField::encode(kMemoryAccessProtected); Emit(code, 0, static_cast(nullptr), input_count, inputs, temp_count, temps); } // Architecture supports unaligned access, therefore VisitLoad is used instead void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); } // Architecture supports unaligned access, therefore VisitStore is used instead void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitStoreLane(Node* node) { X64OperandGenerator g(this); StoreLaneParameters params = StoreLaneParametersOf(node->op()); InstructionCode opcode = kArchNop; if (params.rep == MachineRepresentation::kWord8) { opcode = kX64Pextrb; } else if (params.rep == MachineRepresentation::kWord16) { opcode = kX64Pextrw; } else if (params.rep == MachineRepresentation::kWord32) { opcode = kX64S128Store32Lane; } else if (params.rep == MachineRepresentation::kWord64) { opcode = kX64S128Store64Lane; } else { UNREACHABLE(); } InstructionOperand inputs[4]; size_t input_count = 0; AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); opcode |= AddressingModeField::encode(addressing_mode); if (params.kind == MemoryAccessKind::kProtected) { opcode |= AccessModeField::encode(kMemoryAccessProtected); } InstructionOperand value_operand = g.UseRegister(node->InputAt(2)); inputs[input_count++] = value_operand; inputs[input_count++] = g.UseImmediate(params.laneidx); DCHECK_GE(4, input_count); Emit(opcode, 0, nullptr, input_count, inputs); } // Shared routine for multiple binary operations. static void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { X64OperandGenerator g(selector); Int32BinopMatcher m(node); Node* left = m.left().node(); Node* right = m.right().node(); InstructionOperand inputs[8]; size_t input_count = 0; InstructionOperand outputs[1]; size_t output_count = 0; // TODO(turbofan): match complex addressing modes. if (left == right) { // If both inputs refer to the same operand, enforce allocating a register // for both of them to ensure that we don't end up generating code like // this: // // mov rax, [rbp-0x10] // add rax, [rbp-0x10] // jo label InstructionOperand const input = g.UseRegister(left); inputs[input_count++] = input; inputs[input_count++] = input; } else if (g.CanBeImmediate(right)) { inputs[input_count++] = g.UseRegister(left); inputs[input_count++] = g.UseImmediate(right); } else { int effect_level = selector->GetEffectLevel(node, cont); if (node->op()->HasProperty(Operator::kCommutative) && g.CanBeBetterLeftOperand(right) && (!g.CanBeBetterLeftOperand(left) || !g.CanBeMemoryOperand(opcode, node, right, effect_level))) { std::swap(left, right); } if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) { inputs[input_count++] = g.UseRegister(left); AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count); opcode |= AddressingModeField::encode(addressing_mode); } else { inputs[input_count++] = g.UseRegister(left); inputs[input_count++] = g.Use(right); } } if (cont->IsBranch()) { inputs[input_count++] = g.Label(cont->true_block()); inputs[input_count++] = g.Label(cont->false_block()); } outputs[output_count++] = g.DefineSameAsFirst(node); DCHECK_NE(0u, input_count); DCHECK_EQ(1u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } // Shared routine for multiple binary operations. static void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode) { FlagsContinuation cont; VisitBinop(selector, node, opcode, &cont); } void InstructionSelector::VisitWord32And(Node* node) { X64OperandGenerator g(this); Uint32BinopMatcher m(node); if (m.right().Is(0xFF)) { Emit(kX64Movzxbl, g.DefineAsRegister(node), g.Use(m.left().node())); } else if (m.right().Is(0xFFFF)) { Emit(kX64Movzxwl, g.DefineAsRegister(node), g.Use(m.left().node())); } else { VisitBinop(this, node, kX64And32); } } void InstructionSelector::VisitWord64And(Node* node) { X64OperandGenerator g(this); Uint64BinopMatcher m(node); if (m.right().Is(0xFF)) { Emit(kX64Movzxbq, g.DefineAsRegister(node), g.Use(m.left().node())); } else if (m.right().Is(0xFFFF)) { Emit(kX64Movzxwq, g.DefineAsRegister(node), g.Use(m.left().node())); } else if (m.right().Is(0xFFFFFFFF)) { Emit(kX64Movl, g.DefineAsRegister(node), g.Use(m.left().node())); } else if (m.right().IsInRange(std::numeric_limits::min(), std::numeric_limits::max())) { Emit(kX64And32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseImmediate(static_cast(m.right().ResolvedValue()))); } else { VisitBinop(this, node, kX64And); } } void InstructionSelector::VisitWord32Or(Node* node) { VisitBinop(this, node, kX64Or32); } void InstructionSelector::VisitWord64Or(Node* node) { VisitBinop(this, node, kX64Or); } void InstructionSelector::VisitWord32Xor(Node* node) { X64OperandGenerator g(this); Uint32BinopMatcher m(node); if (m.right().Is(-1)) { Emit(kX64Not32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node())); } else { VisitBinop(this, node, kX64Xor32); } } void InstructionSelector::VisitWord64Xor(Node* node) { X64OperandGenerator g(this); Uint64BinopMatcher m(node); if (m.right().Is(-1)) { Emit(kX64Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node())); } else { VisitBinop(this, node, kX64Xor); } } void InstructionSelector::VisitStackPointerGreaterThan( Node* node, FlagsContinuation* cont) { StackCheckKind kind = StackCheckKindOf(node->op()); InstructionCode opcode = kArchStackPointerGreaterThan | MiscField::encode(static_cast(kind)); int effect_level = GetEffectLevel(node, cont); X64OperandGenerator g(this); Node* const value = node->InputAt(0); if (g.CanBeMemoryOperand(kX64Cmp, node, value, effect_level)) { DCHECK(IrOpcode::kLoad == value->opcode() || IrOpcode::kLoadImmutable == value->opcode()); // GetEffectiveAddressMemoryOperand can create at most 3 inputs. static constexpr int kMaxInputCount = 3; size_t input_count = 0; InstructionOperand inputs[kMaxInputCount]; AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count); opcode |= AddressingModeField::encode(addressing_mode); DCHECK_LE(input_count, kMaxInputCount); EmitWithContinuation(opcode, 0, nullptr, input_count, inputs, cont); } else { EmitWithContinuation(opcode, g.UseRegister(value), cont); } } namespace { bool TryMergeTruncateInt64ToInt32IntoLoad(InstructionSelector* selector, Node* node, Node* load) { if ((load->opcode() == IrOpcode::kLoad || load->opcode() == IrOpcode::kLoadImmutable) && selector->CanCover(node, load)) { LoadRepresentation load_rep = LoadRepresentationOf(load->op()); MachineRepresentation rep = load_rep.representation(); InstructionCode opcode; switch (rep) { case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kX64Movsxbl : kX64Movzxbl; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kX64Movsxwl : kX64Movzxwl; break; case MachineRepresentation::kWord32: case MachineRepresentation::kWord64: case MachineRepresentation::kTaggedSigned: case MachineRepresentation::kTagged: case MachineRepresentation::kCompressed: // Fall through. opcode = kX64Movl; break; default: UNREACHABLE(); } X64OperandGenerator g(selector); #ifdef V8_IS_TSAN // On TSAN builds we require one scratch register. Because of this we also // have to modify the inputs to take into account possible aliasing and use // UseUniqueRegister which is not required for non-TSAN builds. InstructionOperand temps[] = {g.TempRegister()}; size_t temp_count = arraysize(temps); auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister; #else InstructionOperand* temps = nullptr; size_t temp_count = 0; auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister; #endif // V8_IS_TSAN InstructionOperand outputs[] = {g.DefineAsRegister(node)}; size_t input_count = 0; InstructionOperand inputs[3]; AddressingMode mode = g.GetEffectiveAddressMemoryOperand( node->InputAt(0), inputs, &input_count, reg_kind); opcode |= AddressingModeField::encode(mode); selector->Emit(opcode, 1, outputs, input_count, inputs, temp_count, temps); return true; } return false; } // Shared routine for multiple 32-bit shift operations. // TODO(bmeurer): Merge this with VisitWord64Shift using template magic? void VisitWord32Shift(InstructionSelector* selector, Node* node, ArchOpcode opcode) { X64OperandGenerator g(selector); Int32BinopMatcher m(node); Node* left = m.left().node(); Node* right = m.right().node(); if (left->opcode() == IrOpcode::kTruncateInt64ToInt32) { left = left->InputAt(0); } if (g.CanBeImmediate(right)) { selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseImmediate(right)); } else { selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseFixed(right, rcx)); } } // Shared routine for multiple 64-bit shift operations. // TODO(bmeurer): Merge this with VisitWord32Shift using template magic? void VisitWord64Shift(InstructionSelector* selector, Node* node, ArchOpcode opcode) { X64OperandGenerator g(selector); Int64BinopMatcher m(node); Node* left = m.left().node(); Node* right = m.right().node(); if (g.CanBeImmediate(right)) { selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseImmediate(right)); } else { if (m.right().IsWord64And()) { Int64BinopMatcher mright(right); if (mright.right().Is(0x3F)) { right = mright.left().node(); } } selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseFixed(right, rcx)); } } // Shared routine for multiple shift operations with continuation. template bool TryVisitWordShift(InstructionSelector* selector, Node* node, ArchOpcode opcode, FlagsContinuation* cont) { X64OperandGenerator g(selector); BinopMatcher m(node); Node* left = m.left().node(); Node* right = m.right().node(); // If the shift count is 0, the flags are not affected. if (!g.CanBeImmediate(right) || (g.GetImmediateIntegerValue(right) & (Bits - 1)) == 0) { return false; } InstructionOperand output = g.DefineSameAsFirst(node); InstructionOperand inputs[2]; inputs[0] = g.UseRegister(left); inputs[1] = g.UseImmediate(right); selector->EmitWithContinuation(opcode, 1, &output, 2, inputs, cont); return true; } void EmitLea(InstructionSelector* selector, InstructionCode opcode, Node* result, Node* index, int scale, Node* base, Node* displacement, DisplacementMode displacement_mode) { X64OperandGenerator g(selector); InstructionOperand inputs[4]; size_t input_count = 0; AddressingMode mode = g.GenerateMemoryOperandInputs(index, scale, base, displacement, displacement_mode, inputs, &input_count); DCHECK_NE(0u, input_count); DCHECK_GE(arraysize(inputs), input_count); InstructionOperand outputs[1]; outputs[0] = g.DefineAsRegister(result); opcode = AddressingModeField::encode(mode) | opcode; selector->Emit(opcode, 1, outputs, input_count, inputs); } } // namespace void InstructionSelector::VisitWord32Shl(Node* node) { Int32ScaleMatcher m(node, true); if (m.matches()) { Node* index = node->InputAt(0); Node* base = m.power_of_two_plus_one() ? index : nullptr; EmitLea(this, kX64Lea32, node, index, m.scale(), base, nullptr, kPositiveDisplacement); return; } VisitWord32Shift(this, node, kX64Shl32); } void InstructionSelector::VisitWord64Shl(Node* node) { X64OperandGenerator g(this); Int64ScaleMatcher m(node, true); if (m.matches()) { Node* index = node->InputAt(0); Node* base = m.power_of_two_plus_one() ? index : nullptr; EmitLea(this, kX64Lea, node, index, m.scale(), base, nullptr, kPositiveDisplacement); return; } else { Int64BinopMatcher bm(node); if ((bm.left().IsChangeInt32ToInt64() || bm.left().IsChangeUint32ToUint64()) && bm.right().IsInRange(32, 63)) { // There's no need to sign/zero-extend to 64-bit if we shift out the upper // 32 bits anyway. Emit(kX64Shl, g.DefineSameAsFirst(node), g.UseRegister(bm.left().node()->InputAt(0)), g.UseImmediate(bm.right().node())); return; } } VisitWord64Shift(this, node, kX64Shl); } void InstructionSelector::VisitWord32Shr(Node* node) { VisitWord32Shift(this, node, kX64Shr32); } namespace { inline AddressingMode AddDisplacementToAddressingMode(AddressingMode mode) { switch (mode) { case kMode_MR: return kMode_MRI; case kMode_MR1: return kMode_MR1I; case kMode_MR2: return kMode_MR2I; case kMode_MR4: return kMode_MR4I; case kMode_MR8: return kMode_MR8I; case kMode_M1: return kMode_M1I; case kMode_M2: return kMode_M2I; case kMode_M4: return kMode_M4I; case kMode_M8: return kMode_M8I; case kMode_None: case kMode_MRI: case kMode_MR1I: case kMode_MR2I: case kMode_MR4I: case kMode_MR8I: case kMode_M1I: case kMode_M2I: case kMode_M4I: case kMode_M8I: case kMode_Root: UNREACHABLE(); } UNREACHABLE(); } bool TryMatchLoadWord64AndShiftRight(InstructionSelector* selector, Node* node, InstructionCode opcode) { DCHECK(IrOpcode::kWord64Sar == node->opcode() || IrOpcode::kWord64Shr == node->opcode()); X64OperandGenerator g(selector); Int64BinopMatcher m(node); if (selector->CanCover(m.node(), m.left().node()) && m.left().IsLoad() && m.right().Is(32)) { DCHECK_EQ(selector->GetEffectLevel(node), selector->GetEffectLevel(m.left().node())); // Just load and sign-extend the interesting 4 bytes instead. This happens, // for example, when we're loading and untagging SMIs. BaseWithIndexAndDisplacement64Matcher mleft(m.left().node(), AddressOption::kAllowAll); if (mleft.matches() && (mleft.displacement() == nullptr || g.CanBeImmediate(mleft.displacement()))) { #ifdef V8_IS_TSAN // On TSAN builds we require one scratch register. Because of this we also // have to modify the inputs to take into account possible aliasing and // use UseUniqueRegister which is not required for non-TSAN builds. InstructionOperand temps[] = {g.TempRegister()}; size_t temp_count = arraysize(temps); auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister; #else InstructionOperand* temps = nullptr; size_t temp_count = 0; auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister; #endif // V8_IS_TSAN size_t input_count = 0; InstructionOperand inputs[3]; AddressingMode mode = g.GetEffectiveAddressMemoryOperand( m.left().node(), inputs, &input_count, reg_kind); if (mleft.displacement() == nullptr) { // Make sure that the addressing mode indicates the presence of an // immediate displacement. It seems that we never use M1 and M2, but we // handle them here anyways. mode = AddDisplacementToAddressingMode(mode); inputs[input_count++] = ImmediateOperand(ImmediateOperand::INLINE_INT32, 4); } else { // In the case that the base address was zero, the displacement will be // in a register and replacing it with an immediate is not allowed. This // usually only happens in dead code anyway. if (!inputs[input_count - 1].IsImmediate()) return false; int32_t displacement = g.GetImmediateIntegerValue(mleft.displacement()); inputs[input_count - 1] = ImmediateOperand(ImmediateOperand::INLINE_INT32, displacement + 4); } InstructionOperand outputs[] = {g.DefineAsRegister(node)}; InstructionCode code = opcode | AddressingModeField::encode(mode); selector->Emit(code, 1, outputs, input_count, inputs, temp_count, temps); return true; } } return false; } } // namespace void InstructionSelector::VisitWord64Shr(Node* node) { if (TryMatchLoadWord64AndShiftRight(this, node, kX64Movl)) return; VisitWord64Shift(this, node, kX64Shr); } void InstructionSelector::VisitWord32Sar(Node* node) { X64OperandGenerator g(this); Int32BinopMatcher m(node); if (CanCover(m.node(), m.left().node()) && m.left().IsWord32Shl()) { Int32BinopMatcher mleft(m.left().node()); if (mleft.right().Is(16) && m.right().Is(16)) { Emit(kX64Movsxwl, g.DefineAsRegister(node), g.Use(mleft.left().node())); return; } else if (mleft.right().Is(24) && m.right().Is(24)) { Emit(kX64Movsxbl, g.DefineAsRegister(node), g.Use(mleft.left().node())); return; } } VisitWord32Shift(this, node, kX64Sar32); } void InstructionSelector::VisitWord64Sar(Node* node) { if (TryMatchLoadWord64AndShiftRight(this, node, kX64Movsxlq)) return; VisitWord64Shift(this, node, kX64Sar); } void InstructionSelector::VisitWord32Rol(Node* node) { VisitWord32Shift(this, node, kX64Rol32); } void InstructionSelector::VisitWord64Rol(Node* node) { VisitWord64Shift(this, node, kX64Rol); } void InstructionSelector::VisitWord32Ror(Node* node) { VisitWord32Shift(this, node, kX64Ror32); } void InstructionSelector::VisitWord64Ror(Node* node) { VisitWord64Shift(this, node, kX64Ror); } void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord64ReverseBytes(Node* node) { X64OperandGenerator g(this); Emit(kX64Bswap, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord32ReverseBytes(Node* node) { X64OperandGenerator g(this); Emit(kX64Bswap32, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSimd128ReverseBytes(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitInt32Add(Node* node) { X64OperandGenerator g(this); // No need to truncate the values before Int32Add. DCHECK_EQ(node->InputCount(), 2); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (left->opcode() == IrOpcode::kTruncateInt64ToInt32) { node->ReplaceInput(0, left->InputAt(0)); } if (right->opcode() == IrOpcode::kTruncateInt64ToInt32) { node->ReplaceInput(1, right->InputAt(0)); } // Try to match the Add to a leal pattern BaseWithIndexAndDisplacement32Matcher m(node); if (m.matches() && (m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) { EmitLea(this, kX64Lea32, node, m.index(), m.scale(), m.base(), m.displacement(), m.displacement_mode()); return; } // No leal pattern match, use addl VisitBinop(this, node, kX64Add32); } void InstructionSelector::VisitInt64Add(Node* node) { X64OperandGenerator g(this); // Try to match the Add to a leaq pattern BaseWithIndexAndDisplacement64Matcher m(node); if (m.matches() && (m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) { EmitLea(this, kX64Lea, node, m.index(), m.scale(), m.base(), m.displacement(), m.displacement_mode()); return; } // No leal pattern match, use addq VisitBinop(this, node, kX64Add); } void InstructionSelector::VisitInt64AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kX64Add, &cont); } FlagsContinuation cont; VisitBinop(this, node, kX64Add, &cont); } void InstructionSelector::VisitInt32Sub(Node* node) { X64OperandGenerator g(this); DCHECK_EQ(node->InputCount(), 2); Node* input1 = node->InputAt(0); Node* input2 = node->InputAt(1); if (input1->opcode() == IrOpcode::kTruncateInt64ToInt32 && g.CanBeImmediate(input2)) { int32_t imm = g.GetImmediateIntegerValue(input2); InstructionOperand int64_input = g.UseRegister(input1->InputAt(0)); if (imm == 0) { // Emit "movl" for subtraction of 0. Emit(kX64Movl, g.DefineAsRegister(node), int64_input); } else { // Omit truncation and turn subtractions of constant values into immediate // "leal" instructions by negating the value. Emit(kX64Lea32 | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), int64_input, g.TempImmediate(base::NegateWithWraparound(imm))); } return; } Int32BinopMatcher m(node); if (m.left().Is(0)) { Emit(kX64Neg32, g.DefineSameAsFirst(node), g.UseRegister(m.right().node())); } else if (m.right().Is(0)) { // {EmitIdentity} reuses the virtual register of the first input // for the output. This is exactly what we want here. EmitIdentity(node); } else if (m.right().HasResolvedValue() && g.CanBeImmediate(m.right().node())) { // Turn subtractions of constant values into immediate "leal" instructions // by negating the value. Emit( kX64Lea32 | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(base::NegateWithWraparound(m.right().ResolvedValue()))); } else { VisitBinop(this, node, kX64Sub32); } } void InstructionSelector::VisitInt64Sub(Node* node) { X64OperandGenerator g(this); Int64BinopMatcher m(node); if (m.left().Is(0)) { Emit(kX64Neg, g.DefineSameAsFirst(node), g.UseRegister(m.right().node())); } else { if (m.right().HasResolvedValue() && g.CanBeImmediate(m.right().node())) { // Turn subtractions of constant values into immediate "leaq" instructions // by negating the value. Emit(kX64Lea | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(-static_cast(m.right().ResolvedValue()))); return; } VisitBinop(this, node, kX64Sub); } } void InstructionSelector::VisitInt64SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kX64Sub, &cont); } FlagsContinuation cont; VisitBinop(this, node, kX64Sub, &cont); } namespace { void VisitMul(InstructionSelector* selector, Node* node, ArchOpcode opcode) { X64OperandGenerator g(selector); Int32BinopMatcher m(node); Node* left = m.left().node(); Node* right = m.right().node(); if (g.CanBeImmediate(right)) { selector->Emit(opcode, g.DefineAsRegister(node), g.Use(left), g.UseImmediate(right)); } else { if (g.CanBeBetterLeftOperand(right)) { std::swap(left, right); } selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), g.Use(right)); } } void VisitMulHigh(InstructionSelector* selector, Node* node, ArchOpcode opcode) { X64OperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (selector->IsLive(left) && !selector->IsLive(right)) { std::swap(left, right); } InstructionOperand temps[] = {g.TempRegister(rax)}; // TODO(turbofan): We use UseUniqueRegister here to improve register // allocation. selector->Emit(opcode, g.DefineAsFixed(node, rdx), g.UseFixed(left, rax), g.UseUniqueRegister(right), arraysize(temps), temps); } void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) { X64OperandGenerator g(selector); InstructionOperand temps[] = {g.TempRegister(rdx)}; selector->Emit( opcode, g.DefineAsFixed(node, rax), g.UseFixed(node->InputAt(0), rax), g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); } void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) { X64OperandGenerator g(selector); InstructionOperand temps[] = {g.TempRegister(rax)}; selector->Emit( opcode, g.DefineAsFixed(node, rdx), g.UseFixed(node->InputAt(0), rax), g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); } } // namespace void InstructionSelector::VisitInt32Mul(Node* node) { Int32ScaleMatcher m(node, true); if (m.matches()) { Node* index = node->InputAt(0); Node* base = m.power_of_two_plus_one() ? index : nullptr; EmitLea(this, kX64Lea32, node, index, m.scale(), base, nullptr, kPositiveDisplacement); return; } VisitMul(this, node, kX64Imul32); } void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { // TODO(mvstanton): Use Int32ScaleMatcher somehow. if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kX64Imul32, &cont); } FlagsContinuation cont; VisitBinop(this, node, kX64Imul32, &cont); } void InstructionSelector::VisitInt64Mul(Node* node) { VisitMul(this, node, kX64Imul); } void InstructionSelector::VisitInt32MulHigh(Node* node) { VisitMulHigh(this, node, kX64ImulHigh32); } void InstructionSelector::VisitInt32Div(Node* node) { VisitDiv(this, node, kX64Idiv32); } void InstructionSelector::VisitInt64Div(Node* node) { VisitDiv(this, node, kX64Idiv); } void InstructionSelector::VisitUint32Div(Node* node) { VisitDiv(this, node, kX64Udiv32); } void InstructionSelector::VisitUint64Div(Node* node) { VisitDiv(this, node, kX64Udiv); } void InstructionSelector::VisitInt32Mod(Node* node) { VisitMod(this, node, kX64Idiv32); } void InstructionSelector::VisitInt64Mod(Node* node) { VisitMod(this, node, kX64Idiv); } void InstructionSelector::VisitUint32Mod(Node* node) { VisitMod(this, node, kX64Udiv32); } void InstructionSelector::VisitUint64Mod(Node* node) { VisitMod(this, node, kX64Udiv); } void InstructionSelector::VisitUint32MulHigh(Node* node) { VisitMulHigh(this, node, kX64UmulHigh32); } void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { X64OperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; InstructionOperand temps[1]; size_t output_count = 0; size_t temp_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); temps[temp_count++] = g.TempSimd128Register(); } Emit(kSSEFloat32ToInt64, output_count, outputs, 1, inputs, temp_count, temps); } void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { X64OperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; InstructionOperand temps[1]; size_t output_count = 0; size_t temp_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); temps[temp_count++] = g.TempSimd128Register(); } Emit(kSSEFloat64ToInt64, output_count, outputs, 1, inputs, temp_count, temps); } void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { X64OperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } Emit(kSSEFloat32ToUint64, output_count, outputs, 1, inputs); } void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { X64OperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } Emit(kSSEFloat64ToUint64, output_count, outputs, 1, inputs); } void InstructionSelector::VisitBitcastWord32ToWord64(Node* node) { DCHECK(SmiValuesAre31Bits()); DCHECK(COMPRESS_POINTERS_BOOL); EmitIdentity(node); } void InstructionSelector::VisitChangeInt32ToInt64(Node* node) { DCHECK_EQ(node->InputCount(), 1); Node* input = node->InputAt(0); if (input->opcode() == IrOpcode::kTruncateInt64ToInt32) { node->ReplaceInput(0, input->InputAt(0)); } X64OperandGenerator g(this); Node* const value = node->InputAt(0); if ((value->opcode() == IrOpcode::kLoad || value->opcode() == IrOpcode::kLoadImmutable) && CanCover(node, value)) { LoadRepresentation load_rep = LoadRepresentationOf(value->op()); MachineRepresentation rep = load_rep.representation(); InstructionCode opcode; switch (rep) { case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kX64Movsxbq : kX64Movzxbq; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kX64Movsxwq : kX64Movzxwq; break; case MachineRepresentation::kWord32: // ChangeInt32ToInt64 must interpret its input as a _signed_ 32-bit // integer, so here we must sign-extend the loaded value in any case. opcode = kX64Movsxlq; break; default: UNREACHABLE(); } InstructionOperand outputs[] = {g.DefineAsRegister(node)}; size_t input_count = 0; InstructionOperand inputs[3]; AddressingMode mode = g.GetEffectiveAddressMemoryOperand( node->InputAt(0), inputs, &input_count); opcode |= AddressingModeField::encode(mode); Emit(opcode, 1, outputs, input_count, inputs); } else { Emit(kX64Movsxlq, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } } bool InstructionSelector::ZeroExtendsWord32ToWord64NoPhis(Node* node) { X64OperandGenerator g(this); DCHECK_NE(node->opcode(), IrOpcode::kPhi); switch (node->opcode()) { case IrOpcode::kWord32And: case IrOpcode::kWord32Or: case IrOpcode::kWord32Xor: case IrOpcode::kWord32Shl: case IrOpcode::kWord32Shr: case IrOpcode::kWord32Sar: case IrOpcode::kWord32Rol: case IrOpcode::kWord32Ror: case IrOpcode::kWord32Equal: case IrOpcode::kInt32Add: case IrOpcode::kInt32Sub: case IrOpcode::kInt32Mul: case IrOpcode::kInt32MulHigh: case IrOpcode::kInt32Div: case IrOpcode::kInt32LessThan: case IrOpcode::kInt32LessThanOrEqual: case IrOpcode::kInt32Mod: case IrOpcode::kUint32Div: case IrOpcode::kUint32LessThan: case IrOpcode::kUint32LessThanOrEqual: case IrOpcode::kUint32Mod: case IrOpcode::kUint32MulHigh: case IrOpcode::kTruncateInt64ToInt32: // These 32-bit operations implicitly zero-extend to 64-bit on x64, so the // zero-extension is a no-op. return true; case IrOpcode::kProjection: { Node* const value = node->InputAt(0); switch (value->opcode()) { case IrOpcode::kInt32AddWithOverflow: case IrOpcode::kInt32SubWithOverflow: case IrOpcode::kInt32MulWithOverflow: return true; default: return false; } } case IrOpcode::kLoad: case IrOpcode::kLoadImmutable: case IrOpcode::kProtectedLoad: { // The movzxbl/movsxbl/movzxwl/movsxwl/movl operations implicitly // zero-extend to 64-bit on x64, so the zero-extension is a no-op. LoadRepresentation load_rep = LoadRepresentationOf(node->op()); switch (load_rep.representation()) { case MachineRepresentation::kWord8: case MachineRepresentation::kWord16: case MachineRepresentation::kWord32: return true; default: return false; } } case IrOpcode::kInt32Constant: case IrOpcode::kInt64Constant: // Constants are loaded with movl or movq, or xorl for zero; see // CodeGenerator::AssembleMove. So any non-negative constant that fits // in a 32-bit signed integer is zero-extended to 64 bits. if (g.CanBeImmediate(node)) { return g.GetImmediateIntegerValue(node) >= 0; } return false; default: return false; } } void InstructionSelector::VisitChangeUint32ToUint64(Node* node) { X64OperandGenerator g(this); Node* value = node->InputAt(0); if (ZeroExtendsWord32ToWord64(value)) { // These 32-bit operations implicitly zero-extend to 64-bit on x64, so the // zero-extension is a no-op. return EmitIdentity(node); } Emit(kX64Movl, g.DefineAsRegister(node), g.Use(value)); } namespace { void VisitRO(InstructionSelector* selector, Node* node, InstructionCode opcode) { X64OperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } void VisitRR(InstructionSelector* selector, Node* node, InstructionCode opcode) { X64OperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void VisitRRO(InstructionSelector* selector, Node* node, InstructionCode opcode) { X64OperandGenerator g(selector); selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1))); } void VisitFloatBinop(InstructionSelector* selector, Node* node, InstructionCode avx_opcode, InstructionCode sse_opcode) { X64OperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); InstructionOperand inputs[8]; size_t input_count = 0; InstructionOperand outputs[1]; size_t output_count = 0; if (left == right) { // If both inputs refer to the same operand, enforce allocating a register // for both of them to ensure that we don't end up generating code like // this: // // movss rax, [rbp-0x10] // addss rax, [rbp-0x10] // jo label InstructionOperand const input = g.UseRegister(left); inputs[input_count++] = input; inputs[input_count++] = input; } else { int effect_level = selector->GetEffectLevel(node); if (node->op()->HasProperty(Operator::kCommutative) && (g.CanBeBetterLeftOperand(right) || g.CanBeMemoryOperand(avx_opcode, node, left, effect_level)) && (!g.CanBeBetterLeftOperand(left) || !g.CanBeMemoryOperand(avx_opcode, node, right, effect_level))) { std::swap(left, right); } if (g.CanBeMemoryOperand(avx_opcode, node, right, effect_level)) { inputs[input_count++] = g.UseRegister(left); AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count); avx_opcode |= AddressingModeField::encode(addressing_mode); sse_opcode |= AddressingModeField::encode(addressing_mode); } else { inputs[input_count++] = g.UseRegister(left); inputs[input_count++] = g.Use(right); } } DCHECK_NE(0u, input_count); DCHECK_GE(arraysize(inputs), input_count); if (selector->IsSupported(AVX)) { outputs[output_count++] = g.DefineAsRegister(node); DCHECK_EQ(1u, output_count); DCHECK_GE(arraysize(outputs), output_count); selector->Emit(avx_opcode, output_count, outputs, input_count, inputs); } else { outputs[output_count++] = g.DefineSameAsFirst(node); DCHECK_EQ(1u, output_count); DCHECK_GE(arraysize(outputs), output_count); selector->Emit(sse_opcode, output_count, outputs, input_count, inputs); } } void VisitFloatUnop(InstructionSelector* selector, Node* node, Node* input, ArchOpcode opcode) { X64OperandGenerator g(selector); if (selector->IsSupported(AVX)) { selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(input)); } else { selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(input)); } } } // namespace #define RO_OP_LIST(V) \ V(Word64Clz, kX64Lzcnt) \ V(Word32Clz, kX64Lzcnt32) \ V(Word64Ctz, kX64Tzcnt) \ V(Word32Ctz, kX64Tzcnt32) \ V(Word64Popcnt, kX64Popcnt) \ V(Word32Popcnt, kX64Popcnt32) \ V(Float64Sqrt, kSSEFloat64Sqrt) \ V(Float32Sqrt, kSSEFloat32Sqrt) \ V(ChangeFloat64ToInt32, kSSEFloat64ToInt32) \ V(ChangeFloat64ToInt64, kSSEFloat64ToInt64) \ V(ChangeFloat64ToUint32, kSSEFloat64ToUint32 | MiscField::encode(1)) \ V(TruncateFloat64ToInt64, kSSEFloat64ToInt64) \ V(TruncateFloat64ToUint32, kSSEFloat64ToUint32 | MiscField::encode(0)) \ V(ChangeFloat64ToUint64, kSSEFloat64ToUint64) \ V(TruncateFloat64ToFloat32, kSSEFloat64ToFloat32) \ V(ChangeFloat32ToFloat64, kSSEFloat32ToFloat64) \ V(TruncateFloat32ToInt32, kSSEFloat32ToInt32) \ V(TruncateFloat32ToUint32, kSSEFloat32ToUint32) \ V(ChangeInt32ToFloat64, kSSEInt32ToFloat64) \ V(ChangeInt64ToFloat64, kSSEInt64ToFloat64) \ V(ChangeUint32ToFloat64, kSSEUint32ToFloat64) \ V(RoundFloat64ToInt32, kSSEFloat64ToInt32) \ V(RoundInt32ToFloat32, kSSEInt32ToFloat32) \ V(RoundInt64ToFloat32, kSSEInt64ToFloat32) \ V(RoundUint64ToFloat32, kSSEUint64ToFloat32) \ V(RoundInt64ToFloat64, kSSEInt64ToFloat64) \ V(RoundUint64ToFloat64, kSSEUint64ToFloat64) \ V(RoundUint32ToFloat32, kSSEUint32ToFloat32) \ V(BitcastFloat32ToInt32, kX64BitcastFI) \ V(BitcastFloat64ToInt64, kX64BitcastDL) \ V(BitcastInt32ToFloat32, kX64BitcastIF) \ V(BitcastInt64ToFloat64, kX64BitcastLD) \ V(Float64ExtractLowWord32, kSSEFloat64ExtractLowWord32) \ V(Float64ExtractHighWord32, kSSEFloat64ExtractHighWord32) \ V(SignExtendWord8ToInt32, kX64Movsxbl) \ V(SignExtendWord16ToInt32, kX64Movsxwl) \ V(SignExtendWord8ToInt64, kX64Movsxbq) \ V(SignExtendWord16ToInt64, kX64Movsxwq) \ V(SignExtendWord32ToInt64, kX64Movsxlq) #define RR_OP_LIST(V) \ V(Float32RoundDown, kSSEFloat32Round | MiscField::encode(kRoundDown)) \ V(Float64RoundDown, kSSEFloat64Round | MiscField::encode(kRoundDown)) \ V(Float32RoundUp, kSSEFloat32Round | MiscField::encode(kRoundUp)) \ V(Float64RoundUp, kSSEFloat64Round | MiscField::encode(kRoundUp)) \ V(Float32RoundTruncate, kSSEFloat32Round | MiscField::encode(kRoundToZero)) \ V(Float64RoundTruncate, kSSEFloat64Round | MiscField::encode(kRoundToZero)) \ V(Float32RoundTiesEven, \ kSSEFloat32Round | MiscField::encode(kRoundToNearest)) \ V(Float64RoundTiesEven, \ kSSEFloat64Round | MiscField::encode(kRoundToNearest)) \ V(F32x4Ceil, kX64F32x4Round | MiscField::encode(kRoundUp)) \ V(F32x4Floor, kX64F32x4Round | MiscField::encode(kRoundDown)) \ V(F32x4Trunc, kX64F32x4Round | MiscField::encode(kRoundToZero)) \ V(F32x4NearestInt, kX64F32x4Round | MiscField::encode(kRoundToNearest)) \ V(F64x2Ceil, kX64F64x2Round | MiscField::encode(kRoundUp)) \ V(F64x2Floor, kX64F64x2Round | MiscField::encode(kRoundDown)) \ V(F64x2Trunc, kX64F64x2Round | MiscField::encode(kRoundToZero)) \ V(F64x2NearestInt, kX64F64x2Round | MiscField::encode(kRoundToNearest)) #define RO_VISITOR(Name, opcode) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRO(this, node, opcode); \ } RO_OP_LIST(RO_VISITOR) #undef RO_VISITOR #undef RO_OP_LIST #define RR_VISITOR(Name, opcode) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRR(this, node, opcode); \ } RR_OP_LIST(RR_VISITOR) #undef RR_VISITOR #undef RR_OP_LIST void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) { VisitRR(this, node, kArchTruncateDoubleToI); } void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) { // We rely on the fact that TruncateInt64ToInt32 zero extends the // value (see ZeroExtendsWord32ToWord64). So all code paths here // have to satisfy that condition. X64OperandGenerator g(this); Node* value = node->InputAt(0); if (CanCover(node, value)) { switch (value->opcode()) { case IrOpcode::kWord64Sar: case IrOpcode::kWord64Shr: { Int64BinopMatcher m(value); if (m.right().Is(32)) { if (CanCover(value, value->InputAt(0)) && TryMatchLoadWord64AndShiftRight(this, value, kX64Movl)) { return EmitIdentity(node); } Emit(kX64Shr, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.TempImmediate(32)); return; } break; } case IrOpcode::kLoad: case IrOpcode::kLoadImmutable: { if (TryMergeTruncateInt64ToInt32IntoLoad(this, node, value)) { return; } break; } default: break; } } Emit(kX64Movl, g.DefineAsRegister(node), g.Use(value)); } void InstructionSelector::VisitFloat32Add(Node* node) { VisitFloatBinop(this, node, kAVXFloat32Add, kSSEFloat32Add); } void InstructionSelector::VisitFloat32Sub(Node* node) { VisitFloatBinop(this, node, kAVXFloat32Sub, kSSEFloat32Sub); } void InstructionSelector::VisitFloat32Mul(Node* node) { VisitFloatBinop(this, node, kAVXFloat32Mul, kSSEFloat32Mul); } void InstructionSelector::VisitFloat32Div(Node* node) { VisitFloatBinop(this, node, kAVXFloat32Div, kSSEFloat32Div); } void InstructionSelector::VisitFloat32Abs(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kX64Float32Abs); } void InstructionSelector::VisitFloat32Max(Node* node) { VisitRRO(this, node, kSSEFloat32Max); } void InstructionSelector::VisitFloat32Min(Node* node) { VisitRRO(this, node, kSSEFloat32Min); } void InstructionSelector::VisitFloat64Add(Node* node) { VisitFloatBinop(this, node, kAVXFloat64Add, kSSEFloat64Add); } void InstructionSelector::VisitFloat64Sub(Node* node) { VisitFloatBinop(this, node, kAVXFloat64Sub, kSSEFloat64Sub); } void InstructionSelector::VisitFloat64Mul(Node* node) { VisitFloatBinop(this, node, kAVXFloat64Mul, kSSEFloat64Mul); } void InstructionSelector::VisitFloat64Div(Node* node) { VisitFloatBinop(this, node, kAVXFloat64Div, kSSEFloat64Div); } void InstructionSelector::VisitFloat64Mod(Node* node) { X64OperandGenerator g(this); InstructionOperand temps[] = {g.TempRegister(rax)}; Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), 1, temps); } void InstructionSelector::VisitFloat64Max(Node* node) { VisitRRO(this, node, kSSEFloat64Max); } void InstructionSelector::VisitFloat64Min(Node* node) { VisitRRO(this, node, kSSEFloat64Min); } void InstructionSelector::VisitFloat64Abs(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kX64Float64Abs); } void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitFloat32Neg(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kX64Float32Neg); } void InstructionSelector::VisitFloat64Neg(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kX64Float64Neg); } void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, InstructionCode opcode) { X64OperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, xmm0), g.UseFixed(node->InputAt(0), xmm0), g.UseFixed(node->InputAt(1), xmm1)) ->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, InstructionCode opcode) { X64OperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, xmm0), g.UseFixed(node->InputAt(0), xmm0)) ->MarkAsCall(); } void InstructionSelector::EmitPrepareArguments( ZoneVector* arguments, const CallDescriptor* call_descriptor, Node* node) { X64OperandGenerator g(this); // Prepare for C function call. if (call_descriptor->IsCFunctionCall()) { Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast( call_descriptor->ParameterCount())), 0, nullptr, 0, nullptr); // Poke any stack arguments. for (size_t n = 0; n < arguments->size(); ++n) { PushParameter input = (*arguments)[n]; if (input.node) { int slot = static_cast(n); InstructionOperand value = g.CanBeImmediate(input.node) ? g.UseImmediate(input.node) : g.UseRegister(input.node); Emit(kX64Poke | MiscField::encode(slot), g.NoOutput(), value); } } } else { // Push any stack arguments. int effect_level = GetEffectLevel(node); int stack_decrement = 0; for (PushParameter input : base::Reversed(*arguments)) { stack_decrement += kSystemPointerSize; // Skip holes in the param array. These represent both extra slots for // multi-slot values and padding slots for alignment. if (input.node == nullptr) continue; InstructionOperand decrement = g.UseImmediate(stack_decrement); stack_decrement = 0; if (g.CanBeImmediate(input.node)) { Emit(kX64Push, g.NoOutput(), decrement, g.UseImmediate(input.node)); } else if (IsSupported(INTEL_ATOM) || sequence()->IsFP(GetVirtualRegister(input.node))) { // TODO(titzer): X64Push cannot handle stack->stack double moves // because there is no way to encode fixed double slots. Emit(kX64Push, g.NoOutput(), decrement, g.UseRegister(input.node)); } else if (g.CanBeMemoryOperand(kX64Push, node, input.node, effect_level)) { InstructionOperand outputs[1]; InstructionOperand inputs[5]; size_t input_count = 0; inputs[input_count++] = decrement; AddressingMode mode = g.GetEffectiveAddressMemoryOperand( input.node, inputs, &input_count); InstructionCode opcode = kX64Push | AddressingModeField::encode(mode); Emit(opcode, 0, outputs, input_count, inputs); } else { Emit(kX64Push, g.NoOutput(), decrement, g.UseAny(input.node)); } } } } void InstructionSelector::EmitPrepareResults( ZoneVector* results, const CallDescriptor* call_descriptor, Node* node) { X64OperandGenerator g(this); for (PushParameter output : *results) { if (!output.location.IsCallerFrameSlot()) continue; // Skip any alignment holes in nodes. if (output.node != nullptr) { DCHECK(!call_descriptor->IsCFunctionCall()); if (output.location.GetType() == MachineType::Float32()) { MarkAsFloat32(output.node); } else if (output.location.GetType() == MachineType::Float64()) { MarkAsFloat64(output.node); } else if (output.location.GetType() == MachineType::Simd128()) { MarkAsSimd128(output.node); } InstructionOperand result = g.DefineAsRegister(output.node); int offset = call_descriptor->GetOffsetToReturns(); int reverse_slot = -output.location.GetLocation() - offset; InstructionOperand slot = g.UseImmediate(reverse_slot); Emit(kX64Peek, 1, &result, 1, &slot); } } } bool InstructionSelector::IsTailCallAddressImmediate() { return true; } namespace { void VisitCompareWithMemoryOperand(InstructionSelector* selector, InstructionCode opcode, Node* left, InstructionOperand right, FlagsContinuation* cont) { DCHECK(IrOpcode::kLoad == left->opcode() || IrOpcode::kLoadImmutable == left->opcode()); X64OperandGenerator g(selector); size_t input_count = 0; InstructionOperand inputs[6]; AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(left, inputs, &input_count); opcode |= AddressingModeField::encode(addressing_mode); inputs[input_count++] = right; if (cont->IsSelect()) { if (opcode == kUnorderedEqual) { cont->Negate(); inputs[input_count++] = g.UseRegister(cont->true_value()); inputs[input_count++] = g.Use(cont->false_value()); } else { inputs[input_count++] = g.UseRegister(cont->false_value()); inputs[input_count++] = g.Use(cont->true_value()); } } selector->EmitWithContinuation(opcode, 0, nullptr, input_count, inputs, cont); } // Shared routine for multiple compare operations. void VisitCompare(InstructionSelector* selector, InstructionCode opcode, InstructionOperand left, InstructionOperand right, FlagsContinuation* cont) { if (cont->IsSelect()) { X64OperandGenerator g(selector); InstructionOperand inputs[4] = {left, right}; if (cont->condition() == kUnorderedEqual) { cont->Negate(); inputs[2] = g.UseRegister(cont->true_value()); inputs[3] = g.Use(cont->false_value()); } else { inputs[2] = g.UseRegister(cont->false_value()); inputs[3] = g.Use(cont->true_value()); } selector->EmitWithContinuation(opcode, 0, nullptr, 4, inputs, cont); return; } selector->EmitWithContinuation(opcode, left, right, cont); } // Shared routine for multiple compare operations. void VisitCompare(InstructionSelector* selector, InstructionCode opcode, Node* left, Node* right, FlagsContinuation* cont, bool commutative) { X64OperandGenerator g(selector); if (commutative && g.CanBeBetterLeftOperand(right)) { std::swap(left, right); } VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont); } MachineType MachineTypeForNarrow(Node* node, Node* hint_node) { if (hint_node->opcode() == IrOpcode::kLoad || hint_node->opcode() == IrOpcode::kLoadImmutable) { MachineType hint = LoadRepresentationOf(hint_node->op()); if (node->opcode() == IrOpcode::kInt32Constant || node->opcode() == IrOpcode::kInt64Constant) { int64_t constant = node->opcode() == IrOpcode::kInt32Constant ? OpParameter(node->op()) : OpParameter(node->op()); if (hint == MachineType::Int8()) { if (constant >= std::numeric_limits::min() && constant <= std::numeric_limits::max()) { return hint; } } else if (hint == MachineType::Uint8()) { if (constant >= std::numeric_limits::min() && constant <= std::numeric_limits::max()) { return hint; } } else if (hint == MachineType::Int16()) { if (constant >= std::numeric_limits::min() && constant <= std::numeric_limits::max()) { return hint; } } else if (hint == MachineType::Uint16()) { if (constant >= std::numeric_limits::min() && constant <= std::numeric_limits::max()) { return hint; } } else if (hint == MachineType::Int32()) { if (constant >= std::numeric_limits::min() && constant <= std::numeric_limits::max()) { return hint; } } else if (hint == MachineType::Uint32()) { if (constant >= std::numeric_limits::min() && constant <= std::numeric_limits::max()) return hint; } } } return node->opcode() == IrOpcode::kLoad || node->opcode() == IrOpcode::kLoadImmutable ? LoadRepresentationOf(node->op()) : MachineType::None(); } bool IsIntConstant(Node* node) { return node->opcode() == IrOpcode::kInt32Constant || node->opcode() == IrOpcode::kInt64Constant; } bool IsWordAnd(Node* node) { return node->opcode() == IrOpcode::kWord32And || node->opcode() == IrOpcode::kWord64And; } // The result of WordAnd with a positive interger constant in X64 is known to // be sign(zero)-extended. Comparing this result with another positive interger // constant can have narrowed operand. MachineType MachineTypeForNarrowWordAnd(Node* and_node, Node* constant_node) { Node* and_left = and_node->InputAt(0); Node* and_right = and_node->InputAt(1); Node* and_constant_node = IsIntConstant(and_right) ? and_right : IsIntConstant(and_left) ? and_left : nullptr; if (and_constant_node != nullptr) { int64_t and_constant = and_constant_node->opcode() == IrOpcode::kInt32Constant ? OpParameter(and_constant_node->op()) : OpParameter(and_constant_node->op()); int64_t cmp_constant = constant_node->opcode() == IrOpcode::kInt32Constant ? OpParameter(constant_node->op()) : OpParameter(constant_node->op()); if (and_constant >= 0 && cmp_constant >= 0) { int64_t constant = and_constant > cmp_constant ? and_constant : cmp_constant; if (constant <= std::numeric_limits::max()) { return MachineType::Int8(); } else if (constant <= std::numeric_limits::max()) { return MachineType::Uint8(); } else if (constant <= std::numeric_limits::max()) { return MachineType::Int16(); } else if (constant <= std::numeric_limits::max()) { return MachineType::Uint16(); } else if (constant <= std::numeric_limits::max()) { return MachineType::Int32(); } else if (constant <= std::numeric_limits::max()) { return MachineType::Uint32(); } } } return MachineType::None(); } // Tries to match the size of the given opcode to that of the operands, if // possible. InstructionCode TryNarrowOpcodeSize(InstructionCode opcode, Node* left, Node* right, FlagsContinuation* cont) { MachineType left_type = MachineType::None(); MachineType right_type = MachineType::None(); if (IsWordAnd(left) && IsIntConstant(right)) { left_type = MachineTypeForNarrowWordAnd(left, right); right_type = left_type; } else if (IsWordAnd(right) && IsIntConstant(left)) { right_type = MachineTypeForNarrowWordAnd(right, left); left_type = right_type; } else { // TODO(epertoso): we can probably get some size information out phi nodes. // If the load representations don't match, both operands will be // zero/sign-extended to 32bit. left_type = MachineTypeForNarrow(left, right); right_type = MachineTypeForNarrow(right, left); } if (left_type == right_type) { switch (left_type.representation()) { case MachineRepresentation::kBit: case MachineRepresentation::kWord8: { if (opcode == kX64Test || opcode == kX64Test32) return kX64Test8; if (opcode == kX64Cmp || opcode == kX64Cmp32) { if (left_type.semantic() == MachineSemantic::kUint32) { cont->OverwriteUnsignedIfSigned(); } else { CHECK_EQ(MachineSemantic::kInt32, left_type.semantic()); } return kX64Cmp8; } break; } case MachineRepresentation::kWord16: if (opcode == kX64Test || opcode == kX64Test32) return kX64Test16; if (opcode == kX64Cmp || opcode == kX64Cmp32) { if (left_type.semantic() == MachineSemantic::kUint32) { cont->OverwriteUnsignedIfSigned(); } else { CHECK_EQ(MachineSemantic::kInt32, left_type.semantic()); } return kX64Cmp16; } break; case MachineRepresentation::kWord32: if (opcode == kX64Test) return kX64Test32; if (opcode == kX64Cmp) { if (left_type.semantic() == MachineSemantic::kUint32) { cont->OverwriteUnsignedIfSigned(); } else { CHECK_EQ(MachineSemantic::kInt32, left_type.semantic()); } return kX64Cmp32; } break; #ifdef V8_COMPRESS_POINTERS case MachineRepresentation::kTaggedSigned: case MachineRepresentation::kTaggedPointer: case MachineRepresentation::kTagged: // When pointer compression is enabled the lower 32-bits uniquely // identify tagged value. if (opcode == kX64Cmp) return kX64Cmp32; break; #endif default: break; } } return opcode; } // Shared routine for multiple word compare operations. void VisitWordCompare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { X64OperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); // The 32-bit comparisons automatically truncate Word64 // values to Word32 range, no need to do that explicitly. if (opcode == kX64Cmp32 || opcode == kX64Test32) { if (left->opcode() == IrOpcode::kTruncateInt64ToInt32) { left = left->InputAt(0); } if (right->opcode() == IrOpcode::kTruncateInt64ToInt32) { right = right->InputAt(0); } } opcode = TryNarrowOpcodeSize(opcode, left, right, cont); // If one of the two inputs is an immediate, make sure it's on the right, or // if one of the two inputs is a memory operand, make sure it's on the left. int effect_level = selector->GetEffectLevel(node, cont); if ((!g.CanBeImmediate(right) && g.CanBeImmediate(left)) || (g.CanBeMemoryOperand(opcode, node, right, effect_level) && !g.CanBeMemoryOperand(opcode, node, left, effect_level))) { if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); std::swap(left, right); } // Match immediates on right side of comparison. if (g.CanBeImmediate(right)) { if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) { return VisitCompareWithMemoryOperand(selector, opcode, left, g.UseImmediate(right), cont); } return VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right), cont); } // Match memory operands on left side of comparison. if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) { return VisitCompareWithMemoryOperand(selector, opcode, left, g.UseRegister(right), cont); } return VisitCompare(selector, opcode, left, right, cont, node->op()->HasProperty(Operator::kCommutative)); } void VisitWord64EqualImpl(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { if (selector->CanUseRootsRegister()) { X64OperandGenerator g(selector); const RootsTable& roots_table = selector->isolate()->roots_table(); RootIndex root_index; HeapObjectBinopMatcher m(node); if (m.right().HasResolvedValue() && roots_table.IsRootHandle(m.right().ResolvedValue(), &root_index)) { InstructionCode opcode = kX64Cmp | AddressingModeField::encode(kMode_Root); return VisitCompare( selector, opcode, g.TempImmediate( TurboAssemblerBase::RootRegisterOffsetForRootIndex(root_index)), g.UseRegister(m.left().node()), cont); } } VisitWordCompare(selector, node, kX64Cmp, cont); } void VisitWord32EqualImpl(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { if (COMPRESS_POINTERS_BOOL && selector->CanUseRootsRegister()) { X64OperandGenerator g(selector); const RootsTable& roots_table = selector->isolate()->roots_table(); RootIndex root_index; Node* left = nullptr; Handle right; // HeapConstants and CompressedHeapConstants can be treated the same when // using them as an input to a 32-bit comparison. Check whether either is // present. { CompressedHeapObjectBinopMatcher m(node); if (m.right().HasResolvedValue()) { left = m.left().node(); right = m.right().ResolvedValue(); } else { HeapObjectBinopMatcher m2(node); if (m2.right().HasResolvedValue()) { left = m2.left().node(); right = m2.right().ResolvedValue(); } } } if (!right.is_null() && roots_table.IsRootHandle(right, &root_index)) { DCHECK_NE(left, nullptr); InstructionCode opcode = kX64Cmp32 | AddressingModeField::encode(kMode_Root); return VisitCompare( selector, opcode, g.TempImmediate( TurboAssemblerBase::RootRegisterOffsetForRootIndex(root_index)), g.UseRegister(left), cont); } } VisitWordCompare(selector, node, kX64Cmp32, cont); } // Shared routine for comparison with zero. void VisitCompareZero(InstructionSelector* selector, Node* user, Node* node, InstructionCode opcode, FlagsContinuation* cont) { X64OperandGenerator g(selector); if (cont->IsBranch() && (cont->condition() == kNotEqual || cont->condition() == kEqual)) { switch (node->opcode()) { #define FLAGS_SET_BINOP_LIST(V) \ V(kInt32Add, VisitBinop, kX64Add32) \ V(kInt32Sub, VisitBinop, kX64Sub32) \ V(kWord32And, VisitBinop, kX64And32) \ V(kWord32Or, VisitBinop, kX64Or32) \ V(kInt64Add, VisitBinop, kX64Add) \ V(kInt64Sub, VisitBinop, kX64Sub) \ V(kWord64And, VisitBinop, kX64And) \ V(kWord64Or, VisitBinop, kX64Or) #define FLAGS_SET_BINOP(opcode, Visit, archOpcode) \ case IrOpcode::opcode: \ if (selector->IsOnlyUserOfNodeInSameBlock(user, node)) { \ return Visit(selector, node, archOpcode, cont); \ } \ break; FLAGS_SET_BINOP_LIST(FLAGS_SET_BINOP) #undef FLAGS_SET_BINOP_LIST #undef FLAGS_SET_BINOP #define TRY_VISIT_WORD32_SHIFT TryVisitWordShift #define TRY_VISIT_WORD64_SHIFT TryVisitWordShift // Skip Word64Sar/Word32Sar since no instruction reduction in most cases. #define FLAGS_SET_SHIFT_LIST(V) \ V(kWord32Shl, TRY_VISIT_WORD32_SHIFT, kX64Shl32) \ V(kWord32Shr, TRY_VISIT_WORD32_SHIFT, kX64Shr32) \ V(kWord64Shl, TRY_VISIT_WORD64_SHIFT, kX64Shl) \ V(kWord64Shr, TRY_VISIT_WORD64_SHIFT, kX64Shr) #define FLAGS_SET_SHIFT(opcode, TryVisit, archOpcode) \ case IrOpcode::opcode: \ if (selector->IsOnlyUserOfNodeInSameBlock(user, node)) { \ if (TryVisit(selector, node, archOpcode, cont)) return; \ } \ break; FLAGS_SET_SHIFT_LIST(FLAGS_SET_SHIFT) #undef TRY_VISIT_WORD32_SHIFT #undef TRY_VISIT_WORD64_SHIFT #undef FLAGS_SET_SHIFT_LIST #undef FLAGS_SET_SHIFT default: break; } } int effect_level = selector->GetEffectLevel(node, cont); if (node->opcode() == IrOpcode::kLoad || node->opcode() == IrOpcode::kLoadImmutable) { switch (LoadRepresentationOf(node->op()).representation()) { case MachineRepresentation::kWord8: if (opcode == kX64Cmp32) { opcode = kX64Cmp8; } else if (opcode == kX64Test32) { opcode = kX64Test8; } break; case MachineRepresentation::kWord16: if (opcode == kX64Cmp32) { opcode = kX64Cmp16; } else if (opcode == kX64Test32) { opcode = kX64Test16; } break; default: break; } } if (g.CanBeMemoryOperand(opcode, user, node, effect_level)) { VisitCompareWithMemoryOperand(selector, opcode, node, g.TempImmediate(0), cont); } else { VisitCompare(selector, opcode, g.Use(node), g.TempImmediate(0), cont); } } // Shared routine for multiple float32 compare operations (inputs commuted). void VisitFloat32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { Node* const left = node->InputAt(0); Node* const right = node->InputAt(1); InstructionCode const opcode = selector->IsSupported(AVX) ? kAVXFloat32Cmp : kSSEFloat32Cmp; VisitCompare(selector, opcode, right, left, cont, false); } // Shared routine for multiple float64 compare operations (inputs commuted). void VisitFloat64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { Node* const left = node->InputAt(0); Node* const right = node->InputAt(1); InstructionCode const opcode = selector->IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp; VisitCompare(selector, opcode, right, left, cont, false); } // Shared routine for Word32/Word64 Atomic Binops void VisitAtomicBinop(InstructionSelector* selector, Node* node, ArchOpcode opcode, AtomicWidth width) { X64OperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); AddressingMode addressing_mode; InstructionOperand inputs[] = { g.UseUniqueRegister(value), g.UseUniqueRegister(base), g.GetEffectiveIndexOperand(index, &addressing_mode)}; InstructionOperand outputs[] = {g.DefineAsFixed(node, rax)}; InstructionOperand temps[] = {g.TempRegister()}; InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) | AtomicWidthField::encode(width); selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, arraysize(temps), temps); } // Shared routine for Word32/Word64 Atomic CmpExchg void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node, ArchOpcode opcode, AtomicWidth width) { X64OperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* old_value = node->InputAt(2); Node* new_value = node->InputAt(3); AddressingMode addressing_mode; InstructionOperand inputs[] = { g.UseFixed(old_value, rax), g.UseUniqueRegister(new_value), g.UseUniqueRegister(base), g.GetEffectiveIndexOperand(index, &addressing_mode)}; InstructionOperand outputs[] = {g.DefineAsFixed(node, rax)}; InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) | AtomicWidthField::encode(width); selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs); } } // namespace // Shared routine for word comparison against zero. void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, FlagsContinuation* cont) { // Try to combine with comparisons against 0 by simply inverting the branch. while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) { Int32BinopMatcher m(value); if (!m.right().Is(0)) break; user = value; value = m.left().node(); cont->Negate(); } if (CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kWord32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitWord32EqualImpl(this, value, cont); case IrOpcode::kInt32LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWordCompare(this, value, kX64Cmp32, cont); case IrOpcode::kInt32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWordCompare(this, value, kX64Cmp32, cont); case IrOpcode::kUint32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWordCompare(this, value, kX64Cmp32, cont); case IrOpcode::kUint32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWordCompare(this, value, kX64Cmp32, cont); case IrOpcode::kWord64Equal: { cont->OverwriteAndNegateIfEqual(kEqual); Int64BinopMatcher m(value); if (m.right().Is(0)) { // Try to combine the branch with a comparison. Node* const eq_user = m.node(); Node* const eq_value = m.left().node(); if (CanCover(eq_user, eq_value)) { switch (eq_value->opcode()) { case IrOpcode::kInt64Sub: return VisitWordCompare(this, eq_value, kX64Cmp, cont); case IrOpcode::kWord64And: return VisitWordCompare(this, eq_value, kX64Test, cont); default: break; } } return VisitCompareZero(this, eq_user, eq_value, kX64Cmp, cont); } return VisitWord64EqualImpl(this, value, cont); } case IrOpcode::kInt64LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWordCompare(this, value, kX64Cmp, cont); case IrOpcode::kInt64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWordCompare(this, value, kX64Cmp, cont); case IrOpcode::kUint64LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWordCompare(this, value, kX64Cmp, cont); case IrOpcode::kUint64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWordCompare(this, value, kX64Cmp, cont); case IrOpcode::kFloat32Equal: cont->OverwriteAndNegateIfEqual(kUnorderedEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat64Equal: cont->OverwriteAndNegateIfEqual(kUnorderedEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThan: { Float64BinopMatcher m(value); if (m.left().Is(0.0) && m.right().IsFloat64Abs()) { // This matches the pattern // // Float64LessThan(#0.0, Float64Abs(x)) // // which TurboFan generates for NumberToBoolean in the general case, // and which evaluates to false if x is 0, -0 or NaN. We can compile // this to a simple (v)ucomisd using not_equal flags condition, which // avoids the costly Float64Abs. cont->OverwriteAndNegateIfEqual(kNotEqual); InstructionCode const opcode = IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp; return VisitCompare(this, opcode, m.left().node(), m.right().InputAt(0), cont, false); } cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan); return VisitFloat64Compare(this, value, cont); } case IrOpcode::kFloat64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kProjection: // Check if this is the overflow output projection of an // WithOverflow node. if (ProjectionIndexOf(value->op()) == 1u) { // We cannot combine the WithOverflow with this branch // unless the 0th projection (the use of the actual value of the // is either nullptr, which means there's no use of the // actual value, or was already defined, which means it is scheduled // *AFTER* this branch). Node* const node = value->InputAt(0); Node* const result = NodeProperties::FindProjection(node, 0); if (result == nullptr || IsDefined(result)) { switch (node->opcode()) { case IrOpcode::kInt32AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kX64Add32, cont); case IrOpcode::kInt32SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kX64Sub32, cont); case IrOpcode::kInt32MulWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kX64Imul32, cont); case IrOpcode::kInt64AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kX64Add, cont); case IrOpcode::kInt64SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kX64Sub, cont); default: break; } } } break; case IrOpcode::kInt32Sub: return VisitWordCompare(this, value, kX64Cmp32, cont); case IrOpcode::kWord32And: return VisitWordCompare(this, value, kX64Test32, cont); case IrOpcode::kStackPointerGreaterThan: cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition); return VisitStackPointerGreaterThan(value, cont); default: break; } } // Branch could not be combined with a compare, emit compare against 0. VisitCompareZero(this, user, value, kX64Cmp32, cont); } void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { X64OperandGenerator g(this); InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); // Emit either ArchTableSwitch or ArchBinarySearchSwitch. if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { static const size_t kMaxTableSwitchValueRange = 2 << 16; size_t table_space_cost = 4 + sw.value_range(); size_t table_time_cost = 3; size_t lookup_space_cost = 3 + 2 * sw.case_count(); size_t lookup_time_cost = sw.case_count(); if (sw.case_count() > 4 && table_space_cost + 3 * table_time_cost <= lookup_space_cost + 3 * lookup_time_cost && sw.min_value() > std::numeric_limits::min() && sw.value_range() <= kMaxTableSwitchValueRange) { InstructionOperand index_operand = g.TempRegister(); if (sw.min_value()) { // The leal automatically zero extends, so result is a valid 64-bit // index. Emit(kX64Lea32 | AddressingModeField::encode(kMode_MRI), index_operand, value_operand, g.TempImmediate(-sw.min_value())); } else { // Zero extend, because we use it as 64-bit index into the jump table. if (ZeroExtendsWord32ToWord64(node->InputAt(0))) { // Input value has already been zero-extended. index_operand = value_operand; } else { Emit(kX64Movl, index_operand, value_operand); } } // Generate a table lookup. return EmitTableSwitch(sw, index_operand); } } // Generate a tree of conditional jumps. return EmitBinarySearchSwitch(sw, value_operand); } void InstructionSelector::VisitWord32Equal(Node* const node) { Node* user = node; FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int32BinopMatcher m(user); if (m.right().Is(0)) { return VisitWordCompareZero(m.node(), m.left().node(), &cont); } VisitWord32EqualImpl(this, node, &cont); } void InstructionSelector::VisitInt32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWordCompare(this, node, kX64Cmp32, &cont); } void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWordCompare(this, node, kX64Cmp32, &cont); } void InstructionSelector::VisitUint32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWordCompare(this, node, kX64Cmp32, &cont); } void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWordCompare(this, node, kX64Cmp32, &cont); } void InstructionSelector::VisitWord64Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int64BinopMatcher m(node); if (m.right().Is(0)) { // Try to combine the equality check with a comparison. Node* const user = m.node(); Node* const value = m.left().node(); if (CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kInt64Sub: return VisitWordCompare(this, value, kX64Cmp, &cont); case IrOpcode::kWord64And: return VisitWordCompare(this, value, kX64Test, &cont); default: break; } } } VisitWord64EqualImpl(this, node, &cont); } void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kX64Add32, &cont); } FlagsContinuation cont; VisitBinop(this, node, kX64Add32, &cont); } void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kX64Sub32, &cont); } FlagsContinuation cont; VisitBinop(this, node, kX64Sub32, &cont); } void InstructionSelector::VisitInt64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWordCompare(this, node, kX64Cmp, &cont); } void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWordCompare(this, node, kX64Cmp, &cont); } void InstructionSelector::VisitUint64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWordCompare(this, node, kX64Cmp, &cont); } void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWordCompare(this, node, kX64Cmp, &cont); } void InstructionSelector::VisitFloat32Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedGreaterThan, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat64Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThan(Node* node) { Float64BinopMatcher m(node); if (m.left().Is(0.0) && m.right().IsFloat64Abs()) { // This matches the pattern // // Float64LessThan(#0.0, Float64Abs(x)) // // which TurboFan generates for NumberToBoolean in the general case, // and which evaluates to false if x is 0, -0 or NaN. We can compile // this to a simple (v)ucomisd using not_equal flags condition, which // avoids the costly Float64Abs. FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, node); InstructionCode const opcode = IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp; return VisitCompare(this, opcode, m.left().node(), m.right().InputAt(0), &cont, false); } FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedGreaterThan, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { X64OperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Float64Matcher mleft(left); if (mleft.HasResolvedValue() && (bit_cast(mleft.ResolvedValue()) >> 32) == 0u) { Emit(kSSEFloat64LoadLowWord32, g.DefineAsRegister(node), g.Use(right)); return; } Emit(kSSEFloat64InsertLowWord32, g.DefineSameAsFirst(node), g.UseRegister(left), g.Use(right)); } void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { X64OperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Emit(kSSEFloat64InsertHighWord32, g.DefineSameAsFirst(node), g.UseRegister(left), g.Use(right)); } void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { X64OperandGenerator g(this); Emit(kSSEFloat64SilenceNaN, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitMemoryBarrier(Node* node) { X64OperandGenerator g(this); Emit(kX64MFence, g.NoOutput()); } void InstructionSelector::VisitWord32AtomicLoad(Node* node) { AtomicLoadParameters atomic_load_params = AtomicLoadParametersOf(node->op()); LoadRepresentation load_rep = atomic_load_params.representation(); DCHECK(IsIntegral(load_rep.representation()) || IsAnyTagged(load_rep.representation()) || (COMPRESS_POINTERS_BOOL && CanBeCompressedPointer(load_rep.representation()))); DCHECK_NE(load_rep.representation(), MachineRepresentation::kWord64); DCHECK(!load_rep.IsMapWord()); // The memory order is ignored as both acquire and sequentially consistent // loads can emit MOV. // https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html VisitLoad(node, node, GetLoadOpcode(load_rep)); } void InstructionSelector::VisitWord64AtomicLoad(Node* node) { AtomicLoadParameters atomic_load_params = AtomicLoadParametersOf(node->op()); DCHECK(!atomic_load_params.representation().IsMapWord()); // The memory order is ignored as both acquire and sequentially consistent // loads can emit MOV. // https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html VisitLoad(node, node, GetLoadOpcode(atomic_load_params.representation())); } void InstructionSelector::VisitWord32AtomicStore(Node* node) { AtomicStoreParameters params = AtomicStoreParametersOf(node->op()); DCHECK_NE(params.representation(), MachineRepresentation::kWord64); DCHECK_IMPLIES(CanBeTaggedOrCompressedPointer(params.representation()), kTaggedSize == 4); VisitStoreCommon(this, node, params.store_representation(), params.order()); } void InstructionSelector::VisitWord64AtomicStore(Node* node) { AtomicStoreParameters params = AtomicStoreParametersOf(node->op()); DCHECK_IMPLIES(CanBeTaggedOrCompressedPointer(params.representation()), kTaggedSize == 8); VisitStoreCommon(this, node, params.store_representation(), params.order()); } void InstructionSelector::VisitWord32AtomicExchange(Node* node) { MachineType type = AtomicOpType(node->op()); ArchOpcode opcode; if (type == MachineType::Int8()) { opcode = kAtomicExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kAtomicExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kAtomicExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kAtomicExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kAtomicExchangeWord32; } else { UNREACHABLE(); } VisitAtomicExchange(this, node, opcode, AtomicWidth::kWord32); } void InstructionSelector::VisitWord64AtomicExchange(Node* node) { MachineType type = AtomicOpType(node->op()); ArchOpcode opcode; if (type == MachineType::Uint8()) { opcode = kAtomicExchangeUint8; } else if (type == MachineType::Uint16()) { opcode = kAtomicExchangeUint16; } else if (type == MachineType::Uint32()) { opcode = kAtomicExchangeWord32; } else if (type == MachineType::Uint64()) { opcode = kX64Word64AtomicExchangeUint64; } else { UNREACHABLE(); } VisitAtomicExchange(this, node, opcode, AtomicWidth::kWord64); } void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { MachineType type = AtomicOpType(node->op()); ArchOpcode opcode; if (type == MachineType::Int8()) { opcode = kAtomicCompareExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kAtomicCompareExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kAtomicCompareExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kAtomicCompareExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kAtomicCompareExchangeWord32; } else { UNREACHABLE(); } VisitAtomicCompareExchange(this, node, opcode, AtomicWidth::kWord32); } void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) { MachineType type = AtomicOpType(node->op()); ArchOpcode opcode; if (type == MachineType::Uint8()) { opcode = kAtomicCompareExchangeUint8; } else if (type == MachineType::Uint16()) { opcode = kAtomicCompareExchangeUint16; } else if (type == MachineType::Uint32()) { opcode = kAtomicCompareExchangeWord32; } else if (type == MachineType::Uint64()) { opcode = kX64Word64AtomicCompareExchangeUint64; } else { UNREACHABLE(); } VisitAtomicCompareExchange(this, node, opcode, AtomicWidth::kWord64); } void InstructionSelector::VisitWord32AtomicBinaryOperation( Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, ArchOpcode uint16_op, ArchOpcode word32_op) { MachineType type = AtomicOpType(node->op()); ArchOpcode opcode; if (type == MachineType::Int8()) { opcode = int8_op; } else if (type == MachineType::Uint8()) { opcode = uint8_op; } else if (type == MachineType::Int16()) { opcode = int16_op; } else if (type == MachineType::Uint16()) { opcode = uint16_op; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = word32_op; } else { UNREACHABLE(); } VisitAtomicBinop(this, node, opcode, AtomicWidth::kWord32); } #define VISIT_ATOMIC_BINOP(op) \ void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ VisitWord32AtomicBinaryOperation( \ node, kAtomic##op##Int8, kAtomic##op##Uint8, kAtomic##op##Int16, \ kAtomic##op##Uint16, kAtomic##op##Word32); \ } VISIT_ATOMIC_BINOP(Add) VISIT_ATOMIC_BINOP(Sub) VISIT_ATOMIC_BINOP(And) VISIT_ATOMIC_BINOP(Or) VISIT_ATOMIC_BINOP(Xor) #undef VISIT_ATOMIC_BINOP void InstructionSelector::VisitWord64AtomicBinaryOperation( Node* node, ArchOpcode uint8_op, ArchOpcode uint16_op, ArchOpcode uint32_op, ArchOpcode word64_op) { MachineType type = AtomicOpType(node->op()); ArchOpcode opcode; if (type == MachineType::Uint8()) { opcode = uint8_op; } else if (type == MachineType::Uint16()) { opcode = uint16_op; } else if (type == MachineType::Uint32()) { opcode = uint32_op; } else if (type == MachineType::Uint64()) { opcode = word64_op; } else { UNREACHABLE(); } VisitAtomicBinop(this, node, opcode, AtomicWidth::kWord64); } #define VISIT_ATOMIC_BINOP(op) \ void InstructionSelector::VisitWord64Atomic##op(Node* node) { \ VisitWord64AtomicBinaryOperation(node, kAtomic##op##Uint8, \ kAtomic##op##Uint16, kAtomic##op##Word32, \ kX64Word64Atomic##op##Uint64); \ } VISIT_ATOMIC_BINOP(Add) VISIT_ATOMIC_BINOP(Sub) VISIT_ATOMIC_BINOP(And) VISIT_ATOMIC_BINOP(Or) VISIT_ATOMIC_BINOP(Xor) #undef VISIT_ATOMIC_BINOP #define SIMD_BINOP_SSE_AVX_LIST(V) \ V(F64x2Add) \ V(F64x2Sub) \ V(F64x2Mul) \ V(F64x2Div) \ V(F64x2Eq) \ V(F64x2Ne) \ V(F64x2Lt) \ V(F64x2Le) \ V(F32x4Add) \ V(F32x4Sub) \ V(F32x4Mul) \ V(F32x4Div) \ V(F32x4Eq) \ V(F32x4Ne) \ V(F32x4Lt) \ V(F32x4Le) \ V(I64x2Add) \ V(I64x2Sub) \ V(I64x2Eq) \ V(I64x2ExtMulLowI32x4S) \ V(I64x2ExtMulHighI32x4S) \ V(I64x2ExtMulLowI32x4U) \ V(I64x2ExtMulHighI32x4U) \ V(I32x4Add) \ V(I32x4Sub) \ V(I32x4Mul) \ V(I32x4MinS) \ V(I32x4MaxS) \ V(I32x4Eq) \ V(I32x4GtS) \ V(I32x4MinU) \ V(I32x4MaxU) \ V(I32x4DotI16x8S) \ V(I32x4ExtMulLowI16x8S) \ V(I32x4ExtMulHighI16x8S) \ V(I32x4ExtMulLowI16x8U) \ V(I32x4ExtMulHighI16x8U) \ V(I16x8SConvertI32x4) \ V(I16x8UConvertI32x4) \ V(I16x8Add) \ V(I16x8AddSatS) \ V(I16x8Sub) \ V(I16x8SubSatS) \ V(I16x8Mul) \ V(I16x8MinS) \ V(I16x8MaxS) \ V(I16x8Eq) \ V(I16x8GtS) \ V(I16x8AddSatU) \ V(I16x8SubSatU) \ V(I16x8MinU) \ V(I16x8MaxU) \ V(I16x8RoundingAverageU) \ V(I16x8ExtMulLowI8x16S) \ V(I16x8ExtMulHighI8x16S) \ V(I16x8ExtMulLowI8x16U) \ V(I16x8ExtMulHighI8x16U) \ V(I16x8Q15MulRSatS) \ V(I8x16SConvertI16x8) \ V(I8x16UConvertI16x8) \ V(I8x16Add) \ V(I8x16AddSatS) \ V(I8x16Sub) \ V(I8x16SubSatS) \ V(I8x16MinS) \ V(I8x16MaxS) \ V(I8x16Eq) \ V(I8x16GtS) \ V(I8x16AddSatU) \ V(I8x16SubSatU) \ V(I8x16MinU) \ V(I8x16MaxU) \ V(I8x16RoundingAverageU) \ V(S128And) \ V(S128Or) \ V(S128Xor) #define SIMD_BINOP_LIST(V) \ V(F64x2Min) \ V(F64x2Max) \ V(F32x4Min) \ V(F32x4Max) \ V(I64x2Ne) \ V(I32x4Ne) \ V(I32x4GtU) \ V(I32x4GeS) \ V(I32x4GeU) \ V(I16x8Ne) \ V(I16x8GtU) \ V(I16x8GeS) \ V(I16x8GeU) \ V(I8x16Ne) \ V(I8x16GtU) \ V(I8x16GeS) \ V(I8x16GeU) #define SIMD_UNOP_LIST(V) \ V(F64x2Sqrt) \ V(F64x2ConvertLowI32x4S) \ V(F32x4SConvertI32x4) \ V(F32x4Abs) \ V(F32x4Neg) \ V(F32x4Sqrt) \ V(F32x4RecipApprox) \ V(F32x4RecipSqrtApprox) \ V(F32x4DemoteF64x2Zero) \ V(I64x2BitMask) \ V(I64x2SConvertI32x4Low) \ V(I64x2SConvertI32x4High) \ V(I64x2UConvertI32x4Low) \ V(I64x2UConvertI32x4High) \ V(I32x4SConvertI16x8Low) \ V(I32x4SConvertI16x8High) \ V(I32x4Neg) \ V(I32x4UConvertI16x8Low) \ V(I32x4UConvertI16x8High) \ V(I32x4Abs) \ V(I32x4BitMask) \ V(I16x8SConvertI8x16Low) \ V(I16x8SConvertI8x16High) \ V(I16x8Neg) \ V(I16x8UConvertI8x16Low) \ V(I16x8UConvertI8x16High) \ V(I16x8Abs) \ V(I16x8BitMask) \ V(I8x16Neg) \ V(I8x16Abs) \ V(I8x16BitMask) \ V(I64x2AllTrue) \ V(I32x4AllTrue) \ V(I16x8AllTrue) \ V(I8x16AllTrue) \ V(S128Not) #define SIMD_SHIFT_OPCODES(V) \ V(I64x2Shl) \ V(I64x2ShrU) \ V(I32x4Shl) \ V(I32x4ShrS) \ V(I32x4ShrU) \ V(I16x8Shl) \ V(I16x8ShrS) \ V(I16x8ShrU) #define SIMD_NARROW_SHIFT_OPCODES(V) \ V(I8x16Shl) \ V(I8x16ShrS) \ V(I8x16ShrU) void InstructionSelector::VisitS128Const(Node* node) { X64OperandGenerator g(this); static const int kUint32Immediates = kSimd128Size / sizeof(uint32_t); uint32_t val[kUint32Immediates]; memcpy(val, S128ImmediateParameterOf(node->op()).data(), kSimd128Size); // If all bytes are zeros or ones, avoid emitting code for generic constants bool all_zeros = !(val[0] || val[1] || val[2] || val[3]); bool all_ones = val[0] == UINT32_MAX && val[1] == UINT32_MAX && val[2] == UINT32_MAX && val[3] == UINT32_MAX; InstructionOperand dst = g.DefineAsRegister(node); if (all_zeros) { Emit(kX64S128Zero, dst); } else if (all_ones) { Emit(kX64S128AllOnes, dst); } else { Emit(kX64S128Const, dst, g.UseImmediate(val[0]), g.UseImmediate(val[1]), g.UseImmediate(val[2]), g.UseImmediate(val[3])); } } void InstructionSelector::VisitS128Zero(Node* node) { X64OperandGenerator g(this); Emit(kX64S128Zero, g.DefineAsRegister(node)); } #define SIMD_TYPES_FOR_SPLAT(V) \ V(I64x2) \ V(I32x4) \ V(I16x8) \ V(I8x16) // Splat with an optimization for const 0. #define VISIT_SIMD_SPLAT(Type) \ void InstructionSelector::Visit##Type##Splat(Node* node) { \ X64OperandGenerator g(this); \ Node* input = node->InputAt(0); \ if (g.CanBeImmediate(input) && g.GetImmediateIntegerValue(input) == 0) { \ Emit(kX64S128Zero, g.DefineAsRegister(node)); \ } else { \ Emit(kX64##Type##Splat, g.DefineAsRegister(node), g.Use(input)); \ } \ } SIMD_TYPES_FOR_SPLAT(VISIT_SIMD_SPLAT) #undef VISIT_SIMD_SPLAT #undef SIMD_TYPES_FOR_SPLAT void InstructionSelector::VisitF64x2Splat(Node* node) { X64OperandGenerator g(this); Emit(kX64F64x2Splat, g.DefineAsRegister(node), g.Use(node->InputAt(0))); } void InstructionSelector::VisitF32x4Splat(Node* node) { X64OperandGenerator g(this); Emit(kX64F32x4Splat, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } #define SIMD_VISIT_EXTRACT_LANE(Type, Sign, Op) \ void InstructionSelector::Visit##Type##ExtractLane##Sign(Node* node) { \ X64OperandGenerator g(this); \ int32_t lane = OpParameter(node->op()); \ Emit(kX64##Op, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), \ g.UseImmediate(lane)); \ } SIMD_VISIT_EXTRACT_LANE(F64x2, , F64x2ExtractLane) SIMD_VISIT_EXTRACT_LANE(F32x4, , F32x4ExtractLane) SIMD_VISIT_EXTRACT_LANE(I64x2, , I64x2ExtractLane) SIMD_VISIT_EXTRACT_LANE(I32x4, , I32x4ExtractLane) SIMD_VISIT_EXTRACT_LANE(I16x8, S, I16x8ExtractLaneS) SIMD_VISIT_EXTRACT_LANE(I16x8, U, Pextrw) SIMD_VISIT_EXTRACT_LANE(I8x16, S, I8x16ExtractLaneS) SIMD_VISIT_EXTRACT_LANE(I8x16, U, Pextrb) #undef SIMD_VISIT_EXTRACT_LANE void InstructionSelector::VisitF32x4ReplaceLane(Node* node) { X64OperandGenerator g(this); int32_t lane = OpParameter(node->op()); Emit(kX64F32x4ReplaceLane, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseImmediate(lane), g.Use(node->InputAt(1))); } void InstructionSelector::VisitF64x2ReplaceLane(Node* node) { X64OperandGenerator g(this); int32_t lane = OpParameter(node->op()); // When no-AVX, define dst == src to save a move. InstructionOperand dst = IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); Emit(kX64F64x2ReplaceLane, dst, g.UseRegister(node->InputAt(0)), g.UseImmediate(lane), g.UseRegister(node->InputAt(1))); } #define VISIT_SIMD_REPLACE_LANE(TYPE, OPCODE) \ void InstructionSelector::Visit##TYPE##ReplaceLane(Node* node) { \ X64OperandGenerator g(this); \ int32_t lane = OpParameter(node->op()); \ Emit(OPCODE, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), \ g.UseImmediate(lane), g.Use(node->InputAt(1))); \ } #define SIMD_TYPES_FOR_REPLACE_LANE(V) \ V(I64x2, kX64Pinsrq) \ V(I32x4, kX64Pinsrd) \ V(I16x8, kX64Pinsrw) \ V(I8x16, kX64Pinsrb) SIMD_TYPES_FOR_REPLACE_LANE(VISIT_SIMD_REPLACE_LANE) #undef SIMD_TYPES_FOR_REPLACE_LANE #undef VISIT_SIMD_REPLACE_LANE #define VISIT_SIMD_SHIFT(Opcode) \ void InstructionSelector::Visit##Opcode(Node* node) { \ X64OperandGenerator g(this); \ InstructionOperand dst = IsSupported(AVX) ? g.DefineAsRegister(node) \ : g.DefineSameAsFirst(node); \ if (g.CanBeImmediate(node->InputAt(1))) { \ Emit(kX64##Opcode, dst, g.UseRegister(node->InputAt(0)), \ g.UseImmediate(node->InputAt(1))); \ } else { \ Emit(kX64##Opcode, dst, g.UseRegister(node->InputAt(0)), \ g.UseRegister(node->InputAt(1))); \ } \ } SIMD_SHIFT_OPCODES(VISIT_SIMD_SHIFT) #undef VISIT_SIMD_SHIFT #undef SIMD_SHIFT_OPCODES #define VISIT_SIMD_NARROW_SHIFT(Opcode) \ void InstructionSelector::Visit##Opcode(Node* node) { \ X64OperandGenerator g(this); \ InstructionOperand output = \ IsSupported(AVX) ? g.UseRegister(node) : g.DefineSameAsFirst(node); \ if (g.CanBeImmediate(node->InputAt(1))) { \ Emit(kX64##Opcode, output, g.UseRegister(node->InputAt(0)), \ g.UseImmediate(node->InputAt(1))); \ } else { \ InstructionOperand temps[] = {g.TempSimd128Register()}; \ Emit(kX64##Opcode, output, g.UseUniqueRegister(node->InputAt(0)), \ g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); \ } \ } SIMD_NARROW_SHIFT_OPCODES(VISIT_SIMD_NARROW_SHIFT) #undef VISIT_SIMD_NARROW_SHIFT #undef SIMD_NARROW_SHIFT_OPCODES #define VISIT_SIMD_UNOP(Opcode) \ void InstructionSelector::Visit##Opcode(Node* node) { \ X64OperandGenerator g(this); \ Emit(kX64##Opcode, g.DefineAsRegister(node), \ g.UseRegister(node->InputAt(0))); \ } SIMD_UNOP_LIST(VISIT_SIMD_UNOP) #undef VISIT_SIMD_UNOP #undef SIMD_UNOP_LIST #define VISIT_SIMD_BINOP(Opcode) \ void InstructionSelector::Visit##Opcode(Node* node) { \ X64OperandGenerator g(this); \ Emit(kX64##Opcode, g.DefineSameAsFirst(node), \ g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); \ } SIMD_BINOP_LIST(VISIT_SIMD_BINOP) #undef VISIT_SIMD_BINOP #undef SIMD_BINOP_LIST #define VISIT_SIMD_BINOP(Opcode) \ void InstructionSelector::Visit##Opcode(Node* node) { \ X64OperandGenerator g(this); \ if (IsSupported(AVX)) { \ Emit(kX64##Opcode, g.DefineAsRegister(node), \ g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); \ } else { \ Emit(kX64##Opcode, g.DefineSameAsFirst(node), \ g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); \ } \ } SIMD_BINOP_SSE_AVX_LIST(VISIT_SIMD_BINOP) #undef VISIT_SIMD_BINOP #undef SIMD_BINOP_SSE_AVX_LIST void InstructionSelector::VisitV128AnyTrue(Node* node) { X64OperandGenerator g(this); Emit(kX64V128AnyTrue, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0))); } void InstructionSelector::VisitS128Select(Node* node) { X64OperandGenerator g(this); InstructionOperand dst = IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); Emit(kX64S128Select, dst, g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2))); } void InstructionSelector::VisitS128AndNot(Node* node) { X64OperandGenerator g(this); // andnps a b does ~a & b, but we want a & !b, so flip the input. Emit(kX64S128AndNot, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitF64x2Abs(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kX64F64x2Abs); } void InstructionSelector::VisitF64x2Neg(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kX64F64x2Neg); } void InstructionSelector::VisitF32x4UConvertI32x4(Node* node) { X64OperandGenerator g(this); Emit(kX64F32x4UConvertI32x4, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); } #define VISIT_SIMD_QFMOP(Opcode) \ void InstructionSelector::Visit##Opcode(Node* node) { \ X64OperandGenerator g(this); \ Emit(kX64##Opcode, g.UseRegister(node), g.UseRegister(node->InputAt(0)), \ g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2))); \ } VISIT_SIMD_QFMOP(F64x2Qfma) VISIT_SIMD_QFMOP(F64x2Qfms) VISIT_SIMD_QFMOP(F32x4Qfma) VISIT_SIMD_QFMOP(F32x4Qfms) #undef VISIT_SIMD_QFMOP void InstructionSelector::VisitI64x2Neg(Node* node) { X64OperandGenerator g(this); // If AVX unsupported, make sure dst != src to avoid a move. InstructionOperand operand0 = IsSupported(AVX) ? g.UseRegister(node->InputAt(0)) : g.UseUnique(node->InputAt(0)); Emit(kX64I64x2Neg, g.DefineAsRegister(node), operand0); } void InstructionSelector::VisitI64x2ShrS(Node* node) { X64OperandGenerator g(this); InstructionOperand dst = IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); if (g.CanBeImmediate(node->InputAt(1))) { Emit(kX64I64x2ShrS, dst, g.UseRegister(node->InputAt(0)), g.UseImmediate(node->InputAt(1))); } else { InstructionOperand temps[] = {g.TempSimd128Register()}; Emit(kX64I64x2ShrS, dst, g.UseUniqueRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), arraysize(temps), temps); } } void InstructionSelector::VisitI64x2Mul(Node* node) { X64OperandGenerator g(this); InstructionOperand temps[] = {g.TempSimd128Register()}; Emit(kX64I64x2Mul, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); } void InstructionSelector::VisitI32x4SConvertF32x4(Node* node) { X64OperandGenerator g(this); Emit(kX64I32x4SConvertF32x4, IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitI32x4UConvertF32x4(Node* node) { X64OperandGenerator g(this); InstructionOperand temps[] = {g.TempSimd128Register(), g.TempSimd128Register()}; Emit(kX64I32x4UConvertF32x4, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), arraysize(temps), temps); } void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { UNREACHABLE(); } #if V8_ENABLE_WEBASSEMBLY namespace { // Returns true if shuffle can be decomposed into two 16x4 half shuffles // followed by a 16x8 blend. // E.g. [3 2 1 0 15 14 13 12]. bool TryMatch16x8HalfShuffle(uint8_t* shuffle16x8, uint8_t* blend_mask) { *blend_mask = 0; for (int i = 0; i < 8; i++) { if ((shuffle16x8[i] & 0x4) != (i & 0x4)) return false; *blend_mask |= (shuffle16x8[i] > 7 ? 1 : 0) << i; } return true; } struct ShuffleEntry { uint8_t shuffle[kSimd128Size]; ArchOpcode opcode; bool src0_needs_reg; bool src1_needs_reg; // If AVX is supported, this shuffle can use AVX's three-operand encoding, so // does not require same as first. We conservatively set this to false // (original behavior), and selectively enable for specific arch shuffles. bool no_same_as_first_if_avx = false; }; // Shuffles that map to architecture-specific instruction sequences. These are // matched very early, so we shouldn't include shuffles that match better in // later tests, like 32x4 and 16x8 shuffles. In general, these patterns should // map to either a single instruction, or be finer grained, such as zip/unzip or // transpose patterns. static const ShuffleEntry arch_shuffles[] = { {{0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23}, kX64S64x2UnpackLow, true, true, true}, {{8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31}, kX64S64x2UnpackHigh, true, true, true}, {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}, kX64S32x4UnpackLow, true, true, true}, {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}, kX64S32x4UnpackHigh, true, true, true}, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}, kX64S16x8UnpackLow, true, true, true}, {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}, kX64S16x8UnpackHigh, true, true, true}, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}, kX64S8x16UnpackLow, true, true, true}, {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}, kX64S8x16UnpackHigh, true, true, true}, {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}, kX64S16x8UnzipLow, true, true}, {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}, kX64S16x8UnzipHigh, true, true}, {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, kX64S8x16UnzipLow, true, true}, {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, kX64S8x16UnzipHigh, true, true}, {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}, kX64S8x16TransposeLow, true, true}, {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}, kX64S8x16TransposeHigh, true, true}, {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}, kX64S8x8Reverse, true, true}, {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}, kX64S8x4Reverse, true, true}, {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}, kX64S8x2Reverse, true, true}}; bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table, size_t num_entries, bool is_swizzle, const ShuffleEntry** arch_shuffle) { uint8_t mask = is_swizzle ? kSimd128Size - 1 : 2 * kSimd128Size - 1; for (size_t i = 0; i < num_entries; ++i) { const ShuffleEntry& entry = table[i]; int j = 0; for (; j < kSimd128Size; ++j) { if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) { break; } } if (j == kSimd128Size) { *arch_shuffle = &entry; return true; } } return false; } bool TryMatchShufps(const uint8_t* shuffle32x4) { DCHECK_GT(8, shuffle32x4[2]); DCHECK_GT(8, shuffle32x4[3]); // shufps can be used if the first 2 indices select the first input [0-3], and // the other 2 indices select the second input [4-7]. return shuffle32x4[0] < 4 && shuffle32x4[1] < 4 && shuffle32x4[2] > 3 && shuffle32x4[3] > 3; } } // namespace void InstructionSelector::VisitI8x16Shuffle(Node* node) { uint8_t shuffle[kSimd128Size]; bool is_swizzle; CanonicalizeShuffle(node, shuffle, &is_swizzle); int imm_count = 0; static const int kMaxImms = 6; uint32_t imms[kMaxImms]; int temp_count = 0; static const int kMaxTemps = 2; InstructionOperand temps[kMaxTemps]; X64OperandGenerator g(this); // Swizzles don't generally need DefineSameAsFirst to avoid a move. bool no_same_as_first = is_swizzle; // We generally need UseRegister for input0, Use for input1. // TODO(v8:9198): We don't have 16-byte alignment for SIMD operands yet, but // we retain this logic (continue setting these in the various shuffle match // clauses), but ignore it when selecting registers or slots. bool src0_needs_reg = true; bool src1_needs_reg = false; ArchOpcode opcode = kX64I8x16Shuffle; // general shuffle is the default uint8_t offset; uint8_t shuffle32x4[4]; uint8_t shuffle16x8[8]; int index; const ShuffleEntry* arch_shuffle; if (wasm::SimdShuffle::TryMatchConcat(shuffle, &offset)) { if (wasm::SimdShuffle::TryMatch32x4Rotate(shuffle, shuffle32x4, is_swizzle)) { uint8_t shuffle_mask = wasm::SimdShuffle::PackShuffle4(shuffle32x4); opcode = kX64S32x4Rotate; imms[imm_count++] = shuffle_mask; } else { // Swap inputs from the normal order for (v)palignr. SwapShuffleInputs(node); is_swizzle = false; // It's simpler to just handle the general case. no_same_as_first = CpuFeatures::IsSupported(AVX); // TODO(v8:9608): also see v8:9083 src1_needs_reg = true; opcode = kX64S8x16Alignr; // palignr takes a single imm8 offset. imms[imm_count++] = offset; } } else if (TryMatchArchShuffle(shuffle, arch_shuffles, arraysize(arch_shuffles), is_swizzle, &arch_shuffle)) { opcode = arch_shuffle->opcode; src0_needs_reg = arch_shuffle->src0_needs_reg; // SSE can't take advantage of both operands in registers and needs // same-as-first. src1_needs_reg = arch_shuffle->src1_needs_reg; no_same_as_first = IsSupported(AVX) && arch_shuffle->no_same_as_first_if_avx; } else if (wasm::SimdShuffle::TryMatch32x4Shuffle(shuffle, shuffle32x4)) { uint8_t shuffle_mask = wasm::SimdShuffle::PackShuffle4(shuffle32x4); if (is_swizzle) { if (wasm::SimdShuffle::TryMatchIdentity(shuffle)) { // Bypass normal shuffle code generation in this case. EmitIdentity(node); return; } else { // pshufd takes a single imm8 shuffle mask. opcode = kX64S32x4Swizzle; no_same_as_first = true; // TODO(v8:9083): This doesn't strictly require a register, forcing the // swizzles to always use registers until generation of incorrect memory // operands can be fixed. src0_needs_reg = true; imms[imm_count++] = shuffle_mask; } } else { // 2 operand shuffle // A blend is more efficient than a general 32x4 shuffle; try it first. if (wasm::SimdShuffle::TryMatchBlend(shuffle)) { opcode = kX64S16x8Blend; uint8_t blend_mask = wasm::SimdShuffle::PackBlend4(shuffle32x4); imms[imm_count++] = blend_mask; no_same_as_first = CpuFeatures::IsSupported(AVX); } else if (TryMatchShufps(shuffle32x4)) { opcode = kX64Shufps; uint8_t mask = wasm::SimdShuffle::PackShuffle4(shuffle32x4); imms[imm_count++] = mask; src1_needs_reg = true; no_same_as_first = IsSupported(AVX); } else { opcode = kX64S32x4Shuffle; no_same_as_first = true; // TODO(v8:9083): src0 and src1 is used by pshufd in codegen, which // requires memory to be 16-byte aligned, since we cannot guarantee that // yet, force using a register here. src0_needs_reg = true; src1_needs_reg = true; imms[imm_count++] = shuffle_mask; uint8_t blend_mask = wasm::SimdShuffle::PackBlend4(shuffle32x4); imms[imm_count++] = blend_mask; } } } else if (wasm::SimdShuffle::TryMatch16x8Shuffle(shuffle, shuffle16x8)) { uint8_t blend_mask; if (wasm::SimdShuffle::TryMatchBlend(shuffle)) { opcode = kX64S16x8Blend; blend_mask = wasm::SimdShuffle::PackBlend8(shuffle16x8); imms[imm_count++] = blend_mask; no_same_as_first = CpuFeatures::IsSupported(AVX); } else if (wasm::SimdShuffle::TryMatchSplat<8>(shuffle, &index)) { opcode = kX64S16x8Dup; src0_needs_reg = false; imms[imm_count++] = index; } else if (TryMatch16x8HalfShuffle(shuffle16x8, &blend_mask)) { opcode = is_swizzle ? kX64S16x8HalfShuffle1 : kX64S16x8HalfShuffle2; // Half-shuffles don't need DefineSameAsFirst or UseRegister(src0). no_same_as_first = true; src0_needs_reg = false; uint8_t mask_lo = wasm::SimdShuffle::PackShuffle4(shuffle16x8); uint8_t mask_hi = wasm::SimdShuffle::PackShuffle4(shuffle16x8 + 4); imms[imm_count++] = mask_lo; imms[imm_count++] = mask_hi; if (!is_swizzle) imms[imm_count++] = blend_mask; } } else if (wasm::SimdShuffle::TryMatchSplat<16>(shuffle, &index)) { opcode = kX64S8x16Dup; no_same_as_first = false; src0_needs_reg = true; imms[imm_count++] = index; } if (opcode == kX64I8x16Shuffle) { // Use same-as-first for general swizzle, but not shuffle. no_same_as_first = !is_swizzle; src0_needs_reg = !no_same_as_first; imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle); imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle + 4); imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle + 8); imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle + 12); temps[temp_count++] = g.TempSimd128Register(); } // Use DefineAsRegister(node) and Use(src0) if we can without forcing an extra // move instruction in the CodeGenerator. Node* input0 = node->InputAt(0); InstructionOperand dst = no_same_as_first ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); // TODO(v8:9198): Use src0_needs_reg when we have memory alignment for SIMD. // We only need a unique register for input0 if we use temp registers. InstructionOperand src0 = temp_count ? g.UseUniqueRegister(input0) : g.UseRegister(input0); USE(src0_needs_reg); int input_count = 0; InstructionOperand inputs[2 + kMaxImms + kMaxTemps]; inputs[input_count++] = src0; if (!is_swizzle) { Node* input1 = node->InputAt(1); // TODO(v8:9198): Use src1_needs_reg when we have memory alignment for SIMD. // We only need a unique register for input1 if we use temp registers. inputs[input_count++] = temp_count ? g.UseUniqueRegister(input1) : g.UseRegister(input1); USE(src1_needs_reg); } for (int i = 0; i < imm_count; ++i) { inputs[input_count++] = g.UseImmediate(imms[i]); } Emit(opcode, 1, &dst, input_count, inputs, temp_count, temps); } #else void InstructionSelector::VisitI8x16Shuffle(Node* node) { UNREACHABLE(); } #endif // V8_ENABLE_WEBASSEMBLY #if V8_ENABLE_WEBASSEMBLY void InstructionSelector::VisitI8x16Swizzle(Node* node) { InstructionCode op = kX64I8x16Swizzle; bool relaxed = OpParameter(node->op()); if (relaxed) { op |= MiscField::encode(true); } else { auto m = V128ConstMatcher(node->InputAt(1)); if (m.HasResolvedValue()) { // If the indices vector is a const, check if they are in range, or if the // top bit is set, then we can avoid the paddusb in the codegen and simply // emit a pshufb. auto imms = m.ResolvedValue().immediate(); op |= MiscField::encode(wasm::SimdSwizzle::AllInRangeOrTopBitSet(imms)); } } X64OperandGenerator g(this); Emit(op, IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } namespace { // pblendvb is a correct implementation for all the various relaxed lane select, // see https://github.com/WebAssembly/relaxed-simd/issues/17. void VisitRelaxedLaneSelect(InstructionSelector* selector, Node* node) { X64OperandGenerator g(selector); // pblendvb copies src2 when mask is set, opposite from Wasm semantics. // node's inputs are: mask, lhs, rhs (determined in wasm-compiler.cc). if (selector->IsSupported(AVX)) { selector->Emit( kX64Pblendvb, g.DefineAsRegister(node), g.UseRegister(node->InputAt(2)), g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0))); } else { // SSE4.1 pblendvb requires xmm0 to hold the mask as an implicit operand. selector->Emit(kX64Pblendvb, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(2)), g.UseRegister(node->InputAt(1)), g.UseFixed(node->InputAt(0), xmm0)); } } } // namespace void InstructionSelector::VisitI8x16RelaxedLaneSelect(Node* node) { VisitRelaxedLaneSelect(this, node); } void InstructionSelector::VisitI16x8RelaxedLaneSelect(Node* node) { VisitRelaxedLaneSelect(this, node); } void InstructionSelector::VisitI32x4RelaxedLaneSelect(Node* node) { VisitRelaxedLaneSelect(this, node); } void InstructionSelector::VisitI64x2RelaxedLaneSelect(Node* node) { VisitRelaxedLaneSelect(this, node); } #else void InstructionSelector::VisitI8x16Swizzle(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitI8x16RelaxedLaneSelect(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitI16x8RelaxedLaneSelect(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitI32x4RelaxedLaneSelect(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitI64x2RelaxedLaneSelect(Node* node) { UNREACHABLE(); } #endif // V8_ENABLE_WEBASSEMBLY namespace { // Used for pmin/pmax and relaxed min/max. void VisitMinOrMax(InstructionSelector* selector, Node* node, ArchOpcode opcode, bool flip_inputs) { X64OperandGenerator g(selector); InstructionOperand dst = selector->IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); if (flip_inputs) { // Due to the way minps/minpd work, we want the dst to be same as the second // input: b = pmin(a, b) directly maps to minps b a. selector->Emit(opcode, dst, g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0))); } else { selector->Emit(opcode, dst, g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } } } // namespace void InstructionSelector::VisitF32x4Pmin(Node* node) { VisitMinOrMax(this, node, kX64Minps, true); } void InstructionSelector::VisitF32x4Pmax(Node* node) { VisitMinOrMax(this, node, kX64Maxps, true); } void InstructionSelector::VisitF64x2Pmin(Node* node) { VisitMinOrMax(this, node, kX64Minpd, true); } void InstructionSelector::VisitF64x2Pmax(Node* node) { VisitMinOrMax(this, node, kX64Maxpd, true); } void InstructionSelector::VisitF32x4RelaxedMin(Node* node) { VisitMinOrMax(this, node, kX64Minps, false); } void InstructionSelector::VisitF32x4RelaxedMax(Node* node) { VisitMinOrMax(this, node, kX64Maxps, false); } void InstructionSelector::VisitF64x2RelaxedMin(Node* node) { VisitMinOrMax(this, node, kX64Minpd, false); } void InstructionSelector::VisitF64x2RelaxedMax(Node* node) { VisitMinOrMax(this, node, kX64Maxpd, false); } void InstructionSelector::VisitI32x4ExtAddPairwiseI16x8S(Node* node) { X64OperandGenerator g(this); InstructionOperand dst = CpuFeatures::IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); Emit(kX64I32x4ExtAddPairwiseI16x8S, dst, g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitI32x4ExtAddPairwiseI16x8U(Node* node) { X64OperandGenerator g(this); InstructionOperand dst = CpuFeatures::IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); Emit(kX64I32x4ExtAddPairwiseI16x8U, dst, g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitI16x8ExtAddPairwiseI8x16S(Node* node) { X64OperandGenerator g(this); // Codegen depends on dst != src. Emit(kX64I16x8ExtAddPairwiseI8x16S, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0))); } void InstructionSelector::VisitI16x8ExtAddPairwiseI8x16U(Node* node) { X64OperandGenerator g(this); InstructionOperand dst = CpuFeatures::IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); Emit(kX64I16x8ExtAddPairwiseI8x16U, dst, g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitI8x16Popcnt(Node* node) { X64OperandGenerator g(this); InstructionOperand temps[] = {g.TempSimd128Register()}; Emit(kX64I8x16Popcnt, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0)), arraysize(temps), temps); } void InstructionSelector::VisitF64x2ConvertLowI32x4U(Node* node) { X64OperandGenerator g(this); InstructionOperand dst = IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); Emit(kX64F64x2ConvertLowI32x4U, dst, g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitI32x4TruncSatF64x2SZero(Node* node) { X64OperandGenerator g(this); if (CpuFeatures::IsSupported(AVX)) { // Requires dst != src. Emit(kX64I32x4TruncSatF64x2SZero, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0))); } else { Emit(kX64I32x4TruncSatF64x2SZero, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); } } void InstructionSelector::VisitI32x4TruncSatF64x2UZero(Node* node) { X64OperandGenerator g(this); InstructionOperand dst = CpuFeatures::IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); Emit(kX64I32x4TruncSatF64x2UZero, dst, g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitI32x4RelaxedTruncF64x2SZero(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kX64Cvttpd2dq); } void InstructionSelector::VisitI32x4RelaxedTruncF64x2UZero(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kX64I32x4TruncF64x2UZero); } void InstructionSelector::VisitI32x4RelaxedTruncF32x4S(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kX64Cvttps2dq); } void InstructionSelector::VisitI32x4RelaxedTruncF32x4U(Node* node) { VisitFloatUnop(this, node, node->InputAt(0), kX64I32x4TruncF32x4U); } void InstructionSelector::VisitI64x2GtS(Node* node) { X64OperandGenerator g(this); if (CpuFeatures::IsSupported(AVX)) { Emit(kX64I64x2GtS, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } else if (CpuFeatures::IsSupported(SSE4_2)) { Emit(kX64I64x2GtS, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } else { Emit(kX64I64x2GtS, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1))); } } void InstructionSelector::VisitI64x2GeS(Node* node) { X64OperandGenerator g(this); if (CpuFeatures::IsSupported(AVX)) { Emit(kX64I64x2GeS, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } else if (CpuFeatures::IsSupported(SSE4_2)) { Emit(kX64I64x2GeS, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } else { Emit(kX64I64x2GeS, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1))); } } void InstructionSelector::VisitI64x2Abs(Node* node) { X64OperandGenerator g(this); if (CpuFeatures::IsSupported(AVX)) { Emit(kX64I64x2Abs, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0))); } else { Emit(kX64I64x2Abs, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); } } void InstructionSelector::VisitF64x2PromoteLowF32x4(Node* node) { X64OperandGenerator g(this); InstructionCode code = kX64F64x2PromoteLowF32x4; Node* input = node->InputAt(0); LoadTransformMatcher m(input); if (m.Is(LoadTransformation::kS128Load64Zero) && CanCover(node, input)) { if (m.ResolvedValue().kind == MemoryAccessKind::kProtected) { code |= AccessModeField::encode(kMemoryAccessProtected); } // LoadTransforms cannot be eliminated, so they are visited even if // unused. Mark it as defined so that we don't visit it. MarkAsDefined(input); VisitLoad(node, input, code); return; } VisitRR(this, node, code); } void InstructionSelector::AddOutputToSelectContinuation(OperandGenerator* g, int first_input_index, Node* node) { continuation_outputs_.push_back( g->DefineSameAsInput(node, first_input_index)); } // static MachineOperatorBuilder::Flags InstructionSelector::SupportedMachineOperatorFlags() { MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kWord32ShiftIsSafe | MachineOperatorBuilder::kWord32Ctz | MachineOperatorBuilder::kWord64Ctz | MachineOperatorBuilder::kWord32Rol | MachineOperatorBuilder::kWord64Rol | MachineOperatorBuilder::kWord32Select | MachineOperatorBuilder::kWord64Select; if (CpuFeatures::IsSupported(POPCNT)) { flags |= MachineOperatorBuilder::kWord32Popcnt | MachineOperatorBuilder::kWord64Popcnt; } if (CpuFeatures::IsSupported(SSE4_1)) { flags |= MachineOperatorBuilder::kFloat32RoundDown | MachineOperatorBuilder::kFloat64RoundDown | MachineOperatorBuilder::kFloat32RoundUp | MachineOperatorBuilder::kFloat64RoundUp | MachineOperatorBuilder::kFloat32RoundTruncate | MachineOperatorBuilder::kFloat64RoundTruncate | MachineOperatorBuilder::kFloat32RoundTiesEven | MachineOperatorBuilder::kFloat64RoundTiesEven; } return flags; } // static MachineOperatorBuilder::AlignmentRequirements InstructionSelector::AlignmentRequirements() { return MachineOperatorBuilder::AlignmentRequirements:: FullUnalignedAccessSupport(); } } // namespace compiler } // namespace internal } // namespace v8