// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_EXECUTION_ISOLATE_H_ #define V8_EXECUTION_ISOLATE_H_ #include #include #include #include #include #include #include #include "include/v8-context.h" #include "include/v8-internal.h" #include "include/v8-isolate.h" #include "include/v8-metrics.h" #include "include/v8-snapshot.h" #include "src/base/macros.h" #include "src/base/platform/mutex.h" #include "src/builtins/builtins.h" #include "src/common/globals.h" #include "src/debug/interface-types.h" #include "src/execution/execution.h" #include "src/execution/futex-emulation.h" #include "src/execution/isolate-data.h" #include "src/execution/messages.h" #include "src/execution/shared-mutex-guard-if-off-thread.h" #include "src/execution/stack-guard.h" #include "src/handles/handles.h" #include "src/heap/factory.h" #include "src/heap/heap.h" #include "src/heap/read-only-heap.h" #include "src/init/isolate-allocator.h" #include "src/objects/code.h" #include "src/objects/contexts.h" #include "src/objects/debug-objects.h" #include "src/objects/js-objects.h" #include "src/runtime/runtime.h" #include "src/sandbox/external-pointer-table.h" #include "src/sandbox/sandbox.h" #include "src/strings/unicode.h" #include "src/utils/allocation.h" #ifdef V8_INTL_SUPPORT #include "unicode/uversion.h" // Define U_ICU_NAMESPACE. namespace U_ICU_NAMESPACE { class UMemory; } // namespace U_ICU_NAMESPACE #endif // V8_INTL_SUPPORT #if USE_SIMULATOR #include "src/execution/encoded-c-signature.h" namespace v8 { namespace internal { class SimulatorData; } } // namespace v8 #endif namespace v8_inspector { class V8Inspector; } // namespace v8_inspector namespace v8 { class EmbedderState; namespace base { class RandomNumberGenerator; } // namespace base namespace bigint { class Processor; } namespace debug { class ConsoleDelegate; class AsyncEventDelegate; } // namespace debug namespace internal { namespace heap { class HeapTester; } // namespace heap namespace maglev { class MaglevConcurrentDispatcher; } // namespace maglev class AddressToIndexHashMap; class AstStringConstants; class Bootstrapper; class BuiltinsConstantsTableBuilder; class CancelableTaskManager; class CodeEventDispatcher; class CodeTracer; class CommonFrame; class CompilationCache; class CompilationStatistics; class Counters; class Debug; class Deoptimizer; class DescriptorLookupCache; class EmbeddedFileWriterInterface; class EternalHandles; class GlobalHandles; class GlobalSafepoint; class HandleScopeImplementer; class HeapObjectToIndexHashMap; class HeapProfiler; class InnerPointerToCodeCache; class LazyCompileDispatcher; class LocalIsolate; class Logger; class MaterializedObjectStore; class Microtask; class MicrotaskQueue; class OptimizingCompileDispatcher; class PersistentHandles; class PersistentHandlesList; class ReadOnlyArtifacts; class RegExpStack; class RootVisitor; class SetupIsolateDelegate; class Simulator; class SnapshotData; class StringTable; class StubCache; class ThreadManager; class ThreadState; class ThreadVisitor; // Defined in v8threads.h class TieringManager; class TracingCpuProfilerImpl; class UnicodeCache; struct ManagedPtrDestructor; template class VMState; namespace baseline { class BaselineBatchCompiler; } // namespace baseline namespace interpreter { class Interpreter; } // namespace interpreter namespace compiler { class NodeObserver; class PerIsolateCompilerCache; } // namespace compiler namespace win64_unwindinfo { class BuiltinUnwindInfo; } // namespace win64_unwindinfo namespace metrics { class Recorder; } // namespace metrics namespace wasm { class StackMemory; } #define RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate) \ do { \ Isolate* __isolate__ = (isolate); \ DCHECK(!__isolate__->has_pending_exception()); \ if (__isolate__->has_scheduled_exception()) { \ return __isolate__->PromoteScheduledException(); \ } \ } while (false) // Macros for MaybeHandle. #define RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, value) \ do { \ Isolate* __isolate__ = (isolate); \ DCHECK(!__isolate__->has_pending_exception()); \ if (__isolate__->has_scheduled_exception()) { \ __isolate__->PromoteScheduledException(); \ return value; \ } \ } while (false) #define RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, T) \ RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, MaybeHandle()) #define ASSIGN_RETURN_ON_SCHEDULED_EXCEPTION_VALUE(isolate, dst, call, value) \ do { \ Isolate* __isolate__ = (isolate); \ if (!(call).ToLocal(&dst)) { \ DCHECK(__isolate__->has_scheduled_exception()); \ __isolate__->PromoteScheduledException(); \ return value; \ } \ } while (false) #define RETURN_ON_SCHEDULED_EXCEPTION_VALUE(isolate, call, value) \ do { \ Isolate* __isolate__ = (isolate); \ if ((call).IsNothing()) { \ DCHECK(__isolate__->has_scheduled_exception()); \ __isolate__->PromoteScheduledException(); \ return value; \ } \ } while (false) /** * RETURN_RESULT_OR_FAILURE is used in functions with return type Object (such * as "RUNTIME_FUNCTION(...) {...}" or "BUILTIN(...) {...}" ) to return either * the contents of a MaybeHandle, or the "exception" sentinel value. * Example usage: * * RUNTIME_FUNCTION(Runtime_Func) { * ... * RETURN_RESULT_OR_FAILURE( * isolate, * FunctionWithReturnTypeMaybeHandleX(...)); * } * * If inside a function with return type MaybeHandle use RETURN_ON_EXCEPTION * instead. * If inside a function with return type Handle, or Maybe use * RETURN_ON_EXCEPTION_VALUE instead. */ #define RETURN_RESULT_OR_FAILURE(isolate, call) \ do { \ Handle __result__; \ Isolate* __isolate__ = (isolate); \ if (!(call).ToHandle(&__result__)) { \ DCHECK(__isolate__->has_pending_exception()); \ return ReadOnlyRoots(__isolate__).exception(); \ } \ DCHECK(!__isolate__->has_pending_exception()); \ return *__result__; \ } while (false) #define ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, value) \ do { \ if (!(call).ToHandle(&dst)) { \ DCHECK((isolate)->has_pending_exception()); \ return value; \ } \ } while (false) #define ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, dst, call) \ do { \ auto* __isolate__ = (isolate); \ ASSIGN_RETURN_ON_EXCEPTION_VALUE(__isolate__, dst, call, \ ReadOnlyRoots(__isolate__).exception()); \ } while (false) #define ASSIGN_RETURN_ON_EXCEPTION(isolate, dst, call, T) \ ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, MaybeHandle()) #define THROW_NEW_ERROR(isolate, call, T) \ do { \ auto* __isolate__ = (isolate); \ return __isolate__->template Throw(__isolate__->factory()->call); \ } while (false) #define THROW_NEW_ERROR_RETURN_FAILURE(isolate, call) \ do { \ auto* __isolate__ = (isolate); \ return __isolate__->Throw(*__isolate__->factory()->call); \ } while (false) #define THROW_NEW_ERROR_RETURN_VALUE(isolate, call, value) \ do { \ auto* __isolate__ = (isolate); \ __isolate__->Throw(*__isolate__->factory()->call); \ return value; \ } while (false) /** * RETURN_ON_EXCEPTION_VALUE conditionally returns the given value when the * given MaybeHandle is empty. It is typically used in functions with return * type Maybe or Handle. Example usage: * * Handle Func() { * ... * RETURN_ON_EXCEPTION_VALUE( * isolate, * FunctionWithReturnTypeMaybeHandleX(...), * Handle()); * // code to handle non exception * ... * } * * Maybe Func() { * .. * RETURN_ON_EXCEPTION_VALUE( * isolate, * FunctionWithReturnTypeMaybeHandleX(...), * Nothing); * // code to handle non exception * return Just(true); * } * * If inside a function with return type MaybeHandle, use RETURN_ON_EXCEPTION * instead. * If inside a function with return type Object, use * RETURN_FAILURE_ON_EXCEPTION instead. */ #define RETURN_ON_EXCEPTION_VALUE(isolate, call, value) \ do { \ if ((call).is_null()) { \ DCHECK((isolate)->has_pending_exception()); \ return value; \ } \ } while (false) /** * RETURN_FAILURE_ON_EXCEPTION conditionally returns the "exception" sentinel if * the given MaybeHandle is empty; so it can only be used in functions with * return type Object, such as RUNTIME_FUNCTION(...) {...} or BUILTIN(...) * {...}. Example usage: * * RUNTIME_FUNCTION(Runtime_Func) { * ... * RETURN_FAILURE_ON_EXCEPTION( * isolate, * FunctionWithReturnTypeMaybeHandleX(...)); * // code to handle non exception * ... * } * * If inside a function with return type MaybeHandle, use RETURN_ON_EXCEPTION * instead. * If inside a function with return type Maybe or Handle, use * RETURN_ON_EXCEPTION_VALUE instead. */ #define RETURN_FAILURE_ON_EXCEPTION(isolate, call) \ do { \ Isolate* __isolate__ = (isolate); \ RETURN_ON_EXCEPTION_VALUE(__isolate__, call, \ ReadOnlyRoots(__isolate__).exception()); \ } while (false); /** * RETURN_ON_EXCEPTION conditionally returns an empty MaybeHandle if the * given MaybeHandle is empty. Use it to return immediately from a function with * return type MaybeHandle when an exception was thrown. Example usage: * * MaybeHandle Func() { * ... * RETURN_ON_EXCEPTION( * isolate, * FunctionWithReturnTypeMaybeHandleY(...), * X); * // code to handle non exception * ... * } * * If inside a function with return type Object, use * RETURN_FAILURE_ON_EXCEPTION instead. * If inside a function with return type * Maybe or Handle, use RETURN_ON_EXCEPTION_VALUE instead. */ #define RETURN_ON_EXCEPTION(isolate, call, T) \ RETURN_ON_EXCEPTION_VALUE(isolate, call, MaybeHandle()) #define RETURN_FAILURE(isolate, should_throw, call) \ do { \ if ((should_throw) == kDontThrow) { \ return Just(false); \ } else { \ isolate->Throw(*isolate->factory()->call); \ return Nothing(); \ } \ } while (false) #define MAYBE_RETURN(call, value) \ do { \ if ((call).IsNothing()) return value; \ } while (false) #define MAYBE_RETURN_NULL(call) MAYBE_RETURN(call, MaybeHandle()) #define MAYBE_ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, value) \ do { \ if (!(call).To(&dst)) { \ DCHECK((isolate)->has_pending_exception()); \ return value; \ } \ } while (false) #define MAYBE_ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, dst, call) \ do { \ Isolate* __isolate__ = (isolate); \ if (!(call).To(&dst)) { \ DCHECK(__isolate__->has_pending_exception()); \ return ReadOnlyRoots(__isolate__).exception(); \ } \ } while (false) #define FOR_WITH_HANDLE_SCOPE(isolate, loop_var_type, init, loop_var, \ limit_check, increment, body) \ do { \ loop_var_type init; \ loop_var_type for_with_handle_limit = loop_var; \ Isolate* for_with_handle_isolate = isolate; \ while (limit_check) { \ for_with_handle_limit += 1024; \ HandleScope loop_scope(for_with_handle_isolate); \ for (; limit_check && loop_var < for_with_handle_limit; increment) { \ body \ } \ } \ } while (false) #define WHILE_WITH_HANDLE_SCOPE(isolate, limit_check, body) \ do { \ Isolate* for_with_handle_isolate = isolate; \ while (limit_check) { \ HandleScope loop_scope(for_with_handle_isolate); \ for (int for_with_handle_it = 0; \ limit_check && for_with_handle_it < 1024; ++for_with_handle_it) { \ body \ } \ } \ } while (false) #define FIELD_ACCESSOR(type, name) \ inline void set_##name(type v) { name##_ = v; } \ inline type name() const { return name##_; } // Controls for manual embedded blob lifecycle management, used by tests and // mksnapshot. V8_EXPORT_PRIVATE void DisableEmbeddedBlobRefcounting(); V8_EXPORT_PRIVATE void FreeCurrentEmbeddedBlob(); #ifdef DEBUG #define ISOLATE_INIT_DEBUG_ARRAY_LIST(V) \ V(CommentStatistic, paged_space_comments_statistics, \ CommentStatistic::kMaxComments + 1) \ V(int, code_kind_statistics, kCodeKindCount) #else #define ISOLATE_INIT_DEBUG_ARRAY_LIST(V) #endif #define ISOLATE_INIT_ARRAY_LIST(V) \ /* SerializerDeserializer state. */ \ V(int32_t, jsregexp_static_offsets_vector, kJSRegexpStaticOffsetsVectorSize) \ V(int, bad_char_shift_table, kUC16AlphabetSize) \ V(int, good_suffix_shift_table, (kBMMaxShift + 1)) \ V(int, suffix_table, (kBMMaxShift + 1)) \ ISOLATE_INIT_DEBUG_ARRAY_LIST(V) using DebugObjectCache = std::vector>; #define ISOLATE_INIT_LIST(V) \ /* Assembler state. */ \ V(FatalErrorCallback, exception_behavior, nullptr) \ V(OOMErrorCallback, oom_behavior, nullptr) \ V(LogEventCallback, event_logger, nullptr) \ V(AllowCodeGenerationFromStringsCallback, allow_code_gen_callback, nullptr) \ V(ModifyCodeGenerationFromStringsCallback, modify_code_gen_callback, \ nullptr) \ V(ModifyCodeGenerationFromStringsCallback2, modify_code_gen_callback2, \ nullptr) \ V(AllowWasmCodeGenerationCallback, allow_wasm_code_gen_callback, nullptr) \ V(ExtensionCallback, wasm_module_callback, &NoExtension) \ V(ExtensionCallback, wasm_instance_callback, &NoExtension) \ V(SharedArrayBufferConstructorEnabledCallback, \ sharedarraybuffer_constructor_enabled_callback, nullptr) \ V(WasmStreamingCallback, wasm_streaming_callback, nullptr) \ V(WasmLoadSourceMapCallback, wasm_load_source_map_callback, nullptr) \ V(WasmSimdEnabledCallback, wasm_simd_enabled_callback, nullptr) \ V(WasmExceptionsEnabledCallback, wasm_exceptions_enabled_callback, nullptr) \ V(WasmDynamicTieringEnabledCallback, wasm_dynamic_tiering_enabled_callback, \ nullptr) \ /* State for Relocatable. */ \ V(Relocatable*, relocatable_top, nullptr) \ V(DebugObjectCache*, string_stream_debug_object_cache, nullptr) \ V(Object, string_stream_current_security_token, Object()) \ V(const intptr_t*, api_external_references, nullptr) \ V(AddressToIndexHashMap*, external_reference_map, nullptr) \ V(HeapObjectToIndexHashMap*, root_index_map, nullptr) \ V(MicrotaskQueue*, default_microtask_queue, nullptr) \ V(CompilationStatistics*, turbo_statistics, nullptr) \ V(CodeTracer*, code_tracer, nullptr) \ V(PromiseRejectCallback, promise_reject_callback, nullptr) \ V(const v8::StartupData*, snapshot_blob, nullptr) \ V(int, code_and_metadata_size, 0) \ V(int, bytecode_and_metadata_size, 0) \ V(int, external_script_source_size, 0) \ /* Number of CPU profilers running on the isolate. */ \ V(size_t, num_cpu_profilers, 0) \ /* true if a trace is being formatted through Error.prepareStackTrace. */ \ V(bool, formatting_stack_trace, false) \ /* Perform side effect checks on function call and API callbacks. */ \ V(DebugInfo::ExecutionMode, debug_execution_mode, DebugInfo::kBreakpoints) \ V(debug::TypeProfileMode, type_profile_mode, debug::TypeProfileMode::kNone) \ V(bool, disable_bytecode_flushing, false) \ V(int, last_console_context_id, 0) \ V(v8_inspector::V8Inspector*, inspector, nullptr) \ V(bool, next_v8_call_is_safe_for_termination, false) \ V(bool, only_terminate_in_safe_scope, false) \ V(int, embedder_wrapper_type_index, -1) \ V(int, embedder_wrapper_object_index, -1) \ V(compiler::NodeObserver*, node_observer, nullptr) \ /* Used in combination with --script-run-delay-once */ \ V(bool, did_run_script_delay, false) \ V(bool, javascript_execution_assert, true) \ V(bool, javascript_execution_throws, true) \ V(bool, javascript_execution_dump, true) \ V(bool, deoptimization_assert, true) \ V(bool, compilation_assert, true) \ V(bool, no_exception_assert, true) #define THREAD_LOCAL_TOP_ACCESSOR(type, name) \ inline void set_##name(type v) { thread_local_top()->name##_ = v; } \ inline type name() const { return thread_local_top()->name##_; } #define THREAD_LOCAL_TOP_ADDRESS(type, name) \ type* name##_address() { return &thread_local_top()->name##_; } // HiddenFactory exists so Isolate can privately inherit from it without making // Factory's members available to Isolate directly. class V8_EXPORT_PRIVATE HiddenFactory : private Factory {}; class V8_EXPORT_PRIVATE Isolate final : private HiddenFactory { // These forward declarations are required to make the friend declarations in // PerIsolateThreadData work on some older versions of gcc. class ThreadDataTable; class EntryStackItem; public: Isolate(const Isolate&) = delete; Isolate& operator=(const Isolate&) = delete; using HandleScopeType = HandleScope; void* operator new(size_t) = delete; void operator delete(void*) = delete; // A thread has a PerIsolateThreadData instance for each isolate that it has // entered. That instance is allocated when the isolate is initially entered // and reused on subsequent entries. class PerIsolateThreadData { public: PerIsolateThreadData(Isolate* isolate, ThreadId thread_id) : isolate_(isolate), thread_id_(thread_id), stack_limit_(0), thread_state_(nullptr) #if USE_SIMULATOR , simulator_(nullptr) #endif { } ~PerIsolateThreadData(); PerIsolateThreadData(const PerIsolateThreadData&) = delete; PerIsolateThreadData& operator=(const PerIsolateThreadData&) = delete; Isolate* isolate() const { return isolate_; } ThreadId thread_id() const { return thread_id_; } FIELD_ACCESSOR(uintptr_t, stack_limit) FIELD_ACCESSOR(ThreadState*, thread_state) #if USE_SIMULATOR FIELD_ACCESSOR(Simulator*, simulator) #endif bool Matches(Isolate* isolate, ThreadId thread_id) const { return isolate_ == isolate && thread_id_ == thread_id; } private: Isolate* isolate_; ThreadId thread_id_; uintptr_t stack_limit_; ThreadState* thread_state_; #if USE_SIMULATOR Simulator* simulator_; #endif friend class Isolate; friend class ThreadDataTable; friend class EntryStackItem; }; static void InitializeOncePerProcess(); static void DisposeOncePerProcess(); // Creates Isolate object. Must be used instead of constructing Isolate with // new operator. static Isolate* New(); // Creates a new shared Isolate object. static Isolate* NewShared(const v8::Isolate::CreateParams& params); // Deletes Isolate object. Must be used instead of delete operator. // Destroys the non-default isolates. // Sets default isolate into "has_been_disposed" state rather then destroying, // for legacy API reasons. static void Delete(Isolate* isolate); void SetUpFromReadOnlyArtifacts(std::shared_ptr artifacts, ReadOnlyHeap* ro_heap); void set_read_only_heap(ReadOnlyHeap* ro_heap) { read_only_heap_ = ro_heap; } // Page allocator that must be used for allocating V8 heap pages. v8::PageAllocator* page_allocator() const; // Returns the PerIsolateThreadData for the current thread (or nullptr if one // is not currently set). static PerIsolateThreadData* CurrentPerIsolateThreadData() { return reinterpret_cast( base::Thread::GetThreadLocal(per_isolate_thread_data_key_)); } // Returns the isolate inside which the current thread is running or nullptr. V8_INLINE static Isolate* TryGetCurrent() { DCHECK_EQ(true, isolate_key_created_.load(std::memory_order_relaxed)); return reinterpret_cast( base::Thread::GetExistingThreadLocal(isolate_key_)); } // Returns the isolate inside which the current thread is running. V8_INLINE static Isolate* Current() { Isolate* isolate = TryGetCurrent(); DCHECK_NOT_NULL(isolate); return isolate; } bool IsCurrent() const { return this == TryGetCurrent(); } // Usually called by Init(), but can be called early e.g. to allow // testing components that require logging but not the whole // isolate. // // Safe to call more than once. void InitializeLoggingAndCounters(); bool InitializeCounters(); // Returns false if already initialized. bool InitWithoutSnapshot(); bool InitWithSnapshot(SnapshotData* startup_snapshot_data, SnapshotData* read_only_snapshot_data, SnapshotData* shared_heap_snapshot_data, bool can_rehash); // True if at least one thread Enter'ed this isolate. bool IsInUse() { return entry_stack_ != nullptr; } void ReleaseSharedPtrs(); void ClearSerializerData(); bool LogObjectRelocation(); // Initializes the current thread to run this Isolate. // Not thread-safe. Multiple threads should not Enter/Exit the same isolate // at the same time, this should be prevented using external locking. void Enter(); // Exits the current thread. The previosuly entered Isolate is restored // for the thread. // Not thread-safe. Multiple threads should not Enter/Exit the same isolate // at the same time, this should be prevented using external locking. void Exit(); // Find the PerThread for this particular (isolate, thread) combination. // If one does not yet exist, allocate a new one. PerIsolateThreadData* FindOrAllocatePerThreadDataForThisThread(); // Find the PerThread for this particular (isolate, thread) combination // If one does not yet exist, return null. PerIsolateThreadData* FindPerThreadDataForThisThread(); // Find the PerThread for given (isolate, thread) combination // If one does not yet exist, return null. PerIsolateThreadData* FindPerThreadDataForThread(ThreadId thread_id); // Discard the PerThread for this particular (isolate, thread) combination // If one does not yet exist, no-op. void DiscardPerThreadDataForThisThread(); // Mutex for serializing access to break control structures. base::RecursiveMutex* break_access() { return &break_access_; } // Shared mutex for allowing thread-safe concurrent reads of FeedbackVectors. base::SharedMutex* feedback_vector_access() { return &feedback_vector_access_; } // Shared mutex for allowing thread-safe concurrent reads of // InternalizedStrings. base::SharedMutex* internalized_string_access() { return &internalized_string_access_; } // Shared mutex for allowing thread-safe concurrent reads of TransitionArrays // of kind kFullTransitionArray. base::SharedMutex* full_transition_array_access() { return &full_transition_array_access_; } // Shared mutex for allowing thread-safe concurrent reads of // SharedFunctionInfos. base::SharedMutex* shared_function_info_access() { return &shared_function_info_access_; } // Protects (most) map update operations, see also MapUpdater. base::SharedMutex* map_updater_access() { return &map_updater_access_; } // Protects JSObject boilerplate migrations (i.e. calls to MigrateInstance on // boilerplate objects; elements kind transitions are *not* protected). // Note this lock interacts with `map_updater_access` as follows // // - boilerplate migrations may trigger map updates. // - if so, `boilerplate_migration_access` is locked before // `map_updater_access`. // - backgrounds threads must use the same lock order to avoid deadlocks. base::SharedMutex* boilerplate_migration_access() { return &boilerplate_migration_access_; } // The isolate's string table. StringTable* string_table() const { return string_table_.get(); } Address get_address_from_id(IsolateAddressId id); // Access to top context (where the current function object was created). Context context() const { return thread_local_top()->context_; } inline void set_context(Context context); Context* context_address() { return &thread_local_top()->context_; } // Access to current thread id. inline void set_thread_id(ThreadId id) { thread_local_top()->thread_id_.store(id, std::memory_order_relaxed); } inline ThreadId thread_id() const { return thread_local_top()->thread_id_.load(std::memory_order_relaxed); } void InstallConditionalFeatures(Handle context); bool IsSharedArrayBufferConstructorEnabled(Handle context); bool IsWasmSimdEnabled(Handle context); bool AreWasmExceptionsEnabled(Handle context); bool IsWasmDynamicTieringEnabled(); THREAD_LOCAL_TOP_ADDRESS(Context, pending_handler_context) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_entrypoint) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_constant_pool) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_fp) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_sp) THREAD_LOCAL_TOP_ADDRESS(uintptr_t, num_frames_above_pending_handler) THREAD_LOCAL_TOP_ACCESSOR(bool, external_caught_exception) v8::TryCatch* try_catch_handler() { return thread_local_top()->try_catch_handler_; } THREAD_LOCAL_TOP_ADDRESS(bool, external_caught_exception) // Interface to pending exception. THREAD_LOCAL_TOP_ADDRESS(Object, pending_exception) inline Object pending_exception(); inline void set_pending_exception(Object exception_obj); inline void clear_pending_exception(); inline bool has_pending_exception(); THREAD_LOCAL_TOP_ADDRESS(Object, pending_message) inline void clear_pending_message(); inline Object pending_message(); inline bool has_pending_message(); inline void set_pending_message(Object message_obj); THREAD_LOCAL_TOP_ADDRESS(Object, scheduled_exception) inline Object scheduled_exception(); inline bool has_scheduled_exception(); inline void clear_scheduled_exception(); inline void set_scheduled_exception(Object exception); enum class ExceptionHandlerType { kJavaScriptHandler, kExternalTryCatch, kNone }; ExceptionHandlerType TopExceptionHandlerType(Object exception); inline bool is_catchable_by_javascript(Object exception); inline bool is_catchable_by_wasm(Object exception); // JS execution stack (see frames.h). static Address c_entry_fp(ThreadLocalTop* thread) { return thread->c_entry_fp_; } static Address handler(ThreadLocalTop* thread) { return thread->handler_; } Address c_function() { return thread_local_top()->c_function_; } inline Address* c_entry_fp_address() { return &thread_local_top()->c_entry_fp_; } static uint32_t c_entry_fp_offset() { return static_cast( OFFSET_OF(Isolate, thread_local_top()->c_entry_fp_) - isolate_root_bias()); } inline Address* handler_address() { return &thread_local_top()->handler_; } inline Address* c_function_address() { return &thread_local_top()->c_function_; } #if defined(DEBUG) || defined(VERIFY_HEAP) // Count the number of active deserializers, so that the heap verifier knows // whether there is currently an active deserialization happening. // // This is needed as the verifier currently doesn't support verifying objects // which are partially deserialized. // // TODO(leszeks): Make the verifier a bit more deserialization compatible. void RegisterDeserializerStarted() { ++num_active_deserializers_; } void RegisterDeserializerFinished() { CHECK_GE(--num_active_deserializers_, 0); } bool has_active_deserializer() const { return num_active_deserializers_.load(std::memory_order_acquire) > 0; } #else void RegisterDeserializerStarted() {} void RegisterDeserializerFinished() {} bool has_active_deserializer() const { UNREACHABLE(); } #endif // Bottom JS entry. Address js_entry_sp() { return thread_local_top()->js_entry_sp_; } inline Address* js_entry_sp_address() { return &thread_local_top()->js_entry_sp_; } std::vector* GetCodePages() const; void SetCodePages(std::vector* new_code_pages); // Returns the global object of the current context. It could be // a builtin object, or a JS global object. inline Handle global_object(); // Returns the global proxy object of the current context. inline Handle global_proxy(); static int ArchiveSpacePerThread() { return sizeof(ThreadLocalTop); } void FreeThreadResources() { thread_local_top()->Free(); } // This method is called by the api after operations that may throw // exceptions. If an exception was thrown and not handled by an external // handler the exception is scheduled to be rethrown when we return to running // JavaScript code. If an exception is scheduled true is returned. bool OptionalRescheduleException(bool clear_exception); // Push and pop a promise and the current try-catch handler. void PushPromise(Handle promise); void PopPromise(); bool IsPromiseStackEmpty() const; // Return the relevant Promise that a throw/rejection pertains to, based // on the contents of the Promise stack Handle GetPromiseOnStackOnThrow(); // Heuristically guess whether a Promise is handled by user catch handler bool PromiseHasUserDefinedRejectHandler(Handle promise); class V8_NODISCARD ExceptionScope { public: // Scope currently can only be used for regular exceptions, // not termination exception. inline explicit ExceptionScope(Isolate* isolate); inline ~ExceptionScope(); private: Isolate* isolate_; Handle pending_exception_; }; void SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options); bool get_capture_stack_trace_for_uncaught_exceptions() const; void SetAbortOnUncaughtExceptionCallback( v8::Isolate::AbortOnUncaughtExceptionCallback callback); enum PrintStackMode { kPrintStackConcise, kPrintStackVerbose }; void PrintCurrentStackTrace(std::ostream& out); void PrintStack(StringStream* accumulator, PrintStackMode mode = kPrintStackVerbose); void PrintStack(FILE* out, PrintStackMode mode = kPrintStackVerbose); Handle StackTraceString(); // Stores a stack trace in a stack-allocated temporary buffer which will // end up in the minidump for debugging purposes. V8_NOINLINE void PushStackTraceAndDie(void* ptr1 = nullptr, void* ptr2 = nullptr, void* ptr3 = nullptr, void* ptr4 = nullptr); // Similar to the above but without collecting the stack trace. V8_NOINLINE void PushParamsAndDie(void* ptr1 = nullptr, void* ptr2 = nullptr, void* ptr3 = nullptr, void* ptr4 = nullptr, void* ptr5 = nullptr, void* ptr6 = nullptr); Handle CaptureDetailedStackTrace( int limit, StackTrace::StackTraceOptions options); MaybeHandle CaptureAndSetErrorStack(Handle error_object, FrameSkipMode mode, Handle caller); Handle GetDetailedStackTrace(Handle error_object); Handle GetSimpleStackTrace(Handle error_object); // Walks the JS stack to find the first frame with a script name or // source URL. The inspected frames are the same as for the detailed stack // trace. Handle CurrentScriptNameOrSourceURL(); Address GetAbstractPC(int* line, int* column); // Returns if the given context may access the given global object. If // the result is false, the pending exception is guaranteed to be // set. bool MayAccess(Handle accessing_context, Handle receiver); void SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback); void ReportFailedAccessCheck(Handle receiver); // Exception throwing support. The caller should use the result // of Throw() as its return value. Object Throw(Object exception) { return ThrowInternal(exception, nullptr); } Object ThrowAt(Handle exception, MessageLocation* location); Object ThrowIllegalOperation(); template V8_WARN_UNUSED_RESULT MaybeHandle Throw(Handle exception) { Throw(*exception); return MaybeHandle(); } template V8_WARN_UNUSED_RESULT MaybeHandle ThrowAt(Handle exception, MessageLocation* location) { ThrowAt(exception, location); return MaybeHandle(); } void FatalProcessOutOfHeapMemory(const char* location) { heap()->FatalProcessOutOfMemory(location); } void set_console_delegate(debug::ConsoleDelegate* delegate) { console_delegate_ = delegate; } debug::ConsoleDelegate* console_delegate() { return console_delegate_; } void set_async_event_delegate(debug::AsyncEventDelegate* delegate) { async_event_delegate_ = delegate; PromiseHookStateUpdated(); } // Async function and promise instrumentation support. void OnAsyncFunctionSuspended(Handle promise, Handle parent); void OnPromiseThen(Handle promise); void OnPromiseBefore(Handle promise); void OnPromiseAfter(Handle promise); void OnTerminationDuringRunMicrotasks(); // Re-throw an exception. This involves no error reporting since error // reporting was handled when the exception was thrown originally. // The first overload doesn't set the corresponding pending message, which // has to be set separately or be guaranteed to not have changed. Object ReThrow(Object exception); Object ReThrow(Object exception, Object message); // Find the correct handler for the current pending exception. This also // clears and returns the current pending exception. Object UnwindAndFindHandler(); // Tries to predict whether an exception will be caught. Note that this can // only produce an estimate, because it is undecidable whether a finally // clause will consume or re-throw an exception. enum CatchType { NOT_CAUGHT, CAUGHT_BY_JAVASCRIPT, CAUGHT_BY_EXTERNAL, CAUGHT_BY_PROMISE, CAUGHT_BY_ASYNC_AWAIT }; CatchType PredictExceptionCatcher(); void ScheduleThrow(Object exception); // Re-set pending message, script and positions reported to the TryCatch // back to the TLS for re-use when rethrowing. void RestorePendingMessageFromTryCatch(v8::TryCatch* handler); // Un-schedule an exception that was caught by a TryCatch handler. void CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler); void ReportPendingMessages(); // Promote a scheduled exception to pending. Asserts has_scheduled_exception. Object PromoteScheduledException(); // Attempts to compute the current source location, storing the // result in the target out parameter. The source location is attached to a // Message object as the location which should be shown to the user. It's // typically the top-most meaningful location on the stack. bool ComputeLocation(MessageLocation* target); bool ComputeLocationFromException(MessageLocation* target, Handle exception); bool ComputeLocationFromSimpleStackTrace(MessageLocation* target, Handle exception); bool ComputeLocationFromDetailedStackTrace(MessageLocation* target, Handle exception); Handle CreateMessage(Handle exception, MessageLocation* location); Handle CreateMessageOrAbort(Handle exception, MessageLocation* location); // Similar to Isolate::CreateMessage but DOESN'T inspect the JS stack and // only looks at the "detailed stack trace" as the "simple stack trace" might // have already been stringified. Handle CreateMessageFromException(Handle exception); // Out of resource exception helpers. Object StackOverflow(); Object TerminateExecution(); void CancelTerminateExecution(); void RequestInterrupt(InterruptCallback callback, void* data); void InvokeApiInterruptCallbacks(); // Administration void Iterate(RootVisitor* v); void Iterate(RootVisitor* v, ThreadLocalTop* t); char* Iterate(RootVisitor* v, char* t); void IterateThread(ThreadVisitor* v, char* t); // Returns the current native context. inline Handle native_context(); inline NativeContext raw_native_context(); Handle GetIncumbentContext(); void RegisterTryCatchHandler(v8::TryCatch* that); void UnregisterTryCatchHandler(v8::TryCatch* that); char* ArchiveThread(char* to); char* RestoreThread(char* from); static const int kUC16AlphabetSize = 256; // See StringSearchBase. static const int kBMMaxShift = 250; // See StringSearchBase. // Accessors. #define GLOBAL_ACCESSOR(type, name, initialvalue) \ inline type name() const { \ DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ return name##_; \ } \ inline void set_##name(type value) { \ DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ name##_ = value; \ } ISOLATE_INIT_LIST(GLOBAL_ACCESSOR) #undef GLOBAL_ACCESSOR void SetDetailedSourcePositionsForProfiling(bool value) { if (value) { CollectSourcePositionsForAllBytecodeArrays(); } detailed_source_positions_for_profiling_ = value; } bool detailed_source_positions_for_profiling() const { return detailed_source_positions_for_profiling_; } #define GLOBAL_ARRAY_ACCESSOR(type, name, length) \ inline type* name() { \ DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ return &(name##_)[0]; \ } ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_ACCESSOR) #undef GLOBAL_ARRAY_ACCESSOR #define NATIVE_CONTEXT_FIELD_ACCESSOR(index, type, name) \ inline Handle name(); \ inline bool is_##name(type value); NATIVE_CONTEXT_FIELDS(NATIVE_CONTEXT_FIELD_ACCESSOR) #undef NATIVE_CONTEXT_FIELD_ACCESSOR Bootstrapper* bootstrapper() { return bootstrapper_; } // Use for updating counters on a foreground thread. Counters* counters() { return async_counters().get(); } // Use for updating counters on a background thread. const std::shared_ptr& async_counters() { // Make sure InitializeCounters() has been called. DCHECK_NOT_NULL(async_counters_.get()); return async_counters_; } const std::shared_ptr& metrics_recorder() { return metrics_recorder_; } TieringManager* tiering_manager() { return tiering_manager_; } CompilationCache* compilation_cache() { return compilation_cache_; } Logger* logger() { // Call InitializeLoggingAndCounters() if logging is needed before // the isolate is fully initialized. DCHECK_NOT_NULL(logger_); return logger_; } StackGuard* stack_guard() { return isolate_data()->stack_guard(); } Heap* heap() { return &heap_; } const Heap* heap() const { return &heap_; } ReadOnlyHeap* read_only_heap() const { return read_only_heap_; } static Isolate* FromHeap(Heap* heap) { return reinterpret_cast(reinterpret_cast
(heap) - OFFSET_OF(Isolate, heap_)); } const IsolateData* isolate_data() const { return &isolate_data_; } IsolateData* isolate_data() { return &isolate_data_; } // When pointer compression is on, this is the base address of the pointer // compression cage, and the kPtrComprCageBaseRegister is set to this // value. When pointer compression is off, this is always kNullAddress. Address cage_base() const { DCHECK_IMPLIES(!COMPRESS_POINTERS_IN_ISOLATE_CAGE_BOOL && !COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL, isolate_data()->cage_base() == kNullAddress); return isolate_data()->cage_base(); } // When pointer compression and external code space are on, this is the base // address of the cage where the code space is allocated. Otherwise, it // defaults to cage_base(). Address code_cage_base() const { #ifdef V8_EXTERNAL_CODE_SPACE return code_cage_base_; #else return cage_base(); #endif // V8_EXTERNAL_CODE_SPACE } // When pointer compression is on, the PtrComprCage used by this // Isolate. Otherwise nullptr. VirtualMemoryCage* GetPtrComprCage() { return isolate_allocator_->GetPtrComprCage(); } const VirtualMemoryCage* GetPtrComprCage() const { return isolate_allocator_->GetPtrComprCage(); } VirtualMemoryCage* GetPtrComprCodeCageForTesting(); // Generated code can embed this address to get access to the isolate-specific // data (for example, roots, external references, builtins, etc.). // The kRootRegister is set to this value. Address isolate_root() const { return isolate_data()->isolate_root(); } static size_t isolate_root_bias() { return OFFSET_OF(Isolate, isolate_data_) + IsolateData::kIsolateRootBias; } static Isolate* FromRootAddress(Address isolate_root) { return reinterpret_cast(isolate_root - isolate_root_bias()); } RootsTable& roots_table() { return isolate_data()->roots(); } const RootsTable& roots_table() const { return isolate_data()->roots(); } // A sub-region of the Isolate object that has "predictable" layout which // depends only on the pointer size and therefore it's guaranteed that there // will be no compatibility issues because of different compilers used for // snapshot generator and actual V8 code. // Thus, kRootRegister may be used to address any location that falls into // this region. // See IsolateData::AssertPredictableLayout() for details. base::AddressRegion root_register_addressable_region() const { return base::AddressRegion(reinterpret_cast
(&isolate_data_), sizeof(IsolateData)); } Object root(RootIndex index) const { return Object(roots_table()[index]); } Handle root_handle(RootIndex index) { return Handle(&roots_table()[index]); } ExternalReferenceTable* external_reference_table() { DCHECK(isolate_data()->external_reference_table()->is_initialized()); return isolate_data()->external_reference_table(); } Address* builtin_entry_table() { return isolate_data_.builtin_entry_table(); } V8_INLINE Address* builtin_table() { return isolate_data_.builtin_table(); } V8_INLINE Address* builtin_tier0_table() { return isolate_data_.builtin_tier0_table(); } bool IsBuiltinTableHandleLocation(Address* handle_location); StubCache* load_stub_cache() const { return load_stub_cache_; } StubCache* store_stub_cache() const { return store_stub_cache_; } Deoptimizer* GetAndClearCurrentDeoptimizer() { Deoptimizer* result = current_deoptimizer_; CHECK_NOT_NULL(result); current_deoptimizer_ = nullptr; return result; } void set_current_deoptimizer(Deoptimizer* deoptimizer) { DCHECK_NULL(current_deoptimizer_); DCHECK_NOT_NULL(deoptimizer); current_deoptimizer_ = deoptimizer; } bool deoptimizer_lazy_throw() const { return deoptimizer_lazy_throw_; } void set_deoptimizer_lazy_throw(bool value) { deoptimizer_lazy_throw_ = value; } void InitializeThreadLocal(); ThreadLocalTop* thread_local_top() { return &isolate_data_.thread_local_top_; } ThreadLocalTop const* thread_local_top() const { return &isolate_data_.thread_local_top_; } static uint32_t thread_in_wasm_flag_address_offset() { // For WebAssembly trap handlers there is a flag in thread-local storage // which indicates that the executing thread executes WebAssembly code. To // access this flag directly from generated code, we store a pointer to the // flag in ThreadLocalTop in thread_in_wasm_flag_address_. This function // here returns the offset of that member from {isolate_root()}. return static_cast( OFFSET_OF(Isolate, thread_local_top()->thread_in_wasm_flag_address_) - isolate_root_bias()); } THREAD_LOCAL_TOP_ADDRESS(Address, thread_in_wasm_flag_address) MaterializedObjectStore* materialized_object_store() const { return materialized_object_store_; } DescriptorLookupCache* descriptor_lookup_cache() const { return descriptor_lookup_cache_; } V8_INLINE HandleScopeData* handle_scope_data() { return &handle_scope_data_; } HandleScopeImplementer* handle_scope_implementer() const { DCHECK(handle_scope_implementer_); return handle_scope_implementer_; } UnicodeCache* unicode_cache() const { return unicode_cache_; } InnerPointerToCodeCache* inner_pointer_to_code_cache() { return inner_pointer_to_code_cache_; } GlobalHandles* global_handles() const { return global_handles_; } EternalHandles* eternal_handles() const { return eternal_handles_; } ThreadManager* thread_manager() const { return thread_manager_; } bigint::Processor* bigint_processor() { return bigint_processor_; } #ifndef V8_INTL_SUPPORT unibrow::Mapping* jsregexp_uncanonicalize() { return &jsregexp_uncanonicalize_; } unibrow::Mapping* jsregexp_canonrange() { return &jsregexp_canonrange_; } unibrow::Mapping* regexp_macro_assembler_canonicalize() { return ®exp_macro_assembler_canonicalize_; } #endif // !V8_INTL_SUPPORT RuntimeState* runtime_state() { return &runtime_state_; } Builtins* builtins() { return &builtins_; } RegExpStack* regexp_stack() const { return regexp_stack_; } size_t total_regexp_code_generated() const { return total_regexp_code_generated_; } void IncreaseTotalRegexpCodeGenerated(Handle code); std::vector* regexp_indices() { return ®exp_indices_; } Debug* debug() const { return debug_; } void* is_profiling_address() { return &is_profiling_; } bool is_profiling() const { return is_profiling_.load(std::memory_order_relaxed); } void SetIsProfiling(bool enabled) { if (enabled) { CollectSourcePositionsForAllBytecodeArrays(); } is_profiling_.store(enabled, std::memory_order_relaxed); } CodeEventDispatcher* code_event_dispatcher() const { return code_event_dispatcher_.get(); } HeapProfiler* heap_profiler() const { return heap_profiler_; } #ifdef DEBUG static size_t non_disposed_isolates() { return non_disposed_isolates_; } #endif v8::internal::Factory* factory() { // Upcast to the privately inherited base-class using c-style casts to avoid // undefined behavior (as static_cast cannot cast across private bases). return (v8::internal::Factory*)this; } static const int kJSRegexpStaticOffsetsVectorSize = 128; THREAD_LOCAL_TOP_ACCESSOR(ExternalCallbackScope*, external_callback_scope) THREAD_LOCAL_TOP_ACCESSOR(StateTag, current_vm_state) THREAD_LOCAL_TOP_ACCESSOR(EmbedderState*, current_embedder_state) void SetData(uint32_t slot, void* data) { DCHECK_LT(slot, Internals::kNumIsolateDataSlots); isolate_data_.embedder_data_[slot] = data; } void* GetData(uint32_t slot) const { DCHECK_LT(slot, Internals::kNumIsolateDataSlots); return isolate_data_.embedder_data_[slot]; } bool serializer_enabled() const { return serializer_enabled_; } void enable_serializer() { serializer_enabled_ = true; } bool snapshot_available() const { return snapshot_blob_ != nullptr && snapshot_blob_->raw_size != 0; } bool IsDead() const { return has_fatal_error_; } void SignalFatalError() { has_fatal_error_ = true; } bool use_optimizer(); bool initialized_from_snapshot() { return initialized_from_snapshot_; } bool NeedsSourcePositionsForProfiling() const; bool NeedsDetailedOptimizedCodeLineInfo() const; bool is_best_effort_code_coverage() const { return code_coverage_mode() == debug::CoverageMode::kBestEffort; } bool is_precise_count_code_coverage() const { return code_coverage_mode() == debug::CoverageMode::kPreciseCount; } bool is_precise_binary_code_coverage() const { return code_coverage_mode() == debug::CoverageMode::kPreciseBinary; } bool is_block_count_code_coverage() const { return code_coverage_mode() == debug::CoverageMode::kBlockCount; } bool is_block_binary_code_coverage() const { return code_coverage_mode() == debug::CoverageMode::kBlockBinary; } bool is_block_code_coverage() const { return is_block_count_code_coverage() || is_block_binary_code_coverage(); } bool is_binary_code_coverage() const { return is_precise_binary_code_coverage() || is_block_binary_code_coverage(); } bool is_count_code_coverage() const { return is_precise_count_code_coverage() || is_block_count_code_coverage(); } bool is_collecting_type_profile() const { return type_profile_mode() == debug::TypeProfileMode::kCollect; } // Collect feedback vectors with data for code coverage or type profile. // Reset the list, when both code coverage and type profile are not // needed anymore. This keeps many feedback vectors alive, but code // coverage or type profile are used for debugging only and increase in // memory usage is expected. void SetFeedbackVectorsForProfilingTools(Object value); void MaybeInitializeVectorListFromHeap(); double time_millis_since_init() const { return heap_.MonotonicallyIncreasingTimeInMs() - time_millis_at_init_; } DateCache* date_cache() const { return date_cache_; } void set_date_cache(DateCache* date_cache); #ifdef V8_INTL_SUPPORT const std::string& DefaultLocale(); void ResetDefaultLocale(); void set_default_locale(const std::string& locale) { DCHECK_EQ(default_locale_.length(), 0); default_locale_ = locale; } enum class ICUObjectCacheType{ kDefaultCollator, kDefaultNumberFormat, kDefaultSimpleDateFormat, kDefaultSimpleDateFormatForTime, kDefaultSimpleDateFormatForDate}; static constexpr int kICUObjectCacheTypeCount = 5; icu::UMemory* get_cached_icu_object(ICUObjectCacheType cache_type, Handle locales); void set_icu_object_in_cache(ICUObjectCacheType cache_type, Handle locales, std::shared_ptr obj); void clear_cached_icu_object(ICUObjectCacheType cache_type); void clear_cached_icu_objects(); #endif // V8_INTL_SUPPORT enum class KnownPrototype { kNone, kObject, kArray, kString }; KnownPrototype IsArrayOrObjectOrStringPrototype(Object object); // On intent to set an element in object, make sure that appropriate // notifications occur if the set is on the elements of the array or // object prototype. Also ensure that changes to prototype chain between // Array and Object fire notifications. void UpdateNoElementsProtectorOnSetElement(Handle object); void UpdateNoElementsProtectorOnSetLength(Handle object) { UpdateNoElementsProtectorOnSetElement(object); } void UpdateNoElementsProtectorOnSetPrototype(Handle object) { UpdateNoElementsProtectorOnSetElement(object); } void UpdateNoElementsProtectorOnNormalizeElements(Handle object) { UpdateNoElementsProtectorOnSetElement(object); } // Returns true if array is the initial array prototype in any native context. inline bool IsAnyInitialArrayPrototype(JSArray array); std::unique_ptr NewPersistentHandles(); PersistentHandlesList* persistent_handles_list() const { return persistent_handles_list_.get(); } #ifdef DEBUG bool IsDeferredHandle(Address* location); #endif // DEBUG baseline::BaselineBatchCompiler* baseline_batch_compiler() const { DCHECK_NOT_NULL(baseline_batch_compiler_); return baseline_batch_compiler_; } #ifdef V8_ENABLE_MAGLEV maglev::MaglevConcurrentDispatcher* maglev_concurrent_dispatcher() { DCHECK_NOT_NULL(maglev_concurrent_dispatcher_); return maglev_concurrent_dispatcher_; } #endif // V8_ENABLE_MAGLEV bool concurrent_recompilation_enabled() { // Thread is only available with flag enabled. DCHECK(optimizing_compile_dispatcher_ == nullptr || FLAG_concurrent_recompilation); return optimizing_compile_dispatcher_ != nullptr; } OptimizingCompileDispatcher* optimizing_compile_dispatcher() { DCHECK_NOT_NULL(optimizing_compile_dispatcher_); return optimizing_compile_dispatcher_; } // Flushes all pending concurrent optimzation jobs from the optimizing // compile dispatcher's queue. void AbortConcurrentOptimization(BlockingBehavior blocking_behavior); int id() const { return id_; } bool was_locker_ever_used() const { return was_locker_ever_used_.load(std::memory_order_relaxed); } void set_was_locker_ever_used() { was_locker_ever_used_.store(true, std::memory_order_relaxed); } CompilationStatistics* GetTurboStatistics(); CodeTracer* GetCodeTracer(); void DumpAndResetStats(); void* stress_deopt_count_address() { return &stress_deopt_count_; } void set_force_slow_path(bool v) { force_slow_path_ = v; } bool force_slow_path() const { return force_slow_path_; } bool* force_slow_path_address() { return &force_slow_path_; } DebugInfo::ExecutionMode* debug_execution_mode_address() { return &debug_execution_mode_; } base::RandomNumberGenerator* random_number_generator(); base::RandomNumberGenerator* fuzzer_rng(); // Generates a random number that is non-zero when masked // with the provided mask. int GenerateIdentityHash(uint32_t mask); // Given an address occupied by a live code object, return that object. Code FindCodeObject(Address a); int NextOptimizationId() { int id = next_optimization_id_++; if (!Smi::IsValid(next_optimization_id_)) { next_optimization_id_ = 0; } return id; } // https://github.com/tc39/proposal-top-level-await/pull/159 // TODO(syg): Update to actual spec link once merged. // // According to the spec, modules that depend on async modules (i.e. modules // with top-level await) must be evaluated in order in which their // [[AsyncEvaluating]] flags were set to true. V8 tracks this global total // order with next_module_async_evaluating_ordinal_. Each module that sets its // [[AsyncEvaluating]] to true grabs the next ordinal. unsigned NextModuleAsyncEvaluatingOrdinal() { unsigned ordinal = next_module_async_evaluating_ordinal_++; CHECK_LT(ordinal, kMaxModuleAsyncEvaluatingOrdinal); return ordinal; } inline void DidFinishModuleAsyncEvaluation(unsigned ordinal); void AddNearHeapLimitCallback(v8::NearHeapLimitCallback, void* data); void RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback, size_t heap_limit); void AddCallCompletedCallback(CallCompletedCallback callback); void RemoveCallCompletedCallback(CallCompletedCallback callback); void FireCallCompletedCallback(MicrotaskQueue* microtask_queue) { if (!thread_local_top()->CallDepthIsZero()) return; FireCallCompletedCallbackInternal(microtask_queue); } void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); inline void FireBeforeCallEnteredCallback(); void SetPromiseRejectCallback(PromiseRejectCallback callback); void ReportPromiseReject(Handle promise, Handle value, v8::PromiseRejectEvent event); void SetTerminationOnExternalTryCatch(); Handle SymbolFor(RootIndex dictionary_index, Handle name, bool private_symbol); void SetUseCounterCallback(v8::Isolate::UseCounterCallback callback); void CountUsage(v8::Isolate::UseCounterFeature feature); void CountUsage(v8::Isolate::UseCounterFeature feature, int count); static std::string GetTurboCfgFileName(Isolate* isolate); int GetNextScriptId(); #if V8_SFI_HAS_UNIQUE_ID int GetNextUniqueSharedFunctionInfoId() { int current_id = next_unique_sfi_id_.load(std::memory_order_relaxed); int next_id; do { if (current_id >= Smi::kMaxValue) { next_id = 0; } else { next_id = current_id + 1; } } while (!next_unique_sfi_id_.compare_exchange_weak( current_id, next_id, std::memory_order_relaxed)); return current_id; } #endif #ifdef V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS void SetHasContextPromiseHooks(bool context_promise_hook) { promise_hook_flags_ = PromiseHookFields::HasContextPromiseHook::update( promise_hook_flags_, context_promise_hook); PromiseHookStateUpdated(); } #endif // V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS bool HasContextPromiseHooks() const { return PromiseHookFields::HasContextPromiseHook::decode( promise_hook_flags_); } Address promise_hook_flags_address() { return reinterpret_cast
(&promise_hook_flags_); } Address promise_hook_address() { return reinterpret_cast
(&promise_hook_); } Address async_event_delegate_address() { return reinterpret_cast
(&async_event_delegate_); } Address javascript_execution_assert_address() { return reinterpret_cast
(&javascript_execution_assert_); } Address handle_scope_implementer_address() { return reinterpret_cast
(&handle_scope_implementer_); } void SetAtomicsWaitCallback(v8::Isolate::AtomicsWaitCallback callback, void* data); void RunAtomicsWaitCallback(v8::Isolate::AtomicsWaitEvent event, Handle array_buffer, size_t offset_in_bytes, int64_t value, double timeout_in_ms, AtomicsWaitWakeHandle* stop_handle); void SetPromiseHook(PromiseHook hook); void RunPromiseHook(PromiseHookType type, Handle promise, Handle parent); void RunAllPromiseHooks(PromiseHookType type, Handle promise, Handle parent); void UpdatePromiseHookProtector(); void PromiseHookStateUpdated(); void AddDetachedContext(Handle context); void CheckDetachedContextsAfterGC(); // Detach the environment from its outer global object. void DetachGlobal(Handle env); std::vector* startup_object_cache() { return &startup_object_cache_; } // When there is a shared space (i.e. when this is a client Isolate), the // shared heap object cache holds objects in shared among Isolates. Otherwise // this object cache is per-Isolate like the startup object cache. std::vector* shared_heap_object_cache() { if (shared_isolate()) return shared_isolate()->shared_heap_object_cache(); return &shared_heap_object_cache_; } bool IsGeneratingEmbeddedBuiltins() const { return builtins_constants_table_builder() != nullptr; } BuiltinsConstantsTableBuilder* builtins_constants_table_builder() const { return builtins_constants_table_builder_; } // Hashes bits of the Isolate that are relevant for embedded builtins. In // particular, the embedded blob requires builtin Code object layout and the // builtins constants table to remain unchanged from build-time. size_t HashIsolateForEmbeddedBlob(); static const uint8_t* CurrentEmbeddedBlobCode(); static uint32_t CurrentEmbeddedBlobCodeSize(); static const uint8_t* CurrentEmbeddedBlobData(); static uint32_t CurrentEmbeddedBlobDataSize(); static bool CurrentEmbeddedBlobIsBinaryEmbedded(); // These always return the same result as static methods above, but don't // access the global atomic variable (and thus *might be* slightly faster). const uint8_t* embedded_blob_code() const; uint32_t embedded_blob_code_size() const; const uint8_t* embedded_blob_data() const; uint32_t embedded_blob_data_size() const; // Returns true if short bultin calls optimization is enabled for the Isolate. bool is_short_builtin_calls_enabled() const { return V8_SHORT_BUILTIN_CALLS_BOOL && is_short_builtin_calls_enabled_; } // Returns a region from which it's possible to make pc-relative (short) // calls/jumps to embedded builtins or empty region if there's no embedded // blob or if pc-relative calls are not supported. static base::AddressRegion GetShortBuiltinsCallRegion(); void set_array_buffer_allocator(v8::ArrayBuffer::Allocator* allocator) { array_buffer_allocator_ = allocator; } v8::ArrayBuffer::Allocator* array_buffer_allocator() const { return array_buffer_allocator_; } void set_array_buffer_allocator_shared( std::shared_ptr allocator) { array_buffer_allocator_shared_ = std::move(allocator); } std::shared_ptr array_buffer_allocator_shared() const { return array_buffer_allocator_shared_; } FutexWaitListNode* futex_wait_list_node() { return &futex_wait_list_node_; } CancelableTaskManager* cancelable_task_manager() { return cancelable_task_manager_; } const AstStringConstants* ast_string_constants() const { return ast_string_constants_; } interpreter::Interpreter* interpreter() const { return interpreter_; } compiler::PerIsolateCompilerCache* compiler_cache() const { return compiler_cache_; } void set_compiler_utils(compiler::PerIsolateCompilerCache* cache, Zone* zone) { compiler_cache_ = cache; compiler_zone_ = zone; } AccountingAllocator* allocator() { return allocator_; } LazyCompileDispatcher* lazy_compile_dispatcher() const { return lazy_compile_dispatcher_.get(); } bool IsInAnyContext(Object object, uint32_t index); void ClearKeptObjects(); void SetHostImportModuleDynamicallyCallback( HostImportModuleDynamicallyWithImportAssertionsCallback callback); void SetHostImportModuleDynamicallyCallback( HostImportModuleDynamicallyCallback callback); MaybeHandle RunHostImportModuleDynamicallyCallback( Handle