/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <assert.h> #include "internal/cryptlib.h" #include "bn_local.h" #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) /* * Here follows specialised variants of bn_add_words() and bn_sub_words(). * They have the property performing operations on arrays of different sizes. * The sizes of those arrays is expressed through cl, which is the common * length ( basically, min(len(a),len(b)) ), and dl, which is the delta * between the two lengths, calculated as len(a)-len(b). All lengths are the * number of BN_ULONGs... For the operations that require a result array as * parameter, it must have the length cl+abs(dl). These functions should * probably end up in bn_asm.c as soon as there are assembler counterparts * for the systems that use assembler files. */ BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) { BN_ULONG c, t; assert(cl >= 0); c = bn_sub_words(r, a, b, cl); if (dl == 0) return c; r += cl; a += cl; b += cl; if (dl < 0) { for (;;) { t = b[0]; r[0] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; t = b[1]; r[1] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; t = b[2]; r[2] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; t = b[3]; r[3] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; b += 4; r += 4; } } else { int save_dl = dl; while (c) { t = a[0]; r[0] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; t = a[1]; r[1] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; t = a[2]; r[2] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; t = a[3]; r[3] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; save_dl = dl; a += 4; r += 4; } if (dl > 0) { if (save_dl > dl) { switch (save_dl - dl) { case 1: r[1] = a[1]; if (--dl <= 0) break; /* fall thru */ case 2: r[2] = a[2]; if (--dl <= 0) break; /* fall thru */ case 3: r[3] = a[3]; if (--dl <= 0) break; } a += 4; r += 4; } } if (dl > 0) { for (;;) { r[0] = a[0]; if (--dl <= 0) break; r[1] = a[1]; if (--dl <= 0) break; r[2] = a[2]; if (--dl <= 0) break; r[3] = a[3]; if (--dl <= 0) break; a += 4; r += 4; } } } return c; } #endif #ifdef BN_RECURSION /* * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of * Computer Programming, Vol. 2) */ /*- * r is 2*n2 words in size, * a and b are both n2 words in size. * n2 must be a power of 2. * We multiply and return the result. * t must be 2*n2 words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */ /* dnX may not be positive, but n2/2+dnX has to be */ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *t) { int n = n2 / 2, c1, c2; int tna = n + dna, tnb = n + dnb; unsigned int neg, zero; BN_ULONG ln, lo, *p; # ifdef BN_MUL_COMBA # if 0 if (n2 == 4) { bn_mul_comba4(r, a, b); return; } # endif /* * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete * [steve] */ if (n2 == 8 && dna == 0 && dnb == 0) { bn_mul_comba8(r, a, b); return; } # endif /* BN_MUL_COMBA */ /* Else do normal multiply */ if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); if ((dna + dnb) < 0) memset(&r[2 * n2 + dna + dnb], 0, sizeof(BN_ULONG) * -(dna + dnb)); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); zero = neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ break; case -3: zero = 1; break; case -2: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ neg = 1; break; case -1: case 0: case 1: zero = 1; break; case 2: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ neg = 1; break; case 3: zero = 1; break; case 4: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); break; } # ifdef BN_MUL_COMBA if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take * extra args to do this well */ if (!zero) bn_mul_comba4(&(t[n2]), t, &(t[n])); else memset(&t[n2], 0, sizeof(*t) * 8); bn_mul_comba4(r, a, b); bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could * take extra args to do * this well */ if (!zero) bn_mul_comba8(&(t[n2]), t, &(t[n])); else memset(&t[n2], 0, sizeof(*t) * 16); bn_mul_comba8(r, a, b); bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); } else # endif /* BN_MUL_COMBA */ { p = &(t[n2 * 2]); if (!zero) bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); else memset(&t[n2], 0, sizeof(*t) * n2); bn_mul_recursive(r, a, b, n, 0, 0, p); bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); if (neg) { /* if t[32] is negative */ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { /* Might have a carry */ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* * The overflow will stop before we over write words we should not * overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo = *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } } /* * n+tn is the word length t needs to be n*4 is size, as does r */ /* tnX may not be negative but less than n */ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *t) { int i, j, n2 = n * 2; int c1, c2, neg; BN_ULONG ln, lo, *p; if (n < 8) { bn_mul_normal(r, a, n + tna, b, n + tnb); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ break; case -3: case -2: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ neg = 1; break; case -1: case 0: case 1: case 2: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ neg = 1; break; case 3: case 4: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); break; } /* * The zero case isn't yet implemented here. The speedup would probably * be negligible. */ # if 0 if (n == 4) { bn_mul_comba4(&(t[n2]), t, &(t[n])); bn_mul_comba4(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2)); } else # endif if (n == 8) { bn_mul_comba8(&(t[n2]), t, &(t[n])); bn_mul_comba8(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb)); } else { p = &(t[n2 * 2]); bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); bn_mul_recursive(r, a, b, n, 0, 0, p); i = n / 2; /* * If there is only a bottom half to the number, just do it */ if (tna > tnb) j = tna - i; else j = tnb - i; if (j == 0) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2)); } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */ bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ memset(&r[n2], 0, sizeof(*r) * n2); if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); } else { for (;;) { i /= 2; /* * these simplified conditions work exclusively because * difference between tna and tnb is 1 or 0 */ if (i < tna || i < tnb) { bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); break; } else if (i == tna || i == tnb) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); break; } } } } } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); if (neg) { /* if t[32] is negative */ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { /* Might have a carry */ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* * The overflow will stop before we over write words we should not * overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo = *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } } /*- * a and b must be the same size, which is n2. * r needs to be n2 words and t needs to be n2*2 */ void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t) { int n = n2 / 2; bn_mul_recursive(r, a, b, n, 0, 0, &(t[0])); if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); } else { bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); bn_add_words(&(r[n]), &(r[n]), &(t[n]), n); } } #endif /* BN_RECURSION */ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = bn_mul_fixed_top(r, a, b, ctx); bn_correct_top(r); bn_check_top(r); return ret; } int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; int top, al, bl; BIGNUM *rr; #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) int i; #endif #ifdef BN_RECURSION BIGNUM *t = NULL; int j = 0, k; #endif bn_check_top(a); bn_check_top(b); bn_check_top(r); al = a->top; bl = b->top; if ((al == 0) || (bl == 0)) { BN_zero(r); return 1; } top = al + bl; BN_CTX_start(ctx); if ((r == a) || (r == b)) { if ((rr = BN_CTX_get(ctx)) == NULL) goto err; } else rr = r; #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) i = al - bl; #endif #ifdef BN_MUL_COMBA if (i == 0) { # if 0 if (al == 4) { if (bn_wexpand(rr, 8) == NULL) goto err; rr->top = 8; bn_mul_comba4(rr->d, a->d, b->d); goto end; } # endif if (al == 8) { if (bn_wexpand(rr, 16) == NULL) goto err; rr->top = 16; bn_mul_comba8(rr->d, a->d, b->d); goto end; } } #endif /* BN_MUL_COMBA */ #ifdef BN_RECURSION if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { if (i >= -1 && i <= 1) { /* * Find out the power of two lower or equal to the longest of the * two numbers */ if (i >= 0) { j = BN_num_bits_word((BN_ULONG)al); } if (i == -1) { j = BN_num_bits_word((BN_ULONG)bl); } j = 1 << (j - 1); assert(j <= al || j <= bl); k = j + j; t = BN_CTX_get(ctx); if (t == NULL) goto err; if (al > j || bl > j) { if (bn_wexpand(t, k * 4) == NULL) goto err; if (bn_wexpand(rr, k * 4) == NULL) goto err; bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); } else { /* al <= j || bl <= j */ if (bn_wexpand(t, k * 2) == NULL) goto err; if (bn_wexpand(rr, k * 2) == NULL) goto err; bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); } rr->top = top; goto end; } } #endif /* BN_RECURSION */ if (bn_wexpand(rr, top) == NULL) goto err; rr->top = top; bn_mul_normal(rr->d, a->d, al, b->d, bl); #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) end: #endif rr->neg = a->neg ^ b->neg; rr->flags |= BN_FLG_FIXED_TOP; if (r != rr && BN_copy(r, rr) == NULL) goto err; ret = 1; err: bn_check_top(r); BN_CTX_end(ctx); return ret; } void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) { BN_ULONG *rr; if (na < nb) { int itmp; BN_ULONG *ltmp; itmp = na; na = nb; nb = itmp; ltmp = a; a = b; b = ltmp; } rr = &(r[na]); if (nb <= 0) { (void)bn_mul_words(r, a, na, 0); return; } else rr[0] = bn_mul_words(r, a, na, b[0]); for (;;) { if (--nb <= 0) return; rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); if (--nb <= 0) return; rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); if (--nb <= 0) return; rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); if (--nb <= 0) return; rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); rr += 4; r += 4; b += 4; } } void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) { bn_mul_words(r, a, n, b[0]); for (;;) { if (--n <= 0) return; bn_mul_add_words(&(r[1]), a, n, b[1]); if (--n <= 0) return; bn_mul_add_words(&(r[2]), a, n, b[2]); if (--n <= 0) return; bn_mul_add_words(&(r[3]), a, n, b[3]); if (--n <= 0) return; bn_mul_add_words(&(r[4]), a, n, b[4]); r += 4; b += 4; } }