/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCanvas.h" #include "include/core/SkBlender.h" #include "include/core/SkColorFilter.h" #include "include/core/SkImage.h" #include "include/core/SkImageFilter.h" #include "include/core/SkPathEffect.h" #include "include/core/SkPicture.h" #include "include/core/SkRRect.h" #include "include/core/SkRasterHandleAllocator.h" #include "include/core/SkString.h" #include "include/core/SkTextBlob.h" #include "include/core/SkVertices.h" #include "include/effects/SkRuntimeEffect.h" #include "include/private/SkTOptional.h" #include "include/private/SkTo.h" #include "include/utils/SkNoDrawCanvas.h" #include "src/core/SkArenaAlloc.h" #include "src/core/SkBitmapDevice.h" #include "src/core/SkCanvasPriv.h" #include "src/core/SkClipStack.h" #include "src/core/SkColorFilterBase.h" #include "src/core/SkDraw.h" #include "src/core/SkGlyphRun.h" #include "src/core/SkImageFilterCache.h" #include "src/core/SkImageFilter_Base.h" #include "src/core/SkLatticeIter.h" #include "src/core/SkMSAN.h" #include "src/core/SkMarkerStack.h" #include "src/core/SkMatrixPriv.h" #include "src/core/SkMatrixUtils.h" #include "src/core/SkPaintPriv.h" #include "src/core/SkRasterClip.h" #include "src/core/SkSpecialImage.h" #include "src/core/SkStrikeCache.h" #include "src/core/SkTLazy.h" #include "src/core/SkTextFormatParams.h" #include "src/core/SkTraceEvent.h" #include "src/core/SkVerticesPriv.h" #include "src/image/SkImage_Base.h" #include "src/image/SkSurface_Base.h" #include "src/utils/SkPatchUtils.h" #include #include #if SK_SUPPORT_GPU #include "include/gpu/GrDirectContext.h" #include "src/gpu/BaseDevice.h" #include "src/gpu/SkGr.h" #if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) # include "src/gpu/GrRenderTarget.h" # include "src/gpu/GrRenderTargetProxy.h" #endif #endif #define RETURN_ON_NULL(ptr) do { if (nullptr == (ptr)) return; } while (0) #define RETURN_ON_FALSE(pred) do { if (!(pred)) return; } while (0) // This is a test: static_assert with no message is a c++17 feature, // and std::max() is constexpr only since the c++14 stdlib. static_assert(std::max(3,4) == 4); /////////////////////////////////////////////////////////////////////////////////////////////////// /* * Return true if the drawing this rect would hit every pixels in the canvas. * * Returns false if * - rect does not contain the canvas' bounds * - paint is not fill * - paint would blur or otherwise change the coverage of the rect */ bool SkCanvas::wouldOverwriteEntireSurface(const SkRect* rect, const SkPaint* paint, ShaderOverrideOpacity overrideOpacity) const { static_assert((int)SkPaintPriv::kNone_ShaderOverrideOpacity == (int)kNone_ShaderOverrideOpacity, "need_matching_enums0"); static_assert((int)SkPaintPriv::kOpaque_ShaderOverrideOpacity == (int)kOpaque_ShaderOverrideOpacity, "need_matching_enums1"); static_assert((int)SkPaintPriv::kNotOpaque_ShaderOverrideOpacity == (int)kNotOpaque_ShaderOverrideOpacity, "need_matching_enums2"); const SkISize size = this->getBaseLayerSize(); const SkRect bounds = SkRect::MakeIWH(size.width(), size.height()); // if we're clipped at all, we can't overwrite the entire surface { const SkBaseDevice* base = this->baseDevice(); const SkBaseDevice* top = this->topDevice(); if (base != top) { return false; // we're in a saveLayer, so conservatively don't assume we'll overwrite } if (!base->clipIsWideOpen()) { return false; } } if (rect) { if (!this->getTotalMatrix().isScaleTranslate()) { return false; // conservative } SkRect devRect; this->getTotalMatrix().mapRectScaleTranslate(&devRect, *rect); if (!devRect.contains(bounds)) { return false; } } if (paint) { SkPaint::Style paintStyle = paint->getStyle(); if (!(paintStyle == SkPaint::kFill_Style || paintStyle == SkPaint::kStrokeAndFill_Style)) { return false; } if (paint->getMaskFilter() || paint->getPathEffect() || paint->getImageFilter()) { return false; // conservative } } return SkPaintPriv::Overwrites(paint, (SkPaintPriv::ShaderOverrideOpacity)overrideOpacity); } /////////////////////////////////////////////////////////////////////////////////////////////////// // experimental for faster tiled drawing... //#define SK_TRACE_SAVERESTORE #ifdef SK_TRACE_SAVERESTORE static int gLayerCounter; static void inc_layer() { ++gLayerCounter; printf("----- inc layer %d\n", gLayerCounter); } static void dec_layer() { --gLayerCounter; printf("----- dec layer %d\n", gLayerCounter); } static int gRecCounter; static void inc_rec() { ++gRecCounter; printf("----- inc rec %d\n", gRecCounter); } static void dec_rec() { --gRecCounter; printf("----- dec rec %d\n", gRecCounter); } static int gCanvasCounter; static void inc_canvas() { ++gCanvasCounter; printf("----- inc canvas %d\n", gCanvasCounter); } static void dec_canvas() { --gCanvasCounter; printf("----- dec canvas %d\n", gCanvasCounter); } #else #define inc_layer() #define dec_layer() #define inc_rec() #define dec_rec() #define inc_canvas() #define dec_canvas() #endif bool SkCanvas::predrawNotify(bool willOverwritesEntireSurface) { if (fSurfaceBase) { if (!fSurfaceBase->aboutToDraw(willOverwritesEntireSurface ? SkSurface::kDiscard_ContentChangeMode : SkSurface::kRetain_ContentChangeMode)) { return false; } } return true; } bool SkCanvas::predrawNotify(const SkRect* rect, const SkPaint* paint, ShaderOverrideOpacity overrideOpacity) { if (fSurfaceBase) { SkSurface::ContentChangeMode mode = SkSurface::kRetain_ContentChangeMode; // Since willOverwriteAllPixels() may not be complete free to call, we only do so if // there is an outstanding snapshot, since w/o that, there will be no copy-on-write // and therefore we don't care which mode we're in. // if (fSurfaceBase->outstandingImageSnapshot()) { if (this->wouldOverwriteEntireSurface(rect, paint, overrideOpacity)) { mode = SkSurface::kDiscard_ContentChangeMode; } } if (!fSurfaceBase->aboutToDraw(mode)) { return false; } } return true; } /////////////////////////////////////////////////////////////////////////////// SkCanvas::Layer::Layer(sk_sp device, sk_sp imageFilter, const SkPaint& paint) : fDevice(std::move(device)) , fImageFilter(std::move(imageFilter)) , fPaint(paint) , fDiscard(false) { SkASSERT(fDevice); // Any image filter should have been pulled out and stored in 'imageFilter' so that 'paint' // can be used as-is to draw the result of the filter to the dst device. SkASSERT(!fPaint.getImageFilter()); } SkCanvas::MCRec::MCRec(SkBaseDevice* device) : fDevice(device) { SkASSERT(fDevice); inc_rec(); } SkCanvas::MCRec::MCRec(const MCRec* prev) : fDevice(prev->fDevice), fMatrix(prev->fMatrix) { SkASSERT(fDevice); inc_rec(); } SkCanvas::MCRec::~MCRec() { dec_rec(); } void SkCanvas::MCRec::newLayer(sk_sp layerDevice, sk_sp filter, const SkPaint& restorePaint) { SkASSERT(!fBackImage); fLayer = std::make_unique(std::move(layerDevice), std::move(filter), restorePaint); fDevice = fLayer->fDevice.get(); } void SkCanvas::MCRec::reset(SkBaseDevice* device) { SkASSERT(!fLayer); SkASSERT(device); SkASSERT(fDeferredSaveCount == 0); fDevice = device; fMatrix.setIdentity(); } class SkCanvas::AutoUpdateQRBounds { public: explicit AutoUpdateQRBounds(SkCanvas* canvas) : fCanvas(canvas) { // pre-condition, fQuickRejectBounds and other state should be valid before anything // modifies the device's clip. fCanvas->validateClip(); } ~AutoUpdateQRBounds() { fCanvas->fQuickRejectBounds = fCanvas->computeDeviceClipBounds(); // post-condition, we should remain valid after re-computing the bounds fCanvas->validateClip(); } private: SkCanvas* fCanvas; AutoUpdateQRBounds(AutoUpdateQRBounds&&) = delete; AutoUpdateQRBounds(const AutoUpdateQRBounds&) = delete; AutoUpdateQRBounds& operator=(AutoUpdateQRBounds&&) = delete; AutoUpdateQRBounds& operator=(const AutoUpdateQRBounds&) = delete; }; ///////////////////////////////////////////////////////////////////////////// // Attempts to convert an image filter to its equivalent color filter, which if possible, modifies // the paint to compose the image filter's color filter into the paint's color filter slot. // Returns true if the paint has been modified. // Requires the paint to have an image filter and the copy-on-write be initialized. static bool image_to_color_filter(SkPaint* paint) { SkASSERT(SkToBool(paint) && paint->getImageFilter()); SkColorFilter* imgCFPtr; if (!paint->getImageFilter()->asAColorFilter(&imgCFPtr)) { return false; } sk_sp imgCF(imgCFPtr); SkColorFilter* paintCF = paint->getColorFilter(); if (paintCF) { // The paint has both a colorfilter(paintCF) and an imagefilter-that-is-a-colorfilter(imgCF) // and we need to combine them into a single colorfilter. imgCF = imgCF->makeComposed(sk_ref_sp(paintCF)); } paint->setColorFilter(std::move(imgCF)); paint->setImageFilter(nullptr); return true; } /** * We implement ImageFilters for a given draw by creating a layer, then applying the * imagefilter to the pixels of that layer (its backing surface/image), and then * we call restore() to xfer that layer to the main canvas. * * 1. SaveLayer (with a paint containing the current imagefilter and xfermode) * 2. Generate the src pixels: * Remove the imagefilter and the xfermode from the paint that we (AutoDrawLooper) * return (fPaint). We then draw the primitive (using srcover) into a cleared * buffer/surface. * 3. Restore the layer created in #1 * The imagefilter is passed the buffer/surface from the layer (now filled with the * src pixels of the primitive). It returns a new "filtered" buffer, which we * draw onto the previous layer using the xfermode from the original paint. */ class AutoLayerForImageFilter { public: // "rawBounds" is the original bounds of the primitive about to be drawn, unmodified by the // paint. It's used to determine the size of the offscreen layer for filters. // If null, the clip will be used instead. // // Draw functions should use layer->paint() instead of the passed-in paint. AutoLayerForImageFilter(SkCanvas* canvas, const SkPaint& paint, const SkRect* rawBounds = nullptr) : fPaint(paint) , fCanvas(canvas) , fTempLayerForImageFilter(false) { SkDEBUGCODE(fSaveCount = canvas->getSaveCount();) if (fPaint.getImageFilter() && !image_to_color_filter(&fPaint)) { // The draw paint has an image filter that couldn't be simplified to an equivalent // color filter, so we have to inject an automatic saveLayer(). SkPaint restorePaint; restorePaint.setImageFilter(fPaint.refImageFilter()); restorePaint.setBlender(fPaint.refBlender()); // Remove the restorePaint fields from our "working" paint fPaint.setImageFilter(nullptr); fPaint.setBlendMode(SkBlendMode::kSrcOver); SkRect storage; if (rawBounds && fPaint.canComputeFastBounds()) { // Make rawBounds include all paint outsets except for those due to image filters. // At this point, fPaint's image filter has been moved to 'restorePaint'. SkASSERT(!fPaint.getImageFilter()); rawBounds = &fPaint.computeFastBounds(*rawBounds, &storage); } (void)canvas->internalSaveLayer(SkCanvas::SaveLayerRec(rawBounds, &restorePaint), SkCanvas::kFullLayer_SaveLayerStrategy); fTempLayerForImageFilter = true; } } AutoLayerForImageFilter(const AutoLayerForImageFilter&) = delete; AutoLayerForImageFilter& operator=(const AutoLayerForImageFilter&) = delete; AutoLayerForImageFilter(AutoLayerForImageFilter&&) = default; AutoLayerForImageFilter& operator=(AutoLayerForImageFilter&&) = default; ~AutoLayerForImageFilter() { if (fTempLayerForImageFilter) { fCanvas->internalRestore(); } SkASSERT(fCanvas->getSaveCount() == fSaveCount); } const SkPaint& paint() const { return fPaint; } private: SkPaint fPaint; SkCanvas* fCanvas; bool fTempLayerForImageFilter; SkDEBUGCODE(int fSaveCount;) }; skstd::optional SkCanvas::aboutToDraw( SkCanvas* canvas, const SkPaint& paint, const SkRect* rawBounds, CheckForOverwrite checkOverwrite, ShaderOverrideOpacity overrideOpacity) { if (checkOverwrite == CheckForOverwrite::kYes) { if (!this->predrawNotify(rawBounds, &paint, overrideOpacity)) { return skstd::nullopt; } } else { if (!this->predrawNotify()) { return skstd::nullopt; } } return skstd::optional(canvas, paint, rawBounds); } //////////////////////////////////////////////////////////////////////////// void SkCanvas::resetForNextPicture(const SkIRect& bounds) { this->restoreToCount(1); // We're peering through a lot of structs here. Only at this scope do we // know that the device is a SkNoPixelsDevice. SkASSERT(fBaseDevice->isNoPixelsDevice()); static_cast(fBaseDevice.get())->resetForNextPicture(bounds); fMCRec->reset(fBaseDevice.get()); fQuickRejectBounds = this->computeDeviceClipBounds(); } void SkCanvas::init(sk_sp device) { // SkCanvas.h declares internal storage for the hidden struct MCRec, and this // assert ensure it's sufficient. <= is used because the struct has pointer fields, so the // declared size is an upper bound across architectures. When the size is smaller, more stack static_assert(sizeof(MCRec) <= kMCRecSize); if (!device) { device = sk_make_sp(SkIRect::MakeEmpty(), fProps); } // From this point on, SkCanvas will always have a device SkASSERT(device); fSaveCount = 1; fMCRec = new (fMCStack.push_back()) MCRec(device.get()); fMarkerStack = sk_make_sp(); // The root device and the canvas should always have the same pixel geometry SkASSERT(fProps.pixelGeometry() == device->surfaceProps().pixelGeometry()); device->setMarkerStack(fMarkerStack.get()); fSurfaceBase = nullptr; fBaseDevice = std::move(device); fScratchGlyphRunBuilder = std::make_unique(); fQuickRejectBounds = this->computeDeviceClipBounds(); } SkCanvas::SkCanvas() : fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage)) { inc_canvas(); this->init(nullptr); } SkCanvas::SkCanvas(int width, int height, const SkSurfaceProps* props) : fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage)) , fProps(SkSurfacePropsCopyOrDefault(props)) { inc_canvas(); this->init(sk_make_sp( SkIRect::MakeWH(std::max(width, 0), std::max(height, 0)), fProps)); } SkCanvas::SkCanvas(const SkIRect& bounds) : fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage)) { inc_canvas(); SkIRect r = bounds.isEmpty() ? SkIRect::MakeEmpty() : bounds; this->init(sk_make_sp(r, fProps)); } SkCanvas::SkCanvas(sk_sp device) : fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage)) , fProps(device->surfaceProps()) { inc_canvas(); this->init(device); } SkCanvas::SkCanvas(const SkBitmap& bitmap, const SkSurfaceProps& props) : fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage)), fProps(props) { inc_canvas(); sk_sp device(new SkBitmapDevice(bitmap, fProps, nullptr, nullptr)); this->init(device); } SkCanvas::SkCanvas(const SkBitmap& bitmap, std::unique_ptr alloc, SkRasterHandleAllocator::Handle hndl) : fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage)) , fAllocator(std::move(alloc)) { inc_canvas(); sk_sp device(new SkBitmapDevice(bitmap, fProps, hndl, nullptr)); this->init(device); } SkCanvas::SkCanvas(const SkBitmap& bitmap) : SkCanvas(bitmap, nullptr, nullptr) {} #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK SkCanvas::SkCanvas(const SkBitmap& bitmap, ColorBehavior) : fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage)) { inc_canvas(); SkBitmap tmp(bitmap); *const_cast(&tmp.info()) = tmp.info().makeColorSpace(nullptr); sk_sp device(new SkBitmapDevice(tmp, fProps, nullptr, nullptr)); this->init(device); } #endif SkCanvas::~SkCanvas() { // Mark all pending layers to be discarded during restore (rather than drawn) SkDeque::Iter iter(fMCStack, SkDeque::Iter::kFront_IterStart); for (;;) { MCRec* rec = (MCRec*)iter.next(); if (!rec) { break; } if (rec->fLayer) { rec->fLayer->fDiscard = true; } } // free up the contents of our deque this->restoreToCount(1); // restore everything but the last this->internalRestore(); // restore the last, since we're going away dec_canvas(); } /////////////////////////////////////////////////////////////////////////////// void SkCanvas::flush() { this->onFlush(); } void SkCanvas::onFlush() { #if SK_SUPPORT_GPU auto dContext = GrAsDirectContext(this->recordingContext()); if (dContext) { dContext->flushAndSubmit(); } #endif } SkSurface* SkCanvas::getSurface() const { return fSurfaceBase; } SkISize SkCanvas::getBaseLayerSize() const { return this->baseDevice()->imageInfo().dimensions(); } SkBaseDevice* SkCanvas::topDevice() const { SkASSERT(fMCRec->fDevice); return fMCRec->fDevice; } bool SkCanvas::readPixels(const SkPixmap& pm, int x, int y) { return pm.addr() && this->baseDevice()->readPixels(pm, x, y); } bool SkCanvas::readPixels(const SkImageInfo& dstInfo, void* dstP, size_t rowBytes, int x, int y) { return this->readPixels({ dstInfo, dstP, rowBytes}, x, y); } bool SkCanvas::readPixels(const SkBitmap& bm, int x, int y) { SkPixmap pm; return bm.peekPixels(&pm) && this->readPixels(pm, x, y); } bool SkCanvas::writePixels(const SkBitmap& bitmap, int x, int y) { SkPixmap pm; if (bitmap.peekPixels(&pm)) { return this->writePixels(pm.info(), pm.addr(), pm.rowBytes(), x, y); } return false; } bool SkCanvas::writePixels(const SkImageInfo& srcInfo, const void* pixels, size_t rowBytes, int x, int y) { SkBaseDevice* device = this->baseDevice(); // This check gives us an early out and prevents generation ID churn on the surface. // This is purely optional: it is a subset of the checks performed by SkWritePixelsRec. SkIRect srcRect = SkIRect::MakeXYWH(x, y, srcInfo.width(), srcInfo.height()); if (!srcRect.intersect({0, 0, device->width(), device->height()})) { return false; } // Tell our owning surface to bump its generation ID. const bool completeOverwrite = srcRect.size() == device->imageInfo().dimensions(); if (!this->predrawNotify(completeOverwrite)) { return false; } // This can still fail, most notably in the case of a invalid color type or alpha type // conversion. We could pull those checks into this function and avoid the unnecessary // generation ID bump. But then we would be performing those checks twice, since they // are also necessary at the bitmap/pixmap entry points. return device->writePixels({srcInfo, pixels, rowBytes}, x, y); } ////////////////////////////////////////////////////////////////////////////// void SkCanvas::checkForDeferredSave() { if (fMCRec->fDeferredSaveCount > 0) { this->doSave(); } } int SkCanvas::getSaveCount() const { #ifdef SK_DEBUG int count = 0; SkDeque::Iter iter(fMCStack, SkDeque::Iter::kFront_IterStart); for (;;) { const MCRec* rec = (const MCRec*)iter.next(); if (!rec) { break; } count += 1 + rec->fDeferredSaveCount; } SkASSERT(count == fSaveCount); #endif return fSaveCount; } int SkCanvas::save() { fSaveCount += 1; fMCRec->fDeferredSaveCount += 1; return this->getSaveCount() - 1; // return our prev value } void SkCanvas::doSave() { this->willSave(); SkASSERT(fMCRec->fDeferredSaveCount > 0); fMCRec->fDeferredSaveCount -= 1; this->internalSave(); } void SkCanvas::restore() { if (fMCRec->fDeferredSaveCount > 0) { SkASSERT(fSaveCount > 1); fSaveCount -= 1; fMCRec->fDeferredSaveCount -= 1; } else { // check for underflow if (fMCStack.count() > 1) { this->willRestore(); SkASSERT(fSaveCount > 1); fSaveCount -= 1; this->internalRestore(); this->didRestore(); } } } void SkCanvas::restoreToCount(int count) { // safety check if (count < 1) { count = 1; } int n = this->getSaveCount() - count; for (int i = 0; i < n; ++i) { this->restore(); } } void SkCanvas::internalSave() { fMCRec = new (fMCStack.push_back()) MCRec(fMCRec); this->topDevice()->save(); } int SkCanvas::saveLayer(const SkRect* bounds, const SkPaint* paint) { return this->saveLayer(SaveLayerRec(bounds, paint, 0)); } int SkCanvas::saveLayer(const SaveLayerRec& rec) { TRACE_EVENT0("skia", TRACE_FUNC); if (rec.fPaint && rec.fPaint->nothingToDraw()) { // no need for the layer (or any of the draws until the matching restore() this->save(); this->clipRect({0,0,0,0}); } else { SaveLayerStrategy strategy = this->getSaveLayerStrategy(rec); fSaveCount += 1; this->internalSaveLayer(rec, strategy); } return this->getSaveCount() - 1; } int SkCanvas::only_axis_aligned_saveBehind(const SkRect* bounds) { if (bounds && !this->getLocalClipBounds().intersects(*bounds)) { // Assuming clips never expand, if the request bounds is outside of the current clip // there is no need to copy/restore the area, so just devolve back to a regular save. this->save(); } else { bool doTheWork = this->onDoSaveBehind(bounds); fSaveCount += 1; this->internalSave(); if (doTheWork) { this->internalSaveBehind(bounds); } } return this->getSaveCount() - 1; } // In our current design/features, we should never have a layer (src) in a different colorspace // than its parent (dst), so we assert that here. This is called out from other asserts, in case // we add some feature in the future to allow a given layer/imagefilter to operate in a specific // colorspace. static void check_drawdevice_colorspaces(SkColorSpace* src, SkColorSpace* dst) { SkASSERT(src == dst); } // Helper function to compute the center reference point used for scale decomposition under // non-linear transformations. static skif::ParameterSpace compute_decomposition_center( const SkMatrix& dstToLocal, const skif::ParameterSpace* contentBounds, const skif::DeviceSpace& targetOutput) { // Will use the inverse and center of the device bounds if the content bounds aren't provided. SkRect rect = contentBounds ? SkRect(*contentBounds) : SkRect::Make(SkIRect(targetOutput)); SkPoint center = {rect.centerX(), rect.centerY()}; if (!contentBounds) { // Theoretically, the inverse transform could put center's homogeneous coord behind W = 0, // but that case is handled automatically in Mapping::decomposeCTM later. dstToLocal.mapPoints(¢er, 1); } return skif::ParameterSpace(center); } // Compute suitable transformations and layer bounds for a new layer that will be used as the source // input into 'filter' before being drawn into 'dst' via the returned skif::Mapping. // Null filters are permitted and act as the identity. The returned mapping will be compatible with // the image filter. // // Returns an empty rect if the layer wouldn't draw anything after filtering. static std::pair> get_layer_mapping_and_bounds( const SkImageFilter* filter, const SkMatrix& localToDst, const skif::DeviceSpace& targetOutput, const skif::ParameterSpace* contentBounds = nullptr, bool mustCoverDst = true, SkScalar scaleFactor = 1.0f) { auto failedMapping = []() { return std::make_pair>( {}, skif::LayerSpace::Empty()); }; SkMatrix dstToLocal; if (!localToDst.isFinite() || !localToDst.invert(&dstToLocal)) { return failedMapping(); } skif::ParameterSpace center = compute_decomposition_center(dstToLocal, contentBounds, targetOutput); // *after* possibly getting a representative point from the provided content bounds, it might // be necessary to discard the bounds for subsequent layer calculations. if (mustCoverDst) { contentBounds = nullptr; } // Determine initial mapping and a reasonable maximum dimension to prevent layer-to-device // transforms with perspective and skew from triggering excessive buffer allocations. skif::Mapping mapping; if (!mapping.decomposeCTM(localToDst, filter, center)) { return failedMapping(); } // Push scale factor into layer matrix and device matrix (net no change, but the layer will have // its resolution adjusted in comparison to the final device). if (scaleFactor != 1.0f && !mapping.adjustLayerSpace(SkMatrix::Scale(scaleFactor, scaleFactor))) { return failedMapping(); } // Perspective and skew could exceed this since mapping.deviceToLayer(targetOutput) is // theoretically unbounded under those conditions. Under a 45 degree rotation, a layer needs to // be 2X larger per side of the prior device in order to fully cover it. We use the max of that // and 2048 for a reasonable upper limit (this allows small layers under extreme transforms to // use more relative resolution than a larger layer). static const int kMinDimThreshold = 2048; int maxLayerDim = std::max(Sk64_pin_to_s32(2 * std::max(SkIRect(targetOutput).width64(), SkIRect(targetOutput).height64())), kMinDimThreshold); skif::LayerSpace layerBounds; if (filter) { layerBounds = as_IFB(filter)->getInputBounds(mapping, targetOutput, contentBounds); // When a filter is involved, the layer size may be larger than the default maxLayerDim due // to required inputs for filters (e.g. a displacement map with a large radius). if (layerBounds.width() > maxLayerDim || layerBounds.height() > maxLayerDim) { skif::Mapping idealMapping(SkMatrix::I(), mapping.layerMatrix()); auto idealLayerBounds = as_IFB(filter)->getInputBounds(idealMapping, targetOutput, contentBounds); maxLayerDim = std::max(std::max(idealLayerBounds.width(), idealLayerBounds.height()), maxLayerDim); } } else { layerBounds = mapping.deviceToLayer(targetOutput); if (contentBounds) { // For better or for worse, user bounds currently act as a hard clip on the layer's // extent (i.e., they implement the CSS filter-effects 'filter region' feature). skif::LayerSpace knownBounds = mapping.paramToLayer(*contentBounds).roundOut(); if (!layerBounds.intersect(knownBounds)) { return failedMapping(); } } } if (layerBounds.width() > maxLayerDim || layerBounds.height() > maxLayerDim) { skif::LayerSpace newLayerBounds( SkIRect::MakeWH(std::min(layerBounds.width(), maxLayerDim), std::min(layerBounds.height(), maxLayerDim))); SkMatrix adjust = SkMatrix::MakeRectToRect(SkRect::Make(SkIRect(layerBounds)), SkRect::Make(SkIRect(newLayerBounds)), SkMatrix::kFill_ScaleToFit); if (!mapping.adjustLayerSpace(adjust)) { return failedMapping(); } else { layerBounds = newLayerBounds; } } return {mapping, layerBounds}; } static SkImageInfo make_layer_info(const SkImageInfo& prev, int w, int h, bool f16) { SkColorType ct = f16 ? SkColorType::kRGBA_F16_SkColorType : prev.colorType(); if (!f16 && prev.bytesPerPixel() <= 4 && prev.colorType() != kRGBA_8888_SkColorType && prev.colorType() != kBGRA_8888_SkColorType) { // "Upgrade" A8, G8, 565, 4444, 1010102, 101010x, and 888x to 8888, // ensuring plenty of alpha bits for the layer, perhaps losing some color bits in return. ct = kN32_SkColorType; } return SkImageInfo::Make(w, h, ct, kPremul_SkAlphaType, prev.refColorSpace()); } static bool draw_layer_as_sprite(const SkMatrix& matrix, const SkISize& size) { // Assume anti-aliasing and highest valid filter mode (linear) for drawing layers and image // filters. If the layer can be drawn as a sprite, these can be downgraded. SkPaint paint; paint.setAntiAlias(true); SkSamplingOptions sampling{SkFilterMode::kLinear}; return SkTreatAsSprite(matrix, size, sampling, paint); } void SkCanvas::internalDrawDeviceWithFilter(SkBaseDevice* src, SkBaseDevice* dst, const SkImageFilter* filter, const SkPaint& paint, DeviceCompatibleWithFilter compat, SkScalar scaleFactor) { check_drawdevice_colorspaces(dst->imageInfo().colorSpace(), src->imageInfo().colorSpace()); // 'filter' sees the src device's buffer as the implicit input image, and processes the image // in this device space (referred to as the "layer" space). However, the filter // parameters need to respect the current matrix, which is not necessarily the local matrix that // was set on 'src' (e.g. because we've popped src off the stack already). // TODO (michaelludwig): Stay in SkM44 once skif::Mapping supports SkM44 instead of SkMatrix. SkMatrix localToSrc = (src->globalToDevice() * fMCRec->fMatrix).asM33(); SkISize srcDims = src->imageInfo().dimensions(); // Whether or not we need to make a transformed tmp image from 'src', and what that transform is bool needsIntermediateImage = false; SkMatrix srcToIntermediate; skif::Mapping mapping; skif::LayerSpace requiredInput; if (compat == DeviceCompatibleWithFilter::kYes) { // Just use the relative transform from src to dst and the src's whole image, since // internalSaveLayer should have already determined what was necessary. SkASSERT(scaleFactor == 1.0f); mapping = skif::Mapping(src->getRelativeTransform(*dst), localToSrc); requiredInput = skif::LayerSpace(SkIRect::MakeSize(srcDims)); SkASSERT(!requiredInput.isEmpty()); } else { // Compute the image filter mapping by decomposing the local->device matrix of dst and // re-determining the required input. std::tie(mapping, requiredInput) = get_layer_mapping_and_bounds( filter, dst->localToDevice(), skif::DeviceSpace(dst->devClipBounds()), nullptr, true, SkTPin(scaleFactor, 0.f, 1.f)); if (requiredInput.isEmpty()) { return; } // The above mapping transforms from local to dst's device space, where the layer space // represents the intermediate buffer. Now we need to determine the transform from src to // intermediate to prepare the input to the filter. if (!localToSrc.invert(&srcToIntermediate)) { return; } srcToIntermediate.postConcat(mapping.layerMatrix()); if (draw_layer_as_sprite(srcToIntermediate, srcDims)) { // src differs from intermediate by just an integer translation, so it can be applied // automatically when taking a subset of src if we update the mapping. skif::LayerSpace srcOrigin({(int) srcToIntermediate.getTranslateX(), (int) srcToIntermediate.getTranslateY()}); mapping.applyOrigin(srcOrigin); requiredInput.offset(-srcOrigin); } else { // The contents of 'src' will be drawn to an intermediate buffer using srcToIntermediate // and that buffer will be the input to the image filter. needsIntermediateImage = true; } } sk_sp filterInput; if (!needsIntermediateImage) { // The src device can be snapped directly skif::LayerSpace srcSubset(SkIRect::MakeSize(srcDims)); if (srcSubset.intersect(requiredInput)) { filterInput = src->snapSpecial(SkIRect(srcSubset)); // TODO: For now image filter input images need to have a (0,0) origin. The required // input's top left has been baked into srcSubset so we use that as the image origin. mapping.applyOrigin(srcSubset.topLeft()); } } else { // We need to produce a temporary image that is equivalent to 'src' but transformed to // a coordinate space compatible with the image filter // TODO: If the srcToIntermediate is scale+translate, can we use the framebuffer blit // extensions to handle doing the copy and scale at the same time? SkASSERT(compat == DeviceCompatibleWithFilter::kUnknown); SkRect srcRect; if (!SkMatrixPriv::InverseMapRect(srcToIntermediate, &srcRect, SkRect::Make(SkIRect(requiredInput)))) { return; } SkIRect srcSubset = srcRect.roundOut(); sk_sp srcImage; if (srcSubset.intersect(SkIRect::MakeSize(srcDims)) && (srcImage = src->snapSpecial(srcSubset))) { // Make a new surface and draw 'srcImage' into it with the srcToIntermediate transform // to produce the final input image for the filter SkBaseDevice::CreateInfo info(make_layer_info(src->imageInfo(), requiredInput.width(), requiredInput.height(), false), SkPixelGeometry::kUnknown_SkPixelGeometry, SkBaseDevice::TileUsage::kNever_TileUsage, false, fAllocator.get()); sk_sp intermediateDevice(src->onCreateDevice(info, &paint)); if (!intermediateDevice) { return; } intermediateDevice->setOrigin(SkM44(srcToIntermediate), requiredInput.left(), requiredInput.top()); SkMatrix offsetLocalToDevice = intermediateDevice->localToDevice(); offsetLocalToDevice.preTranslate(srcSubset.left(), srcSubset.top()); // We draw with non-AA bilinear since we cover the destination but definitely don't have // a pixel-aligned transform. intermediateDevice->drawSpecial(srcImage.get(), offsetLocalToDevice, SkSamplingOptions{SkFilterMode::kLinear}, {}); filterInput = intermediateDevice->snapSpecial(); // TODO: Like the non-intermediate case, we need to apply the image origin. mapping.applyOrigin(requiredInput.topLeft()); } } if (filterInput) { const bool use_nn = draw_layer_as_sprite(mapping.deviceMatrix(), filterInput->subset().size()); SkSamplingOptions sampling{use_nn ? SkFilterMode::kNearest : SkFilterMode::kLinear}; if (filter) { dst->drawFilteredImage(mapping, filterInput.get(), filter, sampling, paint); } else { dst->drawSpecial(filterInput.get(), mapping.deviceMatrix(), sampling, paint); } } } // This is similar to image_to_color_filter used by AutoLayerForImageFilter, but with key changes: // - image_to_color_filter requires the entire image filter DAG to be represented as a color filter // that does not affect transparent black (SkImageFilter::asAColorFilter) // - when that is met, the image filter's CF is composed around any CF that was on the draw's paint // since for a draw, the color filtering happens before any image filtering // - optimize_layer_filter only applies to the last node and does not care about transparent black // since a layer is being made regardless (SkImageFilter::isColorFilterNode) // - any extracted CF is composed inside the restore paint's CF because image filters are evaluated // before the color filter of a restore paint for layers. // // Assumes that 'filter', and thus its inputs, will remain owned by the caller. Modifies 'paint' // to have the updated color filter and returns the image filter to evaluate on restore. // // FIXME: skbug.com/12083 - we modify 'coversDevice' here because for now, only the color filter // produced from an image filter node is checked for affecting transparent black, even though it's // better in the long run to have any CF that affects transparent black expand to the clip. static const SkImageFilter* optimize_layer_filter(const SkImageFilter* filter, SkPaint* paint, bool* coversDevice=nullptr) { SkASSERT(paint); SkColorFilter* cf; if (filter && filter->isColorFilterNode(&cf)) { sk_sp inner(cf); if (paint->getAlphaf() < 1.f) { // The paint's alpha is applied after the image filter but before the paint's color // filter. If there is transparency, we have to apply it between the two filters. // FIXME: The Blend CF should allow composing directly at construction. inner = SkColorFilters::Compose( SkColorFilters::Blend(/* src */ paint->getColor(), SkBlendMode::kDstIn), /* dst */ std::move(inner)); paint->setAlphaf(1.f); } // Check if the once-wrapped color filter affects transparent black *before* we combine // it with any original color filter on the paint. if (coversDevice) { *coversDevice = as_CFB(inner)->affectsTransparentBlack(); } paint->setColorFilter(SkColorFilters::Compose(paint->refColorFilter(), std::move(inner))); SkASSERT(filter->countInputs() == 1); return filter->getInput(0); } else { if (coversDevice) { *coversDevice = false; } return filter; } } // If there is a backdrop filter, or if the restore paint has a color filter that affects // transparent black, then the new layer must be sized such that it covers the entire device // clip bounds of the prior device (otherwise edges of the temporary layer would be visible). // See skbug.com/8783 static bool must_cover_prior_device(const SkImageFilter* backdrop, const SkPaint& restorePaint) { // FIXME(michaelludwig) - see skbug.com/12083, once clients do not depend on user bounds for // clipping a layer visually, we can respect the fact that the color filter affects transparent // black and should cover the device. return SkToBool(backdrop); // || // (restorePaint.getColorFilter() && // as_CFB(restorePaint.getColorFilter())->affectsTransparentBlack()); } void SkCanvas::internalSaveLayer(const SaveLayerRec& rec, SaveLayerStrategy strategy) { TRACE_EVENT0("skia", TRACE_FUNC); // Do this before we create the layer. We don't call the public save() since that would invoke a // possibly overridden virtual. this->internalSave(); if (this->isClipEmpty()) { // Early out if the layer wouldn't draw anything return; } // Build up the paint for restoring the layer, taking only the pieces of rec.fPaint that are // relevant. Filtering is automatically chosen in internalDrawDeviceWithFilter based on the // device's coordinate space. SkPaint restorePaint(rec.fPaint ? *rec.fPaint : SkPaint()); restorePaint.setMaskFilter(nullptr); // mask filters are ignored for saved layers restorePaint.setImageFilter(nullptr); // the image filter is held separately // Smooth non-axis-aligned layer edges; this automatically downgrades to non-AA for aligned // layer restores. This is done to match legacy behavior where the post-applied MatrixTransform // bilerp also smoothed cropped edges. See skbug.com/11252 restorePaint.setAntiAlias(true); bool optimizedCFAffectsTransparent; const SkImageFilter* filter = optimize_layer_filter( rec.fPaint ? rec.fPaint->getImageFilter() : nullptr, &restorePaint, &optimizedCFAffectsTransparent); // Size the new layer relative to the prior device, which may already be aligned for filters. SkBaseDevice* priorDevice = this->topDevice(); skif::Mapping newLayerMapping; skif::LayerSpace layerBounds; std::tie(newLayerMapping, layerBounds) = get_layer_mapping_and_bounds( filter, priorDevice->localToDevice(), skif::DeviceSpace(priorDevice->devClipBounds()), skif::ParameterSpace::Optional(rec.fBounds), must_cover_prior_device(rec.fBackdrop, restorePaint) || optimizedCFAffectsTransparent); auto abortLayer = [this]() { // The filtered content would not draw anything, or the new device space has an invalid // coordinate system, in which case we mark the current top device as empty so that nothing // draws until the canvas is restored past this saveLayer. AutoUpdateQRBounds aqr(this); this->topDevice()->clipRect(SkRect::MakeEmpty(), SkClipOp::kIntersect, /* aa */ false); }; if (layerBounds.isEmpty()) { abortLayer(); return; } sk_sp newDevice; if (strategy == kFullLayer_SaveLayerStrategy) { SkASSERT(!layerBounds.isEmpty()); SkImageInfo info = make_layer_info(priorDevice->imageInfo(), layerBounds.width(), layerBounds.height(), SkToBool(rec.fSaveLayerFlags & kF16ColorType)); if (rec.fSaveLayerFlags & kF16ColorType) { info = info.makeColorType(kRGBA_F16_SkColorType); } SkASSERT(info.alphaType() != kOpaque_SkAlphaType); SkPixelGeometry geo = rec.fSaveLayerFlags & kPreserveLCDText_SaveLayerFlag ? fProps.pixelGeometry() : kUnknown_SkPixelGeometry; const bool trackCoverage = SkToBool( rec.fSaveLayerFlags & kMaskAgainstCoverage_EXPERIMENTAL_DONT_USE_SaveLayerFlag); const auto createInfo = SkBaseDevice::CreateInfo(info, geo, SkBaseDevice::kNever_TileUsage, trackCoverage, fAllocator.get()); // Use the original paint as a hint so that it includes the image filter newDevice.reset(priorDevice->onCreateDevice(createInfo, rec.fPaint)); } bool initBackdrop = (rec.fSaveLayerFlags & kInitWithPrevious_SaveLayerFlag) || rec.fBackdrop; if (!newDevice) { // Either we weren't meant to allocate a full layer, or the full layer creation failed. // Using an explicit NoPixelsDevice lets us reflect what the layer state would have been // on success (or kFull_LayerStrategy) while squashing draw calls that target something that // doesn't exist. newDevice = sk_make_sp(SkIRect::MakeWH(layerBounds.width(), layerBounds.height()), fProps, this->imageInfo().refColorSpace()); initBackdrop = false; } // Configure device to match determined mapping for any image filters. // The setDeviceCoordinateSystem applies the prior device's global transform since // 'newLayerMapping' only defines the transforms between the two devices and it must be updated // to the global coordinate system. newDevice->setMarkerStack(fMarkerStack.get()); if (!newDevice->setDeviceCoordinateSystem(priorDevice->deviceToGlobal() * SkM44(newLayerMapping.deviceMatrix()), SkM44(newLayerMapping.layerMatrix()), layerBounds.left(), layerBounds.top())) { // If we made it this far and the coordinate system is invalid, we most likely had a valid // mapping until being combined with the previous device-to-global matrix, at which point // it overflowed or floating point rounding caused it to no longer be invertible. There's // not much we can do but clean up the layer and mark the clip as empty. This tends to come // up in fuzzer-generated inputs, so this policy is not unreasonable and helps avoids UB. newDevice = nullptr; abortLayer(); return; } if (initBackdrop) { SkPaint backdropPaint; const SkImageFilter* backdropFilter = optimize_layer_filter(rec.fBackdrop, &backdropPaint); // The new device was constructed to be compatible with 'filter', not necessarily // 'rec.fBackdrop', so allow DrawDeviceWithFilter to transform the prior device contents // if necessary to evaluate the backdrop filter. If no filters are involved, then the // devices differ by integer translations and are always compatible. bool scaleBackdrop = rec.fExperimentalBackdropScale != 1.0f; auto compat = (filter || backdropFilter || scaleBackdrop) ? DeviceCompatibleWithFilter::kUnknown : DeviceCompatibleWithFilter::kYes; this->internalDrawDeviceWithFilter(priorDevice, // src newDevice.get(), // dst backdropFilter, backdropPaint, compat, rec.fExperimentalBackdropScale); } fMCRec->newLayer(std::move(newDevice), sk_ref_sp(filter), restorePaint); fQuickRejectBounds = this->computeDeviceClipBounds(); } int SkCanvas::saveLayerAlpha(const SkRect* bounds, U8CPU alpha) { if (0xFF == alpha) { return this->saveLayer(bounds, nullptr); } else { SkPaint tmpPaint; tmpPaint.setAlpha(alpha); return this->saveLayer(bounds, &tmpPaint); } } void SkCanvas::internalSaveBehind(const SkRect* localBounds) { SkBaseDevice* device = this->topDevice(); // Map the local bounds into the top device's coordinate space (this is not // necessarily the full global CTM transform). SkIRect devBounds; if (localBounds) { SkRect tmp; device->localToDevice().mapRect(&tmp, *localBounds); if (!devBounds.intersect(tmp.round(), device->devClipBounds())) { devBounds.setEmpty(); } } else { devBounds = device->devClipBounds(); } if (devBounds.isEmpty()) { return; } // This is getting the special image from the current device, which is then drawn into (both by // a client, and the drawClippedToSaveBehind below). Since this is not saving a layer, with its // own device, we need to explicitly copy the back image contents so that its original content // is available when we splat it back later during restore. auto backImage = device->snapSpecial(devBounds, /* copy */ true); if (!backImage) { return; } // we really need the save, so we can wack the fMCRec this->checkForDeferredSave(); fMCRec->fBackImage = std::make_unique(BackImage{std::move(backImage), devBounds.topLeft()}); SkPaint paint; paint.setBlendMode(SkBlendMode::kClear); this->drawClippedToSaveBehind(paint); } void SkCanvas::internalRestore() { SkASSERT(!fMCStack.empty()); // now detach these from fMCRec so we can pop(). Gets freed after its drawn std::unique_ptr layer = std::move(fMCRec->fLayer); std::unique_ptr backImage = std::move(fMCRec->fBackImage); fMarkerStack->restore(fMCRec); // now do the normal restore() fMCRec->~MCRec(); // balanced in save() fMCStack.pop_back(); fMCRec = (MCRec*) fMCStack.back(); if (!fMCRec) { // This was the last record, restored during the destruction of the SkCanvas return; } this->topDevice()->restore(fMCRec->fMatrix); if (backImage) { SkPaint paint; paint.setBlendMode(SkBlendMode::kDstOver); this->topDevice()->drawSpecial(backImage->fImage.get(), SkMatrix::Translate(backImage->fLoc), SkSamplingOptions(), paint); } // Draw the layer's device contents into the now-current older device. We can't call public // draw functions since we don't want to record them. if (layer && !layer->fDevice->isNoPixelsDevice() && !layer->fDiscard) { layer->fDevice->setImmutable(); // Don't go through AutoLayerForImageFilter since device draws are so closely tied to // internalSaveLayer and internalRestore. if (this->predrawNotify()) { SkBaseDevice* dstDev = this->topDevice(); if (layer->fImageFilter) { this->internalDrawDeviceWithFilter(layer->fDevice.get(), // src dstDev, // dst layer->fImageFilter.get(), layer->fPaint, DeviceCompatibleWithFilter::kYes); } else { // NOTE: We don't just call internalDrawDeviceWithFilter with a null filter // because we want to take advantage of overridden drawDevice functions for // document-based devices. SkSamplingOptions sampling; dstDev->drawDevice(layer->fDevice.get(), sampling, layer->fPaint); } } } // Reset the clip restriction if the restore went past the save point that had added it. if (this->getSaveCount() < fClipRestrictionSaveCount) { fClipRestrictionRect.setEmpty(); fClipRestrictionSaveCount = -1; } // Update the quick-reject bounds in case the restore changed the top device or the // removed save record had included modifications to the clip stack. fQuickRejectBounds = this->computeDeviceClipBounds(); this->validateClip(); } sk_sp SkCanvas::makeSurface(const SkImageInfo& info, const SkSurfaceProps* props) { if (nullptr == props) { props = &fProps; } return this->onNewSurface(info, *props); } sk_sp SkCanvas::onNewSurface(const SkImageInfo& info, const SkSurfaceProps& props) { return this->baseDevice()->makeSurface(info, props); } SkImageInfo SkCanvas::imageInfo() const { return this->onImageInfo(); } SkImageInfo SkCanvas::onImageInfo() const { return this->baseDevice()->imageInfo(); } bool SkCanvas::getProps(SkSurfaceProps* props) const { return this->onGetProps(props); } bool SkCanvas::onGetProps(SkSurfaceProps* props) const { if (props) { *props = fProps; } return true; } bool SkCanvas::peekPixels(SkPixmap* pmap) { return this->onPeekPixels(pmap); } bool SkCanvas::onPeekPixels(SkPixmap* pmap) { return this->baseDevice()->peekPixels(pmap); } void* SkCanvas::accessTopLayerPixels(SkImageInfo* info, size_t* rowBytes, SkIPoint* origin) { SkPixmap pmap; if (!this->onAccessTopLayerPixels(&pmap)) { return nullptr; } if (info) { *info = pmap.info(); } if (rowBytes) { *rowBytes = pmap.rowBytes(); } if (origin) { // If the caller requested the origin, they presumably are expecting the returned pixels to // be axis-aligned with the root canvas. If the top level device isn't axis aligned, that's // not the case. Until we update accessTopLayerPixels() to accept a coord space matrix // instead of an origin, just don't expose the pixels in that case. Note that this means // that layers with complex coordinate spaces can still report their pixels if the caller // does not ask for the origin (e.g. just to dump its output to a file, etc). if (this->topDevice()->isPixelAlignedToGlobal()) { *origin = this->topDevice()->getOrigin(); } else { return nullptr; } } return pmap.writable_addr(); } bool SkCanvas::onAccessTopLayerPixels(SkPixmap* pmap) { return this->topDevice()->accessPixels(pmap); } ///////////////////////////////////////////////////////////////////////////// void SkCanvas::translate(SkScalar dx, SkScalar dy) { if (dx || dy) { this->checkForDeferredSave(); fMCRec->fMatrix.preTranslate(dx, dy); this->topDevice()->setGlobalCTM(fMCRec->fMatrix); this->didTranslate(dx,dy); } } void SkCanvas::scale(SkScalar sx, SkScalar sy) { if (sx != 1 || sy != 1) { this->checkForDeferredSave(); fMCRec->fMatrix.preScale(sx, sy); this->topDevice()->setGlobalCTM(fMCRec->fMatrix); this->didScale(sx, sy); } } void SkCanvas::rotate(SkScalar degrees) { SkMatrix m; m.setRotate(degrees); this->concat(m); } void SkCanvas::rotate(SkScalar degrees, SkScalar px, SkScalar py) { SkMatrix m; m.setRotate(degrees, px, py); this->concat(m); } void SkCanvas::skew(SkScalar sx, SkScalar sy) { SkMatrix m; m.setSkew(sx, sy); this->concat(m); } void SkCanvas::concat(const SkMatrix& matrix) { if (matrix.isIdentity()) { return; } this->concat(SkM44(matrix)); } void SkCanvas::internalConcat44(const SkM44& m) { this->checkForDeferredSave(); fMCRec->fMatrix.preConcat(m); this->topDevice()->setGlobalCTM(fMCRec->fMatrix); } void SkCanvas::concat(const SkM44& m) { this->internalConcat44(m); // notify subclasses this->didConcat44(m); } void SkCanvas::internalSetMatrix(const SkM44& m) { fMCRec->fMatrix = m; this->topDevice()->setGlobalCTM(fMCRec->fMatrix); } void SkCanvas::setMatrix(const SkMatrix& matrix) { this->setMatrix(SkM44(matrix)); } void SkCanvas::setMatrix(const SkM44& m) { this->checkForDeferredSave(); this->internalSetMatrix(m); this->didSetM44(m); } void SkCanvas::resetMatrix() { this->setMatrix(SkM44()); } void SkCanvas::markCTM(const char* name) { if (SkCanvasPriv::ValidateMarker(name)) { fMarkerStack->setMarker(SkOpts::hash_fn(name, strlen(name), 0), this->getLocalToDevice(), fMCRec); this->onMarkCTM(name); } } bool SkCanvas::findMarkedCTM(const char* name, SkM44* mx) const { return SkCanvasPriv::ValidateMarker(name) && fMarkerStack->findMarker(SkOpts::hash_fn(name, strlen(name), 0), mx); } ////////////////////////////////////////////////////////////////////////////// void SkCanvas::clipRect(const SkRect& rect, SkClipOp op, bool doAA) { if (!rect.isFinite()) { return; } this->checkForDeferredSave(); ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle; this->onClipRect(rect.makeSorted(), op, edgeStyle); } void SkCanvas::onClipRect(const SkRect& rect, SkClipOp op, ClipEdgeStyle edgeStyle) { SkASSERT(rect.isSorted()); const bool isAA = kSoft_ClipEdgeStyle == edgeStyle; AutoUpdateQRBounds aqr(this); this->topDevice()->clipRect(rect, op, isAA); } void SkCanvas::androidFramework_setDeviceClipRestriction(const SkIRect& rect) { // The device clip restriction is a surface-space rectangular intersection that cannot be // drawn outside of. The rectangle is remembered so that subsequent resetClip calls still // respect the restriction. Other than clip resetting, all clip operations restrict the set // of renderable pixels, so once set, the restriction will be respected until the canvas // save stack is restored past the point this function was invoked. Unfortunately, the current // implementation relies on the clip stack of the underyling SkDevices, which leads to some // awkward behavioral interactions (see skbug.com/12252). // // Namely, a canvas restore() could undo the clip restriction's rect, and if // setDeviceClipRestriction were called at a nested save level, there's no way to undo just the // prior restriction and re-apply the new one. It also only makes sense to apply to the base // device; any other device for a saved layer will be clipped back to the base device during its // matched restore. As such, we: // - Remember the save count that added the clip restriction and reset the rect to empty when // we've restored past that point to keep our state in sync with the device's clip stack. // - We assert that we're on the base device when this is invoked. // - We assert that setDeviceClipRestriction() is only called when there was no prior // restriction (cannot re-restrict, and prior state must have been reset by restoring the // canvas state). // - Historically, the empty rect would reset the clip restriction but it only could do so // partially since the device's clips wasn't adjusted. Resetting is now handled // automatically via SkCanvas::restore(), so empty input rects are skipped. SkASSERT(this->topDevice() == this->baseDevice()); // shouldn't be in a nested layer // and shouldn't already have a restriction SkASSERT(fClipRestrictionSaveCount < 0 && fClipRestrictionRect.isEmpty()); if (fClipRestrictionSaveCount < 0 && !rect.isEmpty()) { fClipRestrictionRect = rect; fClipRestrictionSaveCount = this->getSaveCount(); // A non-empty clip restriction immediately applies an intersection op (ignoring the ctm). // so we have to resolve the save. this->checkForDeferredSave(); AutoUpdateQRBounds aqr(this); // Use clipRegion() since that operates in canvas-space, whereas clipRect() would apply the // device's current transform first. this->topDevice()->clipRegion(SkRegion(rect), SkClipOp::kIntersect); } } void SkCanvas::internal_private_resetClip() { this->checkForDeferredSave(); this->onResetClip(); } void SkCanvas::onResetClip() { SkIRect deviceRestriction = this->topDevice()->imageInfo().bounds(); if (fClipRestrictionSaveCount >= 0 && this->topDevice() == this->baseDevice()) { // Respect the device clip restriction when resetting the clip if we're on the base device. // If we're not on the base device, then the "reset" applies to the top device's clip stack, // and the clip restriction will be respected automatically during a restore of the layer. if (!deviceRestriction.intersect(fClipRestrictionRect)) { deviceRestriction = SkIRect::MakeEmpty(); } } AutoUpdateQRBounds aqr(this); this->topDevice()->replaceClip(deviceRestriction); } void SkCanvas::clipRRect(const SkRRect& rrect, SkClipOp op, bool doAA) { this->checkForDeferredSave(); ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle; if (rrect.isRect()) { this->onClipRect(rrect.getBounds(), op, edgeStyle); } else { this->onClipRRect(rrect, op, edgeStyle); } } void SkCanvas::onClipRRect(const SkRRect& rrect, SkClipOp op, ClipEdgeStyle edgeStyle) { bool isAA = kSoft_ClipEdgeStyle == edgeStyle; AutoUpdateQRBounds aqr(this); this->topDevice()->clipRRect(rrect, op, isAA); } void SkCanvas::clipPath(const SkPath& path, SkClipOp op, bool doAA) { this->checkForDeferredSave(); ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle; if (!path.isInverseFillType() && fMCRec->fMatrix.asM33().rectStaysRect()) { SkRect r; if (path.isRect(&r)) { this->onClipRect(r, op, edgeStyle); return; } SkRRect rrect; if (path.isOval(&r)) { rrect.setOval(r); this->onClipRRect(rrect, op, edgeStyle); return; } if (path.isRRect(&rrect)) { this->onClipRRect(rrect, op, edgeStyle); return; } } this->onClipPath(path, op, edgeStyle); } void SkCanvas::onClipPath(const SkPath& path, SkClipOp op, ClipEdgeStyle edgeStyle) { bool isAA = kSoft_ClipEdgeStyle == edgeStyle; AutoUpdateQRBounds aqr(this); this->topDevice()->clipPath(path, op, isAA); } void SkCanvas::clipShader(sk_sp sh, SkClipOp op) { if (sh) { if (sh->isOpaque()) { if (op == SkClipOp::kIntersect) { // we don't occlude anything, so skip this call } else { SkASSERT(op == SkClipOp::kDifference); // we occlude everything, so set the clip to empty this->clipRect({0,0,0,0}); } } else { this->checkForDeferredSave(); this->onClipShader(std::move(sh), op); } } } void SkCanvas::onClipShader(sk_sp sh, SkClipOp op) { AutoUpdateQRBounds aqr(this); this->topDevice()->clipShader(sh, op); } void SkCanvas::clipRegion(const SkRegion& rgn, SkClipOp op) { this->checkForDeferredSave(); this->onClipRegion(rgn, op); } void SkCanvas::onClipRegion(const SkRegion& rgn, SkClipOp op) { AutoUpdateQRBounds aqr(this); this->topDevice()->clipRegion(rgn, op); } void SkCanvas::validateClip() const { #ifdef SK_DEBUG SkRect tmp = this->computeDeviceClipBounds(); if (this->isClipEmpty()) { SkASSERT(fQuickRejectBounds.isEmpty()); } else { SkASSERT(tmp == fQuickRejectBounds); } #endif } bool SkCanvas::androidFramework_isClipAA() const { return this->topDevice()->onClipIsAA(); } void SkCanvas::temporary_internal_getRgnClip(SkRegion* rgn) { rgn->setEmpty(); SkBaseDevice* device = this->topDevice(); if (device && device->isPixelAlignedToGlobal()) { device->onAsRgnClip(rgn); SkIPoint origin = device->getOrigin(); if (origin.x() | origin.y()) { rgn->translate(origin.x(), origin.y()); } } } /////////////////////////////////////////////////////////////////////////////// bool SkCanvas::isClipEmpty() const { return this->topDevice()->onGetClipType() == SkBaseDevice::ClipType::kEmpty; } bool SkCanvas::isClipRect() const { return this->topDevice()->onGetClipType() == SkBaseDevice::ClipType::kRect; } bool SkCanvas::quickReject(const SkRect& src) const { #ifdef SK_DEBUG // Verify that fQuickRejectBounds are set properly. this->validateClip(); #endif SkRect devRect = SkMatrixPriv::MapRect(fMCRec->fMatrix, src); return !devRect.isFinite() || !devRect.intersects(fQuickRejectBounds); } bool SkCanvas::quickReject(const SkPath& path) const { return path.isEmpty() || this->quickReject(path.getBounds()); } bool SkCanvas::internalQuickReject(const SkRect& bounds, const SkPaint& paint, const SkMatrix* matrix) { if (!bounds.isFinite() || paint.nothingToDraw()) { return true; } if (paint.canComputeFastBounds()) { SkRect tmp = matrix ? matrix->mapRect(bounds) : bounds; return this->quickReject(paint.computeFastBounds(tmp, &tmp)); } return false; } SkRect SkCanvas::getLocalClipBounds() const { SkIRect ibounds = this->getDeviceClipBounds(); if (ibounds.isEmpty()) { return SkRect::MakeEmpty(); } SkMatrix inverse; // if we can't invert the CTM, we can't return local clip bounds if (!fMCRec->fMatrix.asM33().invert(&inverse)) { return SkRect::MakeEmpty(); } SkRect bounds; // adjust it outwards in case we are antialiasing const int margin = 1; SkRect r = SkRect::Make(ibounds.makeOutset(margin, margin)); inverse.mapRect(&bounds, r); return bounds; } SkIRect SkCanvas::getDeviceClipBounds() const { return this->computeDeviceClipBounds(/*outsetForAA=*/false).roundOut(); } SkRect SkCanvas::computeDeviceClipBounds(bool outsetForAA) const { const SkBaseDevice* dev = this->topDevice(); if (dev->onGetClipType() == SkBaseDevice::ClipType::kEmpty) { return SkRect::MakeEmpty(); } else { SkRect devClipBounds = SkMatrixPriv::MapRect(dev->deviceToGlobal(), SkRect::Make(dev->devClipBounds())); if (outsetForAA) { // Expand bounds out by 1 in case we are anti-aliasing. We store the // bounds as floats to enable a faster quick reject implementation. devClipBounds.outset(1.f, 1.f); } return devClipBounds; } } /////////////////////////////////////////////////////////////////////// SkMatrix SkCanvas::getTotalMatrix() const { return fMCRec->fMatrix.asM33(); } SkM44 SkCanvas::getLocalToDevice() const { return fMCRec->fMatrix; } #if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) && SK_SUPPORT_GPU SkIRect SkCanvas::topLayerBounds() const { return this->topDevice()->getGlobalBounds(); } GrBackendRenderTarget SkCanvas::topLayerBackendRenderTarget() const { auto proxy = SkCanvasPriv::TopDeviceTargetProxy(const_cast(this)); if (!proxy) { return {}; } const GrRenderTarget* renderTarget = proxy->peekRenderTarget(); return renderTarget ? renderTarget->getBackendRenderTarget() : GrBackendRenderTarget(); } #endif GrRecordingContext* SkCanvas::recordingContext() { #if SK_SUPPORT_GPU if (auto gpuDevice = this->topDevice()->asGpuDevice()) { return gpuDevice->recordingContext(); } #endif return nullptr; } void SkCanvas::drawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); if (outer.isEmpty()) { return; } if (inner.isEmpty()) { this->drawRRect(outer, paint); return; } // We don't have this method (yet), but technically this is what we should // be able to return ... // if (!outer.contains(inner))) { // // For now at least check for containment of bounds if (!outer.getBounds().contains(inner.getBounds())) { return; } this->onDrawDRRect(outer, inner, paint); } void SkCanvas::drawPaint(const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); this->onDrawPaint(paint); } void SkCanvas::drawRect(const SkRect& r, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); // To avoid redundant logic in our culling code and various backends, we always sort rects // before passing them along. this->onDrawRect(r.makeSorted(), paint); } void SkCanvas::drawClippedToSaveBehind(const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); this->onDrawBehind(paint); } void SkCanvas::drawRegion(const SkRegion& region, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); if (region.isEmpty()) { return; } if (region.isRect()) { return this->drawIRect(region.getBounds(), paint); } this->onDrawRegion(region, paint); } void SkCanvas::drawOval(const SkRect& r, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); // To avoid redundant logic in our culling code and various backends, we always sort rects // before passing them along. this->onDrawOval(r.makeSorted(), paint); } void SkCanvas::drawRRect(const SkRRect& rrect, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); this->onDrawRRect(rrect, paint); } void SkCanvas::drawPoints(PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); this->onDrawPoints(mode, count, pts, paint); } void SkCanvas::drawVertices(const sk_sp& vertices, SkBlendMode mode, const SkPaint& paint) { this->drawVertices(vertices.get(), mode, paint); } void SkCanvas::drawVertices(const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); RETURN_ON_NULL(vertices); // We expect fans to be converted to triangles when building or deserializing SkVertices. SkASSERT(vertices->priv().mode() != SkVertices::kTriangleFan_VertexMode); #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK // Preserve legacy behavior for Android: ignore the SkShader if there are no texCoords present if (paint.getShader() && !vertices->priv().hasTexCoords()) { SkPaint noShaderPaint(paint); noShaderPaint.setShader(nullptr); this->onDrawVerticesObject(vertices, mode, noShaderPaint); return; } #endif this->onDrawVerticesObject(vertices, mode, paint); } void SkCanvas::drawPath(const SkPath& path, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); this->onDrawPath(path, paint); } // Returns true if the rect can be "filled" : non-empty and finite static bool fillable(const SkRect& r) { SkScalar w = r.width(); SkScalar h = r.height(); return SkScalarIsFinite(w) && w > 0 && SkScalarIsFinite(h) && h > 0; } static SkPaint clean_paint_for_lattice(const SkPaint* paint) { SkPaint cleaned; if (paint) { cleaned = *paint; cleaned.setMaskFilter(nullptr); cleaned.setAntiAlias(false); } return cleaned; } void SkCanvas::drawImageNine(const SkImage* image, const SkIRect& center, const SkRect& dst, SkFilterMode filter, const SkPaint* paint) { RETURN_ON_NULL(image); const int xdivs[] = {center.fLeft, center.fRight}; const int ydivs[] = {center.fTop, center.fBottom}; Lattice lat; lat.fXDivs = xdivs; lat.fYDivs = ydivs; lat.fRectTypes = nullptr; lat.fXCount = lat.fYCount = 2; lat.fBounds = nullptr; lat.fColors = nullptr; this->drawImageLattice(image, lat, dst, filter, paint); } void SkCanvas::drawImageLattice(const SkImage* image, const Lattice& lattice, const SkRect& dst, SkFilterMode filter, const SkPaint* paint) { TRACE_EVENT0("skia", TRACE_FUNC); RETURN_ON_NULL(image); if (dst.isEmpty()) { return; } SkIRect bounds; Lattice latticePlusBounds = lattice; if (!latticePlusBounds.fBounds) { bounds = SkIRect::MakeWH(image->width(), image->height()); latticePlusBounds.fBounds = &bounds; } if (SkLatticeIter::Valid(image->width(), image->height(), latticePlusBounds)) { SkPaint latticePaint = clean_paint_for_lattice(paint); this->onDrawImageLattice2(image, latticePlusBounds, dst, filter, &latticePaint); } else { this->drawImageRect(image, SkRect::MakeIWH(image->width(), image->height()), dst, SkSamplingOptions(filter), paint, kStrict_SrcRectConstraint); } } void SkCanvas::drawAtlas(const SkImage* atlas, const SkRSXform xform[], const SkRect tex[], const SkColor colors[], int count, SkBlendMode mode, const SkSamplingOptions& sampling, const SkRect* cull, const SkPaint* paint) { TRACE_EVENT0("skia", TRACE_FUNC); RETURN_ON_NULL(atlas); if (count <= 0) { return; } SkASSERT(atlas); SkASSERT(tex); this->onDrawAtlas2(atlas, xform, tex, colors, count, mode, sampling, cull, paint); } void SkCanvas::drawAnnotation(const SkRect& rect, const char key[], SkData* value) { TRACE_EVENT0("skia", TRACE_FUNC); if (key) { this->onDrawAnnotation(rect, key, value); } } void SkCanvas::private_draw_shadow_rec(const SkPath& path, const SkDrawShadowRec& rec) { TRACE_EVENT0("skia", TRACE_FUNC); this->onDrawShadowRec(path, rec); } void SkCanvas::onDrawShadowRec(const SkPath& path, const SkDrawShadowRec& rec) { // We don't test quickReject because the shadow outsets the path's bounds. // TODO(michaelludwig): Is it worth calling SkDrawShadowMetrics::GetLocalBounds here? if (!this->predrawNotify()) { return; } this->topDevice()->drawShadow(path, rec); } void SkCanvas::experimental_DrawEdgeAAQuad(const SkRect& rect, const SkPoint clip[4], QuadAAFlags aaFlags, const SkColor4f& color, SkBlendMode mode) { TRACE_EVENT0("skia", TRACE_FUNC); // Make sure the rect is sorted before passing it along this->onDrawEdgeAAQuad(rect.makeSorted(), clip, aaFlags, color, mode); } void SkCanvas::experimental_DrawEdgeAAImageSet(const ImageSetEntry imageSet[], int cnt, const SkPoint dstClips[], const SkMatrix preViewMatrices[], const SkSamplingOptions& sampling, const SkPaint* paint, SrcRectConstraint constraint) { TRACE_EVENT0("skia", TRACE_FUNC); this->onDrawEdgeAAImageSet2(imageSet, cnt, dstClips, preViewMatrices, sampling, paint, constraint); } ////////////////////////////////////////////////////////////////////////////// // These are the virtual drawing methods ////////////////////////////////////////////////////////////////////////////// void SkCanvas::onDiscard() { if (fSurfaceBase) { sk_ignore_unused_variable(fSurfaceBase->aboutToDraw(SkSurface::kDiscard_ContentChangeMode)); } } void SkCanvas::onDrawPaint(const SkPaint& paint) { this->internalDrawPaint(paint); } void SkCanvas::internalDrawPaint(const SkPaint& paint) { // drawPaint does not call internalQuickReject() because computing its geometry is not free // (see getLocalClipBounds(), and the two conditions below are sufficient. if (paint.nothingToDraw() || this->isClipEmpty()) { return; } auto layer = this->aboutToDraw(this, paint, nullptr, CheckForOverwrite::kYes); if (layer) { this->topDevice()->drawPaint(layer->paint()); } } void SkCanvas::onDrawPoints(PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { if ((long)count <= 0 || paint.nothingToDraw()) { return; } SkASSERT(pts != nullptr); SkRect bounds; // Compute bounds from points (common for drawing a single line) if (count == 2) { bounds.set(pts[0], pts[1]); } else { bounds.setBounds(pts, SkToInt(count)); } // Enforce paint style matches implicit behavior of drawPoints SkPaint strokePaint = paint; strokePaint.setStyle(SkPaint::kStroke_Style); if (this->internalQuickReject(bounds, strokePaint)) { return; } auto layer = this->aboutToDraw(this, strokePaint, &bounds); if (layer) { this->topDevice()->drawPoints(mode, count, pts, layer->paint()); } } void SkCanvas::onDrawRect(const SkRect& r, const SkPaint& paint) { SkASSERT(r.isSorted()); if (this->internalQuickReject(r, paint)) { return; } auto layer = this->aboutToDraw(this, paint, &r, CheckForOverwrite::kYes); if (layer) { this->topDevice()->drawRect(r, layer->paint()); } } void SkCanvas::onDrawRegion(const SkRegion& region, const SkPaint& paint) { const SkRect bounds = SkRect::Make(region.getBounds()); if (this->internalQuickReject(bounds, paint)) { return; } auto layer = this->aboutToDraw(this, paint, &bounds); if (layer) { this->topDevice()->drawRegion(region, layer->paint()); } } void SkCanvas::onDrawBehind(const SkPaint& paint) { SkBaseDevice* dev = this->topDevice(); if (!dev) { return; } SkIRect bounds; SkDeque::Iter iter(fMCStack, SkDeque::Iter::kBack_IterStart); for (;;) { const MCRec* rec = (const MCRec*)iter.prev(); if (!rec) { return; // no backimages, so nothing to draw } if (rec->fBackImage) { // drawBehind should only have been called when the saveBehind record is active; // if this fails, it means a real saveLayer was made w/o being restored first. SkASSERT(dev == rec->fDevice); bounds = SkIRect::MakeXYWH(rec->fBackImage->fLoc.fX, rec->fBackImage->fLoc.fY, rec->fBackImage->fImage->width(), rec->fBackImage->fImage->height()); break; } } // The backimage location (and thus bounds) were defined in the device's space, so mark it // as a clip. We use a clip instead of just drawing a rect in case the paint has an image // filter on it (which is applied before any auto-layer so the filter is clipped). dev->save(); { // We also have to temporarily whack the device matrix since clipRegion is affected by the // global-to-device matrix and clipRect is affected by the local-to-device. SkAutoDeviceTransformRestore adtr(dev, SkMatrix::I()); dev->clipRect(SkRect::Make(bounds), SkClipOp::kIntersect, /* aa */ false); // ~adtr will reset the local-to-device matrix so that drawPaint() shades correctly. } auto layer = this->aboutToDraw(this, paint); if (layer) { this->topDevice()->drawPaint(layer->paint()); } dev->restore(fMCRec->fMatrix); } void SkCanvas::onDrawOval(const SkRect& oval, const SkPaint& paint) { SkASSERT(oval.isSorted()); if (this->internalQuickReject(oval, paint)) { return; } auto layer = this->aboutToDraw(this, paint, &oval); if (layer) { this->topDevice()->drawOval(oval, layer->paint()); } } void SkCanvas::onDrawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool useCenter, const SkPaint& paint) { SkASSERT(oval.isSorted()); if (this->internalQuickReject(oval, paint)) { return; } auto layer = this->aboutToDraw(this, paint, &oval); if (layer) { this->topDevice()->drawArc(oval, startAngle, sweepAngle, useCenter, layer->paint()); } } void SkCanvas::onDrawRRect(const SkRRect& rrect, const SkPaint& paint) { const SkRect& bounds = rrect.getBounds(); // Delegating to simpler draw operations if (rrect.isRect()) { // call the non-virtual version this->SkCanvas::drawRect(bounds, paint); return; } else if (rrect.isOval()) { // call the non-virtual version this->SkCanvas::drawOval(bounds, paint); return; } if (this->internalQuickReject(bounds, paint)) { return; } auto layer = this->aboutToDraw(this, paint, &bounds); if (layer) { this->topDevice()->drawRRect(rrect, layer->paint()); } } void SkCanvas::onDrawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) { const SkRect& bounds = outer.getBounds(); if (this->internalQuickReject(bounds, paint)) { return; } auto layer = this->aboutToDraw(this, paint, &bounds); if (layer) { this->topDevice()->drawDRRect(outer, inner, layer->paint()); } } void SkCanvas::onDrawPath(const SkPath& path, const SkPaint& paint) { if (!path.isFinite()) { return; } const SkRect& pathBounds = path.getBounds(); if (!path.isInverseFillType() && this->internalQuickReject(pathBounds, paint)) { return; } if (path.isInverseFillType() && pathBounds.width() <= 0 && pathBounds.height() <= 0) { this->internalDrawPaint(paint); return; } auto layer = this->aboutToDraw(this, paint, &pathBounds); if (layer) { this->topDevice()->drawPath(path, layer->paint()); } } bool SkCanvas::canDrawBitmapAsSprite(SkScalar x, SkScalar y, int w, int h, const SkSamplingOptions& sampling, const SkPaint& paint) { if (!paint.getImageFilter()) { return false; } const SkMatrix& ctm = this->getTotalMatrix(); if (!SkTreatAsSprite(ctm, SkISize::Make(w, h), sampling, paint)) { return false; } // The other paint effects need to be applied before the image filter, but the sprite draw // applies the filter explicitly first. if (paint.getAlphaf() < 1.f || paint.getColorFilter() || paint.getMaskFilter()) { return false; } // Currently we can only use the filterSprite code if we are clipped to the bitmap's bounds. // Once we can filter and the filter will return a result larger than itself, we should be // able to remove this constraint. // skbug.com/4526 // SkPoint pt; ctm.mapXY(x, y, &pt); SkIRect ir = SkIRect::MakeXYWH(SkScalarRoundToInt(pt.x()), SkScalarRoundToInt(pt.y()), w, h); // quick bounds have been outset by 1px compared to overall device bounds, so this makes the // contains check equivalent to between ir and device bounds ir.outset(1, 1); return ir.contains(fQuickRejectBounds); } // Clean-up the paint to match the drawing semantics for drawImage et al. (skbug.com/7804). static SkPaint clean_paint_for_drawImage(const SkPaint* paint) { SkPaint cleaned; if (paint) { cleaned = *paint; cleaned.setStyle(SkPaint::kFill_Style); cleaned.setPathEffect(nullptr); } return cleaned; } // drawVertices fills triangles and ignores mask filter and path effect, // so canonicalize the paint before checking quick reject. static SkPaint clean_paint_for_drawVertices(SkPaint paint) { paint.setStyle(SkPaint::kFill_Style); paint.setMaskFilter(nullptr); paint.setPathEffect(nullptr); return paint; } void SkCanvas::onDrawImage2(const SkImage* image, SkScalar x, SkScalar y, const SkSamplingOptions& sampling, const SkPaint* paint) { SkPaint realPaint = clean_paint_for_drawImage(paint); SkRect bounds = SkRect::MakeXYWH(x, y, image->width(), image->height()); if (this->internalQuickReject(bounds, realPaint)) { return; } if (realPaint.getImageFilter() && this->canDrawBitmapAsSprite(x, y, image->width(), image->height(), sampling, realPaint) && !image_to_color_filter(&realPaint)) { // Evaluate the image filter directly on the input image and then draw the result, instead // of first drawing the image to a temporary layer and filtering. SkBaseDevice* device = this->topDevice(); sk_sp special; if ((special = device->makeSpecial(image))) { sk_sp filter = realPaint.refImageFilter(); realPaint.setImageFilter(nullptr); // TODO(michaelludwig) - Many filters could probably be evaluated like this even if the // CTM is not translate-only; the post-transformation of the filtered image by the CTM // will probably look just as good and not require an extra layer. // TODO(michaelludwig) - Once image filter implementations can support source images // with non-(0,0) origins, we can just mark the origin as (x,y) instead of doing a // pre-concat here. SkMatrix layerToDevice = device->localToDevice(); layerToDevice.preTranslate(x, y); skif::Mapping mapping(layerToDevice, SkMatrix::Translate(-x, -y)); if (this->predrawNotify()) { device->drawFilteredImage(mapping, special.get(), filter.get(), sampling,realPaint); } return; } // else fall through to regular drawing path } auto layer = this->aboutToDraw(this, realPaint, &bounds); if (layer) { this->topDevice()->drawImageRect(image, nullptr, bounds, sampling, layer->paint(), kStrict_SrcRectConstraint); } } void SkCanvas::onDrawImageRect2(const SkImage* image, const SkRect& src, const SkRect& dst, const SkSamplingOptions& sampling, const SkPaint* paint, SrcRectConstraint constraint) { SkPaint realPaint = clean_paint_for_drawImage(paint); if (this->internalQuickReject(dst, realPaint)) { return; } auto layer = this->aboutToDraw(this, realPaint, &dst, CheckForOverwrite::kYes, image->isOpaque() ? kOpaque_ShaderOverrideOpacity : kNotOpaque_ShaderOverrideOpacity); if (layer) { this->topDevice()->drawImageRect(image, &src, dst, sampling, layer->paint(), constraint); } } void SkCanvas::onDrawImageLattice2(const SkImage* image, const Lattice& lattice, const SkRect& dst, SkFilterMode filter, const SkPaint* paint) { SkPaint realPaint = clean_paint_for_drawImage(paint); if (this->internalQuickReject(dst, realPaint)) { return; } auto layer = this->aboutToDraw(this, realPaint, &dst); if (layer) { this->topDevice()->drawImageLattice(image, lattice, dst, filter, layer->paint()); } } void SkCanvas::drawImage(const SkImage* image, SkScalar x, SkScalar y, const SkSamplingOptions& sampling, const SkPaint* paint) { TRACE_EVENT0("skia", TRACE_FUNC); RETURN_ON_NULL(image); this->onDrawImage2(image, x, y, sampling, paint); } void SkCanvas::drawImageRect(const SkImage* image, const SkRect& src, const SkRect& dst, const SkSamplingOptions& sampling, const SkPaint* paint, SrcRectConstraint constraint) { RETURN_ON_NULL(image); if (!fillable(dst) || !fillable(src)) { return; } this->onDrawImageRect2(image, src, dst, sampling, paint, constraint); } void SkCanvas::drawImageRect(const SkImage* image, const SkRect& dst, const SkSamplingOptions& sampling, const SkPaint* paint) { RETURN_ON_NULL(image); this->drawImageRect(image, SkRect::MakeIWH(image->width(), image->height()), dst, sampling, paint, kFast_SrcRectConstraint); } void SkCanvas::onDrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y, const SkPaint& paint) { auto glyphRunList = fScratchGlyphRunBuilder->blobToGlyphRunList(*blob, {x, y}); this->onDrawGlyphRunList(glyphRunList, paint); } void SkCanvas::onDrawGlyphRunList(const SkGlyphRunList& glyphRunList, const SkPaint& paint) { SkRect bounds = glyphRunList.sourceBounds(); if (this->internalQuickReject(bounds, paint)) { return; } auto layer = this->aboutToDraw(this, paint, &bounds); if (layer) { this->topDevice()->drawGlyphRunList(glyphRunList, layer->paint()); } } // These call the (virtual) onDraw... method void SkCanvas::drawSimpleText(const void* text, size_t byteLength, SkTextEncoding encoding, SkScalar x, SkScalar y, const SkFont& font, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); if (byteLength) { sk_msan_assert_initialized(text, SkTAddOffset(text, byteLength)); const SkGlyphRunList& glyphRunList = fScratchGlyphRunBuilder->textToGlyphRunList( font, paint, text, byteLength, {x, y}, encoding); if (!glyphRunList.empty()) { this->onDrawGlyphRunList(glyphRunList, paint); } } } void SkCanvas::drawGlyphs(int count, const SkGlyphID* glyphs, const SkPoint* positions, const uint32_t* clusters, int textByteCount, const char* utf8text, SkPoint origin, const SkFont& font, const SkPaint& paint) { if (count <= 0) { return; } SkGlyphRun glyphRun { font, SkMakeSpan(positions, count), SkMakeSpan(glyphs, count), SkMakeSpan(utf8text, textByteCount), SkMakeSpan(clusters, count), SkSpan() }; SkGlyphRunList glyphRunList { glyphRun, glyphRun.sourceBounds(paint).makeOffset(origin), origin }; this->onDrawGlyphRunList(glyphRunList, paint); } void SkCanvas::drawGlyphs(int count, const SkGlyphID glyphs[], const SkPoint positions[], SkPoint origin, const SkFont& font, const SkPaint& paint) { if (count <= 0) { return; } SkGlyphRun glyphRun { font, SkMakeSpan(positions, count), SkMakeSpan(glyphs, count), SkSpan(), SkSpan(), SkSpan() }; SkGlyphRunList glyphRunList { glyphRun, glyphRun.sourceBounds(paint).makeOffset(origin), origin }; this->onDrawGlyphRunList(glyphRunList, paint); } void SkCanvas::drawGlyphs(int count, const SkGlyphID glyphs[], const SkRSXform xforms[], SkPoint origin, const SkFont& font, const SkPaint& paint) { if (count <= 0) { return; } auto [positions, rotateScales] = fScratchGlyphRunBuilder->convertRSXForm(SkMakeSpan(xforms, count)); SkGlyphRun glyphRun { font, positions, SkMakeSpan(glyphs, count), SkSpan(), SkSpan(), rotateScales }; SkGlyphRunList glyphRunList { glyphRun, glyphRun.sourceBounds(paint).makeOffset(origin), origin }; this->onDrawGlyphRunList(glyphRunList, paint); } void SkCanvas::drawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); RETURN_ON_NULL(blob); RETURN_ON_FALSE(blob->bounds().makeOffset(x, y).isFinite()); // Overflow if more than 2^21 glyphs stopping a buffer overflow latter in the stack. // See chromium:1080481 // TODO: can consider unrolling a few at a time if this limit becomes a problem. int totalGlyphCount = 0; constexpr int kMaxGlyphCount = 1 << 21; SkTextBlob::Iter i(*blob); SkTextBlob::Iter::Run r; while (i.next(&r)) { int glyphsLeft = kMaxGlyphCount - totalGlyphCount; RETURN_ON_FALSE(r.fGlyphCount <= glyphsLeft); totalGlyphCount += r.fGlyphCount; } this->onDrawTextBlob(blob, x, y, paint); } void SkCanvas::onDrawVerticesObject(const SkVertices* vertices, SkBlendMode bmode, const SkPaint& paint) { SkPaint simplePaint = clean_paint_for_drawVertices(paint); const SkRect& bounds = vertices->bounds(); if (this->internalQuickReject(bounds, simplePaint)) { return; } auto layer = this->aboutToDraw(this, simplePaint, &bounds); if (layer) { this->topDevice()->drawVertices(vertices, bmode, layer->paint()); } } void SkCanvas::drawPatch(const SkPoint cubics[12], const SkColor colors[4], const SkPoint texCoords[4], SkBlendMode bmode, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); if (nullptr == cubics) { return; } this->onDrawPatch(cubics, colors, texCoords, bmode, paint); } void SkCanvas::onDrawPatch(const SkPoint cubics[12], const SkColor colors[4], const SkPoint texCoords[4], SkBlendMode bmode, const SkPaint& paint) { // drawPatch has the same behavior restrictions as drawVertices SkPaint simplePaint = clean_paint_for_drawVertices(paint); // Since a patch is always within the convex hull of the control points, we discard it when its // bounding rectangle is completely outside the current clip. SkRect bounds; bounds.setBounds(cubics, SkPatchUtils::kNumCtrlPts); if (this->internalQuickReject(bounds, simplePaint)) { return; } auto layer = this->aboutToDraw(this, simplePaint, &bounds); if (layer) { this->topDevice()->drawPatch(cubics, colors, texCoords, bmode, layer->paint()); } } void SkCanvas::drawDrawable(SkDrawable* dr, SkScalar x, SkScalar y) { #ifndef SK_BUILD_FOR_ANDROID_FRAMEWORK TRACE_EVENT0("skia", TRACE_FUNC); #endif RETURN_ON_NULL(dr); if (x || y) { SkMatrix matrix = SkMatrix::Translate(x, y); this->onDrawDrawable(dr, &matrix); } else { this->onDrawDrawable(dr, nullptr); } } void SkCanvas::drawDrawable(SkDrawable* dr, const SkMatrix* matrix) { #ifndef SK_BUILD_FOR_ANDROID_FRAMEWORK TRACE_EVENT0("skia", TRACE_FUNC); #endif RETURN_ON_NULL(dr); if (matrix && matrix->isIdentity()) { matrix = nullptr; } this->onDrawDrawable(dr, matrix); } void SkCanvas::onDrawDrawable(SkDrawable* dr, const SkMatrix* matrix) { // drawable bounds are no longer reliable (e.g. android displaylist) // so don't use them for quick-reject if (this->predrawNotify()) { this->topDevice()->drawDrawable(dr, matrix, this); } } void SkCanvas::onDrawAtlas2(const SkImage* atlas, const SkRSXform xform[], const SkRect tex[], const SkColor colors[], int count, SkBlendMode bmode, const SkSamplingOptions& sampling, const SkRect* cull, const SkPaint* paint) { // drawAtlas is a combination of drawVertices and drawImage... SkPaint realPaint = clean_paint_for_drawVertices(clean_paint_for_drawImage(paint)); realPaint.setShader(atlas->makeShader(sampling)); if (cull && this->internalQuickReject(*cull, realPaint)) { return; } auto layer = this->aboutToDraw(this, realPaint); if (layer) { this->topDevice()->drawAtlas(xform, tex, colors, count, bmode, layer->paint()); } } void SkCanvas::onDrawAnnotation(const SkRect& rect, const char key[], SkData* value) { SkASSERT(key); if (this->predrawNotify()) { this->topDevice()->drawAnnotation(rect, key, value); } } void SkCanvas::onDrawEdgeAAQuad(const SkRect& r, const SkPoint clip[4], QuadAAFlags edgeAA, const SkColor4f& color, SkBlendMode mode) { SkASSERT(r.isSorted()); SkPaint paint{color}; paint.setBlendMode(mode); if (this->internalQuickReject(r, paint)) { return; } if (this->predrawNotify()) { this->topDevice()->drawEdgeAAQuad(r, clip, edgeAA, color, mode); } } void SkCanvas::onDrawEdgeAAImageSet2(const ImageSetEntry imageSet[], int count, const SkPoint dstClips[], const SkMatrix preViewMatrices[], const SkSamplingOptions& sampling, const SkPaint* paint, SrcRectConstraint constraint) { if (count <= 0) { // Nothing to draw return; } SkPaint realPaint = clean_paint_for_drawImage(paint); // We could calculate the set's dstRect union to always check quickReject(), but we can't reject // individual entries and Chromium's occlusion culling already makes it likely that at least one // entry will be visible. So, we only calculate the draw bounds when it's trivial (count == 1), // or we need it for the autolooper (since it greatly improves image filter perf). bool needsAutoLayer = SkToBool(realPaint.getImageFilter()); bool setBoundsValid = count == 1 || needsAutoLayer; SkRect setBounds = imageSet[0].fDstRect; if (imageSet[0].fMatrixIndex >= 0) { // Account for the per-entry transform that is applied prior to the CTM when drawing preViewMatrices[imageSet[0].fMatrixIndex].mapRect(&setBounds); } if (needsAutoLayer) { for (int i = 1; i < count; ++i) { SkRect entryBounds = imageSet[i].fDstRect; if (imageSet[i].fMatrixIndex >= 0) { preViewMatrices[imageSet[i].fMatrixIndex].mapRect(&entryBounds); } setBounds.joinPossiblyEmptyRect(entryBounds); } } // If we happen to have the draw bounds, though, might as well check quickReject(). if (setBoundsValid && this->internalQuickReject(setBounds, realPaint)) { return; } auto layer = this->aboutToDraw(this, realPaint, setBoundsValid ? &setBounds : nullptr); if (layer) { this->topDevice()->drawEdgeAAImageSet(imageSet, count, dstClips, preViewMatrices, sampling, layer->paint(), constraint); } } ////////////////////////////////////////////////////////////////////////////// // These methods are NOT virtual, and therefore must call back into virtual // methods, rather than actually drawing themselves. ////////////////////////////////////////////////////////////////////////////// void SkCanvas::drawColor(const SkColor4f& c, SkBlendMode mode) { SkPaint paint; paint.setColor(c); paint.setBlendMode(mode); this->drawPaint(paint); } void SkCanvas::drawPoint(SkScalar x, SkScalar y, const SkPaint& paint) { const SkPoint pt = { x, y }; this->drawPoints(kPoints_PointMode, 1, &pt, paint); } void SkCanvas::drawLine(SkScalar x0, SkScalar y0, SkScalar x1, SkScalar y1, const SkPaint& paint) { SkPoint pts[2]; pts[0].set(x0, y0); pts[1].set(x1, y1); this->drawPoints(kLines_PointMode, 2, pts, paint); } void SkCanvas::drawCircle(SkScalar cx, SkScalar cy, SkScalar radius, const SkPaint& paint) { if (radius < 0) { radius = 0; } SkRect r; r.setLTRB(cx - radius, cy - radius, cx + radius, cy + radius); this->drawOval(r, paint); } void SkCanvas::drawRoundRect(const SkRect& r, SkScalar rx, SkScalar ry, const SkPaint& paint) { if (rx > 0 && ry > 0) { SkRRect rrect; rrect.setRectXY(r, rx, ry); this->drawRRect(rrect, paint); } else { this->drawRect(r, paint); } } void SkCanvas::drawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool useCenter, const SkPaint& paint) { TRACE_EVENT0("skia", TRACE_FUNC); if (oval.isEmpty() || !sweepAngle) { return; } this->onDrawArc(oval, startAngle, sweepAngle, useCenter, paint); } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DISABLE_SKPICTURE void SkCanvas::drawPicture(const SkPicture* picture, const SkMatrix* matrix, const SkPaint* paint) {} void SkCanvas::onDrawPicture(const SkPicture* picture, const SkMatrix* matrix, const SkPaint* paint) {} #else void SkCanvas::drawPicture(const SkPicture* picture, const SkMatrix* matrix, const SkPaint* paint) { TRACE_EVENT0("skia", TRACE_FUNC); RETURN_ON_NULL(picture); if (matrix && matrix->isIdentity()) { matrix = nullptr; } if (picture->approximateOpCount() <= kMaxPictureOpsToUnrollInsteadOfRef) { SkAutoCanvasMatrixPaint acmp(this, matrix, paint, picture->cullRect()); picture->playback(this); } else { this->onDrawPicture(picture, matrix, paint); } } void SkCanvas::onDrawPicture(const SkPicture* picture, const SkMatrix* matrix, const SkPaint* paint) { if (this->internalQuickReject(picture->cullRect(), paint ? *paint : SkPaint{}, matrix)) { return; } SkAutoCanvasMatrixPaint acmp(this, matrix, paint, picture->cullRect()); picture->playback(this); } #endif /////////////////////////////////////////////////////////////////////////////// SkCanvas::ImageSetEntry::ImageSetEntry() = default; SkCanvas::ImageSetEntry::~ImageSetEntry() = default; SkCanvas::ImageSetEntry::ImageSetEntry(const ImageSetEntry&) = default; SkCanvas::ImageSetEntry& SkCanvas::ImageSetEntry::operator=(const ImageSetEntry&) = default; SkCanvas::ImageSetEntry::ImageSetEntry(sk_sp image, const SkRect& srcRect, const SkRect& dstRect, int matrixIndex, float alpha, unsigned aaFlags, bool hasClip) : fImage(std::move(image)) , fSrcRect(srcRect) , fDstRect(dstRect) , fMatrixIndex(matrixIndex) , fAlpha(alpha) , fAAFlags(aaFlags) , fHasClip(hasClip) {} SkCanvas::ImageSetEntry::ImageSetEntry(sk_sp image, const SkRect& srcRect, const SkRect& dstRect, float alpha, unsigned aaFlags) : fImage(std::move(image)) , fSrcRect(srcRect) , fDstRect(dstRect) , fAlpha(alpha) , fAAFlags(aaFlags) {} /////////////////////////////////////////////////////////////////////////////// std::unique_ptr SkCanvas::MakeRasterDirect(const SkImageInfo& info, void* pixels, size_t rowBytes, const SkSurfaceProps* props) { if (!SkSurfaceValidateRasterInfo(info, rowBytes)) { return nullptr; } SkBitmap bitmap; if (!bitmap.installPixels(info, pixels, rowBytes)) { return nullptr; } return props ? std::make_unique(bitmap, *props) : std::make_unique(bitmap); } /////////////////////////////////////////////////////////////////////////////// SkNoDrawCanvas::SkNoDrawCanvas(int width, int height) : INHERITED(SkIRect::MakeWH(width, height)) {} SkNoDrawCanvas::SkNoDrawCanvas(const SkIRect& bounds) : INHERITED(bounds) {} SkNoDrawCanvas::SkNoDrawCanvas(sk_sp device) : INHERITED(device) {} SkCanvas::SaveLayerStrategy SkNoDrawCanvas::getSaveLayerStrategy(const SaveLayerRec& rec) { (void)this->INHERITED::getSaveLayerStrategy(rec); return kNoLayer_SaveLayerStrategy; } bool SkNoDrawCanvas::onDoSaveBehind(const SkRect*) { return false; } /////////////////////////////////////////////////////////////////////////////// static_assert((int)SkRegion::kDifference_Op == (int)SkClipOp::kDifference, ""); static_assert((int)SkRegion::kIntersect_Op == (int)SkClipOp::kIntersect, ""); /////////////////////////////////////////////////////////////////////////////////////////////////// SkRasterHandleAllocator::Handle SkCanvas::accessTopRasterHandle() const { const SkBaseDevice* dev = this->topDevice(); if (fAllocator) { SkRasterHandleAllocator::Handle handle = dev->getRasterHandle(); SkIRect clip = dev->devClipBounds(); if (!clip.intersect({0, 0, dev->width(), dev->height()})) { clip.setEmpty(); } fAllocator->updateHandle(handle, dev->localToDevice(), clip); return handle; } return nullptr; } static bool install(SkBitmap* bm, const SkImageInfo& info, const SkRasterHandleAllocator::Rec& rec) { return bm->installPixels(info, rec.fPixels, rec.fRowBytes, rec.fReleaseProc, rec.fReleaseCtx); } SkRasterHandleAllocator::Handle SkRasterHandleAllocator::allocBitmap(const SkImageInfo& info, SkBitmap* bm) { SkRasterHandleAllocator::Rec rec; if (!this->allocHandle(info, &rec) || !install(bm, info, rec)) { return nullptr; } return rec.fHandle; } std::unique_ptr SkRasterHandleAllocator::MakeCanvas(std::unique_ptr alloc, const SkImageInfo& info, const Rec* rec) { if (!alloc || !SkSurfaceValidateRasterInfo(info, rec ? rec->fRowBytes : kIgnoreRowBytesValue)) { return nullptr; } SkBitmap bm; Handle hndl; if (rec) { hndl = install(&bm, info, *rec) ? rec->fHandle : nullptr; } else { hndl = alloc->allocBitmap(info, &bm); } return hndl ? std::unique_ptr(new SkCanvas(bm, std::move(alloc), hndl)) : nullptr; } ///////////////////////////////////////////////////////////////////////////////////////////////////