/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkTSort_DEFINED #define SkTSort_DEFINED #include "include/core/SkTypes.h" #include "include/private/SkTo.h" #include "src/core/SkMathPriv.h" #include /////////////////////////////////////////////////////////////////////////////// /* Sifts a broken heap. The input array is a heap from root to bottom * except that the root entry may be out of place. * * Sinks a hole from array[root] to leaf and then sifts the original array[root] element * from the leaf level up. * * This version does extra work, in that it copies child to parent on the way down, * then copies parent to child on the way back up. When copies are inexpensive, * this is an optimization as this sift variant should only be used when * the potentially out of place root entry value is expected to be small. * * @param root the one based index into array of the out-of-place root of the heap. * @param bottom the one based index in the array of the last entry in the heap. */ template void SkTHeapSort_SiftUp(T array[], size_t root, size_t bottom, const C& lessThan) { T x = array[root-1]; size_t start = root; size_t j = root << 1; while (j <= bottom) { if (j < bottom && lessThan(array[j-1], array[j])) { ++j; } array[root-1] = array[j-1]; root = j; j = root << 1; } j = root >> 1; while (j >= start) { if (lessThan(array[j-1], x)) { array[root-1] = array[j-1]; root = j; j = root >> 1; } else { break; } } array[root-1] = x; } /* Sifts a broken heap. The input array is a heap from root to bottom * except that the root entry may be out of place. * * Sifts the array[root] element from the root down. * * @param root the one based index into array of the out-of-place root of the heap. * @param bottom the one based index in the array of the last entry in the heap. */ template void SkTHeapSort_SiftDown(T array[], size_t root, size_t bottom, const C& lessThan) { T x = array[root-1]; size_t child = root << 1; while (child <= bottom) { if (child < bottom && lessThan(array[child-1], array[child])) { ++child; } if (lessThan(x, array[child-1])) { array[root-1] = array[child-1]; root = child; child = root << 1; } else { break; } } array[root-1] = x; } /** Sorts the array of size count using comparator lessThan using a Heap Sort algorithm. Be sure to * specialize swap if T has an efficient swap operation. * * @param array the array to be sorted. * @param count the number of elements in the array. * @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b. */ template void SkTHeapSort(T array[], size_t count, const C& lessThan) { for (size_t i = count >> 1; i > 0; --i) { SkTHeapSort_SiftDown(array, i, count, lessThan); } for (size_t i = count - 1; i > 0; --i) { using std::swap; swap(array[0], array[i]); SkTHeapSort_SiftUp(array, 1, i, lessThan); } } /** Sorts the array of size count using comparator '<' using a Heap Sort algorithm. */ template void SkTHeapSort(T array[], size_t count) { SkTHeapSort(array, count, [](const T& a, const T& b) { return a < b; }); } /////////////////////////////////////////////////////////////////////////////// /** Sorts the array of size count using comparator lessThan using an Insertion Sort algorithm. */ template static void SkTInsertionSort(T* left, int count, const C& lessThan) { T* right = left + count - 1; for (T* next = left + 1; next <= right; ++next) { if (!lessThan(*next, *(next - 1))) { continue; } T insert = std::move(*next); T* hole = next; do { *hole = std::move(*(hole - 1)); --hole; } while (left < hole && lessThan(insert, *(hole - 1))); *hole = std::move(insert); } } /////////////////////////////////////////////////////////////////////////////// template static T* SkTQSort_Partition(T* left, int count, T* pivot, const C& lessThan) { T* right = left + count - 1; using std::swap; T pivotValue = *pivot; swap(*pivot, *right); T* newPivot = left; while (left < right) { if (lessThan(*left, pivotValue)) { swap(*left, *newPivot); newPivot += 1; } left += 1; } swap(*newPivot, *right); return newPivot; } /* Introsort is a modified Quicksort. * When the region to be sorted is a small constant size, it uses Insertion Sort. * When depth becomes zero, it switches over to Heap Sort. * This implementation recurses on the left region after pivoting and loops on the right, * we already limit the stack depth by switching to heap sort, * and cache locality on the data appears more important than saving a few stack frames. * * @param depth at this recursion depth, switch to Heap Sort. * @param left points to the beginning of the region to be sorted * @param count number of items to be sorted * @param lessThan a functor/lambda which returns true if a comes before b. */ template void SkTIntroSort(int depth, T* left, int count, const C& lessThan) { for (;;) { if (count <= 32) { SkTInsertionSort(left, count, lessThan); return; } if (depth == 0) { SkTHeapSort(left, count, lessThan); return; } --depth; T* middle = left + ((count - 1) >> 1); T* pivot = SkTQSort_Partition(left, count, middle, lessThan); int pivotCount = pivot - left; SkTIntroSort(depth, left, pivotCount, lessThan); left += pivotCount + 1; count -= pivotCount + 1; } } /** Sorts the region from left to right using comparator lessThan using Introsort. * Be sure to specialize `swap` if T has an efficient swap operation. * * @param begin points to the beginning of the region to be sorted * @param end points past the end of the region to be sorted * @param lessThan a functor/lambda which returns true if a comes before b. */ template void SkTQSort(T* begin, T* end, const C& lessThan) { int n = SkToInt(end - begin); if (n <= 1) { return; } // Limit Introsort recursion depth to no more than 2 * ceil(log2(n-1)). int depth = 2 * SkNextLog2(n - 1); SkTIntroSort(depth, begin, n, lessThan); } /** Sorts the region from left to right using comparator 'a < b' using Introsort. */ template void SkTQSort(T* begin, T* end) { SkTQSort(begin, end, [](const T& a, const T& b) { return a < b; }); } /** Sorts the region from left to right using comparator '*a < *b' using Introsort. */ template void SkTQSort(T** begin, T** end) { SkTQSort(begin, end, [](const T* a, const T* b) { return *a < *b; }); } #endif