/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkPathOpsCubic_DEFINED #define SkPathOpsCubic_DEFINED #include "include/core/SkPath.h" #include "src/core/SkArenaAlloc.h" #include "src/pathops/SkPathOpsTCurve.h" struct SkDCubicPair; struct SkDCubic { static const int kPointCount = 4; static const int kPointLast = kPointCount - 1; static const int kMaxIntersections = 9; enum SearchAxis { kXAxis, kYAxis }; bool collapsed() const { return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2]) && fPts[0].approximatelyEqual(fPts[3]); } bool controlsInside() const { SkDVector v01 = fPts[0] - fPts[1]; SkDVector v02 = fPts[0] - fPts[2]; SkDVector v03 = fPts[0] - fPts[3]; SkDVector v13 = fPts[1] - fPts[3]; SkDVector v23 = fPts[2] - fPts[3]; return v03.dot(v01) > 0 && v03.dot(v02) > 0 && v03.dot(v13) > 0 && v03.dot(v23) > 0; } static bool IsConic() { return false; } const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; } SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; } void align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const; double binarySearch(double min, double max, double axisIntercept, SearchAxis xAxis) const; double calcPrecision() const; SkDCubicPair chopAt(double t) const; static void Coefficients(const double* cubic, double* A, double* B, double* C, double* D); static int ComplexBreak(const SkPoint pts[4], SkScalar* t); int convexHull(char order[kPointCount]) const; void debugInit() { sk_bzero(fPts, sizeof(fPts)); } void debugSet(const SkDPoint* pts); void dump() const; // callable from the debugger when the implementation code is linked in void dumpID(int id) const; void dumpInner() const; SkDVector dxdyAtT(double t) const; bool endsAreExtremaInXOrY() const; static int FindExtrema(const double src[], double tValue[2]); int findInflections(double tValues[2]) const; static int FindInflections(const SkPoint a[kPointCount], double tValues[2]) { SkDCubic cubic; return cubic.set(a).findInflections(tValues); } int findMaxCurvature(double tValues[]) const; #ifdef SK_DEBUG SkOpGlobalState* globalState() const { return fDebugGlobalState; } #endif bool hullIntersects(const SkDCubic& c2, bool* isLinear) const; bool hullIntersects(const SkDConic& c, bool* isLinear) const; bool hullIntersects(const SkDQuad& c2, bool* isLinear) const; bool hullIntersects(const SkDPoint* pts, int ptCount, bool* isLinear) const; bool isLinear(int startIndex, int endIndex) const; static int maxIntersections() { return kMaxIntersections; } bool monotonicInX() const; bool monotonicInY() const; void otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const; static int pointCount() { return kPointCount; } static int pointLast() { return kPointLast; } SkDPoint ptAtT(double t) const; static int RootsReal(double A, double B, double C, double D, double t[3]); static int RootsValidT(const double A, const double B, const double C, double D, double s[3]); int searchRoots(double extremes[6], int extrema, double axisIntercept, SearchAxis xAxis, double* validRoots) const; bool toFloatPoints(SkPoint* ) const; /** * Return the number of valid roots (0 < root < 1) for this cubic intersecting the * specified horizontal line. */ int horizontalIntersect(double yIntercept, double roots[3]) const; /** * Return the number of valid roots (0 < root < 1) for this cubic intersecting the * specified vertical line. */ int verticalIntersect(double xIntercept, double roots[3]) const; // add debug only global pointer so asserts can be skipped by fuzzers const SkDCubic& set(const SkPoint pts[kPointCount] SkDEBUGPARAMS(SkOpGlobalState* state = nullptr)) { fPts[0] = pts[0]; fPts[1] = pts[1]; fPts[2] = pts[2]; fPts[3] = pts[3]; SkDEBUGCODE(fDebugGlobalState = state); return *this; } SkDCubic subDivide(double t1, double t2) const; void subDivide(double t1, double t2, SkDCubic* c) const { *c = this->subDivide(t1, t2); } static SkDCubic SubDivide(const SkPoint a[kPointCount], double t1, double t2) { SkDCubic cubic; return cubic.set(a).subDivide(t1, t2); } void subDivide(const SkDPoint& a, const SkDPoint& d, double t1, double t2, SkDPoint p[2]) const; static void SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& d, double t1, double t2, SkDPoint p[2]) { SkDCubic cubic; cubic.set(pts).subDivide(a, d, t1, t2, p); } double top(const SkDCubic& dCurve, double startT, double endT, SkDPoint*topPt) const; SkDQuad toQuad() const; static const int gPrecisionUnit; SkDPoint fPts[kPointCount]; SkDEBUGCODE(SkOpGlobalState* fDebugGlobalState); }; /* Given the set [0, 1, 2, 3], and two of the four members, compute an XOR mask that computes the other two. Note that: one ^ two == 3 for (0, 3), (1, 2) one ^ two < 3 for (0, 1), (0, 2), (1, 3), (2, 3) 3 - (one ^ two) is either 0, 1, or 2 1 >> (3 - (one ^ two)) is either 0 or 1 thus: returned == 2 for (0, 3), (1, 2) returned == 3 for (0, 1), (0, 2), (1, 3), (2, 3) given that: (0, 3) ^ 2 -> (2, 1) (1, 2) ^ 2 -> (3, 0) (0, 1) ^ 3 -> (3, 2) (0, 2) ^ 3 -> (3, 1) (1, 3) ^ 3 -> (2, 0) (2, 3) ^ 3 -> (1, 0) */ inline int other_two(int one, int two) { return 1 >> (3 - (one ^ two)) ^ 3; } struct SkDCubicPair { SkDCubic first() const { #ifdef SK_DEBUG SkDCubic result; result.debugSet(&pts[0]); return result; #else return (const SkDCubic&) pts[0]; #endif } SkDCubic second() const { #ifdef SK_DEBUG SkDCubic result; result.debugSet(&pts[3]); return result; #else return (const SkDCubic&) pts[3]; #endif } SkDPoint pts[7]; }; class SkTCubic : public SkTCurve { public: SkDCubic fCubic; SkTCubic() {} SkTCubic(const SkDCubic& c) : fCubic(c) { } ~SkTCubic() override {} const SkDPoint& operator[](int n) const override { return fCubic[n]; } SkDPoint& operator[](int n) override { return fCubic[n]; } bool collapsed() const override { return fCubic.collapsed(); } bool controlsInside() const override { return fCubic.controlsInside(); } void debugInit() override { return fCubic.debugInit(); } #if DEBUG_T_SECT void dumpID(int id) const override { return fCubic.dumpID(id); } #endif SkDVector dxdyAtT(double t) const override { return fCubic.dxdyAtT(t); } #ifdef SK_DEBUG SkOpGlobalState* globalState() const override { return fCubic.globalState(); } #endif bool hullIntersects(const SkDQuad& quad, bool* isLinear) const override; bool hullIntersects(const SkDConic& conic, bool* isLinear) const override; bool hullIntersects(const SkDCubic& cubic, bool* isLinear) const override { return cubic.hullIntersects(fCubic, isLinear); } bool hullIntersects(const SkTCurve& curve, bool* isLinear) const override { return curve.hullIntersects(fCubic, isLinear); } int intersectRay(SkIntersections* i, const SkDLine& line) const override; bool IsConic() const override { return false; } SkTCurve* make(SkArenaAlloc& heap) const override { return heap.make(); } int maxIntersections() const override { return SkDCubic::kMaxIntersections; } void otherPts(int oddMan, const SkDPoint* endPt[2]) const override { fCubic.otherPts(oddMan, endPt); } int pointCount() const override { return SkDCubic::kPointCount; } int pointLast() const override { return SkDCubic::kPointLast; } SkDPoint ptAtT(double t) const override { return fCubic.ptAtT(t); } void setBounds(SkDRect* ) const override; void subDivide(double t1, double t2, SkTCurve* curve) const override { ((SkTCubic*) curve)->fCubic = fCubic.subDivide(t1, t2); } }; #endif