/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2014 The Android Open Source Project * Copyright (c) 2016 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Tessellation Geometry Interaction - Passthrough *//*--------------------------------------------------------------------*/ #include "vktTessellationGeometryPassthroughTests.hpp" #include "vktTestCaseUtil.hpp" #include "vktTessellationUtil.hpp" #include "tcuTestLog.hpp" #include "tcuImageCompare.hpp" #include "vkDefs.hpp" #include "vkBarrierUtil.hpp" #include "vkQueryUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkTypeUtil.hpp" #include "vkImageUtil.hpp" #include "vkCmdUtil.hpp" #include "vkObjUtil.hpp" #include "deUniquePtr.hpp" #include #include namespace vkt { namespace tessellation { using namespace vk; namespace { void addVertexAndFragmentShaders (vk::SourceCollections& programCollection) { // Vertex shader { std::ostringstream src; src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n" << "\n" << "layout(location = 0) in highp vec4 a_position;\n" << "layout(location = 0) out highp vec4 v_vertex_color;\n" << "\n" << "void main (void)\n" << "{\n" << " gl_Position = a_position;\n" << " v_vertex_color = vec4(a_position.x * 0.5 + 0.5, a_position.y * 0.5 + 0.5, 1.0, 0.4);\n" << "}\n"; programCollection.glslSources.add("vert") << glu::VertexSource(src.str()); } // Fragment shader { std::ostringstream src; src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n" << "\n" << "layout(location = 0) in highp vec4 v_fragment_color;\n" << "layout(location = 0) out mediump vec4 fragColor;\n" << "void main (void)\n" << "{\n" << " fragColor = v_fragment_color;\n" << "}\n"; programCollection.glslSources.add("frag") << glu::FragmentSource(src.str()); } } //! Tessellation evaluation shader used in passthrough geometry shader case. std::string generateTessellationEvaluationShader (const TessPrimitiveType primitiveType, const std::string& colorOutputName) { std::ostringstream src; src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n" << "#extension GL_EXT_tessellation_shader : require\n" << "layout(" << getTessPrimitiveTypeShaderName(primitiveType) << ") in;\n" << "\n" << "layout(location = 0) in highp vec4 v_patch_color[];\n" << "layout(location = 0) out highp vec4 " << colorOutputName << ";\n" << "\n" << "// note: No need to use precise gl_Position since we do not require gapless geometry\n" << "void main (void)\n" << "{\n"; if (primitiveType == TESSPRIMITIVETYPE_TRIANGLES) src << " vec3 weights = vec3(pow(gl_TessCoord.x, 1.3), pow(gl_TessCoord.y, 1.3), pow(gl_TessCoord.z, 1.3));\n" << " vec3 cweights = gl_TessCoord;\n" << " gl_Position = vec4(weights.x * gl_in[0].gl_Position.xyz + weights.y * gl_in[1].gl_Position.xyz + weights.z * gl_in[2].gl_Position.xyz, 1.0);\n" << " " << colorOutputName << " = cweights.x * v_patch_color[0] + cweights.y * v_patch_color[1] + cweights.z * v_patch_color[2];\n"; else if (primitiveType == TESSPRIMITIVETYPE_QUADS || primitiveType == TESSPRIMITIVETYPE_ISOLINES) src << " vec2 normalizedCoord = (gl_TessCoord.xy * 2.0 - vec2(1.0));\n" << " vec2 normalizedWeights = normalizedCoord * (vec2(1.0) - 0.3 * cos(normalizedCoord.yx * 1.57));\n" << " vec2 weights = normalizedWeights * 0.5 + vec2(0.5);\n" << " vec2 cweights = gl_TessCoord.xy;\n" << " gl_Position = mix(mix(gl_in[0].gl_Position, gl_in[1].gl_Position, weights.y), mix(gl_in[2].gl_Position, gl_in[3].gl_Position, weights.y), weights.x);\n" << " " << colorOutputName << " = mix(mix(v_patch_color[0], v_patch_color[1], cweights.y), mix(v_patch_color[2], v_patch_color[3], cweights.y), cweights.x);\n"; else DE_ASSERT(false); src << "}\n"; return src.str(); } class IdentityGeometryShaderTestCase : public TestCase { public: void initPrograms (vk::SourceCollections& programCollection) const; void checkSupport (Context& context) const; TestInstance* createInstance (Context& context) const; IdentityGeometryShaderTestCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const TessPrimitiveType primitiveType) : TestCase (testCtx, name, description) , m_primitiveType (primitiveType) { } private: const TessPrimitiveType m_primitiveType; }; void IdentityGeometryShaderTestCase::checkSupport (Context& context) const { checkSupportPrimitive(context, m_primitiveType); } void IdentityGeometryShaderTestCase::initPrograms (vk::SourceCollections& programCollection) const { addVertexAndFragmentShaders(programCollection); // Tessellation control { std::ostringstream src; src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n" << "#extension GL_EXT_tessellation_shader : require\n" << "layout(vertices = 4) out;\n" << "\n" << "layout(set = 0, binding = 0, std430) readonly restrict buffer TessLevels {\n" << " float inner0;\n" << " float inner1;\n" << " float outer0;\n" << " float outer1;\n" << " float outer2;\n" << " float outer3;\n" << "} sb_levels;\n" << "\n" << "layout(location = 0) in highp vec4 v_vertex_color[];\n" << "layout(location = 0) out highp vec4 v_patch_color[];\n" << "\n" << "void main (void)\n" << "{\n" << " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n" << " v_patch_color[gl_InvocationID] = v_vertex_color[gl_InvocationID];\n" << "\n" << " gl_TessLevelInner[0] = sb_levels.inner0;\n" << " gl_TessLevelInner[1] = sb_levels.inner1;\n" << " gl_TessLevelOuter[0] = sb_levels.outer0;\n" << " gl_TessLevelOuter[1] = sb_levels.outer1;\n" << " gl_TessLevelOuter[2] = sb_levels.outer2;\n" << " gl_TessLevelOuter[3] = sb_levels.outer3;\n" << "}\n"; programCollection.glslSources.add("tesc") << glu::TessellationControlSource(src.str()); } // Tessellation evaluation shader { programCollection.glslSources.add("tese_to_frag") << glu::TessellationEvaluationSource(generateTessellationEvaluationShader(m_primitiveType, "v_fragment_color")); programCollection.glslSources.add("tese_to_geom") << glu::TessellationEvaluationSource(generateTessellationEvaluationShader(m_primitiveType, "v_evaluated_color")); } // Geometry shader { std::ostringstream src; src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n" << "#extension GL_EXT_geometry_shader : require\n" << "layout(" << getGeometryShaderInputPrimitiveTypeShaderName(m_primitiveType, false) << ") in;\n" << "layout(" << getGeometryShaderOutputPrimitiveTypeShaderName(m_primitiveType, false) << ", max_vertices=" << numVerticesPerPrimitive(m_primitiveType, false) << ") out;\n" << "\n" << "layout(location = 0) in highp vec4 v_evaluated_color[];\n" << "layout(location = 0) out highp vec4 v_fragment_color;\n" << "\n" << "void main (void)\n" << "{\n" << " for (int ndx = 0; ndx < gl_in.length(); ++ndx)\n" << " {\n" << " gl_Position = gl_in[ndx].gl_Position;\n" << " v_fragment_color = v_evaluated_color[ndx];\n" << " EmitVertex();\n" << " }\n" << "}\n"; programCollection.glslSources.add("geom") << glu::GeometrySource(src.str()); } } class IdentityTessellationShaderTestCase : public TestCase { public: void initPrograms (vk::SourceCollections& programCollection) const; void checkSupport (Context& context) const; TestInstance* createInstance (Context& context) const; IdentityTessellationShaderTestCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const TessPrimitiveType primitiveType) : TestCase (testCtx, name, description) , m_primitiveType (primitiveType) { } private: const TessPrimitiveType m_primitiveType; }; void IdentityTessellationShaderTestCase::checkSupport (Context& context) const { checkSupportPrimitive(context, m_primitiveType); } //! Geometry shader used in passthrough tessellation shader case. std::string generateGeometryShader (const TessPrimitiveType primitiveType, const std::string& colorSourceName) { const int numEmitVertices = (primitiveType == TESSPRIMITIVETYPE_ISOLINES ? 11 : 8); std::ostringstream src; src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n" << "#extension GL_EXT_geometry_shader : require\n" << "layout(" << getGeometryShaderInputPrimitiveTypeShaderName(primitiveType, false) << ") in;\n" << "layout(" << getGeometryShaderOutputPrimitiveTypeShaderName(primitiveType, false) << ", max_vertices=" << numEmitVertices << ") out;\n" << "\n" << "layout(location = 0) in highp vec4 " << colorSourceName << "[];\n" << "layout(location = 0) out highp vec4 v_fragment_color;\n" << "\n" << "void main (void)\n" << "{\n"; if (primitiveType == TESSPRIMITIVETYPE_TRIANGLES) { src << " vec4 centerPos = (gl_in[0].gl_Position + gl_in[1].gl_Position + gl_in[2].gl_Position) / 3.0f;\n" << "\n" << " for (int ndx = 0; ndx < 4; ++ndx)\n" << " {\n" << " gl_Position = centerPos + (centerPos - gl_in[ndx % 3].gl_Position);\n" << " v_fragment_color = " << colorSourceName << "[ndx % 3];\n" << " EmitVertex();\n" << "\n" << " gl_Position = centerPos + 0.7 * (centerPos - gl_in[ndx % 3].gl_Position);\n" << " v_fragment_color = " << colorSourceName << "[ndx % 3];\n" << " EmitVertex();\n" << " }\n"; } else if (primitiveType == TESSPRIMITIVETYPE_ISOLINES) { src << " vec4 mdir = vec4(gl_in[0].gl_Position.y - gl_in[1].gl_Position.y, gl_in[1].gl_Position.x - gl_in[0].gl_Position.x, 0.0, 0.0);\n" << " for (int i = 0; i <= 10; ++i)\n" << " {\n" << " float xweight = cos(float(i) / 10.0 * 6.28) * 0.5 + 0.5;\n" << " float mweight = sin(float(i) / 10.0 * 6.28) * 0.1 + 0.1;\n" << " gl_Position = mix(gl_in[0].gl_Position, gl_in[1].gl_Position, xweight) + mweight * mdir;\n" << " v_fragment_color = mix(" << colorSourceName << "[0], " << colorSourceName << "[1], xweight);\n" << " EmitVertex();\n" << " }\n"; } else DE_ASSERT(false); src << "}\n"; return src.str(); } void IdentityTessellationShaderTestCase::initPrograms (vk::SourceCollections& programCollection) const { addVertexAndFragmentShaders(programCollection); // Tessellation control { std::ostringstream src; src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n" << "#extension GL_EXT_tessellation_shader : require\n" << "layout(vertices = " << numVerticesPerPrimitive(m_primitiveType, false) << ") out;\n" << "\n" << "layout(location = 0) in highp vec4 v_vertex_color[];\n" << "layout(location = 0) out highp vec4 v_control_color[];\n" << "\n" << "void main (void)\n" << "{\n" << " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n" << " v_control_color[gl_InvocationID] = v_vertex_color[gl_InvocationID];\n" << "\n" << " gl_TessLevelInner[0] = 1.0;\n" << " gl_TessLevelInner[1] = 1.0;\n" << " gl_TessLevelOuter[0] = 1.0;\n" << " gl_TessLevelOuter[1] = 1.0;\n" << " gl_TessLevelOuter[2] = 1.0;\n" << " gl_TessLevelOuter[3] = 1.0;\n" << "}\n"; programCollection.glslSources.add("tesc") << glu::TessellationControlSource(src.str()); } // Tessellation evaluation shader { std::ostringstream src; src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n" << "#extension GL_EXT_tessellation_shader : require\n" << "layout(" << getTessPrimitiveTypeShaderName(m_primitiveType) << ") in;\n" << "\n" << "layout(location = 0) in highp vec4 v_control_color[];\n" << "layout(location = 0) out highp vec4 v_evaluated_color;\n" << "\n" << "// note: No need to use precise gl_Position since we do not require gapless geometry\n" << "void main (void)\n" << "{\n"; if (m_primitiveType == TESSPRIMITIVETYPE_TRIANGLES) src << " gl_Position = gl_TessCoord.x * gl_in[0].gl_Position + gl_TessCoord.y * gl_in[1].gl_Position + gl_TessCoord.z * gl_in[2].gl_Position;\n" << " v_evaluated_color = gl_TessCoord.x * v_control_color[0] + gl_TessCoord.y * v_control_color[1] + gl_TessCoord.z * v_control_color[2];\n"; else if (m_primitiveType == TESSPRIMITIVETYPE_ISOLINES) src << " gl_Position = mix(gl_in[0].gl_Position, gl_in[1].gl_Position, gl_TessCoord.x);\n" << " v_evaluated_color = mix(v_control_color[0], v_control_color[1], gl_TessCoord.x);\n"; else DE_ASSERT(false); src << "}\n"; programCollection.glslSources.add("tese") << glu::TessellationEvaluationSource(src.str()); } // Geometry shader { programCollection.glslSources.add("geom_from_tese") << glu::GeometrySource( generateGeometryShader(m_primitiveType, "v_evaluated_color")); programCollection.glslSources.add("geom_from_vert") << glu::GeometrySource( generateGeometryShader(m_primitiveType, "v_vertex_color")); } } inline tcu::ConstPixelBufferAccess getPixelBufferAccess (const DeviceInterface& vk, const VkDevice device, const Buffer& colorBuffer, const VkFormat colorFormat, const tcu::IVec2& renderSize) { const Allocation& alloc = colorBuffer.getAllocation(); invalidateAlloc(vk, device, alloc); return tcu::ConstPixelBufferAccess(mapVkFormat(colorFormat), renderSize.x(), renderSize.y(), 1, alloc.getHostPtr()); } //! When a test case disables tessellation stage and we need to derive a primitive type. VkPrimitiveTopology getPrimitiveTopology (const TessPrimitiveType primitiveType) { switch (primitiveType) { case TESSPRIMITIVETYPE_TRIANGLES: case TESSPRIMITIVETYPE_QUADS: return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; case TESSPRIMITIVETYPE_ISOLINES: return VK_PRIMITIVE_TOPOLOGY_LINE_LIST; default: DE_ASSERT(false); return VK_PRIMITIVE_TOPOLOGY_LAST; } } enum Constants { PIPELINE_CASES = 2, RENDER_SIZE = 256, }; class PassthroughTestInstance : public TestInstance { public: struct PipelineDescription { bool useTessellation; bool useGeometry; std::string tessEvalShaderName; std::string geomShaderName; std::string description; PipelineDescription (void) : useTessellation(), useGeometry() {} }; struct Params { bool useTessLevels; TessLevels tessLevels; TessPrimitiveType primitiveType; int inputPatchVertices; std::vector vertices; PipelineDescription pipelineCases[PIPELINE_CASES]; //!< Each test case renders with two pipelines and compares results std::string message; Params (void) : useTessLevels(), tessLevels(), primitiveType(), inputPatchVertices() {} }; PassthroughTestInstance (Context& context, const Params& params) : TestInstance(context), m_params(params) {} tcu::TestStatus iterate (void); private: const Params m_params; }; tcu::TestStatus PassthroughTestInstance::iterate (void) { requireFeatures(m_context.getInstanceInterface(), m_context.getPhysicalDevice(), FEATURE_TESSELLATION_SHADER | FEATURE_GEOMETRY_SHADER); DE_STATIC_ASSERT(PIPELINE_CASES == 2); const DeviceInterface& vk = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); const VkQueue queue = m_context.getUniversalQueue(); const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex(); Allocator& allocator = m_context.getDefaultAllocator(); // Tessellation levels const Buffer tessLevelsBuffer (vk, device, allocator, makeBufferCreateInfo(sizeof(TessLevels), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT), MemoryRequirement::HostVisible); if (m_params.useTessLevels) { const Allocation& alloc = tessLevelsBuffer.getAllocation(); TessLevels* const bufferTessLevels = static_cast(alloc.getHostPtr()); *bufferTessLevels = m_params.tessLevels; flushAlloc(vk, device, alloc); } // Vertex attributes const VkDeviceSize vertexDataSizeBytes = sizeInBytes(m_params.vertices); const VkFormat vertexFormat = VK_FORMAT_R32G32B32A32_SFLOAT; const Buffer vertexBuffer (vk, device, allocator, makeBufferCreateInfo(vertexDataSizeBytes, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT), MemoryRequirement::HostVisible); { const Allocation& alloc = vertexBuffer.getAllocation(); deMemcpy(alloc.getHostPtr(), &m_params.vertices[0], static_cast(vertexDataSizeBytes)); flushAlloc(vk, device, alloc); } // Descriptors - make descriptor for tessellation levels, even if we don't use them, to simplify code const Unique descriptorSetLayout(DescriptorSetLayoutBuilder() .addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) .build(vk, device)); const Unique descriptorPool(DescriptorPoolBuilder() .addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER) .build(vk, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u)); const Unique descriptorSet (makeDescriptorSet(vk, device, *descriptorPool, *descriptorSetLayout)); const VkDescriptorBufferInfo tessLevelsBufferInfo = makeDescriptorBufferInfo(*tessLevelsBuffer, 0ull, sizeof(TessLevels)); DescriptorSetUpdateBuilder() .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &tessLevelsBufferInfo) .update(vk, device); // Color attachment const tcu::IVec2 renderSize = tcu::IVec2(RENDER_SIZE, RENDER_SIZE); const VkFormat colorFormat = VK_FORMAT_R8G8B8A8_UNORM; const VkImageSubresourceRange colorImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u); const Image colorAttachmentImage (vk, device, allocator, makeImageCreateInfo(renderSize, colorFormat, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, 1u), MemoryRequirement::Any); // Color output buffer: image will be copied here for verification. // We use two buffers, one for each case. const VkDeviceSize colorBufferSizeBytes = renderSize.x()*renderSize.y() * tcu::getPixelSize(mapVkFormat(colorFormat)); const Buffer colorBuffer1 (vk, device, allocator, makeBufferCreateInfo(colorBufferSizeBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT), MemoryRequirement::HostVisible); const Buffer colorBuffer2 (vk, device, allocator, makeBufferCreateInfo(colorBufferSizeBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT), MemoryRequirement::HostVisible); const Buffer* const colorBuffer[PIPELINE_CASES] = { &colorBuffer1, &colorBuffer2 }; // Pipeline const Unique colorAttachmentView (makeImageView(vk, device, *colorAttachmentImage, VK_IMAGE_VIEW_TYPE_2D, colorFormat, colorImageSubresourceRange)); const Unique renderPass (makeRenderPass(vk, device, colorFormat)); const Unique framebuffer (makeFramebuffer(vk, device, *renderPass, *colorAttachmentView, renderSize.x(), renderSize.y())); const Unique pipelineLayout (makePipelineLayout(vk, device, *descriptorSetLayout)); const Unique cmdPool (makeCommandPool(vk, device, queueFamilyIndex)); const Unique cmdBuffer (allocateCommandBuffer(vk, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY)); // Message explaining the test { tcu::TestLog& log = m_context.getTestContext().getLog(); log << tcu::TestLog::Message << m_params.message << tcu::TestLog::EndMessage; if (m_params.useTessLevels) log << tcu::TestLog::Message << "Tessellation levels: " << getTessellationLevelsString(m_params.tessLevels, m_params.primitiveType) << tcu::TestLog::EndMessage; } for (int pipelineNdx = 0; pipelineNdx < PIPELINE_CASES; ++pipelineNdx) { const PipelineDescription& pipelineDescription = m_params.pipelineCases[pipelineNdx]; GraphicsPipelineBuilder pipelineBuilder; pipelineBuilder .setPrimitiveTopology (getPrimitiveTopology(m_params.primitiveType)) .setRenderSize (renderSize) .setBlend (true) .setVertexInputSingleAttribute(vertexFormat, tcu::getPixelSize(mapVkFormat(vertexFormat))) .setPatchControlPoints (m_params.inputPatchVertices) .setShader (vk, device, VK_SHADER_STAGE_VERTEX_BIT, m_context.getBinaryCollection().get("vert"), DE_NULL) .setShader (vk, device, VK_SHADER_STAGE_FRAGMENT_BIT, m_context.getBinaryCollection().get("frag"), DE_NULL); if (pipelineDescription.useTessellation) pipelineBuilder .setShader (vk, device, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, m_context.getBinaryCollection().get("tesc"), DE_NULL) .setShader (vk, device, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, m_context.getBinaryCollection().get(pipelineDescription.tessEvalShaderName), DE_NULL); if (pipelineDescription.useGeometry) pipelineBuilder .setShader (vk, device, VK_SHADER_STAGE_GEOMETRY_BIT, m_context.getBinaryCollection().get(pipelineDescription.geomShaderName), DE_NULL); const Unique pipeline (pipelineBuilder.build(vk, device, *pipelineLayout, *renderPass)); // Draw commands beginCommandBuffer(vk, *cmdBuffer); // Change color attachment image layout { // State is slightly different on the first iteration. const VkImageLayout currentLayout = (pipelineNdx == 0 ? VK_IMAGE_LAYOUT_UNDEFINED : VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); const VkAccessFlags srcFlags = (pipelineNdx == 0 ? (VkAccessFlags)0 : (VkAccessFlags)VK_ACCESS_TRANSFER_READ_BIT); const VkImageMemoryBarrier colorAttachmentLayoutBarrier = makeImageMemoryBarrier( srcFlags, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, currentLayout, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, *colorAttachmentImage, colorImageSubresourceRange); vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &colorAttachmentLayoutBarrier); } // Begin render pass { const VkRect2D renderArea = makeRect2D(renderSize); const tcu::Vec4 clearColor (0.0f, 0.0f, 0.0f, 1.0f); beginRenderPass(vk, *cmdBuffer, *renderPass, *framebuffer, renderArea, clearColor); } vk.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline); { const VkDeviceSize vertexBufferOffset = 0ull; vk.cmdBindVertexBuffers(*cmdBuffer, 0u, 1u, &vertexBuffer.get(), &vertexBufferOffset); } if (m_params.useTessLevels) vk.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineLayout, 0u, 1u, &descriptorSet.get(), 0u, DE_NULL); vk.cmdDraw(*cmdBuffer, static_cast(m_params.vertices.size()), 1u, 0u, 0u); endRenderPass(vk, *cmdBuffer); // Copy render result to a host-visible buffer copyImageToBuffer(vk, *cmdBuffer, *colorAttachmentImage, colorBuffer[pipelineNdx]->get(), renderSize); endCommandBuffer(vk, *cmdBuffer); submitCommandsAndWait(vk, device, queue, *cmdBuffer); } // Verify results tcu::ConstPixelBufferAccess image0 = getPixelBufferAccess(vk, device, *colorBuffer[0], colorFormat, renderSize); tcu::ConstPixelBufferAccess image1 = getPixelBufferAccess(vk, device, *colorBuffer[1], colorFormat, renderSize); const tcu::UVec4 colorThreshold (8, 8, 8, 255); const tcu::IVec3 positionDeviation (1, 1, 0); // 3x3 search kernel const bool ignoreOutOfBounds = true; tcu::TestLog& log = m_context.getTestContext().getLog(); log << tcu::TestLog::Message << "In image comparison:\n" << " Reference - " << m_params.pipelineCases[0].description << "\n" << " Result - " << m_params.pipelineCases[1].description << "\n" << tcu::TestLog::EndMessage; const bool ok = tcu::intThresholdPositionDeviationCompare( log, "ImageCompare", "Image comparison", image0, image1, colorThreshold, positionDeviation, ignoreOutOfBounds, tcu::COMPARE_LOG_RESULT); return (ok ? tcu::TestStatus::pass("OK") : tcu::TestStatus::fail("Image comparison failed")); } TestInstance* IdentityGeometryShaderTestCase::createInstance (Context& context) const { PassthroughTestInstance::Params params; const float level = 14.0; params.useTessLevels = true; params.tessLevels.inner[0] = level; params.tessLevels.inner[1] = level; params.tessLevels.outer[0] = level; params.tessLevels.outer[1] = level; params.tessLevels.outer[2] = level; params.tessLevels.outer[3] = level; params.primitiveType = m_primitiveType; params.inputPatchVertices = (m_primitiveType == TESSPRIMITIVETYPE_TRIANGLES ? 3 : 4); params.vertices.push_back(tcu::Vec4( -0.9f, -0.9f, 0.0f, 1.0f )); params.vertices.push_back(tcu::Vec4( -0.9f, 0.9f, 0.0f, 1.0f )); params.vertices.push_back(tcu::Vec4( 0.9f, -0.9f, 0.0f, 1.0f )); params.vertices.push_back(tcu::Vec4( 0.9f, 0.9f, 0.0f, 1.0f )); params.pipelineCases[0].useTessellation = true; params.pipelineCases[0].useGeometry = true; params.pipelineCases[0].tessEvalShaderName = "tese_to_geom"; params.pipelineCases[0].geomShaderName = "geom"; params.pipelineCases[0].description = "passthrough geometry shader"; params.pipelineCases[1].useTessellation = true; params.pipelineCases[1].useGeometry = false; params.pipelineCases[1].tessEvalShaderName = "tese_to_frag"; params.pipelineCases[1].geomShaderName = "geom"; params.pipelineCases[1].description = "no geometry shader in the pipeline"; params.message = "Testing tessellating shader program output does not change when a passthrough geometry shader is attached.\n" "Rendering two images, first with and second without a geometry shader. Expecting similar results.\n" "Using additive blending to detect overlap.\n"; return new PassthroughTestInstance(context, params); } TestInstance* IdentityTessellationShaderTestCase::createInstance (Context& context) const { PassthroughTestInstance::Params params; params.useTessLevels = false; params.primitiveType = m_primitiveType; params.inputPatchVertices = (m_primitiveType == TESSPRIMITIVETYPE_TRIANGLES ? 3 : 2); params.vertices.push_back( tcu::Vec4( -0.4f, 0.4f, 0.0f, 1.0f )); params.vertices.push_back( tcu::Vec4( 0.0f, -0.5f, 0.0f, 1.0f )); if (params.inputPatchVertices == 3) params.vertices.push_back(tcu::Vec4( 0.4f, 0.4f, 0.0f, 1.0f )); params.pipelineCases[0].useTessellation = true; params.pipelineCases[0].useGeometry = true; params.pipelineCases[0].tessEvalShaderName = "tese"; params.pipelineCases[0].geomShaderName = "geom_from_tese"; params.pipelineCases[0].description = "passthrough tessellation shaders"; params.pipelineCases[1].useTessellation = false; params.pipelineCases[1].useGeometry = true; params.pipelineCases[1].tessEvalShaderName = "tese"; params.pipelineCases[1].geomShaderName = "geom_from_vert"; params.pipelineCases[1].description = "no tessellation shaders in the pipeline"; params.message = "Testing geometry shading shader program output does not change when a passthrough tessellation shader is attached.\n" "Rendering two images, first with and second without a tessellation shader. Expecting similar results.\n" "Using additive blending to detect overlap.\n"; return new PassthroughTestInstance(context, params); } inline TestCase* makeIdentityGeometryShaderCase (tcu::TestContext& testCtx, const TessPrimitiveType primitiveType) { return new IdentityGeometryShaderTestCase( testCtx, "tessellate_" + de::toString(getTessPrimitiveTypeShaderName(primitiveType)) + "_passthrough_geometry_no_change", "Passthrough geometry shader has no effect", primitiveType); } inline TestCase* makeIdentityTessellationShaderCase (tcu::TestContext& testCtx, const TessPrimitiveType primitiveType) { return new IdentityTessellationShaderTestCase( testCtx, "passthrough_tessellation_geometry_shade_" + de::toString(getTessPrimitiveTypeShaderName(primitiveType)) + "_no_change", "Passthrough tessellation shader has no effect", primitiveType); } } // anonymous //! Ported from dEQP-GLES31.functional.tessellation_geometry_interaction.render.passthrough.* tcu::TestCaseGroup* createGeometryPassthroughTests (tcu::TestContext& testCtx) { de::MovePtr group (new tcu::TestCaseGroup(testCtx, "passthrough", "Render various types with either passthrough geometry or tessellation shader")); // Passthrough geometry shader group->addChild(makeIdentityGeometryShaderCase(testCtx, TESSPRIMITIVETYPE_TRIANGLES)); group->addChild(makeIdentityGeometryShaderCase(testCtx, TESSPRIMITIVETYPE_QUADS)); group->addChild(makeIdentityGeometryShaderCase(testCtx, TESSPRIMITIVETYPE_ISOLINES)); // Passthrough tessellation shader group->addChild(makeIdentityTessellationShaderCase(testCtx, TESSPRIMITIVETYPE_TRIANGLES)); group->addChild(makeIdentityTessellationShaderCase(testCtx, TESSPRIMITIVETYPE_ISOLINES)); return group.release(); } } // tessellation } // vkt