1 /*
2 * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
3 * Copyright (c) 2002 Fabrice Bellard
4 *
5 * This file is part of libswresample
6 *
7 * libswresample is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * libswresample is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with libswresample; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include "libavutil/avassert.h"
23 #include "libavutil/channel_layout.h"
24 #include "libavutil/common.h"
25 #include "libavutil/opt.h"
26
27 #include "libswresample/swresample.h"
28
29 #undef time
30 #include <time.h>
31 #undef fprintf
32
33 #define SAMPLES 1000
34
35 #define SWR_CH_MAX 32
36
37 #define ASSERT_LEVEL 2
38
get(uint8_t * a[],int ch,int index,int ch_count,enum AVSampleFormat f)39 static double get(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f){
40 const uint8_t *p;
41 if(av_sample_fmt_is_planar(f)){
42 f= av_get_alt_sample_fmt(f, 0);
43 p= a[ch];
44 }else{
45 p= a[0];
46 index= ch + index*ch_count;
47 }
48
49 switch(f){
50 case AV_SAMPLE_FMT_U8 : return ((const uint8_t*)p)[index]/127.0-1.0;
51 case AV_SAMPLE_FMT_S16: return ((const int16_t*)p)[index]/32767.0;
52 case AV_SAMPLE_FMT_S32: return ((const int32_t*)p)[index]/2147483647.0;
53 case AV_SAMPLE_FMT_FLT: return ((const float *)p)[index];
54 case AV_SAMPLE_FMT_DBL: return ((const double *)p)[index];
55 default: av_assert0(0);
56 }
57 }
58
set(uint8_t * a[],int ch,int index,int ch_count,enum AVSampleFormat f,double v)59 static void set(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f, double v){
60 uint8_t *p;
61 if(av_sample_fmt_is_planar(f)){
62 f= av_get_alt_sample_fmt(f, 0);
63 p= a[ch];
64 }else{
65 p= a[0];
66 index= ch + index*ch_count;
67 }
68 switch(f){
69 case AV_SAMPLE_FMT_U8 : ((uint8_t*)p)[index]= av_clip_uint8 (lrint((v+1.0)*127)); break;
70 case AV_SAMPLE_FMT_S16: ((int16_t*)p)[index]= av_clip_int16 (lrint(v*32767)); break;
71 case AV_SAMPLE_FMT_S32: ((int32_t*)p)[index]= av_clipl_int32(llrint(v*2147483647)); break;
72 case AV_SAMPLE_FMT_FLT: ((float *)p)[index]= v; break;
73 case AV_SAMPLE_FMT_DBL: ((double *)p)[index]= v; break;
74 default: av_assert2(0);
75 }
76 }
77
shift(uint8_t * a[],int index,int ch_count,enum AVSampleFormat f)78 static void shift(uint8_t *a[], int index, int ch_count, enum AVSampleFormat f){
79 int ch;
80
81 if(av_sample_fmt_is_planar(f)){
82 f= av_get_alt_sample_fmt(f, 0);
83 for(ch= 0; ch<ch_count; ch++)
84 a[ch] += index*av_get_bytes_per_sample(f);
85 }else{
86 a[0] += index*ch_count*av_get_bytes_per_sample(f);
87 }
88 }
89
90 static const enum AVSampleFormat formats[] = {
91 AV_SAMPLE_FMT_S16,
92 AV_SAMPLE_FMT_FLTP,
93 AV_SAMPLE_FMT_S16P,
94 AV_SAMPLE_FMT_FLT,
95 AV_SAMPLE_FMT_S32P,
96 AV_SAMPLE_FMT_S32,
97 AV_SAMPLE_FMT_U8P,
98 AV_SAMPLE_FMT_U8,
99 AV_SAMPLE_FMT_DBLP,
100 AV_SAMPLE_FMT_DBL,
101 };
102
103 static const int rates[] = {
104 8000,
105 11025,
106 16000,
107 22050,
108 32000,
109 48000,
110 };
111
112 static const uint64_t layouts[]={
113 AV_CH_LAYOUT_MONO ,
114 AV_CH_LAYOUT_STEREO ,
115 AV_CH_LAYOUT_2_1 ,
116 AV_CH_LAYOUT_SURROUND ,
117 AV_CH_LAYOUT_4POINT0 ,
118 AV_CH_LAYOUT_2_2 ,
119 AV_CH_LAYOUT_QUAD ,
120 AV_CH_LAYOUT_5POINT0 ,
121 AV_CH_LAYOUT_5POINT1 ,
122 AV_CH_LAYOUT_5POINT0_BACK ,
123 AV_CH_LAYOUT_5POINT1_BACK ,
124 AV_CH_LAYOUT_7POINT0 ,
125 AV_CH_LAYOUT_7POINT1 ,
126 AV_CH_LAYOUT_7POINT1_WIDE ,
127 };
128
setup_array(uint8_t * out[SWR_CH_MAX],uint8_t * in,enum AVSampleFormat format,int samples)129 static void setup_array(uint8_t *out[SWR_CH_MAX], uint8_t *in, enum AVSampleFormat format, int samples){
130 if(av_sample_fmt_is_planar(format)){
131 int i;
132 int plane_size= av_get_bytes_per_sample(format&0xFF)*samples;
133 format&=0xFF;
134 for(i=0; i<SWR_CH_MAX; i++){
135 out[i]= in + i*plane_size;
136 }
137 }else{
138 out[0]= in;
139 }
140 }
141
cmp(const void * a,const void * b)142 static int cmp(const void *a, const void *b){
143 return *(const int *)a - *(const int *)b;
144 }
145
audiogen(void * data,enum AVSampleFormat sample_fmt,int channels,int sample_rate,int nb_samples)146 static void audiogen(void *data, enum AVSampleFormat sample_fmt,
147 int channels, int sample_rate, int nb_samples)
148 {
149 int i, ch, k;
150 double v, f, a, ampa;
151 double tabf1[SWR_CH_MAX];
152 double tabf2[SWR_CH_MAX];
153 double taba[SWR_CH_MAX];
154 unsigned static rnd;
155
156 #define PUT_SAMPLE set(data, ch, k, channels, sample_fmt, v);
157 #define uint_rand(x) ((x) = (x) * 1664525 + 1013904223)
158 #define dbl_rand(x) (uint_rand(x)*2.0 / (double)UINT_MAX - 1)
159 k = 0;
160
161 /* 1 second of single freq sinus at 1000 Hz */
162 a = 0;
163 for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
164 v = sin(a) * 0.30;
165 for (ch = 0; ch < channels; ch++)
166 PUT_SAMPLE
167 a += M_PI * 1000.0 * 2.0 / sample_rate;
168 }
169
170 /* 1 second of varying frequency between 100 and 10000 Hz */
171 a = 0;
172 for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
173 v = sin(a) * 0.30;
174 for (ch = 0; ch < channels; ch++)
175 PUT_SAMPLE
176 f = 100.0 + (((10000.0 - 100.0) * i) / sample_rate);
177 a += M_PI * f * 2.0 / sample_rate;
178 }
179
180 /* 0.5 second of low amplitude white noise */
181 for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
182 v = dbl_rand(rnd) * 0.30;
183 for (ch = 0; ch < channels; ch++)
184 PUT_SAMPLE
185 }
186
187 /* 0.5 second of high amplitude white noise */
188 for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
189 v = dbl_rand(rnd);
190 for (ch = 0; ch < channels; ch++)
191 PUT_SAMPLE
192 }
193
194 /* 1 second of unrelated ramps for each channel */
195 for (ch = 0; ch < channels; ch++) {
196 taba[ch] = 0;
197 tabf1[ch] = 100 + uint_rand(rnd) % 5000;
198 tabf2[ch] = 100 + uint_rand(rnd) % 5000;
199 }
200 for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
201 for (ch = 0; ch < channels; ch++) {
202 v = sin(taba[ch]) * 0.30;
203 PUT_SAMPLE
204 f = tabf1[ch] + (((tabf2[ch] - tabf1[ch]) * i) / sample_rate);
205 taba[ch] += M_PI * f * 2.0 / sample_rate;
206 }
207 }
208
209 /* 2 seconds of 500 Hz with varying volume */
210 a = 0;
211 ampa = 0;
212 for (i = 0; i < 2 * sample_rate && k < nb_samples; i++, k++) {
213 for (ch = 0; ch < channels; ch++) {
214 double amp = (1.0 + sin(ampa)) * 0.15;
215 if (ch & 1)
216 amp = 0.30 - amp;
217 v = sin(a) * amp;
218 PUT_SAMPLE
219 a += M_PI * 500.0 * 2.0 / sample_rate;
220 ampa += M_PI * 2.0 / sample_rate;
221 }
222 }
223 }
224
main(int argc,char ** argv)225 int main(int argc, char **argv){
226 int in_sample_rate, out_sample_rate, ch ,i, flush_count;
227 uint64_t in_ch_layout, out_ch_layout;
228 enum AVSampleFormat in_sample_fmt, out_sample_fmt;
229 uint8_t array_in[SAMPLES*8*8];
230 uint8_t array_mid[SAMPLES*8*8*3];
231 uint8_t array_out[SAMPLES*8*8+100];
232 uint8_t *ain[SWR_CH_MAX];
233 uint8_t *aout[SWR_CH_MAX];
234 uint8_t *amid[SWR_CH_MAX];
235 int flush_i=0;
236 int mode;
237 int num_tests = 10000;
238 uint32_t seed = 0;
239 uint32_t rand_seed = 0;
240 int remaining_tests[FF_ARRAY_ELEMS(rates) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats)];
241 int max_tests = FF_ARRAY_ELEMS(remaining_tests);
242 int test;
243 int specific_test= -1;
244
245 struct SwrContext * forw_ctx= NULL;
246 struct SwrContext *backw_ctx= NULL;
247
248 if (argc > 1) {
249 if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
250 av_log(NULL, AV_LOG_INFO, "Usage: swresample-test [<num_tests>[ <test>]] \n"
251 "num_tests Default is %d\n", num_tests);
252 return 0;
253 }
254 num_tests = strtol(argv[1], NULL, 0);
255 if(num_tests < 0) {
256 num_tests = -num_tests;
257 rand_seed = time(0);
258 }
259 if(num_tests<= 0 || num_tests>max_tests)
260 num_tests = max_tests;
261 if(argc > 2) {
262 specific_test = strtol(argv[1], NULL, 0);
263 }
264 }
265
266 for(i=0; i<max_tests; i++)
267 remaining_tests[i] = i;
268
269 for(test=0; test<num_tests; test++){
270 unsigned r;
271 uint_rand(seed);
272 r = (seed * (uint64_t)(max_tests - test)) >>32;
273 FFSWAP(int, remaining_tests[r], remaining_tests[max_tests - test - 1]);
274 }
275 qsort(remaining_tests + max_tests - num_tests, num_tests, sizeof(remaining_tests[0]), cmp);
276 in_sample_rate=16000;
277 for(test=0; test<num_tests; test++){
278 char in_layout_string[256];
279 char out_layout_string[256];
280 unsigned vector= remaining_tests[max_tests - test - 1];
281 int in_ch_count;
282 int out_count, mid_count, out_ch_count;
283
284 in_ch_layout = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
285 out_ch_layout = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
286 in_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
287 out_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
288 out_sample_rate = rates [vector % FF_ARRAY_ELEMS(rates )]; vector /= FF_ARRAY_ELEMS(rates);
289 av_assert0(!vector);
290
291 if(specific_test == 0){
292 if(out_sample_rate != in_sample_rate || in_ch_layout != out_ch_layout)
293 continue;
294 }
295
296 in_ch_count= av_get_channel_layout_nb_channels(in_ch_layout);
297 out_ch_count= av_get_channel_layout_nb_channels(out_ch_layout);
298 av_get_channel_layout_string( in_layout_string, sizeof( in_layout_string), in_ch_count, in_ch_layout);
299 av_get_channel_layout_string(out_layout_string, sizeof(out_layout_string), out_ch_count, out_ch_layout);
300 fprintf(stderr, "TEST: %s->%s, rate:%5d->%5d, fmt:%s->%s\n",
301 in_layout_string, out_layout_string,
302 in_sample_rate, out_sample_rate,
303 av_get_sample_fmt_name(in_sample_fmt), av_get_sample_fmt_name(out_sample_fmt));
304 forw_ctx = swr_alloc_set_opts(forw_ctx, out_ch_layout, out_sample_fmt, out_sample_rate,
305 in_ch_layout, in_sample_fmt, in_sample_rate,
306 0, 0);
307 backw_ctx = swr_alloc_set_opts(backw_ctx, in_ch_layout, in_sample_fmt, in_sample_rate,
308 out_ch_layout, out_sample_fmt, out_sample_rate,
309 0, 0);
310 if(!forw_ctx) {
311 fprintf(stderr, "Failed to init forw_cts\n");
312 return 1;
313 }
314 if(!backw_ctx) {
315 fprintf(stderr, "Failed to init backw_ctx\n");
316 return 1;
317 }
318 if (uint_rand(rand_seed) % 3 == 0)
319 av_opt_set_int(forw_ctx, "ich", 0, 0);
320 if (uint_rand(rand_seed) % 3 == 0)
321 av_opt_set_int(forw_ctx, "och", 0, 0);
322
323 if(swr_init( forw_ctx) < 0)
324 fprintf(stderr, "swr_init(->) failed\n");
325 if(swr_init(backw_ctx) < 0)
326 fprintf(stderr, "swr_init(<-) failed\n");
327 //FIXME test planar
328 setup_array(ain , array_in , in_sample_fmt, SAMPLES);
329 setup_array(amid, array_mid, out_sample_fmt, 3*SAMPLES);
330 setup_array(aout, array_out, in_sample_fmt , SAMPLES);
331 #if 0
332 for(ch=0; ch<in_ch_count; ch++){
333 for(i=0; i<SAMPLES; i++)
334 set(ain, ch, i, in_ch_count, in_sample_fmt, sin(i*i*3/SAMPLES));
335 }
336 #else
337 audiogen(ain, in_sample_fmt, in_ch_count, SAMPLES/6+1, SAMPLES);
338 #endif
339 mode = uint_rand(rand_seed) % 3;
340 if(mode==0 /*|| out_sample_rate == in_sample_rate*/) {
341 mid_count= swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, SAMPLES);
342 } else if(mode==1){
343 mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, SAMPLES);
344 mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0);
345 } else {
346 int tmp_count;
347 mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, 1);
348 av_assert0(mid_count==0);
349 shift(ain, 1, in_ch_count, in_sample_fmt);
350 mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0);
351 shift(amid, mid_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
352 mid_count+=swr_convert(forw_ctx, amid, 2, (const uint8_t **)ain, 2);
353 shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
354 shift(ain, 2, in_ch_count, in_sample_fmt);
355 mid_count+=swr_convert(forw_ctx, amid, 1, (const uint8_t **)ain, SAMPLES-3);
356 shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
357 shift(ain, -3, in_ch_count, in_sample_fmt);
358 mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0);
359 shift(amid, -tmp_count, out_ch_count, out_sample_fmt);
360 }
361 out_count= swr_convert(backw_ctx,aout, SAMPLES, (const uint8_t **)amid, mid_count);
362
363 for(ch=0; ch<in_ch_count; ch++){
364 double sse, maxdiff=0;
365 double sum_a= 0;
366 double sum_b= 0;
367 double sum_aa= 0;
368 double sum_bb= 0;
369 double sum_ab= 0;
370 for(i=0; i<out_count; i++){
371 double a= get(ain , ch, i, in_ch_count, in_sample_fmt);
372 double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
373 sum_a += a;
374 sum_b += b;
375 sum_aa+= a*a;
376 sum_bb+= b*b;
377 sum_ab+= a*b;
378 maxdiff= FFMAX(maxdiff, fabs(a-b));
379 }
380 sse= sum_aa + sum_bb - 2*sum_ab;
381 if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error
382
383 fprintf(stderr, "[e:%f c:%f max:%f] len:%5d\n", out_count ? sqrt(sse/out_count) : 0, sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, out_count);
384 }
385
386 flush_i++;
387 flush_i%=21;
388 flush_count = swr_convert(backw_ctx,aout, flush_i, 0, 0);
389 shift(aout, flush_i, in_ch_count, in_sample_fmt);
390 flush_count+= swr_convert(backw_ctx,aout, SAMPLES-flush_i, 0, 0);
391 shift(aout, -flush_i, in_ch_count, in_sample_fmt);
392 if(flush_count){
393 for(ch=0; ch<in_ch_count; ch++){
394 double sse, maxdiff=0;
395 double sum_a= 0;
396 double sum_b= 0;
397 double sum_aa= 0;
398 double sum_bb= 0;
399 double sum_ab= 0;
400 for(i=0; i<flush_count; i++){
401 double a= get(ain , ch, i+out_count, in_ch_count, in_sample_fmt);
402 double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
403 sum_a += a;
404 sum_b += b;
405 sum_aa+= a*a;
406 sum_bb+= b*b;
407 sum_ab+= a*b;
408 maxdiff= FFMAX(maxdiff, fabs(a-b));
409 }
410 sse= sum_aa + sum_bb - 2*sum_ab;
411 if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error
412
413 fprintf(stderr, "[e:%f c:%f max:%f] len:%5d F:%3d\n", sqrt(sse/flush_count), sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, flush_count, flush_i);
414 }
415 }
416
417
418 fprintf(stderr, "\n");
419 }
420
421 return 0;
422 }
423