• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
3  * Copyright (c) 2002 Fabrice Bellard
4  *
5  * This file is part of libswresample
6  *
7  * libswresample is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * libswresample is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with libswresample; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "libavutil/avassert.h"
23 #include "libavutil/channel_layout.h"
24 #include "libavutil/common.h"
25 #include "libavutil/opt.h"
26 
27 #include "libswresample/swresample.h"
28 
29 #undef time
30 #include <time.h>
31 #undef fprintf
32 
33 #define SAMPLES 1000
34 
35 #define SWR_CH_MAX 32
36 
37 #define ASSERT_LEVEL 2
38 
get(uint8_t * a[],int ch,int index,int ch_count,enum AVSampleFormat f)39 static double get(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f){
40     const uint8_t *p;
41     if(av_sample_fmt_is_planar(f)){
42         f= av_get_alt_sample_fmt(f, 0);
43         p= a[ch];
44     }else{
45         p= a[0];
46         index= ch + index*ch_count;
47     }
48 
49     switch(f){
50     case AV_SAMPLE_FMT_U8 : return ((const uint8_t*)p)[index]/127.0-1.0;
51     case AV_SAMPLE_FMT_S16: return ((const int16_t*)p)[index]/32767.0;
52     case AV_SAMPLE_FMT_S32: return ((const int32_t*)p)[index]/2147483647.0;
53     case AV_SAMPLE_FMT_FLT: return ((const float  *)p)[index];
54     case AV_SAMPLE_FMT_DBL: return ((const double *)p)[index];
55     default: av_assert0(0);
56     }
57 }
58 
set(uint8_t * a[],int ch,int index,int ch_count,enum AVSampleFormat f,double v)59 static void  set(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f, double v){
60     uint8_t *p;
61     if(av_sample_fmt_is_planar(f)){
62         f= av_get_alt_sample_fmt(f, 0);
63         p= a[ch];
64     }else{
65         p= a[0];
66         index= ch + index*ch_count;
67     }
68     switch(f){
69     case AV_SAMPLE_FMT_U8 : ((uint8_t*)p)[index]= av_clip_uint8 (lrint((v+1.0)*127));     break;
70     case AV_SAMPLE_FMT_S16: ((int16_t*)p)[index]= av_clip_int16 (lrint(v*32767));         break;
71     case AV_SAMPLE_FMT_S32: ((int32_t*)p)[index]= av_clipl_int32(llrint(v*2147483647));   break;
72     case AV_SAMPLE_FMT_FLT: ((float  *)p)[index]= v;                                      break;
73     case AV_SAMPLE_FMT_DBL: ((double *)p)[index]= v;                                      break;
74     default: av_assert2(0);
75     }
76 }
77 
shift(uint8_t * a[],int index,int ch_count,enum AVSampleFormat f)78 static void shift(uint8_t *a[], int index, int ch_count, enum AVSampleFormat f){
79     int ch;
80 
81     if(av_sample_fmt_is_planar(f)){
82         f= av_get_alt_sample_fmt(f, 0);
83         for(ch= 0; ch<ch_count; ch++)
84             a[ch] += index*av_get_bytes_per_sample(f);
85     }else{
86         a[0] += index*ch_count*av_get_bytes_per_sample(f);
87     }
88 }
89 
90 static const enum AVSampleFormat formats[] = {
91     AV_SAMPLE_FMT_S16,
92     AV_SAMPLE_FMT_FLTP,
93     AV_SAMPLE_FMT_S16P,
94     AV_SAMPLE_FMT_FLT,
95     AV_SAMPLE_FMT_S32P,
96     AV_SAMPLE_FMT_S32,
97     AV_SAMPLE_FMT_U8P,
98     AV_SAMPLE_FMT_U8,
99     AV_SAMPLE_FMT_DBLP,
100     AV_SAMPLE_FMT_DBL,
101 };
102 
103 static const int rates[] = {
104     8000,
105     11025,
106     16000,
107     22050,
108     32000,
109     48000,
110 };
111 
112 static const uint64_t layouts[]={
113     AV_CH_LAYOUT_MONO                    ,
114     AV_CH_LAYOUT_STEREO                  ,
115     AV_CH_LAYOUT_2_1                     ,
116     AV_CH_LAYOUT_SURROUND                ,
117     AV_CH_LAYOUT_4POINT0                 ,
118     AV_CH_LAYOUT_2_2                     ,
119     AV_CH_LAYOUT_QUAD                    ,
120     AV_CH_LAYOUT_5POINT0                 ,
121     AV_CH_LAYOUT_5POINT1                 ,
122     AV_CH_LAYOUT_5POINT0_BACK            ,
123     AV_CH_LAYOUT_5POINT1_BACK            ,
124     AV_CH_LAYOUT_7POINT0                 ,
125     AV_CH_LAYOUT_7POINT1                 ,
126     AV_CH_LAYOUT_7POINT1_WIDE            ,
127 };
128 
setup_array(uint8_t * out[SWR_CH_MAX],uint8_t * in,enum AVSampleFormat format,int samples)129 static void setup_array(uint8_t *out[SWR_CH_MAX], uint8_t *in, enum AVSampleFormat format, int samples){
130     if(av_sample_fmt_is_planar(format)){
131         int i;
132         int plane_size= av_get_bytes_per_sample(format&0xFF)*samples;
133         format&=0xFF;
134         for(i=0; i<SWR_CH_MAX; i++){
135             out[i]= in + i*plane_size;
136         }
137     }else{
138         out[0]= in;
139     }
140 }
141 
cmp(const void * a,const void * b)142 static int cmp(const void *a, const void *b){
143     return *(const int *)a - *(const int *)b;
144 }
145 
audiogen(void * data,enum AVSampleFormat sample_fmt,int channels,int sample_rate,int nb_samples)146 static void audiogen(void *data, enum AVSampleFormat sample_fmt,
147                      int channels, int sample_rate, int nb_samples)
148 {
149     int i, ch, k;
150     double v, f, a, ampa;
151     double tabf1[SWR_CH_MAX];
152     double tabf2[SWR_CH_MAX];
153     double taba[SWR_CH_MAX];
154     unsigned static rnd;
155 
156 #define PUT_SAMPLE set(data, ch, k, channels, sample_fmt, v);
157 #define uint_rand(x) ((x) = (x) * 1664525 + 1013904223)
158 #define dbl_rand(x) (uint_rand(x)*2.0 / (double)UINT_MAX - 1)
159     k = 0;
160 
161     /* 1 second of single freq sinus at 1000 Hz */
162     a = 0;
163     for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
164         v = sin(a) * 0.30;
165         for (ch = 0; ch < channels; ch++)
166             PUT_SAMPLE
167         a += M_PI * 1000.0 * 2.0 / sample_rate;
168     }
169 
170     /* 1 second of varying frequency between 100 and 10000 Hz */
171     a = 0;
172     for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
173         v = sin(a) * 0.30;
174         for (ch = 0; ch < channels; ch++)
175             PUT_SAMPLE
176         f  = 100.0 + (((10000.0 - 100.0) * i) / sample_rate);
177         a += M_PI * f * 2.0 / sample_rate;
178     }
179 
180     /* 0.5 second of low amplitude white noise */
181     for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
182         v = dbl_rand(rnd) * 0.30;
183         for (ch = 0; ch < channels; ch++)
184             PUT_SAMPLE
185     }
186 
187     /* 0.5 second of high amplitude white noise */
188     for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
189         v = dbl_rand(rnd);
190         for (ch = 0; ch < channels; ch++)
191             PUT_SAMPLE
192     }
193 
194     /* 1 second of unrelated ramps for each channel */
195     for (ch = 0; ch < channels; ch++) {
196         taba[ch]  = 0;
197         tabf1[ch] = 100 + uint_rand(rnd) % 5000;
198         tabf2[ch] = 100 + uint_rand(rnd) % 5000;
199     }
200     for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
201         for (ch = 0; ch < channels; ch++) {
202             v = sin(taba[ch]) * 0.30;
203             PUT_SAMPLE
204             f = tabf1[ch] + (((tabf2[ch] - tabf1[ch]) * i) / sample_rate);
205             taba[ch] += M_PI * f * 2.0 / sample_rate;
206         }
207     }
208 
209     /* 2 seconds of 500 Hz with varying volume */
210     a    = 0;
211     ampa = 0;
212     for (i = 0; i < 2 * sample_rate && k < nb_samples; i++, k++) {
213         for (ch = 0; ch < channels; ch++) {
214             double amp = (1.0 + sin(ampa)) * 0.15;
215             if (ch & 1)
216                 amp = 0.30 - amp;
217             v = sin(a) * amp;
218             PUT_SAMPLE
219             a    += M_PI * 500.0 * 2.0 / sample_rate;
220             ampa += M_PI *  2.0 / sample_rate;
221         }
222     }
223 }
224 
main(int argc,char ** argv)225 int main(int argc, char **argv){
226     int in_sample_rate, out_sample_rate, ch ,i, flush_count;
227     uint64_t in_ch_layout, out_ch_layout;
228     enum AVSampleFormat in_sample_fmt, out_sample_fmt;
229     uint8_t array_in[SAMPLES*8*8];
230     uint8_t array_mid[SAMPLES*8*8*3];
231     uint8_t array_out[SAMPLES*8*8+100];
232     uint8_t *ain[SWR_CH_MAX];
233     uint8_t *aout[SWR_CH_MAX];
234     uint8_t *amid[SWR_CH_MAX];
235     int flush_i=0;
236     int mode;
237     int num_tests = 10000;
238     uint32_t seed = 0;
239     uint32_t rand_seed = 0;
240     int remaining_tests[FF_ARRAY_ELEMS(rates) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats)];
241     int max_tests = FF_ARRAY_ELEMS(remaining_tests);
242     int test;
243     int specific_test= -1;
244 
245     struct SwrContext * forw_ctx= NULL;
246     struct SwrContext *backw_ctx= NULL;
247 
248     if (argc > 1) {
249         if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
250             av_log(NULL, AV_LOG_INFO, "Usage: swresample-test [<num_tests>[ <test>]]  \n"
251                    "num_tests           Default is %d\n", num_tests);
252             return 0;
253         }
254         num_tests = strtol(argv[1], NULL, 0);
255         if(num_tests < 0) {
256             num_tests = -num_tests;
257             rand_seed = time(0);
258         }
259         if(num_tests<= 0 || num_tests>max_tests)
260             num_tests = max_tests;
261         if(argc > 2) {
262             specific_test = strtol(argv[1], NULL, 0);
263         }
264     }
265 
266     for(i=0; i<max_tests; i++)
267         remaining_tests[i] = i;
268 
269     for(test=0; test<num_tests; test++){
270         unsigned r;
271         uint_rand(seed);
272         r = (seed * (uint64_t)(max_tests - test)) >>32;
273         FFSWAP(int, remaining_tests[r], remaining_tests[max_tests - test - 1]);
274     }
275     qsort(remaining_tests + max_tests - num_tests, num_tests, sizeof(remaining_tests[0]), cmp);
276     in_sample_rate=16000;
277     for(test=0; test<num_tests; test++){
278         char  in_layout_string[256];
279         char out_layout_string[256];
280         unsigned vector= remaining_tests[max_tests - test - 1];
281         int in_ch_count;
282         int out_count, mid_count, out_ch_count;
283 
284         in_ch_layout    = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
285         out_ch_layout   = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
286         in_sample_fmt   = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
287         out_sample_fmt  = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
288         out_sample_rate = rates  [vector % FF_ARRAY_ELEMS(rates  )]; vector /= FF_ARRAY_ELEMS(rates);
289         av_assert0(!vector);
290 
291         if(specific_test == 0){
292             if(out_sample_rate != in_sample_rate || in_ch_layout != out_ch_layout)
293                 continue;
294         }
295 
296         in_ch_count= av_get_channel_layout_nb_channels(in_ch_layout);
297         out_ch_count= av_get_channel_layout_nb_channels(out_ch_layout);
298         av_get_channel_layout_string( in_layout_string, sizeof( in_layout_string),  in_ch_count,  in_ch_layout);
299         av_get_channel_layout_string(out_layout_string, sizeof(out_layout_string), out_ch_count, out_ch_layout);
300         fprintf(stderr, "TEST: %s->%s, rate:%5d->%5d, fmt:%s->%s\n",
301                 in_layout_string, out_layout_string,
302                 in_sample_rate, out_sample_rate,
303                 av_get_sample_fmt_name(in_sample_fmt), av_get_sample_fmt_name(out_sample_fmt));
304         forw_ctx  = swr_alloc_set_opts(forw_ctx, out_ch_layout, out_sample_fmt,  out_sample_rate,
305                                                     in_ch_layout,  in_sample_fmt,  in_sample_rate,
306                                         0, 0);
307         backw_ctx = swr_alloc_set_opts(backw_ctx, in_ch_layout,  in_sample_fmt,             in_sample_rate,
308                                                     out_ch_layout, out_sample_fmt, out_sample_rate,
309                                         0, 0);
310         if(!forw_ctx) {
311             fprintf(stderr, "Failed to init forw_cts\n");
312             return 1;
313         }
314         if(!backw_ctx) {
315             fprintf(stderr, "Failed to init backw_ctx\n");
316             return 1;
317         }
318         if (uint_rand(rand_seed) % 3 == 0)
319             av_opt_set_int(forw_ctx, "ich", 0, 0);
320         if (uint_rand(rand_seed) % 3 == 0)
321             av_opt_set_int(forw_ctx, "och", 0, 0);
322 
323         if(swr_init( forw_ctx) < 0)
324             fprintf(stderr, "swr_init(->) failed\n");
325         if(swr_init(backw_ctx) < 0)
326             fprintf(stderr, "swr_init(<-) failed\n");
327                 //FIXME test planar
328         setup_array(ain , array_in ,  in_sample_fmt,   SAMPLES);
329         setup_array(amid, array_mid, out_sample_fmt, 3*SAMPLES);
330         setup_array(aout, array_out,  in_sample_fmt           ,   SAMPLES);
331 #if 0
332         for(ch=0; ch<in_ch_count; ch++){
333             for(i=0; i<SAMPLES; i++)
334                 set(ain, ch, i, in_ch_count, in_sample_fmt, sin(i*i*3/SAMPLES));
335         }
336 #else
337         audiogen(ain, in_sample_fmt, in_ch_count, SAMPLES/6+1, SAMPLES);
338 #endif
339         mode = uint_rand(rand_seed) % 3;
340         if(mode==0 /*|| out_sample_rate == in_sample_rate*/) {
341             mid_count= swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, SAMPLES);
342         } else if(mode==1){
343             mid_count= swr_convert(forw_ctx, amid,         0, (const uint8_t **)ain, SAMPLES);
344             mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain,       0);
345         } else {
346             int tmp_count;
347             mid_count= swr_convert(forw_ctx, amid,         0, (const uint8_t **)ain,       1);
348             av_assert0(mid_count==0);
349             shift(ain,  1, in_ch_count, in_sample_fmt);
350             mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain,       0);
351             shift(amid,  mid_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
352             mid_count+=swr_convert(forw_ctx, amid,         2, (const uint8_t **)ain,       2);
353             shift(amid,  mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
354             shift(ain,  2, in_ch_count, in_sample_fmt);
355             mid_count+=swr_convert(forw_ctx, amid,         1, (const uint8_t **)ain, SAMPLES-3);
356             shift(amid,  mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
357             shift(ain, -3, in_ch_count, in_sample_fmt);
358             mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain,       0);
359             shift(amid,  -tmp_count, out_ch_count, out_sample_fmt);
360         }
361         out_count= swr_convert(backw_ctx,aout, SAMPLES, (const uint8_t **)amid, mid_count);
362 
363         for(ch=0; ch<in_ch_count; ch++){
364             double sse, maxdiff=0;
365             double sum_a= 0;
366             double sum_b= 0;
367             double sum_aa= 0;
368             double sum_bb= 0;
369             double sum_ab= 0;
370             for(i=0; i<out_count; i++){
371                 double a= get(ain , ch, i, in_ch_count, in_sample_fmt);
372                 double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
373                 sum_a += a;
374                 sum_b += b;
375                 sum_aa+= a*a;
376                 sum_bb+= b*b;
377                 sum_ab+= a*b;
378                 maxdiff= FFMAX(maxdiff, fabs(a-b));
379             }
380             sse= sum_aa + sum_bb - 2*sum_ab;
381             if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error
382 
383             fprintf(stderr, "[e:%f c:%f max:%f] len:%5d\n", out_count ? sqrt(sse/out_count) : 0, sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, out_count);
384         }
385 
386         flush_i++;
387         flush_i%=21;
388         flush_count = swr_convert(backw_ctx,aout, flush_i, 0, 0);
389         shift(aout,  flush_i, in_ch_count, in_sample_fmt);
390         flush_count+= swr_convert(backw_ctx,aout, SAMPLES-flush_i, 0, 0);
391         shift(aout, -flush_i, in_ch_count, in_sample_fmt);
392         if(flush_count){
393             for(ch=0; ch<in_ch_count; ch++){
394                 double sse, maxdiff=0;
395                 double sum_a= 0;
396                 double sum_b= 0;
397                 double sum_aa= 0;
398                 double sum_bb= 0;
399                 double sum_ab= 0;
400                 for(i=0; i<flush_count; i++){
401                     double a= get(ain , ch, i+out_count, in_ch_count, in_sample_fmt);
402                     double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
403                     sum_a += a;
404                     sum_b += b;
405                     sum_aa+= a*a;
406                     sum_bb+= b*b;
407                     sum_ab+= a*b;
408                     maxdiff= FFMAX(maxdiff, fabs(a-b));
409                 }
410                 sse= sum_aa + sum_bb - 2*sum_ab;
411                 if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error
412 
413                 fprintf(stderr, "[e:%f c:%f max:%f] len:%5d F:%3d\n", sqrt(sse/flush_count), sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, flush_count, flush_i);
414             }
415         }
416 
417 
418         fprintf(stderr, "\n");
419     }
420 
421     return 0;
422 }
423