1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend. This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/AtomicExpandUtils.h"
21 #include "llvm/CodeGen/RuntimeLibcalls.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
52
53 using namespace llvm;
54
55 #define DEBUG_TYPE "atomic-expand"
56
57 namespace {
58
59 class AtomicExpand: public FunctionPass {
60 const TargetLowering *TLI = nullptr;
61
62 public:
63 static char ID; // Pass identification, replacement for typeid
64
AtomicExpand()65 AtomicExpand() : FunctionPass(ID) {
66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
67 }
68
69 bool runOnFunction(Function &F) override;
70
71 private:
72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
75 bool tryExpandAtomicLoad(LoadInst *LI);
76 bool expandAtomicLoadToLL(LoadInst *LI);
77 bool expandAtomicLoadToCmpXchg(LoadInst *LI);
78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
79 bool expandAtomicStore(StoreInst *SI);
80 bool tryExpandAtomicRMW(AtomicRMWInst *AI);
81 Value *
82 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
83 AtomicOrdering MemOpOrder,
84 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
85 void expandAtomicOpToLLSC(
86 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
87 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
88 void expandPartwordAtomicRMW(
89 AtomicRMWInst *I,
90 TargetLoweringBase::AtomicExpansionKind ExpansionKind);
91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
92 void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
94 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
95
96 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
97 static Value *insertRMWCmpXchgLoop(
98 IRBuilder<> &Builder, Type *ResultType, Value *Addr,
99 AtomicOrdering MemOpOrder,
100 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
101 CreateCmpXchgInstFun CreateCmpXchg);
102 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
103
104 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
105 bool isIdempotentRMW(AtomicRMWInst *RMWI);
106 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
107
108 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align,
109 Value *PointerOperand, Value *ValueOperand,
110 Value *CASExpected, AtomicOrdering Ordering,
111 AtomicOrdering Ordering2,
112 ArrayRef<RTLIB::Libcall> Libcalls);
113 void expandAtomicLoadToLibcall(LoadInst *LI);
114 void expandAtomicStoreToLibcall(StoreInst *LI);
115 void expandAtomicRMWToLibcall(AtomicRMWInst *I);
116 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
117
118 friend bool
119 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
120 CreateCmpXchgInstFun CreateCmpXchg);
121 };
122
123 } // end anonymous namespace
124
125 char AtomicExpand::ID = 0;
126
127 char &llvm::AtomicExpandID = AtomicExpand::ID;
128
129 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
130 false, false)
131
createAtomicExpandPass()132 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
133
134 // Helper functions to retrieve the size of atomic instructions.
getAtomicOpSize(LoadInst * LI)135 static unsigned getAtomicOpSize(LoadInst *LI) {
136 const DataLayout &DL = LI->getModule()->getDataLayout();
137 return DL.getTypeStoreSize(LI->getType());
138 }
139
getAtomicOpSize(StoreInst * SI)140 static unsigned getAtomicOpSize(StoreInst *SI) {
141 const DataLayout &DL = SI->getModule()->getDataLayout();
142 return DL.getTypeStoreSize(SI->getValueOperand()->getType());
143 }
144
getAtomicOpSize(AtomicRMWInst * RMWI)145 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
146 const DataLayout &DL = RMWI->getModule()->getDataLayout();
147 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
148 }
149
getAtomicOpSize(AtomicCmpXchgInst * CASI)150 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
151 const DataLayout &DL = CASI->getModule()->getDataLayout();
152 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
153 }
154
155 // Helper functions to retrieve the alignment of atomic instructions.
getAtomicOpAlign(LoadInst * LI)156 static unsigned getAtomicOpAlign(LoadInst *LI) {
157 unsigned Align = LI->getAlignment();
158 // In the future, if this IR restriction is relaxed, we should
159 // return DataLayout::getABITypeAlignment when there's no align
160 // value.
161 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment");
162 return Align;
163 }
164
getAtomicOpAlign(StoreInst * SI)165 static unsigned getAtomicOpAlign(StoreInst *SI) {
166 unsigned Align = SI->getAlignment();
167 // In the future, if this IR restriction is relaxed, we should
168 // return DataLayout::getABITypeAlignment when there's no align
169 // value.
170 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment");
171 return Align;
172 }
173
getAtomicOpAlign(AtomicRMWInst * RMWI)174 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) {
175 // TODO(PR27168): This instruction has no alignment attribute, but unlike the
176 // default alignment for load/store, the default here is to assume
177 // it has NATURAL alignment, not DataLayout-specified alignment.
178 const DataLayout &DL = RMWI->getModule()->getDataLayout();
179 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
180 }
181
getAtomicOpAlign(AtomicCmpXchgInst * CASI)182 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) {
183 // TODO(PR27168): same comment as above.
184 const DataLayout &DL = CASI->getModule()->getDataLayout();
185 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
186 }
187
188 // Determine if a particular atomic operation has a supported size,
189 // and is of appropriate alignment, to be passed through for target
190 // lowering. (Versus turning into a __atomic libcall)
191 template <typename Inst>
atomicSizeSupported(const TargetLowering * TLI,Inst * I)192 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
193 unsigned Size = getAtomicOpSize(I);
194 unsigned Align = getAtomicOpAlign(I);
195 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
196 }
197
runOnFunction(Function & F)198 bool AtomicExpand::runOnFunction(Function &F) {
199 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
200 if (!TPC)
201 return false;
202
203 auto &TM = TPC->getTM<TargetMachine>();
204 if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
205 return false;
206 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
207
208 SmallVector<Instruction *, 1> AtomicInsts;
209
210 // Changing control-flow while iterating through it is a bad idea, so gather a
211 // list of all atomic instructions before we start.
212 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
213 Instruction *I = &*II;
214 if (I->isAtomic() && !isa<FenceInst>(I))
215 AtomicInsts.push_back(I);
216 }
217
218 bool MadeChange = false;
219 for (auto I : AtomicInsts) {
220 auto LI = dyn_cast<LoadInst>(I);
221 auto SI = dyn_cast<StoreInst>(I);
222 auto RMWI = dyn_cast<AtomicRMWInst>(I);
223 auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
224 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
225
226 // If the Size/Alignment is not supported, replace with a libcall.
227 if (LI) {
228 if (!atomicSizeSupported(TLI, LI)) {
229 expandAtomicLoadToLibcall(LI);
230 MadeChange = true;
231 continue;
232 }
233 } else if (SI) {
234 if (!atomicSizeSupported(TLI, SI)) {
235 expandAtomicStoreToLibcall(SI);
236 MadeChange = true;
237 continue;
238 }
239 } else if (RMWI) {
240 if (!atomicSizeSupported(TLI, RMWI)) {
241 expandAtomicRMWToLibcall(RMWI);
242 MadeChange = true;
243 continue;
244 }
245 } else if (CASI) {
246 if (!atomicSizeSupported(TLI, CASI)) {
247 expandAtomicCASToLibcall(CASI);
248 MadeChange = true;
249 continue;
250 }
251 }
252
253 if (TLI->shouldInsertFencesForAtomic(I)) {
254 auto FenceOrdering = AtomicOrdering::Monotonic;
255 if (LI && isAcquireOrStronger(LI->getOrdering())) {
256 FenceOrdering = LI->getOrdering();
257 LI->setOrdering(AtomicOrdering::Monotonic);
258 } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
259 FenceOrdering = SI->getOrdering();
260 SI->setOrdering(AtomicOrdering::Monotonic);
261 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
262 isAcquireOrStronger(RMWI->getOrdering()))) {
263 FenceOrdering = RMWI->getOrdering();
264 RMWI->setOrdering(AtomicOrdering::Monotonic);
265 } else if (CASI &&
266 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
267 TargetLoweringBase::AtomicExpansionKind::None &&
268 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
269 isAcquireOrStronger(CASI->getSuccessOrdering()))) {
270 // If a compare and swap is lowered to LL/SC, we can do smarter fence
271 // insertion, with a stronger one on the success path than on the
272 // failure path. As a result, fence insertion is directly done by
273 // expandAtomicCmpXchg in that case.
274 FenceOrdering = CASI->getSuccessOrdering();
275 CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
276 CASI->setFailureOrdering(AtomicOrdering::Monotonic);
277 }
278
279 if (FenceOrdering != AtomicOrdering::Monotonic) {
280 MadeChange |= bracketInstWithFences(I, FenceOrdering);
281 }
282 }
283
284 if (LI) {
285 if (LI->getType()->isFloatingPointTy()) {
286 // TODO: add a TLI hook to control this so that each target can
287 // convert to lowering the original type one at a time.
288 LI = convertAtomicLoadToIntegerType(LI);
289 assert(LI->getType()->isIntegerTy() && "invariant broken");
290 MadeChange = true;
291 }
292
293 MadeChange |= tryExpandAtomicLoad(LI);
294 } else if (SI) {
295 if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
296 // TODO: add a TLI hook to control this so that each target can
297 // convert to lowering the original type one at a time.
298 SI = convertAtomicStoreToIntegerType(SI);
299 assert(SI->getValueOperand()->getType()->isIntegerTy() &&
300 "invariant broken");
301 MadeChange = true;
302 }
303
304 if (TLI->shouldExpandAtomicStoreInIR(SI))
305 MadeChange |= expandAtomicStore(SI);
306 } else if (RMWI) {
307 // There are two different ways of expanding RMW instructions:
308 // - into a load if it is idempotent
309 // - into a Cmpxchg/LL-SC loop otherwise
310 // we try them in that order.
311
312 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
313 MadeChange = true;
314 } else {
315 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
316 unsigned ValueSize = getAtomicOpSize(RMWI);
317 AtomicRMWInst::BinOp Op = RMWI->getOperation();
318 if (ValueSize < MinCASSize &&
319 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
320 Op == AtomicRMWInst::And)) {
321 RMWI = widenPartwordAtomicRMW(RMWI);
322 MadeChange = true;
323 }
324
325 MadeChange |= tryExpandAtomicRMW(RMWI);
326 }
327 } else if (CASI) {
328 // TODO: when we're ready to make the change at the IR level, we can
329 // extend convertCmpXchgToInteger for floating point too.
330 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
331 "unimplemented - floating point not legal at IR level");
332 if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
333 // TODO: add a TLI hook to control this so that each target can
334 // convert to lowering the original type one at a time.
335 CASI = convertCmpXchgToIntegerType(CASI);
336 assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
337 "invariant broken");
338 MadeChange = true;
339 }
340
341 MadeChange |= tryExpandAtomicCmpXchg(CASI);
342 }
343 }
344 return MadeChange;
345 }
346
bracketInstWithFences(Instruction * I,AtomicOrdering Order)347 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
348 IRBuilder<> Builder(I);
349
350 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
351
352 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
353 // We have a guard here because not every atomic operation generates a
354 // trailing fence.
355 if (TrailingFence)
356 TrailingFence->moveAfter(I);
357
358 return (LeadingFence || TrailingFence);
359 }
360
361 /// Get the iX type with the same bitwidth as T.
getCorrespondingIntegerType(Type * T,const DataLayout & DL)362 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
363 const DataLayout &DL) {
364 EVT VT = TLI->getMemValueType(DL, T);
365 unsigned BitWidth = VT.getStoreSizeInBits();
366 assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
367 return IntegerType::get(T->getContext(), BitWidth);
368 }
369
370 /// Convert an atomic load of a non-integral type to an integer load of the
371 /// equivalent bitwidth. See the function comment on
372 /// convertAtomicStoreToIntegerType for background.
convertAtomicLoadToIntegerType(LoadInst * LI)373 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
374 auto *M = LI->getModule();
375 Type *NewTy = getCorrespondingIntegerType(LI->getType(),
376 M->getDataLayout());
377
378 IRBuilder<> Builder(LI);
379
380 Value *Addr = LI->getPointerOperand();
381 Type *PT = PointerType::get(NewTy,
382 Addr->getType()->getPointerAddressSpace());
383 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
384
385 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
386 NewLI->setAlignment(MaybeAlign(LI->getAlignment()));
387 NewLI->setVolatile(LI->isVolatile());
388 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
389 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
390
391 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
392 LI->replaceAllUsesWith(NewVal);
393 LI->eraseFromParent();
394 return NewLI;
395 }
396
tryExpandAtomicLoad(LoadInst * LI)397 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
398 switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
399 case TargetLoweringBase::AtomicExpansionKind::None:
400 return false;
401 case TargetLoweringBase::AtomicExpansionKind::LLSC:
402 expandAtomicOpToLLSC(
403 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
404 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
405 return true;
406 case TargetLoweringBase::AtomicExpansionKind::LLOnly:
407 return expandAtomicLoadToLL(LI);
408 case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
409 return expandAtomicLoadToCmpXchg(LI);
410 default:
411 llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
412 }
413 }
414
expandAtomicLoadToLL(LoadInst * LI)415 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
416 IRBuilder<> Builder(LI);
417
418 // On some architectures, load-linked instructions are atomic for larger
419 // sizes than normal loads. For example, the only 64-bit load guaranteed
420 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
421 Value *Val =
422 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
423 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
424
425 LI->replaceAllUsesWith(Val);
426 LI->eraseFromParent();
427
428 return true;
429 }
430
expandAtomicLoadToCmpXchg(LoadInst * LI)431 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
432 IRBuilder<> Builder(LI);
433 AtomicOrdering Order = LI->getOrdering();
434 if (Order == AtomicOrdering::Unordered)
435 Order = AtomicOrdering::Monotonic;
436
437 Value *Addr = LI->getPointerOperand();
438 Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
439 Constant *DummyVal = Constant::getNullValue(Ty);
440
441 Value *Pair = Builder.CreateAtomicCmpXchg(
442 Addr, DummyVal, DummyVal, Order,
443 AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
444 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
445
446 LI->replaceAllUsesWith(Loaded);
447 LI->eraseFromParent();
448
449 return true;
450 }
451
452 /// Convert an atomic store of a non-integral type to an integer store of the
453 /// equivalent bitwidth. We used to not support floating point or vector
454 /// atomics in the IR at all. The backends learned to deal with the bitcast
455 /// idiom because that was the only way of expressing the notion of a atomic
456 /// float or vector store. The long term plan is to teach each backend to
457 /// instruction select from the original atomic store, but as a migration
458 /// mechanism, we convert back to the old format which the backends understand.
459 /// Each backend will need individual work to recognize the new format.
convertAtomicStoreToIntegerType(StoreInst * SI)460 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
461 IRBuilder<> Builder(SI);
462 auto *M = SI->getModule();
463 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
464 M->getDataLayout());
465 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
466
467 Value *Addr = SI->getPointerOperand();
468 Type *PT = PointerType::get(NewTy,
469 Addr->getType()->getPointerAddressSpace());
470 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
471
472 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
473 NewSI->setAlignment(MaybeAlign(SI->getAlignment()));
474 NewSI->setVolatile(SI->isVolatile());
475 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
476 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
477 SI->eraseFromParent();
478 return NewSI;
479 }
480
expandAtomicStore(StoreInst * SI)481 bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
482 // This function is only called on atomic stores that are too large to be
483 // atomic if implemented as a native store. So we replace them by an
484 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
485 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
486 // It is the responsibility of the target to only signal expansion via
487 // shouldExpandAtomicRMW in cases where this is required and possible.
488 IRBuilder<> Builder(SI);
489 AtomicRMWInst *AI =
490 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
491 SI->getValueOperand(), SI->getOrdering());
492 SI->eraseFromParent();
493
494 // Now we have an appropriate swap instruction, lower it as usual.
495 return tryExpandAtomicRMW(AI);
496 }
497
createCmpXchgInstFun(IRBuilder<> & Builder,Value * Addr,Value * Loaded,Value * NewVal,AtomicOrdering MemOpOrder,Value * & Success,Value * & NewLoaded)498 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
499 Value *Loaded, Value *NewVal,
500 AtomicOrdering MemOpOrder,
501 Value *&Success, Value *&NewLoaded) {
502 Type *OrigTy = NewVal->getType();
503
504 // This code can go away when cmpxchg supports FP types.
505 bool NeedBitcast = OrigTy->isFloatingPointTy();
506 if (NeedBitcast) {
507 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
508 unsigned AS = Addr->getType()->getPointerAddressSpace();
509 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
510 NewVal = Builder.CreateBitCast(NewVal, IntTy);
511 Loaded = Builder.CreateBitCast(Loaded, IntTy);
512 }
513
514 Value* Pair = Builder.CreateAtomicCmpXchg(
515 Addr, Loaded, NewVal, MemOpOrder,
516 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
517 Success = Builder.CreateExtractValue(Pair, 1, "success");
518 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
519
520 if (NeedBitcast)
521 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
522 }
523
524 /// Emit IR to implement the given atomicrmw operation on values in registers,
525 /// returning the new value.
performAtomicOp(AtomicRMWInst::BinOp Op,IRBuilder<> & Builder,Value * Loaded,Value * Inc)526 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
527 Value *Loaded, Value *Inc) {
528 Value *NewVal;
529 switch (Op) {
530 case AtomicRMWInst::Xchg:
531 return Inc;
532 case AtomicRMWInst::Add:
533 return Builder.CreateAdd(Loaded, Inc, "new");
534 case AtomicRMWInst::Sub:
535 return Builder.CreateSub(Loaded, Inc, "new");
536 case AtomicRMWInst::And:
537 return Builder.CreateAnd(Loaded, Inc, "new");
538 case AtomicRMWInst::Nand:
539 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
540 case AtomicRMWInst::Or:
541 return Builder.CreateOr(Loaded, Inc, "new");
542 case AtomicRMWInst::Xor:
543 return Builder.CreateXor(Loaded, Inc, "new");
544 case AtomicRMWInst::Max:
545 NewVal = Builder.CreateICmpSGT(Loaded, Inc);
546 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
547 case AtomicRMWInst::Min:
548 NewVal = Builder.CreateICmpSLE(Loaded, Inc);
549 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
550 case AtomicRMWInst::UMax:
551 NewVal = Builder.CreateICmpUGT(Loaded, Inc);
552 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
553 case AtomicRMWInst::UMin:
554 NewVal = Builder.CreateICmpULE(Loaded, Inc);
555 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
556 case AtomicRMWInst::FAdd:
557 return Builder.CreateFAdd(Loaded, Inc, "new");
558 case AtomicRMWInst::FSub:
559 return Builder.CreateFSub(Loaded, Inc, "new");
560 default:
561 llvm_unreachable("Unknown atomic op");
562 }
563 }
564
tryExpandAtomicRMW(AtomicRMWInst * AI)565 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
566 switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
567 case TargetLoweringBase::AtomicExpansionKind::None:
568 return false;
569 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
570 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
571 unsigned ValueSize = getAtomicOpSize(AI);
572 if (ValueSize < MinCASSize) {
573 llvm_unreachable(
574 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
575 } else {
576 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
577 return performAtomicOp(AI->getOperation(), Builder, Loaded,
578 AI->getValOperand());
579 };
580 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
581 AI->getOrdering(), PerformOp);
582 }
583 return true;
584 }
585 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
586 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
587 unsigned ValueSize = getAtomicOpSize(AI);
588 if (ValueSize < MinCASSize) {
589 // TODO: Handle atomicrmw fadd/fsub
590 if (AI->getType()->isFloatingPointTy())
591 return false;
592
593 expandPartwordAtomicRMW(AI,
594 TargetLoweringBase::AtomicExpansionKind::CmpXChg);
595 } else {
596 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
597 }
598 return true;
599 }
600 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
601 expandAtomicRMWToMaskedIntrinsic(AI);
602 return true;
603 }
604 default:
605 llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
606 }
607 }
608
609 namespace {
610
611 /// Result values from createMaskInstrs helper.
612 struct PartwordMaskValues {
613 Type *WordType;
614 Type *ValueType;
615 Value *AlignedAddr;
616 Value *ShiftAmt;
617 Value *Mask;
618 Value *Inv_Mask;
619 };
620
621 } // end anonymous namespace
622
623 /// This is a helper function which builds instructions to provide
624 /// values necessary for partword atomic operations. It takes an
625 /// incoming address, Addr, and ValueType, and constructs the address,
626 /// shift-amounts and masks needed to work with a larger value of size
627 /// WordSize.
628 ///
629 /// AlignedAddr: Addr rounded down to a multiple of WordSize
630 ///
631 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
632 /// from AlignAddr for it to have the same value as if
633 /// ValueType was loaded from Addr.
634 ///
635 /// Mask: Value to mask with the value loaded from AlignAddr to
636 /// include only the part that would've been loaded from Addr.
637 ///
638 /// Inv_Mask: The inverse of Mask.
createMaskInstrs(IRBuilder<> & Builder,Instruction * I,Type * ValueType,Value * Addr,unsigned WordSize)639 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
640 Type *ValueType, Value *Addr,
641 unsigned WordSize) {
642 PartwordMaskValues Ret;
643
644 BasicBlock *BB = I->getParent();
645 Function *F = BB->getParent();
646 Module *M = I->getModule();
647
648 LLVMContext &Ctx = F->getContext();
649 const DataLayout &DL = M->getDataLayout();
650
651 unsigned ValueSize = DL.getTypeStoreSize(ValueType);
652
653 assert(ValueSize < WordSize);
654
655 Ret.ValueType = ValueType;
656 Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8);
657
658 Type *WordPtrType =
659 Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
660
661 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
662 Ret.AlignedAddr = Builder.CreateIntToPtr(
663 Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType,
664 "AlignedAddr");
665
666 Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB");
667 if (DL.isLittleEndian()) {
668 // turn bytes into bits
669 Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
670 } else {
671 // turn bytes into bits, and count from the other side.
672 Ret.ShiftAmt =
673 Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3);
674 }
675
676 Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt");
677 Ret.Mask = Builder.CreateShl(
678 ConstantInt::get(Ret.WordType, (1 << (ValueSize * 8)) - 1), Ret.ShiftAmt,
679 "Mask");
680 Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask");
681
682 return Ret;
683 }
684
685 /// Emit IR to implement a masked version of a given atomicrmw
686 /// operation. (That is, only the bits under the Mask should be
687 /// affected by the operation)
performMaskedAtomicOp(AtomicRMWInst::BinOp Op,IRBuilder<> & Builder,Value * Loaded,Value * Shifted_Inc,Value * Inc,const PartwordMaskValues & PMV)688 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
689 IRBuilder<> &Builder, Value *Loaded,
690 Value *Shifted_Inc, Value *Inc,
691 const PartwordMaskValues &PMV) {
692 // TODO: update to use
693 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
694 // to merge bits from two values without requiring PMV.Inv_Mask.
695 switch (Op) {
696 case AtomicRMWInst::Xchg: {
697 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
698 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
699 return FinalVal;
700 }
701 case AtomicRMWInst::Or:
702 case AtomicRMWInst::Xor:
703 case AtomicRMWInst::And:
704 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
705 case AtomicRMWInst::Add:
706 case AtomicRMWInst::Sub:
707 case AtomicRMWInst::Nand: {
708 // The other arithmetic ops need to be masked into place.
709 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
710 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
711 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
712 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
713 return FinalVal;
714 }
715 case AtomicRMWInst::Max:
716 case AtomicRMWInst::Min:
717 case AtomicRMWInst::UMax:
718 case AtomicRMWInst::UMin: {
719 // Finally, comparison ops will operate on the full value, so
720 // truncate down to the original size, and expand out again after
721 // doing the operation.
722 Value *Loaded_Shiftdown = Builder.CreateTrunc(
723 Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType);
724 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc);
725 Value *NewVal_Shiftup = Builder.CreateShl(
726 Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
727 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
728 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup);
729 return FinalVal;
730 }
731 default:
732 llvm_unreachable("Unknown atomic op");
733 }
734 }
735
736 /// Expand a sub-word atomicrmw operation into an appropriate
737 /// word-sized operation.
738 ///
739 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
740 /// way as a typical atomicrmw expansion. The only difference here is
741 /// that the operation inside of the loop must operate only upon a
742 /// part of the value.
expandPartwordAtomicRMW(AtomicRMWInst * AI,TargetLoweringBase::AtomicExpansionKind ExpansionKind)743 void AtomicExpand::expandPartwordAtomicRMW(
744 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
745 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg);
746
747 AtomicOrdering MemOpOrder = AI->getOrdering();
748
749 IRBuilder<> Builder(AI);
750
751 PartwordMaskValues PMV =
752 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
753 TLI->getMinCmpXchgSizeInBits() / 8);
754
755 Value *ValOperand_Shifted =
756 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
757 PMV.ShiftAmt, "ValOperand_Shifted");
758
759 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
760 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
761 ValOperand_Shifted, AI->getValOperand(), PMV);
762 };
763
764 // TODO: When we're ready to support LLSC conversions too, use
765 // insertRMWLLSCLoop here for ExpansionKind==LLSC.
766 Value *OldResult =
767 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
768 PerformPartwordOp, createCmpXchgInstFun);
769 Value *FinalOldResult = Builder.CreateTrunc(
770 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
771 AI->replaceAllUsesWith(FinalOldResult);
772 AI->eraseFromParent();
773 }
774
775 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
widenPartwordAtomicRMW(AtomicRMWInst * AI)776 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
777 IRBuilder<> Builder(AI);
778 AtomicRMWInst::BinOp Op = AI->getOperation();
779
780 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
781 Op == AtomicRMWInst::And) &&
782 "Unable to widen operation");
783
784 PartwordMaskValues PMV =
785 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
786 TLI->getMinCmpXchgSizeInBits() / 8);
787
788 Value *ValOperand_Shifted =
789 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
790 PMV.ShiftAmt, "ValOperand_Shifted");
791
792 Value *NewOperand;
793
794 if (Op == AtomicRMWInst::And)
795 NewOperand =
796 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
797 else
798 NewOperand = ValOperand_Shifted;
799
800 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
801 NewOperand, AI->getOrdering());
802
803 Value *FinalOldResult = Builder.CreateTrunc(
804 Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType);
805 AI->replaceAllUsesWith(FinalOldResult);
806 AI->eraseFromParent();
807 return NewAI;
808 }
809
expandPartwordCmpXchg(AtomicCmpXchgInst * CI)810 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
811 // The basic idea here is that we're expanding a cmpxchg of a
812 // smaller memory size up to a word-sized cmpxchg. To do this, we
813 // need to add a retry-loop for strong cmpxchg, so that
814 // modifications to other parts of the word don't cause a spurious
815 // failure.
816
817 // This generates code like the following:
818 // [[Setup mask values PMV.*]]
819 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
820 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
821 // %InitLoaded = load i32* %addr
822 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
823 // br partword.cmpxchg.loop
824 // partword.cmpxchg.loop:
825 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
826 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
827 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
828 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
829 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
830 // i32 %FullWord_NewVal success_ordering failure_ordering
831 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
832 // %Success = extractvalue { i32, i1 } %NewCI, 1
833 // br i1 %Success, label %partword.cmpxchg.end,
834 // label %partword.cmpxchg.failure
835 // partword.cmpxchg.failure:
836 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
837 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
838 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
839 // label %partword.cmpxchg.end
840 // partword.cmpxchg.end:
841 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
842 // %FinalOldVal = trunc i32 %tmp1 to i8
843 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
844 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
845
846 Value *Addr = CI->getPointerOperand();
847 Value *Cmp = CI->getCompareOperand();
848 Value *NewVal = CI->getNewValOperand();
849
850 BasicBlock *BB = CI->getParent();
851 Function *F = BB->getParent();
852 IRBuilder<> Builder(CI);
853 LLVMContext &Ctx = Builder.getContext();
854
855 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
856
857 BasicBlock *EndBB =
858 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
859 auto FailureBB =
860 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
861 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
862
863 // The split call above "helpfully" added a branch at the end of BB
864 // (to the wrong place).
865 std::prev(BB->end())->eraseFromParent();
866 Builder.SetInsertPoint(BB);
867
868 PartwordMaskValues PMV = createMaskInstrs(
869 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
870
871 // Shift the incoming values over, into the right location in the word.
872 Value *NewVal_Shifted =
873 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
874 Value *Cmp_Shifted =
875 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
876
877 // Load the entire current word, and mask into place the expected and new
878 // values
879 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
880 InitLoaded->setVolatile(CI->isVolatile());
881 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
882 Builder.CreateBr(LoopBB);
883
884 // partword.cmpxchg.loop:
885 Builder.SetInsertPoint(LoopBB);
886 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
887 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
888
889 // Mask/Or the expected and new values into place in the loaded word.
890 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
891 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
892 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
893 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
894 CI->getFailureOrdering(), CI->getSyncScopeID());
895 NewCI->setVolatile(CI->isVolatile());
896 // When we're building a strong cmpxchg, we need a loop, so you
897 // might think we could use a weak cmpxchg inside. But, using strong
898 // allows the below comparison for ShouldContinue, and we're
899 // expecting the underlying cmpxchg to be a machine instruction,
900 // which is strong anyways.
901 NewCI->setWeak(CI->isWeak());
902
903 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
904 Value *Success = Builder.CreateExtractValue(NewCI, 1);
905
906 if (CI->isWeak())
907 Builder.CreateBr(EndBB);
908 else
909 Builder.CreateCondBr(Success, EndBB, FailureBB);
910
911 // partword.cmpxchg.failure:
912 Builder.SetInsertPoint(FailureBB);
913 // Upon failure, verify that the masked-out part of the loaded value
914 // has been modified. If it didn't, abort the cmpxchg, since the
915 // masked-in part must've.
916 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
917 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
918 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
919
920 // Add the second value to the phi from above
921 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
922
923 // partword.cmpxchg.end:
924 Builder.SetInsertPoint(CI);
925
926 Value *FinalOldVal = Builder.CreateTrunc(
927 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
928 Value *Res = UndefValue::get(CI->getType());
929 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
930 Res = Builder.CreateInsertValue(Res, Success, 1);
931
932 CI->replaceAllUsesWith(Res);
933 CI->eraseFromParent();
934 }
935
expandAtomicOpToLLSC(Instruction * I,Type * ResultType,Value * Addr,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp)936 void AtomicExpand::expandAtomicOpToLLSC(
937 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
938 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
939 IRBuilder<> Builder(I);
940 Value *Loaded =
941 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
942
943 I->replaceAllUsesWith(Loaded);
944 I->eraseFromParent();
945 }
946
expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst * AI)947 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
948 IRBuilder<> Builder(AI);
949
950 PartwordMaskValues PMV =
951 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
952 TLI->getMinCmpXchgSizeInBits() / 8);
953
954 // The value operand must be sign-extended for signed min/max so that the
955 // target's signed comparison instructions can be used. Otherwise, just
956 // zero-ext.
957 Instruction::CastOps CastOp = Instruction::ZExt;
958 AtomicRMWInst::BinOp RMWOp = AI->getOperation();
959 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
960 CastOp = Instruction::SExt;
961
962 Value *ValOperand_Shifted = Builder.CreateShl(
963 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
964 PMV.ShiftAmt, "ValOperand_Shifted");
965 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
966 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
967 AI->getOrdering());
968 Value *FinalOldResult = Builder.CreateTrunc(
969 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
970 AI->replaceAllUsesWith(FinalOldResult);
971 AI->eraseFromParent();
972 }
973
expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst * CI)974 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
975 IRBuilder<> Builder(CI);
976
977 PartwordMaskValues PMV = createMaskInstrs(
978 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
979 TLI->getMinCmpXchgSizeInBits() / 8);
980
981 Value *CmpVal_Shifted = Builder.CreateShl(
982 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
983 "CmpVal_Shifted");
984 Value *NewVal_Shifted = Builder.CreateShl(
985 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
986 "NewVal_Shifted");
987 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
988 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
989 CI->getSuccessOrdering());
990 Value *FinalOldVal = Builder.CreateTrunc(
991 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
992
993 Value *Res = UndefValue::get(CI->getType());
994 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
995 Value *Success = Builder.CreateICmpEQ(
996 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
997 Res = Builder.CreateInsertValue(Res, Success, 1);
998
999 CI->replaceAllUsesWith(Res);
1000 CI->eraseFromParent();
1001 }
1002
insertRMWLLSCLoop(IRBuilder<> & Builder,Type * ResultTy,Value * Addr,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp)1003 Value *AtomicExpand::insertRMWLLSCLoop(
1004 IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1005 AtomicOrdering MemOpOrder,
1006 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1007 LLVMContext &Ctx = Builder.getContext();
1008 BasicBlock *BB = Builder.GetInsertBlock();
1009 Function *F = BB->getParent();
1010
1011 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1012 //
1013 // The standard expansion we produce is:
1014 // [...]
1015 // atomicrmw.start:
1016 // %loaded = @load.linked(%addr)
1017 // %new = some_op iN %loaded, %incr
1018 // %stored = @store_conditional(%new, %addr)
1019 // %try_again = icmp i32 ne %stored, 0
1020 // br i1 %try_again, label %loop, label %atomicrmw.end
1021 // atomicrmw.end:
1022 // [...]
1023 BasicBlock *ExitBB =
1024 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1025 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1026
1027 // The split call above "helpfully" added a branch at the end of BB (to the
1028 // wrong place).
1029 std::prev(BB->end())->eraseFromParent();
1030 Builder.SetInsertPoint(BB);
1031 Builder.CreateBr(LoopBB);
1032
1033 // Start the main loop block now that we've taken care of the preliminaries.
1034 Builder.SetInsertPoint(LoopBB);
1035 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1036
1037 Value *NewVal = PerformOp(Builder, Loaded);
1038
1039 Value *StoreSuccess =
1040 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1041 Value *TryAgain = Builder.CreateICmpNE(
1042 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1043 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1044
1045 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1046 return Loaded;
1047 }
1048
1049 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1050 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
1051 /// IR. As a migration step, we convert back to what use to be the standard
1052 /// way to represent a pointer cmpxchg so that we can update backends one by
1053 /// one.
convertCmpXchgToIntegerType(AtomicCmpXchgInst * CI)1054 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1055 auto *M = CI->getModule();
1056 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1057 M->getDataLayout());
1058
1059 IRBuilder<> Builder(CI);
1060
1061 Value *Addr = CI->getPointerOperand();
1062 Type *PT = PointerType::get(NewTy,
1063 Addr->getType()->getPointerAddressSpace());
1064 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1065
1066 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1067 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1068
1069
1070 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
1071 CI->getSuccessOrdering(),
1072 CI->getFailureOrdering(),
1073 CI->getSyncScopeID());
1074 NewCI->setVolatile(CI->isVolatile());
1075 NewCI->setWeak(CI->isWeak());
1076 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1077
1078 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1079 Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1080
1081 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1082
1083 Value *Res = UndefValue::get(CI->getType());
1084 Res = Builder.CreateInsertValue(Res, OldVal, 0);
1085 Res = Builder.CreateInsertValue(Res, Succ, 1);
1086
1087 CI->replaceAllUsesWith(Res);
1088 CI->eraseFromParent();
1089 return NewCI;
1090 }
1091
expandAtomicCmpXchg(AtomicCmpXchgInst * CI)1092 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1093 AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1094 AtomicOrdering FailureOrder = CI->getFailureOrdering();
1095 Value *Addr = CI->getPointerOperand();
1096 BasicBlock *BB = CI->getParent();
1097 Function *F = BB->getParent();
1098 LLVMContext &Ctx = F->getContext();
1099 // If shouldInsertFencesForAtomic() returns true, then the target does not
1100 // want to deal with memory orders, and emitLeading/TrailingFence should take
1101 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1102 // should preserve the ordering.
1103 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1104 AtomicOrdering MemOpOrder =
1105 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1106
1107 // In implementations which use a barrier to achieve release semantics, we can
1108 // delay emitting this barrier until we know a store is actually going to be
1109 // attempted. The cost of this delay is that we need 2 copies of the block
1110 // emitting the load-linked, affecting code size.
1111 //
1112 // Ideally, this logic would be unconditional except for the minsize check
1113 // since in other cases the extra blocks naturally collapse down to the
1114 // minimal loop. Unfortunately, this puts too much stress on later
1115 // optimisations so we avoid emitting the extra logic in those cases too.
1116 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1117 SuccessOrder != AtomicOrdering::Monotonic &&
1118 SuccessOrder != AtomicOrdering::Acquire &&
1119 !F->hasMinSize();
1120
1121 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1122 // do it even on minsize.
1123 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1124
1125 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1126 //
1127 // The full expansion we produce is:
1128 // [...]
1129 // cmpxchg.start:
1130 // %unreleasedload = @load.linked(%addr)
1131 // %should_store = icmp eq %unreleasedload, %desired
1132 // br i1 %should_store, label %cmpxchg.fencedstore,
1133 // label %cmpxchg.nostore
1134 // cmpxchg.releasingstore:
1135 // fence?
1136 // br label cmpxchg.trystore
1137 // cmpxchg.trystore:
1138 // %loaded.trystore = phi [%unreleasedload, %releasingstore],
1139 // [%releasedload, %cmpxchg.releasedload]
1140 // %stored = @store_conditional(%new, %addr)
1141 // %success = icmp eq i32 %stored, 0
1142 // br i1 %success, label %cmpxchg.success,
1143 // label %cmpxchg.releasedload/%cmpxchg.failure
1144 // cmpxchg.releasedload:
1145 // %releasedload = @load.linked(%addr)
1146 // %should_store = icmp eq %releasedload, %desired
1147 // br i1 %should_store, label %cmpxchg.trystore,
1148 // label %cmpxchg.failure
1149 // cmpxchg.success:
1150 // fence?
1151 // br label %cmpxchg.end
1152 // cmpxchg.nostore:
1153 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1154 // [%releasedload,
1155 // %cmpxchg.releasedload/%cmpxchg.trystore]
1156 // @load_linked_fail_balance()?
1157 // br label %cmpxchg.failure
1158 // cmpxchg.failure:
1159 // fence?
1160 // br label %cmpxchg.end
1161 // cmpxchg.end:
1162 // %loaded = phi [%loaded.nostore, %cmpxchg.failure],
1163 // [%loaded.trystore, %cmpxchg.trystore]
1164 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1165 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1166 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1167 // [...]
1168 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1169 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1170 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1171 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1172 auto ReleasedLoadBB =
1173 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1174 auto TryStoreBB =
1175 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1176 auto ReleasingStoreBB =
1177 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1178 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1179
1180 // This grabs the DebugLoc from CI
1181 IRBuilder<> Builder(CI);
1182
1183 // The split call above "helpfully" added a branch at the end of BB (to the
1184 // wrong place), but we might want a fence too. It's easiest to just remove
1185 // the branch entirely.
1186 std::prev(BB->end())->eraseFromParent();
1187 Builder.SetInsertPoint(BB);
1188 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1189 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1190 Builder.CreateBr(StartBB);
1191
1192 // Start the main loop block now that we've taken care of the preliminaries.
1193 Builder.SetInsertPoint(StartBB);
1194 Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1195 Value *ShouldStore = Builder.CreateICmpEQ(
1196 UnreleasedLoad, CI->getCompareOperand(), "should_store");
1197
1198 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1199 // jump straight past that fence instruction (if it exists).
1200 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1201
1202 Builder.SetInsertPoint(ReleasingStoreBB);
1203 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1204 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1205 Builder.CreateBr(TryStoreBB);
1206
1207 Builder.SetInsertPoint(TryStoreBB);
1208 Value *StoreSuccess = TLI->emitStoreConditional(
1209 Builder, CI->getNewValOperand(), Addr, MemOpOrder);
1210 StoreSuccess = Builder.CreateICmpEQ(
1211 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1212 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1213 Builder.CreateCondBr(StoreSuccess, SuccessBB,
1214 CI->isWeak() ? FailureBB : RetryBB);
1215
1216 Builder.SetInsertPoint(ReleasedLoadBB);
1217 Value *SecondLoad;
1218 if (HasReleasedLoadBB) {
1219 SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1220 ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(),
1221 "should_store");
1222
1223 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1224 // jump straight past that fence instruction (if it exists).
1225 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1226 } else
1227 Builder.CreateUnreachable();
1228
1229 // Make sure later instructions don't get reordered with a fence if
1230 // necessary.
1231 Builder.SetInsertPoint(SuccessBB);
1232 if (ShouldInsertFencesForAtomic)
1233 TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1234 Builder.CreateBr(ExitBB);
1235
1236 Builder.SetInsertPoint(NoStoreBB);
1237 // In the failing case, where we don't execute the store-conditional, the
1238 // target might want to balance out the load-linked with a dedicated
1239 // instruction (e.g., on ARM, clearing the exclusive monitor).
1240 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1241 Builder.CreateBr(FailureBB);
1242
1243 Builder.SetInsertPoint(FailureBB);
1244 if (ShouldInsertFencesForAtomic)
1245 TLI->emitTrailingFence(Builder, CI, FailureOrder);
1246 Builder.CreateBr(ExitBB);
1247
1248 // Finally, we have control-flow based knowledge of whether the cmpxchg
1249 // succeeded or not. We expose this to later passes by converting any
1250 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1251 // PHI.
1252 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1253 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
1254 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1255 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1256
1257 // Setup the builder so we can create any PHIs we need.
1258 Value *Loaded;
1259 if (!HasReleasedLoadBB)
1260 Loaded = UnreleasedLoad;
1261 else {
1262 Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin());
1263 PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1264 TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1265 TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1266
1267 Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin());
1268 PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1269 NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB);
1270 NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1271
1272 Builder.SetInsertPoint(ExitBB, ++ExitBB->begin());
1273 PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1274 ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB);
1275 ExitLoaded->addIncoming(NoStoreLoaded, FailureBB);
1276
1277 Loaded = ExitLoaded;
1278 }
1279
1280 // Look for any users of the cmpxchg that are just comparing the loaded value
1281 // against the desired one, and replace them with the CFG-derived version.
1282 SmallVector<ExtractValueInst *, 2> PrunedInsts;
1283 for (auto User : CI->users()) {
1284 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1285 if (!EV)
1286 continue;
1287
1288 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1289 "weird extraction from { iN, i1 }");
1290
1291 if (EV->getIndices()[0] == 0)
1292 EV->replaceAllUsesWith(Loaded);
1293 else
1294 EV->replaceAllUsesWith(Success);
1295
1296 PrunedInsts.push_back(EV);
1297 }
1298
1299 // We can remove the instructions now we're no longer iterating through them.
1300 for (auto EV : PrunedInsts)
1301 EV->eraseFromParent();
1302
1303 if (!CI->use_empty()) {
1304 // Some use of the full struct return that we don't understand has happened,
1305 // so we've got to reconstruct it properly.
1306 Value *Res;
1307 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1308 Res = Builder.CreateInsertValue(Res, Success, 1);
1309
1310 CI->replaceAllUsesWith(Res);
1311 }
1312
1313 CI->eraseFromParent();
1314 return true;
1315 }
1316
isIdempotentRMW(AtomicRMWInst * RMWI)1317 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1318 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1319 if(!C)
1320 return false;
1321
1322 AtomicRMWInst::BinOp Op = RMWI->getOperation();
1323 switch(Op) {
1324 case AtomicRMWInst::Add:
1325 case AtomicRMWInst::Sub:
1326 case AtomicRMWInst::Or:
1327 case AtomicRMWInst::Xor:
1328 return C->isZero();
1329 case AtomicRMWInst::And:
1330 return C->isMinusOne();
1331 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1332 default:
1333 return false;
1334 }
1335 }
1336
simplifyIdempotentRMW(AtomicRMWInst * RMWI)1337 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1338 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1339 tryExpandAtomicLoad(ResultingLoad);
1340 return true;
1341 }
1342 return false;
1343 }
1344
insertRMWCmpXchgLoop(IRBuilder<> & Builder,Type * ResultTy,Value * Addr,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp,CreateCmpXchgInstFun CreateCmpXchg)1345 Value *AtomicExpand::insertRMWCmpXchgLoop(
1346 IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1347 AtomicOrdering MemOpOrder,
1348 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1349 CreateCmpXchgInstFun CreateCmpXchg) {
1350 LLVMContext &Ctx = Builder.getContext();
1351 BasicBlock *BB = Builder.GetInsertBlock();
1352 Function *F = BB->getParent();
1353
1354 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1355 //
1356 // The standard expansion we produce is:
1357 // [...]
1358 // %init_loaded = load atomic iN* %addr
1359 // br label %loop
1360 // loop:
1361 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1362 // %new = some_op iN %loaded, %incr
1363 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1364 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1365 // %success = extractvalue { iN, i1 } %pair, 1
1366 // br i1 %success, label %atomicrmw.end, label %loop
1367 // atomicrmw.end:
1368 // [...]
1369 BasicBlock *ExitBB =
1370 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1371 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1372
1373 // The split call above "helpfully" added a branch at the end of BB (to the
1374 // wrong place), but we want a load. It's easiest to just remove
1375 // the branch entirely.
1376 std::prev(BB->end())->eraseFromParent();
1377 Builder.SetInsertPoint(BB);
1378 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
1379 // Atomics require at least natural alignment.
1380 InitLoaded->setAlignment(MaybeAlign(ResultTy->getPrimitiveSizeInBits() / 8));
1381 Builder.CreateBr(LoopBB);
1382
1383 // Start the main loop block now that we've taken care of the preliminaries.
1384 Builder.SetInsertPoint(LoopBB);
1385 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1386 Loaded->addIncoming(InitLoaded, BB);
1387
1388 Value *NewVal = PerformOp(Builder, Loaded);
1389
1390 Value *NewLoaded = nullptr;
1391 Value *Success = nullptr;
1392
1393 CreateCmpXchg(Builder, Addr, Loaded, NewVal,
1394 MemOpOrder == AtomicOrdering::Unordered
1395 ? AtomicOrdering::Monotonic
1396 : MemOpOrder,
1397 Success, NewLoaded);
1398 assert(Success && NewLoaded);
1399
1400 Loaded->addIncoming(NewLoaded, LoopBB);
1401
1402 Builder.CreateCondBr(Success, ExitBB, LoopBB);
1403
1404 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1405 return NewLoaded;
1406 }
1407
tryExpandAtomicCmpXchg(AtomicCmpXchgInst * CI)1408 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1409 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1410 unsigned ValueSize = getAtomicOpSize(CI);
1411
1412 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1413 default:
1414 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1415 case TargetLoweringBase::AtomicExpansionKind::None:
1416 if (ValueSize < MinCASSize)
1417 expandPartwordCmpXchg(CI);
1418 return false;
1419 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1420 assert(ValueSize >= MinCASSize &&
1421 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
1422 return expandAtomicCmpXchg(CI);
1423 }
1424 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1425 expandAtomicCmpXchgToMaskedIntrinsic(CI);
1426 return true;
1427 }
1428 }
1429
1430 // Note: This function is exposed externally by AtomicExpandUtils.h
expandAtomicRMWToCmpXchg(AtomicRMWInst * AI,CreateCmpXchgInstFun CreateCmpXchg)1431 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1432 CreateCmpXchgInstFun CreateCmpXchg) {
1433 IRBuilder<> Builder(AI);
1434 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1435 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
1436 [&](IRBuilder<> &Builder, Value *Loaded) {
1437 return performAtomicOp(AI->getOperation(), Builder, Loaded,
1438 AI->getValOperand());
1439 },
1440 CreateCmpXchg);
1441
1442 AI->replaceAllUsesWith(Loaded);
1443 AI->eraseFromParent();
1444 return true;
1445 }
1446
1447 // In order to use one of the sized library calls such as
1448 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1449 // must be one of the potentially-specialized sizes, and the value
1450 // type must actually exist in C on the target (otherwise, the
1451 // function wouldn't actually be defined.)
canUseSizedAtomicCall(unsigned Size,unsigned Align,const DataLayout & DL)1452 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align,
1453 const DataLayout &DL) {
1454 // TODO: "LargestSize" is an approximation for "largest type that
1455 // you can express in C". It seems to be the case that int128 is
1456 // supported on all 64-bit platforms, otherwise only up to 64-bit
1457 // integers are supported. If we get this wrong, then we'll try to
1458 // call a sized libcall that doesn't actually exist. There should
1459 // really be some more reliable way in LLVM of determining integer
1460 // sizes which are valid in the target's C ABI...
1461 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1462 return Align >= Size &&
1463 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1464 Size <= LargestSize;
1465 }
1466
expandAtomicLoadToLibcall(LoadInst * I)1467 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1468 static const RTLIB::Libcall Libcalls[6] = {
1469 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1470 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1471 unsigned Size = getAtomicOpSize(I);
1472 unsigned Align = getAtomicOpAlign(I);
1473
1474 bool expanded = expandAtomicOpToLibcall(
1475 I, Size, Align, I->getPointerOperand(), nullptr, nullptr,
1476 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1477 (void)expanded;
1478 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
1479 }
1480
expandAtomicStoreToLibcall(StoreInst * I)1481 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1482 static const RTLIB::Libcall Libcalls[6] = {
1483 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1484 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1485 unsigned Size = getAtomicOpSize(I);
1486 unsigned Align = getAtomicOpAlign(I);
1487
1488 bool expanded = expandAtomicOpToLibcall(
1489 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr,
1490 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1491 (void)expanded;
1492 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
1493 }
1494
expandAtomicCASToLibcall(AtomicCmpXchgInst * I)1495 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1496 static const RTLIB::Libcall Libcalls[6] = {
1497 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1498 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1499 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1500 unsigned Size = getAtomicOpSize(I);
1501 unsigned Align = getAtomicOpAlign(I);
1502
1503 bool expanded = expandAtomicOpToLibcall(
1504 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(),
1505 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1506 Libcalls);
1507 (void)expanded;
1508 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
1509 }
1510
GetRMWLibcall(AtomicRMWInst::BinOp Op)1511 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1512 static const RTLIB::Libcall LibcallsXchg[6] = {
1513 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
1514 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1515 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1516 static const RTLIB::Libcall LibcallsAdd[6] = {
1517 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
1518 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1519 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1520 static const RTLIB::Libcall LibcallsSub[6] = {
1521 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
1522 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1523 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1524 static const RTLIB::Libcall LibcallsAnd[6] = {
1525 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
1526 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1527 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1528 static const RTLIB::Libcall LibcallsOr[6] = {
1529 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
1530 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1531 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1532 static const RTLIB::Libcall LibcallsXor[6] = {
1533 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
1534 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1535 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1536 static const RTLIB::Libcall LibcallsNand[6] = {
1537 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
1538 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1539 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1540
1541 switch (Op) {
1542 case AtomicRMWInst::BAD_BINOP:
1543 llvm_unreachable("Should not have BAD_BINOP.");
1544 case AtomicRMWInst::Xchg:
1545 return makeArrayRef(LibcallsXchg);
1546 case AtomicRMWInst::Add:
1547 return makeArrayRef(LibcallsAdd);
1548 case AtomicRMWInst::Sub:
1549 return makeArrayRef(LibcallsSub);
1550 case AtomicRMWInst::And:
1551 return makeArrayRef(LibcallsAnd);
1552 case AtomicRMWInst::Or:
1553 return makeArrayRef(LibcallsOr);
1554 case AtomicRMWInst::Xor:
1555 return makeArrayRef(LibcallsXor);
1556 case AtomicRMWInst::Nand:
1557 return makeArrayRef(LibcallsNand);
1558 case AtomicRMWInst::Max:
1559 case AtomicRMWInst::Min:
1560 case AtomicRMWInst::UMax:
1561 case AtomicRMWInst::UMin:
1562 case AtomicRMWInst::FAdd:
1563 case AtomicRMWInst::FSub:
1564 // No atomic libcalls are available for max/min/umax/umin.
1565 return {};
1566 }
1567 llvm_unreachable("Unexpected AtomicRMW operation.");
1568 }
1569
expandAtomicRMWToLibcall(AtomicRMWInst * I)1570 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1571 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1572
1573 unsigned Size = getAtomicOpSize(I);
1574 unsigned Align = getAtomicOpAlign(I);
1575
1576 bool Success = false;
1577 if (!Libcalls.empty())
1578 Success = expandAtomicOpToLibcall(
1579 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr,
1580 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1581
1582 // The expansion failed: either there were no libcalls at all for
1583 // the operation (min/max), or there were only size-specialized
1584 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1585 // CAS libcall, via a CAS loop, instead.
1586 if (!Success) {
1587 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
1588 Value *Loaded, Value *NewVal,
1589 AtomicOrdering MemOpOrder,
1590 Value *&Success, Value *&NewLoaded) {
1591 // Create the CAS instruction normally...
1592 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1593 Addr, Loaded, NewVal, MemOpOrder,
1594 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
1595 Success = Builder.CreateExtractValue(Pair, 1, "success");
1596 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1597
1598 // ...and then expand the CAS into a libcall.
1599 expandAtomicCASToLibcall(Pair);
1600 });
1601 }
1602 }
1603
1604 // A helper routine for the above expandAtomic*ToLibcall functions.
1605 //
1606 // 'Libcalls' contains an array of enum values for the particular
1607 // ATOMIC libcalls to be emitted. All of the other arguments besides
1608 // 'I' are extracted from the Instruction subclass by the
1609 // caller. Depending on the particular call, some will be null.
expandAtomicOpToLibcall(Instruction * I,unsigned Size,unsigned Align,Value * PointerOperand,Value * ValueOperand,Value * CASExpected,AtomicOrdering Ordering,AtomicOrdering Ordering2,ArrayRef<RTLIB::Libcall> Libcalls)1610 bool AtomicExpand::expandAtomicOpToLibcall(
1611 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand,
1612 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1613 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1614 assert(Libcalls.size() == 6);
1615
1616 LLVMContext &Ctx = I->getContext();
1617 Module *M = I->getModule();
1618 const DataLayout &DL = M->getDataLayout();
1619 IRBuilder<> Builder(I);
1620 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1621
1622 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL);
1623 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1624
1625 unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy);
1626
1627 // TODO: the "order" argument type is "int", not int32. So
1628 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1629 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1630 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1631 Constant *OrderingVal =
1632 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1633 Constant *Ordering2Val = nullptr;
1634 if (CASExpected) {
1635 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1636 Ordering2Val =
1637 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1638 }
1639 bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1640
1641 RTLIB::Libcall RTLibType;
1642 if (UseSizedLibcall) {
1643 switch (Size) {
1644 case 1: RTLibType = Libcalls[1]; break;
1645 case 2: RTLibType = Libcalls[2]; break;
1646 case 4: RTLibType = Libcalls[3]; break;
1647 case 8: RTLibType = Libcalls[4]; break;
1648 case 16: RTLibType = Libcalls[5]; break;
1649 }
1650 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1651 RTLibType = Libcalls[0];
1652 } else {
1653 // Can't use sized function, and there's no generic for this
1654 // operation, so give up.
1655 return false;
1656 }
1657
1658 // Build up the function call. There's two kinds. First, the sized
1659 // variants. These calls are going to be one of the following (with
1660 // N=1,2,4,8,16):
1661 // iN __atomic_load_N(iN *ptr, int ordering)
1662 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1663 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1664 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1665 // int success_order, int failure_order)
1666 //
1667 // Note that these functions can be used for non-integer atomic
1668 // operations, the values just need to be bitcast to integers on the
1669 // way in and out.
1670 //
1671 // And, then, the generic variants. They look like the following:
1672 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1673 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1674 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1675 // int ordering)
1676 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1677 // void *desired, int success_order,
1678 // int failure_order)
1679 //
1680 // The different signatures are built up depending on the
1681 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1682 // variables.
1683
1684 AllocaInst *AllocaCASExpected = nullptr;
1685 Value *AllocaCASExpected_i8 = nullptr;
1686 AllocaInst *AllocaValue = nullptr;
1687 Value *AllocaValue_i8 = nullptr;
1688 AllocaInst *AllocaResult = nullptr;
1689 Value *AllocaResult_i8 = nullptr;
1690
1691 Type *ResultTy;
1692 SmallVector<Value *, 6> Args;
1693 AttributeList Attr;
1694
1695 // 'size' argument.
1696 if (!UseSizedLibcall) {
1697 // Note, getIntPtrType is assumed equivalent to size_t.
1698 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1699 }
1700
1701 // 'ptr' argument.
1702 // note: This assumes all address spaces share a common libfunc
1703 // implementation and that addresses are convertable. For systems without
1704 // that property, we'd need to extend this mechanism to support AS-specific
1705 // families of atomic intrinsics.
1706 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1707 Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1708 Type::getInt8PtrTy(Ctx, PtrTypeAS));
1709 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1710 Args.push_back(PtrVal);
1711
1712 // 'expected' argument, if present.
1713 if (CASExpected) {
1714 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1715 AllocaCASExpected->setAlignment(MaybeAlign(AllocaAlignment));
1716 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
1717
1718 AllocaCASExpected_i8 =
1719 Builder.CreateBitCast(AllocaCASExpected,
1720 Type::getInt8PtrTy(Ctx, AllocaAS));
1721 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1722 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1723 Args.push_back(AllocaCASExpected_i8);
1724 }
1725
1726 // 'val' argument ('desired' for cas), if present.
1727 if (ValueOperand) {
1728 if (UseSizedLibcall) {
1729 Value *IntValue =
1730 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1731 Args.push_back(IntValue);
1732 } else {
1733 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1734 AllocaValue->setAlignment(MaybeAlign(AllocaAlignment));
1735 AllocaValue_i8 =
1736 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1737 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1738 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1739 Args.push_back(AllocaValue_i8);
1740 }
1741 }
1742
1743 // 'ret' argument.
1744 if (!CASExpected && HasResult && !UseSizedLibcall) {
1745 AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1746 AllocaResult->setAlignment(MaybeAlign(AllocaAlignment));
1747 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
1748 AllocaResult_i8 =
1749 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1750 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1751 Args.push_back(AllocaResult_i8);
1752 }
1753
1754 // 'ordering' ('success_order' for cas) argument.
1755 Args.push_back(OrderingVal);
1756
1757 // 'failure_order' argument, if present.
1758 if (Ordering2Val)
1759 Args.push_back(Ordering2Val);
1760
1761 // Now, the return type.
1762 if (CASExpected) {
1763 ResultTy = Type::getInt1Ty(Ctx);
1764 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1765 } else if (HasResult && UseSizedLibcall)
1766 ResultTy = SizedIntTy;
1767 else
1768 ResultTy = Type::getVoidTy(Ctx);
1769
1770 // Done with setting up arguments and return types, create the call:
1771 SmallVector<Type *, 6> ArgTys;
1772 for (Value *Arg : Args)
1773 ArgTys.push_back(Arg->getType());
1774 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1775 FunctionCallee LibcallFn =
1776 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1777 CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1778 Call->setAttributes(Attr);
1779 Value *Result = Call;
1780
1781 // And then, extract the results...
1782 if (ValueOperand && !UseSizedLibcall)
1783 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1784
1785 if (CASExpected) {
1786 // The final result from the CAS is {load of 'expected' alloca, bool result
1787 // from call}
1788 Type *FinalResultTy = I->getType();
1789 Value *V = UndefValue::get(FinalResultTy);
1790 Value *ExpectedOut = Builder.CreateAlignedLoad(
1791 CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1792 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1793 V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1794 V = Builder.CreateInsertValue(V, Result, 1);
1795 I->replaceAllUsesWith(V);
1796 } else if (HasResult) {
1797 Value *V;
1798 if (UseSizedLibcall)
1799 V = Builder.CreateBitOrPointerCast(Result, I->getType());
1800 else {
1801 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1802 AllocaAlignment);
1803 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1804 }
1805 I->replaceAllUsesWith(V);
1806 }
1807 I->eraseFromParent();
1808 return true;
1809 }
1810