1 // Copyright 2019 The Dawn Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "tests/DawnTest.h"
16
17 #include "common/Assert.h"
18 #include "common/Math.h"
19 #include "utils/ComboRenderPipelineDescriptor.h"
20 #include "utils/TextureUtils.h"
21 #include "utils/WGPUHelpers.h"
22
23 #include <cmath>
24 #include <type_traits>
25
26 // An expectation for float buffer content that can correctly compare different NaN values and
27 // supports a basic tolerance for comparison of finite values.
28 class ExpectFloatWithTolerance : public detail::Expectation {
29 public:
ExpectFloatWithTolerance(std::vector<float> expected,float tolerance)30 ExpectFloatWithTolerance(std::vector<float> expected, float tolerance)
31 : mExpected(std::move(expected)), mTolerance(tolerance) {
32 }
33
Check(const void * data,size_t size)34 testing::AssertionResult Check(const void* data, size_t size) override {
35 ASSERT(size == sizeof(float) * mExpected.size());
36
37 const float* actual = static_cast<const float*>(data);
38
39 for (size_t i = 0; i < mExpected.size(); ++i) {
40 float expectedValue = mExpected[i];
41 float actualValue = actual[i];
42
43 if (!FloatsMatch(expectedValue, actualValue)) {
44 testing::AssertionResult result = testing::AssertionFailure()
45 << "Expected data[" << i << "] to be close to "
46 << expectedValue << ", actual " << actualValue
47 << std::endl;
48 return result;
49 }
50 }
51 return testing::AssertionSuccess();
52 }
53
54 private:
FloatsMatch(float expected,float actual)55 bool FloatsMatch(float expected, float actual) {
56 if (std::isnan(expected)) {
57 return std::isnan(actual);
58 }
59
60 if (std::isinf(expected)) {
61 return std::isinf(actual) && std::signbit(expected) == std::signbit(actual);
62 }
63
64 if (mTolerance == 0.0f) {
65 return expected == actual;
66 }
67
68 float error = std::abs(expected - actual);
69 return error < mTolerance;
70 }
71
72 std::vector<float> mExpected;
73 float mTolerance;
74 };
75
76 // An expectation for float16 buffers that can correctly compare NaNs (all NaNs are equivalent).
77 class ExpectFloat16 : public detail::Expectation {
78 public:
ExpectFloat16(std::vector<uint16_t> expected)79 ExpectFloat16(std::vector<uint16_t> expected) : mExpected(std::move(expected)) {
80 }
81
Check(const void * data,size_t size)82 testing::AssertionResult Check(const void* data, size_t size) override {
83 ASSERT(size == sizeof(uint16_t) * mExpected.size());
84
85 const uint16_t* actual = static_cast<const uint16_t*>(data);
86
87 for (size_t i = 0; i < mExpected.size(); ++i) {
88 uint16_t expectedValue = mExpected[i];
89 uint16_t actualValue = actual[i];
90
91 if (!Floats16Match(expectedValue, actualValue)) {
92 testing::AssertionResult result = testing::AssertionFailure()
93 << "Expected data[" << i << "] to be "
94 << expectedValue << ", actual " << actualValue
95 << std::endl;
96 return result;
97 }
98 }
99 return testing::AssertionSuccess();
100 }
101
102 private:
Floats16Match(float expected,float actual)103 bool Floats16Match(float expected, float actual) {
104 if (IsFloat16NaN(expected)) {
105 return IsFloat16NaN(actual);
106 }
107
108 return expected == actual;
109 }
110
111 std::vector<uint16_t> mExpected;
112 };
113
114 class TextureFormatTest : public DawnTest {
115 protected:
116 // Structure containing all the information that tests need to know about the format.
117 struct FormatTestInfo {
118 wgpu::TextureFormat format;
119 uint32_t texelByteSize;
120 wgpu::TextureComponentType type;
121 uint32_t componentCount;
122 };
123
124 // Returns a reprensentation of a format that can be used to contain the "uncompressed" values
125 // of the format. That the equivalent format with all channels 32bit-sized.
GetUncompressedFormatInfo(FormatTestInfo formatInfo)126 FormatTestInfo GetUncompressedFormatInfo(FormatTestInfo formatInfo) {
127 switch (formatInfo.type) {
128 case wgpu::TextureComponentType::Float:
129 return {wgpu::TextureFormat::RGBA32Float, 16, formatInfo.type, 4};
130 case wgpu::TextureComponentType::Sint:
131 return {wgpu::TextureFormat::RGBA32Sint, 16, formatInfo.type, 4};
132 case wgpu::TextureComponentType::Uint:
133 return {wgpu::TextureFormat::RGBA32Uint, 16, formatInfo.type, 4};
134 default:
135 UNREACHABLE();
136 }
137 }
138
139 // Return a pipeline that can be used in a full-texture draw to sample from the texture in the
140 // bindgroup and output its decompressed values to the render target.
CreateSamplePipeline(FormatTestInfo sampleFormatInfo,FormatTestInfo renderFormatInfo)141 wgpu::RenderPipeline CreateSamplePipeline(FormatTestInfo sampleFormatInfo,
142 FormatTestInfo renderFormatInfo) {
143 utils::ComboRenderPipelineDescriptor desc;
144
145 wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
146 [[stage(vertex)]]
147 fn main([[builtin(vertex_index)]] VertexIndex : u32) -> [[builtin(position)]] vec4<f32> {
148 var pos = array<vec2<f32>, 3>(
149 vec2<f32>(-3.0, -1.0),
150 vec2<f32>( 3.0, -1.0),
151 vec2<f32>( 0.0, 2.0));
152
153 return vec4<f32>(pos[VertexIndex], 0.0, 1.0);
154 })");
155
156 // Compute the WGSL type of the texture's data.
157 const char* type = utils::GetWGSLColorTextureComponentType(sampleFormatInfo.format);
158
159 std::ostringstream fsSource;
160 fsSource << "[[group(0), binding(0)]] var myTexture : texture_2d<" << type << ">;\n";
161 fsSource << "struct FragmentOut {\n";
162 fsSource << " [[location(0)]] color : vec4<" << type << ">;\n";
163 fsSource << R"(};
164 [[stage(fragment)]]
165 fn main([[builtin(position)]] FragCoord : vec4<f32>) -> FragmentOut {
166 var output : FragmentOut;
167 output.color = textureLoad(myTexture, vec2<i32>(FragCoord.xy), 0);
168 return output;
169 })";
170
171 wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, fsSource.str().c_str());
172
173 desc.vertex.module = vsModule;
174 desc.cFragment.module = fsModule;
175 desc.cTargets[0].format = renderFormatInfo.format;
176
177 return device.CreateRenderPipeline(&desc);
178 }
179
180 // The sampling test uploads the sample data in a texture with the sampleFormatInfo.format.
181 // It then samples from it and renders the results in a texture with the
182 // renderFormatInfo.format format. Finally it checks that the data rendered matches
183 // expectedRenderData, using the cutom expectation if present.
DoSampleTest(FormatTestInfo sampleFormatInfo,const void * sampleData,size_t sampleDataSize,FormatTestInfo renderFormatInfo,const void * expectedRenderData,size_t expectedRenderDataSize,detail::Expectation * customExpectation)184 void DoSampleTest(FormatTestInfo sampleFormatInfo,
185 const void* sampleData,
186 size_t sampleDataSize,
187 FormatTestInfo renderFormatInfo,
188 const void* expectedRenderData,
189 size_t expectedRenderDataSize,
190 detail::Expectation* customExpectation) {
191 // The input data should contain an exact number of texels
192 ASSERT(sampleDataSize % sampleFormatInfo.texelByteSize == 0);
193 uint32_t width = sampleDataSize / sampleFormatInfo.texelByteSize;
194
195 // The input data must be a multiple of 4 byte in length for WriteBuffer
196 ASSERT(sampleDataSize % 4 == 0);
197 ASSERT(expectedRenderDataSize % 4 == 0);
198
199 // Create the texture we will sample from
200 wgpu::TextureDescriptor sampleTextureDesc;
201 sampleTextureDesc.usage = wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding;
202 sampleTextureDesc.size = {width, 1, 1};
203 sampleTextureDesc.format = sampleFormatInfo.format;
204 wgpu::Texture sampleTexture = device.CreateTexture(&sampleTextureDesc);
205
206 wgpu::Buffer uploadBuffer = utils::CreateBufferFromData(device, sampleData, sampleDataSize,
207 wgpu::BufferUsage::CopySrc);
208
209 // Create the texture that we will render results to
210 ASSERT(expectedRenderDataSize == width * renderFormatInfo.texelByteSize);
211
212 wgpu::TextureDescriptor renderTargetDesc;
213 renderTargetDesc.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::RenderAttachment;
214 renderTargetDesc.size = {width, 1, 1};
215 renderTargetDesc.format = renderFormatInfo.format;
216
217 wgpu::Texture renderTarget = device.CreateTexture(&renderTargetDesc);
218
219 // Create the readback buffer for the data in renderTarget
220 wgpu::BufferDescriptor readbackBufferDesc;
221 readbackBufferDesc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::CopySrc;
222 readbackBufferDesc.size = expectedRenderDataSize;
223 wgpu::Buffer readbackBuffer = device.CreateBuffer(&readbackBufferDesc);
224
225 // Prepare objects needed to sample from texture in the renderpass
226 wgpu::RenderPipeline pipeline = CreateSamplePipeline(sampleFormatInfo, renderFormatInfo);
227 wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
228 {{0, sampleTexture.CreateView()}});
229
230 // Encode commands for the test that fill texture, sample it to render to renderTarget then
231 // copy renderTarget in a buffer so we can read it easily.
232 wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
233
234 {
235 wgpu::ImageCopyBuffer bufferView = utils::CreateImageCopyBuffer(uploadBuffer, 0, 256);
236 wgpu::ImageCopyTexture textureView =
237 utils::CreateImageCopyTexture(sampleTexture, 0, {0, 0, 0});
238 wgpu::Extent3D extent{width, 1, 1};
239 encoder.CopyBufferToTexture(&bufferView, &textureView, &extent);
240 }
241
242 utils::ComboRenderPassDescriptor renderPassDesc({renderTarget.CreateView()});
243 wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDesc);
244 renderPass.SetPipeline(pipeline);
245 renderPass.SetBindGroup(0, bindGroup);
246 renderPass.Draw(3);
247 renderPass.EndPass();
248
249 {
250 wgpu::ImageCopyBuffer bufferView = utils::CreateImageCopyBuffer(readbackBuffer, 0, 256);
251 wgpu::ImageCopyTexture textureView =
252 utils::CreateImageCopyTexture(renderTarget, 0, {0, 0, 0});
253 wgpu::Extent3D extent{width, 1, 1};
254 encoder.CopyTextureToBuffer(&textureView, &bufferView, &extent);
255 }
256
257 wgpu::CommandBuffer commands = encoder.Finish();
258 queue.Submit(1, &commands);
259
260 // For floats use a special expectation that understands how to compare NaNs and support a
261 // tolerance.
262 if (customExpectation != nullptr) {
263 AddBufferExpectation(__FILE__, __LINE__, readbackBuffer, 0, expectedRenderDataSize,
264 customExpectation);
265 } else {
266 EXPECT_BUFFER_U32_RANGE_EQ(static_cast<const uint32_t*>(expectedRenderData),
267 readbackBuffer, 0,
268 expectedRenderDataSize / sizeof(uint32_t));
269 }
270 }
271
272 template <typename Data>
ExpandDataTo4Component(const std::vector<Data> & originalData,uint32_t originalComponentCount,const std::array<Data,4> & defaultValues)273 std::vector<Data> ExpandDataTo4Component(const std::vector<Data>& originalData,
274 uint32_t originalComponentCount,
275 const std::array<Data, 4>& defaultValues) {
276 std::vector<Data> result;
277
278 for (size_t i = 0; i < originalData.size() / originalComponentCount; i++) {
279 for (size_t component = 0; component < 4; component++) {
280 if (component < originalComponentCount) {
281 result.push_back(originalData[i * originalComponentCount + component]);
282 } else {
283 result.push_back(defaultValues[component]);
284 }
285 }
286 }
287
288 return result;
289 }
290
291 // Helper functions used to run tests that convert the typeful test objects to typeless void*
292
293 template <typename TextureData, typename RenderData>
DoFormatSamplingTest(FormatTestInfo formatInfo,const std::vector<TextureData> & textureData,const std::vector<RenderData> & expectedRenderData,detail::Expectation * customExpectation=nullptr)294 void DoFormatSamplingTest(FormatTestInfo formatInfo,
295 const std::vector<TextureData>& textureData,
296 const std::vector<RenderData>& expectedRenderData,
297 detail::Expectation* customExpectation = nullptr) {
298 FormatTestInfo renderFormatInfo = GetUncompressedFormatInfo(formatInfo);
299
300 // Expand the expected data to be 4 component wide with the default sampling values of
301 // (0, 0, 0, 1)
302 std::array<RenderData, 4> defaultValues = {RenderData(0), RenderData(0), RenderData(0),
303 RenderData(1)};
304 std::vector<RenderData> expandedRenderData =
305 ExpandDataTo4Component(expectedRenderData, formatInfo.componentCount, defaultValues);
306
307 DoSampleTest(formatInfo, textureData.data(), textureData.size() * sizeof(TextureData),
308 renderFormatInfo, expandedRenderData.data(),
309 expandedRenderData.size() * sizeof(RenderData), customExpectation);
310 }
311
312 template <typename TextureData>
DoFloatFormatSamplingTest(FormatTestInfo formatInfo,const std::vector<TextureData> & textureData,const std::vector<float> & expectedRenderData,float floatTolerance=0.0f)313 void DoFloatFormatSamplingTest(FormatTestInfo formatInfo,
314 const std::vector<TextureData>& textureData,
315 const std::vector<float>& expectedRenderData,
316 float floatTolerance = 0.0f) {
317 // Expand the expected data to be 4 component wide with the default sampling values of
318 // (0, 0, 0, 1)
319 std::array<float, 4> defaultValues = {0.0f, 0.0f, 0.0f, 1.0f};
320 std::vector<float> expandedRenderData =
321 ExpandDataTo4Component(expectedRenderData, formatInfo.componentCount, defaultValues);
322
323 // Use a special expectation that understands how to compare NaNs and supports a tolerance.
324 DoFormatSamplingTest(formatInfo, textureData, expectedRenderData,
325 new ExpectFloatWithTolerance(expandedRenderData, floatTolerance));
326 }
327
328 template <typename TextureData, typename RenderData>
DoFormatRenderingTest(FormatTestInfo formatInfo,const std::vector<TextureData> & textureData,const std::vector<RenderData> & expectedRenderData,detail::Expectation * customExpectation=nullptr)329 void DoFormatRenderingTest(FormatTestInfo formatInfo,
330 const std::vector<TextureData>& textureData,
331 const std::vector<RenderData>& expectedRenderData,
332 detail::Expectation* customExpectation = nullptr) {
333 FormatTestInfo sampleFormatInfo = GetUncompressedFormatInfo(formatInfo);
334
335 // Expand the sampling texture data to contain garbage data for unused components to check
336 // that they don't influence the rendering result.
337 std::array<TextureData, 4> garbageValues;
338 garbageValues.fill(13);
339 std::vector<TextureData> expandedTextureData =
340 ExpandDataTo4Component(textureData, formatInfo.componentCount, garbageValues);
341
342 DoSampleTest(sampleFormatInfo, expandedTextureData.data(),
343 expandedTextureData.size() * sizeof(TextureData), formatInfo,
344 expectedRenderData.data(), expectedRenderData.size() * sizeof(RenderData),
345 customExpectation);
346 }
347
348 // Below are helper functions for types that are very similar to one another so the logic is
349 // shared.
350
351 template <typename T>
DoUnormTest(FormatTestInfo formatInfo)352 void DoUnormTest(FormatTestInfo formatInfo) {
353 static_assert(!std::is_signed<T>::value && std::is_integral<T>::value, "");
354 ASSERT(sizeof(T) * formatInfo.componentCount == formatInfo.texelByteSize);
355 ASSERT(formatInfo.type == wgpu::TextureComponentType::Float);
356
357 T maxValue = std::numeric_limits<T>::max();
358 std::vector<T> textureData = {0, 1, maxValue, maxValue};
359 std::vector<float> uncompressedData = {0.0f, 1.0f / maxValue, 1.0f, 1.0f};
360
361 DoFormatSamplingTest(formatInfo, textureData, uncompressedData);
362 DoFormatRenderingTest(formatInfo, uncompressedData, textureData);
363 }
364
365 template <typename T>
DoSnormTest(FormatTestInfo formatInfo)366 void DoSnormTest(FormatTestInfo formatInfo) {
367 static_assert(std::is_signed<T>::value && std::is_integral<T>::value, "");
368 ASSERT(sizeof(T) * formatInfo.componentCount == formatInfo.texelByteSize);
369 ASSERT(formatInfo.type == wgpu::TextureComponentType::Float);
370
371 T maxValue = std::numeric_limits<T>::max();
372 T minValue = std::numeric_limits<T>::min();
373 std::vector<T> textureData = {0, 1, -1, maxValue, minValue, T(minValue + 1), 0, 0};
374 std::vector<float> uncompressedData = {
375 0.0f, 1.0f / maxValue, -1.0f / maxValue, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f};
376
377 DoFloatFormatSamplingTest(formatInfo, textureData, uncompressedData, 0.0001f / maxValue);
378 // Snorm formats aren't renderable because they are not guaranteed renderable in Vulkan
379 }
380
381 template <typename T>
DoUintTest(FormatTestInfo formatInfo)382 void DoUintTest(FormatTestInfo formatInfo) {
383 static_assert(!std::is_signed<T>::value && std::is_integral<T>::value, "");
384 ASSERT(sizeof(T) * formatInfo.componentCount == formatInfo.texelByteSize);
385 ASSERT(formatInfo.type == wgpu::TextureComponentType::Uint);
386
387 T maxValue = std::numeric_limits<T>::max();
388 std::vector<T> textureData = {0, 1, maxValue, maxValue};
389 std::vector<uint32_t> uncompressedData = {0, 1, maxValue, maxValue};
390
391 DoFormatSamplingTest(formatInfo, textureData, uncompressedData);
392 DoFormatRenderingTest(formatInfo, uncompressedData, textureData);
393 }
394
395 template <typename T>
DoSintTest(FormatTestInfo formatInfo)396 void DoSintTest(FormatTestInfo formatInfo) {
397 static_assert(std::is_signed<T>::value && std::is_integral<T>::value, "");
398 ASSERT(sizeof(T) * formatInfo.componentCount == formatInfo.texelByteSize);
399 ASSERT(formatInfo.type == wgpu::TextureComponentType::Sint);
400
401 T maxValue = std::numeric_limits<T>::max();
402 T minValue = std::numeric_limits<T>::min();
403 std::vector<T> textureData = {0, 1, maxValue, minValue};
404 std::vector<int32_t> uncompressedData = {0, 1, maxValue, minValue};
405
406 DoFormatSamplingTest(formatInfo, textureData, uncompressedData);
407 DoFormatRenderingTest(formatInfo, uncompressedData, textureData);
408 }
409
DoFloat32Test(FormatTestInfo formatInfo)410 void DoFloat32Test(FormatTestInfo formatInfo) {
411 ASSERT(sizeof(float) * formatInfo.componentCount == formatInfo.texelByteSize);
412 ASSERT(formatInfo.type == wgpu::TextureComponentType::Float);
413
414 std::vector<float> textureData = {+0.0f, -0.0f, 1.0f, 1.0e-29f,
415 1.0e29f, NAN, INFINITY, -INFINITY};
416
417 DoFloatFormatSamplingTest(formatInfo, textureData, textureData);
418 DoFormatRenderingTest(formatInfo, textureData, textureData,
419 new ExpectFloatWithTolerance(textureData, 0.0f));
420 }
421
DoFloat16Test(FormatTestInfo formatInfo)422 void DoFloat16Test(FormatTestInfo formatInfo) {
423 ASSERT(sizeof(int16_t) * formatInfo.componentCount == formatInfo.texelByteSize);
424 ASSERT(formatInfo.type == wgpu::TextureComponentType::Float);
425
426 std::vector<float> uncompressedData = {+0.0f, -0.0f, 1.0f, 1.01e-4f,
427 1.0e4f, NAN, INFINITY, -INFINITY};
428 std::vector<uint16_t> textureData;
429 for (float value : uncompressedData) {
430 textureData.push_back(Float32ToFloat16(value));
431 }
432
433 DoFloatFormatSamplingTest(formatInfo, textureData, uncompressedData, 1.0e-5f);
434
435 // Use a special expectation that knows that all Float16 NaNs are equivalent.
436 DoFormatRenderingTest(formatInfo, uncompressedData, textureData,
437 new ExpectFloat16(textureData));
438 }
439 };
440
441 // Test the R8Unorm format
TEST_P(TextureFormatTest,R8Unorm)442 TEST_P(TextureFormatTest, R8Unorm) {
443 DoUnormTest<uint8_t>({wgpu::TextureFormat::R8Unorm, 1, wgpu::TextureComponentType::Float, 1});
444 }
445
446 // Test the RG8Unorm format
TEST_P(TextureFormatTest,RG8Unorm)447 TEST_P(TextureFormatTest, RG8Unorm) {
448 DoUnormTest<uint8_t>({wgpu::TextureFormat::RG8Unorm, 2, wgpu::TextureComponentType::Float, 2});
449 }
450
451 // Test the RGBA8Unorm format
TEST_P(TextureFormatTest,RGBA8Unorm)452 TEST_P(TextureFormatTest, RGBA8Unorm) {
453 DoUnormTest<uint8_t>(
454 {wgpu::TextureFormat::RGBA8Unorm, 4, wgpu::TextureComponentType::Float, 4});
455 }
456
457 // Test the BGRA8Unorm format
TEST_P(TextureFormatTest,BGRA8Unorm)458 TEST_P(TextureFormatTest, BGRA8Unorm) {
459 // TODO(crbug.com/dawn/596): BGRA is unsupported on OpenGL ES; add workaround or validation
460 DAWN_SUPPRESS_TEST_IF(IsOpenGLES());
461 uint8_t maxValue = std::numeric_limits<uint8_t>::max();
462 std::vector<uint8_t> textureData = {maxValue, 1, 0, maxValue};
463 std::vector<float> uncompressedData = {0.0f, 1.0f / maxValue, 1.0f, 1.0f};
464 DoFormatSamplingTest({wgpu::TextureFormat::BGRA8Unorm, 4, wgpu::TextureComponentType::Float, 4},
465 textureData, uncompressedData);
466 DoFormatRenderingTest(
467 {wgpu::TextureFormat::BGRA8Unorm, 4, wgpu::TextureComponentType::Float, 4},
468 uncompressedData, textureData);
469 }
470
471 // Test the R8Snorm format
TEST_P(TextureFormatTest,R8Snorm)472 TEST_P(TextureFormatTest, R8Snorm) {
473 DoSnormTest<int8_t>({wgpu::TextureFormat::R8Snorm, 1, wgpu::TextureComponentType::Float, 1});
474 }
475
476 // Test the RG8Snorm format
TEST_P(TextureFormatTest,RG8Snorm)477 TEST_P(TextureFormatTest, RG8Snorm) {
478 DoSnormTest<int8_t>({wgpu::TextureFormat::RG8Snorm, 2, wgpu::TextureComponentType::Float, 2});
479 }
480
481 // Test the RGBA8Snorm format
TEST_P(TextureFormatTest,RGBA8Snorm)482 TEST_P(TextureFormatTest, RGBA8Snorm) {
483 DoSnormTest<int8_t>({wgpu::TextureFormat::RGBA8Snorm, 4, wgpu::TextureComponentType::Float, 4});
484 }
485
486 // Test the R8Uint format
TEST_P(TextureFormatTest,R8Uint)487 TEST_P(TextureFormatTest, R8Uint) {
488 DoUintTest<uint8_t>({wgpu::TextureFormat::R8Uint, 1, wgpu::TextureComponentType::Uint, 1});
489 }
490
491 // Test the RG8Uint format
TEST_P(TextureFormatTest,RG8Uint)492 TEST_P(TextureFormatTest, RG8Uint) {
493 DoUintTest<uint8_t>({wgpu::TextureFormat::RG8Uint, 2, wgpu::TextureComponentType::Uint, 2});
494 }
495
496 // Test the RGBA8Uint format
TEST_P(TextureFormatTest,RGBA8Uint)497 TEST_P(TextureFormatTest, RGBA8Uint) {
498 DoUintTest<uint8_t>({wgpu::TextureFormat::RGBA8Uint, 4, wgpu::TextureComponentType::Uint, 4});
499 }
500
501 // Test the R16Uint format
TEST_P(TextureFormatTest,R16Uint)502 TEST_P(TextureFormatTest, R16Uint) {
503 DoUintTest<uint16_t>({wgpu::TextureFormat::R16Uint, 2, wgpu::TextureComponentType::Uint, 1});
504 }
505
506 // Test the RG16Uint format
TEST_P(TextureFormatTest,RG16Uint)507 TEST_P(TextureFormatTest, RG16Uint) {
508 DoUintTest<uint16_t>({wgpu::TextureFormat::RG16Uint, 4, wgpu::TextureComponentType::Uint, 2});
509 }
510
511 // Test the RGBA16Uint format
TEST_P(TextureFormatTest,RGBA16Uint)512 TEST_P(TextureFormatTest, RGBA16Uint) {
513 DoUintTest<uint16_t>({wgpu::TextureFormat::RGBA16Uint, 8, wgpu::TextureComponentType::Uint, 4});
514 }
515
516 // Test the R32Uint format
TEST_P(TextureFormatTest,R32Uint)517 TEST_P(TextureFormatTest, R32Uint) {
518 DoUintTest<uint32_t>({wgpu::TextureFormat::R32Uint, 4, wgpu::TextureComponentType::Uint, 1});
519 }
520
521 // Test the RG32Uint format
TEST_P(TextureFormatTest,RG32Uint)522 TEST_P(TextureFormatTest, RG32Uint) {
523 DoUintTest<uint32_t>({wgpu::TextureFormat::RG32Uint, 8, wgpu::TextureComponentType::Uint, 2});
524 }
525
526 // Test the RGBA32Uint format
TEST_P(TextureFormatTest,RGBA32Uint)527 TEST_P(TextureFormatTest, RGBA32Uint) {
528 DoUintTest<uint32_t>(
529 {wgpu::TextureFormat::RGBA32Uint, 16, wgpu::TextureComponentType::Uint, 4});
530 }
531
532 // Test the R8Sint format
TEST_P(TextureFormatTest,R8Sint)533 TEST_P(TextureFormatTest, R8Sint) {
534 DoSintTest<int8_t>({wgpu::TextureFormat::R8Sint, 1, wgpu::TextureComponentType::Sint, 1});
535 }
536
537 // Test the RG8Sint format
TEST_P(TextureFormatTest,RG8Sint)538 TEST_P(TextureFormatTest, RG8Sint) {
539 DoSintTest<int8_t>({wgpu::TextureFormat::RG8Sint, 2, wgpu::TextureComponentType::Sint, 2});
540 }
541
542 // Test the RGBA8Sint format
TEST_P(TextureFormatTest,RGBA8Sint)543 TEST_P(TextureFormatTest, RGBA8Sint) {
544 DoSintTest<int8_t>({wgpu::TextureFormat::RGBA8Sint, 4, wgpu::TextureComponentType::Sint, 4});
545 }
546
547 // Test the R16Sint format
TEST_P(TextureFormatTest,R16Sint)548 TEST_P(TextureFormatTest, R16Sint) {
549 DoSintTest<int16_t>({wgpu::TextureFormat::R16Sint, 2, wgpu::TextureComponentType::Sint, 1});
550 }
551
552 // Test the RG16Sint format
TEST_P(TextureFormatTest,RG16Sint)553 TEST_P(TextureFormatTest, RG16Sint) {
554 DoSintTest<int16_t>({wgpu::TextureFormat::RG16Sint, 4, wgpu::TextureComponentType::Sint, 2});
555 }
556
557 // Test the RGBA16Sint format
TEST_P(TextureFormatTest,RGBA16Sint)558 TEST_P(TextureFormatTest, RGBA16Sint) {
559 DoSintTest<int16_t>({wgpu::TextureFormat::RGBA16Sint, 8, wgpu::TextureComponentType::Sint, 4});
560 }
561
562 // Test the R32Sint format
TEST_P(TextureFormatTest,R32Sint)563 TEST_P(TextureFormatTest, R32Sint) {
564 DoSintTest<int32_t>({wgpu::TextureFormat::R32Sint, 4, wgpu::TextureComponentType::Sint, 1});
565 }
566
567 // Test the RG32Sint format
TEST_P(TextureFormatTest,RG32Sint)568 TEST_P(TextureFormatTest, RG32Sint) {
569 DoSintTest<int32_t>({wgpu::TextureFormat::RG32Sint, 8, wgpu::TextureComponentType::Sint, 2});
570 }
571
572 // Test the RGBA32Sint format
TEST_P(TextureFormatTest,RGBA32Sint)573 TEST_P(TextureFormatTest, RGBA32Sint) {
574 DoSintTest<int32_t>({wgpu::TextureFormat::RGBA32Sint, 16, wgpu::TextureComponentType::Sint, 4});
575 }
576
577 // Test the R32Float format
TEST_P(TextureFormatTest,R32Float)578 TEST_P(TextureFormatTest, R32Float) {
579 DoFloat32Test({wgpu::TextureFormat::R32Float, 4, wgpu::TextureComponentType::Float, 1});
580 }
581
582 // Test the RG32Float format
TEST_P(TextureFormatTest,RG32Float)583 TEST_P(TextureFormatTest, RG32Float) {
584 DoFloat32Test({wgpu::TextureFormat::RG32Float, 8, wgpu::TextureComponentType::Float, 2});
585 }
586
587 // Test the RGBA32Float format
TEST_P(TextureFormatTest,RGBA32Float)588 TEST_P(TextureFormatTest, RGBA32Float) {
589 DoFloat32Test({wgpu::TextureFormat::RGBA32Float, 16, wgpu::TextureComponentType::Float, 4});
590 }
591
592 // Test the R16Float format
TEST_P(TextureFormatTest,R16Float)593 TEST_P(TextureFormatTest, R16Float) {
594 // TODO(https://crbug.com/swiftshader/147) Rendering INFINITY isn't handled correctly by
595 // swiftshader
596 DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsSwiftshader() || IsANGLE());
597
598 DoFloat16Test({wgpu::TextureFormat::R16Float, 2, wgpu::TextureComponentType::Float, 1});
599 }
600
601 // Test the RG16Float format
TEST_P(TextureFormatTest,RG16Float)602 TEST_P(TextureFormatTest, RG16Float) {
603 // TODO(https://crbug.com/swiftshader/147) Rendering INFINITY isn't handled correctly by
604 // swiftshader
605 DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsSwiftshader() || IsANGLE());
606
607 DoFloat16Test({wgpu::TextureFormat::RG16Float, 4, wgpu::TextureComponentType::Float, 2});
608 }
609
610 // Test the RGBA16Float format
TEST_P(TextureFormatTest,RGBA16Float)611 TEST_P(TextureFormatTest, RGBA16Float) {
612 // TODO(https://crbug.com/swiftshader/147) Rendering INFINITY isn't handled correctly by
613 // swiftshader
614 DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsSwiftshader() || IsANGLE());
615
616 DoFloat16Test({wgpu::TextureFormat::RGBA16Float, 8, wgpu::TextureComponentType::Float, 4});
617 }
618
619 // Test the RGBA8Unorm format
TEST_P(TextureFormatTest,RGBA8UnormSrgb)620 TEST_P(TextureFormatTest, RGBA8UnormSrgb) {
621 uint8_t maxValue = std::numeric_limits<uint8_t>::max();
622 std::vector<uint8_t> textureData = {0, 1, maxValue, 64, 35, 68, 152, 168};
623
624 std::vector<float> uncompressedData;
625 for (size_t i = 0; i < textureData.size(); i += 4) {
626 uncompressedData.push_back(SRGBToLinear(textureData[i + 0] / float(maxValue)));
627 uncompressedData.push_back(SRGBToLinear(textureData[i + 1] / float(maxValue)));
628 uncompressedData.push_back(SRGBToLinear(textureData[i + 2] / float(maxValue)));
629 // Alpha is linear for sRGB formats
630 uncompressedData.push_back(textureData[i + 3] / float(maxValue));
631 }
632
633 DoFloatFormatSamplingTest(
634 {wgpu::TextureFormat::RGBA8UnormSrgb, 4, wgpu::TextureComponentType::Float, 4}, textureData,
635 uncompressedData, 1.0e-3);
636 DoFormatRenderingTest(
637 {wgpu::TextureFormat::RGBA8UnormSrgb, 4, wgpu::TextureComponentType::Float, 4},
638 uncompressedData, textureData);
639 }
640
641 // Test the BGRA8UnormSrgb format
TEST_P(TextureFormatTest,BGRA8UnormSrgb)642 TEST_P(TextureFormatTest, BGRA8UnormSrgb) {
643 // TODO(cwallez@chromium.org): This format doesn't exist in OpenGL, emulate it using
644 // RGBA8UnormSrgb and swizzling / shader twiddling
645 DAWN_SUPPRESS_TEST_IF(IsOpenGL() || IsOpenGLES());
646
647 uint8_t maxValue = std::numeric_limits<uint8_t>::max();
648 std::vector<uint8_t> textureData = {0, 1, maxValue, 64, 35, 68, 152, 168};
649
650 std::vector<float> uncompressedData;
651 for (size_t i = 0; i < textureData.size(); i += 4) {
652 // Note that R and B are swapped
653 uncompressedData.push_back(SRGBToLinear(textureData[i + 2] / float(maxValue)));
654 uncompressedData.push_back(SRGBToLinear(textureData[i + 1] / float(maxValue)));
655 uncompressedData.push_back(SRGBToLinear(textureData[i + 0] / float(maxValue)));
656 // Alpha is linear for sRGB formats
657 uncompressedData.push_back(textureData[i + 3] / float(maxValue));
658 }
659
660 DoFloatFormatSamplingTest(
661 {wgpu::TextureFormat::BGRA8UnormSrgb, 4, wgpu::TextureComponentType::Float, 4}, textureData,
662 uncompressedData, 1.0e-3);
663 DoFormatRenderingTest(
664 {wgpu::TextureFormat::BGRA8UnormSrgb, 4, wgpu::TextureComponentType::Float, 4},
665 uncompressedData, textureData);
666 }
667
668 // Test the RGB10A2Unorm format
TEST_P(TextureFormatTest,RGB10A2Unorm)669 TEST_P(TextureFormatTest, RGB10A2Unorm) {
670 auto MakeRGB10A2 = [](uint32_t r, uint32_t g, uint32_t b, uint32_t a) -> uint32_t {
671 ASSERT((r & 0x3FF) == r);
672 ASSERT((g & 0x3FF) == g);
673 ASSERT((b & 0x3FF) == b);
674 ASSERT((a & 0x3) == a);
675 return r | g << 10 | b << 20 | a << 30;
676 };
677
678 std::vector<uint32_t> textureData = {MakeRGB10A2(0, 0, 0, 0), MakeRGB10A2(1023, 1023, 1023, 1),
679 MakeRGB10A2(243, 576, 765, 2), MakeRGB10A2(0, 0, 0, 3)};
680 // clang-format off
681 std::vector<float> uncompressedData = {
682 0.0f, 0.0f, 0.0f, 0.0f,
683 1.0f, 1.0f, 1.0f, 1 / 3.0f,
684 243 / 1023.0f, 576 / 1023.0f, 765 / 1023.0f, 2 / 3.0f,
685 0.0f, 0.0f, 0.0f, 1.0f
686 };
687 // clang-format on
688
689 DoFloatFormatSamplingTest(
690 {wgpu::TextureFormat::RGB10A2Unorm, 4, wgpu::TextureComponentType::Float, 4}, textureData,
691 uncompressedData, 1.0e-5);
692 DoFormatRenderingTest(
693 {wgpu::TextureFormat::RGB10A2Unorm, 4, wgpu::TextureComponentType::Float, 4},
694 uncompressedData, textureData);
695 }
696
697 // Test the RG11B10Ufloat format
TEST_P(TextureFormatTest,RG11B10Ufloat)698 TEST_P(TextureFormatTest, RG11B10Ufloat) {
699 constexpr uint32_t kFloat11Zero = 0;
700 constexpr uint32_t kFloat11Infinity = 0x7C0;
701 constexpr uint32_t kFloat11Nan = 0x7C1;
702 constexpr uint32_t kFloat11One = 0x3C0;
703
704 constexpr uint32_t kFloat10Zero = 0;
705 constexpr uint32_t kFloat10Infinity = 0x3E0;
706 constexpr uint32_t kFloat10Nan = 0x3E1;
707 constexpr uint32_t kFloat10One = 0x1E0;
708
709 auto MakeRG11B10 = [](uint32_t r, uint32_t g, uint32_t b) {
710 ASSERT((r & 0x7FF) == r);
711 ASSERT((g & 0x7FF) == g);
712 ASSERT((b & 0x3FF) == b);
713 return r | g << 11 | b << 22;
714 };
715
716 // Test each of (0, 1, INFINITY, NaN) for each component but never two with the same value at a
717 // time.
718 std::vector<uint32_t> textureData = {
719 MakeRG11B10(kFloat11Zero, kFloat11Infinity, kFloat10Nan),
720 MakeRG11B10(kFloat11Infinity, kFloat11Nan, kFloat10One),
721 MakeRG11B10(kFloat11Nan, kFloat11One, kFloat10Zero),
722 MakeRG11B10(kFloat11One, kFloat11Zero, kFloat10Infinity),
723 };
724
725 // This is one of the only 3-channel formats, so we don't have specific testing for them. Alpha
726 // should always be sampled as 1
727 // clang-format off
728 std::vector<float> uncompressedData = {
729 0.0f, INFINITY, NAN, 1.0f,
730 INFINITY, NAN, 1.0f, 1.0f,
731 NAN, 1.0f, 0.0f, 1.0f,
732 1.0f, 0.0f, INFINITY, 1.0f
733 };
734 // clang-format on
735
736 DoFloatFormatSamplingTest(
737 {wgpu::TextureFormat::RG11B10Ufloat, 4, wgpu::TextureComponentType::Float, 4}, textureData,
738 uncompressedData);
739 // This format is not renderable.
740 }
741
742 // Test the RGB9E5Ufloat format
TEST_P(TextureFormatTest,RGB9E5Ufloat)743 TEST_P(TextureFormatTest, RGB9E5Ufloat) {
744 // RGB9E5 is different from other floating point formats because the mantissa doesn't index in
745 // the window defined by the exponent but is instead treated as a pure multiplier. There is
746 // also no Infinity or NaN. The OpenGL 4.6 spec has the best explanation I've found in section
747 // 8.25 "Shared Exponent Texture Color Conversion":
748 //
749 // red = reduint * 2^(expuint - B - N) = reduint * 2^(expuint - 24)
750 //
751 // Where reduint and expuint are the integer values when considering the E5 as a 5bit uint, and
752 // the r9 as a 9bit uint. B the number of bits of the mantissa (9), and N the offset for the
753 // exponent (15).
754
755 float smallestExponent = std::pow(2.0f, -24.0f);
756 float largestExponent = std::pow(2.0f, float(31 - 24));
757
758 auto MakeRGB9E5 = [](uint32_t r, uint32_t g, uint32_t b, uint32_t e) {
759 ASSERT((r & 0x1FF) == r);
760 ASSERT((g & 0x1FF) == g);
761 ASSERT((b & 0x1FF) == b);
762 ASSERT((e & 0x1F) == e);
763 return r | g << 9 | b << 18 | e << 27;
764 };
765
766 // Test the smallest largest, and "1" exponents
767 std::vector<uint32_t> textureData = {
768 MakeRGB9E5(0, 1, 2, 0b00000),
769 MakeRGB9E5(2, 1, 0, 0b11111),
770 MakeRGB9E5(0, 1, 2, 0b11000),
771 };
772
773 // This is one of the only 3-channel formats, so we don't have specific testing for them. Alpha
774 // should always be sampled as 1
775 // clang-format off
776 std::vector<float> uncompressedData = {
777 0.0f, smallestExponent, 2.0f * smallestExponent, 1.0f,
778 2.0f * largestExponent, largestExponent, 0.0f, 1.0f,
779 0.0f, 1.0f, 2.0f, 1.0f,
780 };
781 // clang-format on
782
783 DoFloatFormatSamplingTest(
784 {wgpu::TextureFormat::RGB9E5Ufloat, 4, wgpu::TextureComponentType::Float, 4}, textureData,
785 uncompressedData);
786 // This format is not renderable.
787 }
788
789 DAWN_INSTANTIATE_TEST(TextureFormatTest,
790 D3D12Backend(),
791 MetalBackend(),
792 OpenGLBackend(),
793 OpenGLESBackend(),
794 VulkanBackend());
795