1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachinePassRegistry.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SchedulerRegistry.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/StackProtector.h"
55 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constants.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/DebugInfoMetadata.h"
65 #include "llvm/IR/DebugLoc.h"
66 #include "llvm/IR/DiagnosticInfo.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InlineAsm.h"
70 #include "llvm/IR/InstIterator.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsWebAssembly.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Type.h"
79 #include "llvm/IR/User.h"
80 #include "llvm/IR/Value.h"
81 #include "llvm/InitializePasses.h"
82 #include "llvm/MC/MCInstrDesc.h"
83 #include "llvm/MC/MCRegisterInfo.h"
84 #include "llvm/Pass.h"
85 #include "llvm/Support/BranchProbability.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/CodeGen.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/Compiler.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/ErrorHandling.h"
92 #include "llvm/Support/KnownBits.h"
93 #include "llvm/Support/MachineValueType.h"
94 #include "llvm/Support/Timer.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <iterator>
104 #include <limits>
105 #include <memory>
106 #include <string>
107 #include <utility>
108 #include <vector>
109
110 using namespace llvm;
111
112 #define DEBUG_TYPE "isel"
113
114 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
115 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
116 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
117 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
118 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
119 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
120 STATISTIC(NumFastIselFailLowerArguments,
121 "Number of entry blocks where fast isel failed to lower arguments");
122
123 static cl::opt<int> EnableFastISelAbort(
124 "fast-isel-abort", cl::Hidden,
125 cl::desc("Enable abort calls when \"fast\" instruction selection "
126 "fails to lower an instruction: 0 disable the abort, 1 will "
127 "abort but for args, calls and terminators, 2 will also "
128 "abort for argument lowering, and 3 will never fallback "
129 "to SelectionDAG."));
130
131 static cl::opt<bool> EnableFastISelFallbackReport(
132 "fast-isel-report-on-fallback", cl::Hidden,
133 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
134 "falls back to SelectionDAG."));
135
136 static cl::opt<bool>
137 UseMBPI("use-mbpi",
138 cl::desc("use Machine Branch Probability Info"),
139 cl::init(true), cl::Hidden);
140
141 #ifndef NDEBUG
142 static cl::opt<std::string>
143 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
144 cl::desc("Only display the basic block whose name "
145 "matches this for all view-*-dags options"));
146 static cl::opt<bool>
147 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
148 cl::desc("Pop up a window to show dags before the first "
149 "dag combine pass"));
150 static cl::opt<bool>
151 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
152 cl::desc("Pop up a window to show dags before legalize types"));
153 static cl::opt<bool>
154 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
155 cl::desc("Pop up a window to show dags before the post "
156 "legalize types dag combine pass"));
157 static cl::opt<bool>
158 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
159 cl::desc("Pop up a window to show dags before legalize"));
160 static cl::opt<bool>
161 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
162 cl::desc("Pop up a window to show dags before the second "
163 "dag combine pass"));
164 static cl::opt<bool>
165 ViewISelDAGs("view-isel-dags", cl::Hidden,
166 cl::desc("Pop up a window to show isel dags as they are selected"));
167 static cl::opt<bool>
168 ViewSchedDAGs("view-sched-dags", cl::Hidden,
169 cl::desc("Pop up a window to show sched dags as they are processed"));
170 static cl::opt<bool>
171 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
172 cl::desc("Pop up a window to show SUnit dags after they are processed"));
173 #else
174 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
175 ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
176 ViewDAGCombine2 = false, ViewISelDAGs = false,
177 ViewSchedDAGs = false, ViewSUnitDAGs = false;
178 #endif
179
180 //===---------------------------------------------------------------------===//
181 ///
182 /// RegisterScheduler class - Track the registration of instruction schedulers.
183 ///
184 //===---------------------------------------------------------------------===//
185 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
186 RegisterScheduler::Registry;
187
188 //===---------------------------------------------------------------------===//
189 ///
190 /// ISHeuristic command line option for instruction schedulers.
191 ///
192 //===---------------------------------------------------------------------===//
193 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
194 RegisterPassParser<RegisterScheduler>>
195 ISHeuristic("pre-RA-sched",
196 cl::init(&createDefaultScheduler), cl::Hidden,
197 cl::desc("Instruction schedulers available (before register"
198 " allocation):"));
199
200 static RegisterScheduler
201 defaultListDAGScheduler("default", "Best scheduler for the target",
202 createDefaultScheduler);
203
204 namespace llvm {
205
206 //===--------------------------------------------------------------------===//
207 /// This class is used by SelectionDAGISel to temporarily override
208 /// the optimization level on a per-function basis.
209 class OptLevelChanger {
210 SelectionDAGISel &IS;
211 CodeGenOpt::Level SavedOptLevel;
212 bool SavedFastISel;
213
214 public:
OptLevelChanger(SelectionDAGISel & ISel,CodeGenOpt::Level NewOptLevel)215 OptLevelChanger(SelectionDAGISel &ISel,
216 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
217 SavedOptLevel = IS.OptLevel;
218 if (NewOptLevel == SavedOptLevel)
219 return;
220 IS.OptLevel = NewOptLevel;
221 IS.TM.setOptLevel(NewOptLevel);
222 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
223 << IS.MF->getFunction().getName() << "\n");
224 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
225 << NewOptLevel << "\n");
226 SavedFastISel = IS.TM.Options.EnableFastISel;
227 if (NewOptLevel == CodeGenOpt::None) {
228 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
229 LLVM_DEBUG(
230 dbgs() << "\tFastISel is "
231 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
232 << "\n");
233 }
234 }
235
~OptLevelChanger()236 ~OptLevelChanger() {
237 if (IS.OptLevel == SavedOptLevel)
238 return;
239 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
240 << IS.MF->getFunction().getName() << "\n");
241 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
242 << SavedOptLevel << "\n");
243 IS.OptLevel = SavedOptLevel;
244 IS.TM.setOptLevel(SavedOptLevel);
245 IS.TM.setFastISel(SavedFastISel);
246 }
247 };
248
249 //===--------------------------------------------------------------------===//
250 /// createDefaultScheduler - This creates an instruction scheduler appropriate
251 /// for the target.
createDefaultScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)252 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
253 CodeGenOpt::Level OptLevel) {
254 const TargetLowering *TLI = IS->TLI;
255 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
256
257 // Try first to see if the Target has its own way of selecting a scheduler
258 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
259 return SchedulerCtor(IS, OptLevel);
260 }
261
262 if (OptLevel == CodeGenOpt::None ||
263 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
264 TLI->getSchedulingPreference() == Sched::Source)
265 return createSourceListDAGScheduler(IS, OptLevel);
266 if (TLI->getSchedulingPreference() == Sched::RegPressure)
267 return createBURRListDAGScheduler(IS, OptLevel);
268 if (TLI->getSchedulingPreference() == Sched::Hybrid)
269 return createHybridListDAGScheduler(IS, OptLevel);
270 if (TLI->getSchedulingPreference() == Sched::VLIW)
271 return createVLIWDAGScheduler(IS, OptLevel);
272 assert(TLI->getSchedulingPreference() == Sched::ILP &&
273 "Unknown sched type!");
274 return createILPListDAGScheduler(IS, OptLevel);
275 }
276
277 } // end namespace llvm
278
279 // EmitInstrWithCustomInserter - This method should be implemented by targets
280 // that mark instructions with the 'usesCustomInserter' flag. These
281 // instructions are special in various ways, which require special support to
282 // insert. The specified MachineInstr is created but not inserted into any
283 // basic blocks, and this method is called to expand it into a sequence of
284 // instructions, potentially also creating new basic blocks and control flow.
285 // When new basic blocks are inserted and the edges from MBB to its successors
286 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
287 // DenseMap.
288 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const289 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
290 MachineBasicBlock *MBB) const {
291 #ifndef NDEBUG
292 dbgs() << "If a target marks an instruction with "
293 "'usesCustomInserter', it must implement "
294 "TargetLowering::EmitInstrWithCustomInserter!";
295 #endif
296 llvm_unreachable(nullptr);
297 }
298
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const299 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
300 SDNode *Node) const {
301 assert(!MI.hasPostISelHook() &&
302 "If a target marks an instruction with 'hasPostISelHook', "
303 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
304 }
305
306 //===----------------------------------------------------------------------===//
307 // SelectionDAGISel code
308 //===----------------------------------------------------------------------===//
309
SelectionDAGISel(TargetMachine & tm,CodeGenOpt::Level OL)310 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
311 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
312 SwiftError(new SwiftErrorValueTracking()),
313 CurDAG(new SelectionDAG(tm, OL)),
314 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
315 OL)),
316 AA(), GFI(), OptLevel(OL), DAGSize(0) {
317 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
318 initializeBranchProbabilityInfoWrapperPassPass(
319 *PassRegistry::getPassRegistry());
320 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
321 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
322 }
323
~SelectionDAGISel()324 SelectionDAGISel::~SelectionDAGISel() {
325 delete CurDAG;
326 delete SwiftError;
327 }
328
getAnalysisUsage(AnalysisUsage & AU) const329 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
330 if (OptLevel != CodeGenOpt::None)
331 AU.addRequired<AAResultsWrapperPass>();
332 AU.addRequired<GCModuleInfo>();
333 AU.addRequired<StackProtector>();
334 AU.addPreserved<GCModuleInfo>();
335 AU.addRequired<TargetLibraryInfoWrapperPass>();
336 AU.addRequired<TargetTransformInfoWrapperPass>();
337 if (UseMBPI && OptLevel != CodeGenOpt::None)
338 AU.addRequired<BranchProbabilityInfoWrapperPass>();
339 AU.addRequired<ProfileSummaryInfoWrapperPass>();
340 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
341 MachineFunctionPass::getAnalysisUsage(AU);
342 }
343
344 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
345 /// may trap on it. In this case we have to split the edge so that the path
346 /// through the predecessor block that doesn't go to the phi block doesn't
347 /// execute the possibly trapping instruction. If available, we pass domtree
348 /// and loop info to be updated when we split critical edges. This is because
349 /// SelectionDAGISel preserves these analyses.
350 /// This is required for correctness, so it must be done at -O0.
351 ///
SplitCriticalSideEffectEdges(Function & Fn,DominatorTree * DT,LoopInfo * LI)352 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
353 LoopInfo *LI) {
354 // Loop for blocks with phi nodes.
355 for (BasicBlock &BB : Fn) {
356 PHINode *PN = dyn_cast<PHINode>(BB.begin());
357 if (!PN) continue;
358
359 ReprocessBlock:
360 // For each block with a PHI node, check to see if any of the input values
361 // are potentially trapping constant expressions. Constant expressions are
362 // the only potentially trapping value that can occur as the argument to a
363 // PHI.
364 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
365 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
366 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
367 if (!CE || !CE->canTrap()) continue;
368
369 // The only case we have to worry about is when the edge is critical.
370 // Since this block has a PHI Node, we assume it has multiple input
371 // edges: check to see if the pred has multiple successors.
372 BasicBlock *Pred = PN->getIncomingBlock(i);
373 if (Pred->getTerminator()->getNumSuccessors() == 1)
374 continue;
375
376 // Okay, we have to split this edge.
377 SplitCriticalEdge(
378 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
379 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
380 goto ReprocessBlock;
381 }
382 }
383 }
384
computeUsesMSVCFloatingPoint(const Triple & TT,const Function & F,MachineModuleInfo & MMI)385 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
386 MachineModuleInfo &MMI) {
387 // Only needed for MSVC
388 if (!TT.isWindowsMSVCEnvironment())
389 return;
390
391 // If it's already set, nothing to do.
392 if (MMI.usesMSVCFloatingPoint())
393 return;
394
395 for (const Instruction &I : instructions(F)) {
396 if (I.getType()->isFPOrFPVectorTy()) {
397 MMI.setUsesMSVCFloatingPoint(true);
398 return;
399 }
400 for (const auto &Op : I.operands()) {
401 if (Op->getType()->isFPOrFPVectorTy()) {
402 MMI.setUsesMSVCFloatingPoint(true);
403 return;
404 }
405 }
406 }
407 }
408
runOnMachineFunction(MachineFunction & mf)409 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
410 // If we already selected that function, we do not need to run SDISel.
411 if (mf.getProperties().hasProperty(
412 MachineFunctionProperties::Property::Selected))
413 return false;
414 // Do some sanity-checking on the command-line options.
415 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
416 "-fast-isel-abort > 0 requires -fast-isel");
417
418 const Function &Fn = mf.getFunction();
419 MF = &mf;
420
421 // Reset the target options before resetting the optimization
422 // level below.
423 // FIXME: This is a horrible hack and should be processed via
424 // codegen looking at the optimization level explicitly when
425 // it wants to look at it.
426 TM.resetTargetOptions(Fn);
427 // Reset OptLevel to None for optnone functions.
428 CodeGenOpt::Level NewOptLevel = OptLevel;
429 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
430 NewOptLevel = CodeGenOpt::None;
431 OptLevelChanger OLC(*this, NewOptLevel);
432
433 TII = MF->getSubtarget().getInstrInfo();
434 TLI = MF->getSubtarget().getTargetLowering();
435 RegInfo = &MF->getRegInfo();
436 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
437 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
438 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
439 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
440 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
441 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
442 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
443 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
444 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
445 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
446 nullptr;
447
448 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
449
450 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
451
452 CurDAG->init(*MF, *ORE, this, LibInfo,
453 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
454 FuncInfo->set(Fn, *MF, CurDAG);
455 SwiftError->setFunction(*MF);
456
457 // Now get the optional analyzes if we want to.
458 // This is based on the possibly changed OptLevel (after optnone is taken
459 // into account). That's unfortunate but OK because it just means we won't
460 // ask for passes that have been required anyway.
461
462 if (UseMBPI && OptLevel != CodeGenOpt::None)
463 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
464 else
465 FuncInfo->BPI = nullptr;
466
467 if (OptLevel != CodeGenOpt::None)
468 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
469 else
470 AA = nullptr;
471
472 SDB->init(GFI, AA, LibInfo);
473
474 MF->setHasInlineAsm(false);
475
476 FuncInfo->SplitCSR = false;
477
478 // We split CSR if the target supports it for the given function
479 // and the function has only return exits.
480 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
481 FuncInfo->SplitCSR = true;
482
483 // Collect all the return blocks.
484 for (const BasicBlock &BB : Fn) {
485 if (!succ_empty(&BB))
486 continue;
487
488 const Instruction *Term = BB.getTerminator();
489 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
490 continue;
491
492 // Bail out if the exit block is not Return nor Unreachable.
493 FuncInfo->SplitCSR = false;
494 break;
495 }
496 }
497
498 MachineBasicBlock *EntryMBB = &MF->front();
499 if (FuncInfo->SplitCSR)
500 // This performs initialization so lowering for SplitCSR will be correct.
501 TLI->initializeSplitCSR(EntryMBB);
502
503 SelectAllBasicBlocks(Fn);
504 if (FastISelFailed && EnableFastISelFallbackReport) {
505 DiagnosticInfoISelFallback DiagFallback(Fn);
506 Fn.getContext().diagnose(DiagFallback);
507 }
508
509 // Replace forward-declared registers with the registers containing
510 // the desired value.
511 // Note: it is important that this happens **before** the call to
512 // EmitLiveInCopies, since implementations can skip copies of unused
513 // registers. If we don't apply the reg fixups before, some registers may
514 // appear as unused and will be skipped, resulting in bad MI.
515 MachineRegisterInfo &MRI = MF->getRegInfo();
516 for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(),
517 E = FuncInfo->RegFixups.end();
518 I != E; ++I) {
519 unsigned From = I->first;
520 unsigned To = I->second;
521 // If To is also scheduled to be replaced, find what its ultimate
522 // replacement is.
523 while (true) {
524 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
525 if (J == E)
526 break;
527 To = J->second;
528 }
529 // Make sure the new register has a sufficiently constrained register class.
530 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
531 MRI.constrainRegClass(To, MRI.getRegClass(From));
532 // Replace it.
533
534 // Replacing one register with another won't touch the kill flags.
535 // We need to conservatively clear the kill flags as a kill on the old
536 // register might dominate existing uses of the new register.
537 if (!MRI.use_empty(To))
538 MRI.clearKillFlags(From);
539 MRI.replaceRegWith(From, To);
540 }
541
542 // If the first basic block in the function has live ins that need to be
543 // copied into vregs, emit the copies into the top of the block before
544 // emitting the code for the block.
545 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
546 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
547
548 // Insert copies in the entry block and the return blocks.
549 if (FuncInfo->SplitCSR) {
550 SmallVector<MachineBasicBlock*, 4> Returns;
551 // Collect all the return blocks.
552 for (MachineBasicBlock &MBB : mf) {
553 if (!MBB.succ_empty())
554 continue;
555
556 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
557 if (Term != MBB.end() && Term->isReturn()) {
558 Returns.push_back(&MBB);
559 continue;
560 }
561 }
562 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
563 }
564
565 DenseMap<unsigned, unsigned> LiveInMap;
566 if (!FuncInfo->ArgDbgValues.empty())
567 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
568 if (LI.second)
569 LiveInMap.insert(LI);
570
571 // Insert DBG_VALUE instructions for function arguments to the entry block.
572 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
573 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
574 bool hasFI = MI->getOperand(0).isFI();
575 Register Reg =
576 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
577 if (Register::isPhysicalRegister(Reg))
578 EntryMBB->insert(EntryMBB->begin(), MI);
579 else {
580 MachineInstr *Def = RegInfo->getVRegDef(Reg);
581 if (Def) {
582 MachineBasicBlock::iterator InsertPos = Def;
583 // FIXME: VR def may not be in entry block.
584 Def->getParent()->insert(std::next(InsertPos), MI);
585 } else
586 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
587 << Register::virtReg2Index(Reg) << "\n");
588 }
589
590 // If Reg is live-in then update debug info to track its copy in a vreg.
591 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
592 if (LDI != LiveInMap.end()) {
593 assert(!hasFI && "There's no handling of frame pointer updating here yet "
594 "- add if needed");
595 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
596 MachineBasicBlock::iterator InsertPos = Def;
597 const MDNode *Variable = MI->getDebugVariable();
598 const MDNode *Expr = MI->getDebugExpression();
599 DebugLoc DL = MI->getDebugLoc();
600 bool IsIndirect = MI->isIndirectDebugValue();
601 if (IsIndirect)
602 assert(MI->getOperand(1).getImm() == 0 &&
603 "DBG_VALUE with nonzero offset");
604 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
605 "Expected inlined-at fields to agree");
606 // Def is never a terminator here, so it is ok to increment InsertPos.
607 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
608 IsIndirect, LDI->second, Variable, Expr);
609
610 // If this vreg is directly copied into an exported register then
611 // that COPY instructions also need DBG_VALUE, if it is the only
612 // user of LDI->second.
613 MachineInstr *CopyUseMI = nullptr;
614 for (MachineRegisterInfo::use_instr_iterator
615 UI = RegInfo->use_instr_begin(LDI->second),
616 E = RegInfo->use_instr_end(); UI != E; ) {
617 MachineInstr *UseMI = &*(UI++);
618 if (UseMI->isDebugValue()) continue;
619 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
620 CopyUseMI = UseMI; continue;
621 }
622 // Otherwise this is another use or second copy use.
623 CopyUseMI = nullptr; break;
624 }
625 if (CopyUseMI) {
626 // Use MI's debug location, which describes where Variable was
627 // declared, rather than whatever is attached to CopyUseMI.
628 MachineInstr *NewMI =
629 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
630 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
631 MachineBasicBlock::iterator Pos = CopyUseMI;
632 EntryMBB->insertAfter(Pos, NewMI);
633 }
634 }
635 }
636
637 // Determine if there are any calls in this machine function.
638 MachineFrameInfo &MFI = MF->getFrameInfo();
639 for (const auto &MBB : *MF) {
640 if (MFI.hasCalls() && MF->hasInlineAsm())
641 break;
642
643 for (const auto &MI : MBB) {
644 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
645 if ((MCID.isCall() && !MCID.isReturn()) ||
646 MI.isStackAligningInlineAsm()) {
647 MFI.setHasCalls(true);
648 }
649 if (MI.isInlineAsm()) {
650 MF->setHasInlineAsm(true);
651 }
652 }
653 }
654
655 // Determine if there is a call to setjmp in the machine function.
656 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
657
658 // Determine if floating point is used for msvc
659 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
660
661 // Replace forward-declared registers with the registers containing
662 // the desired value.
663 for (DenseMap<unsigned, unsigned>::iterator
664 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
665 I != E; ++I) {
666 unsigned From = I->first;
667 unsigned To = I->second;
668 // If To is also scheduled to be replaced, find what its ultimate
669 // replacement is.
670 while (true) {
671 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
672 if (J == E) break;
673 To = J->second;
674 }
675 // Make sure the new register has a sufficiently constrained register class.
676 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
677 MRI.constrainRegClass(To, MRI.getRegClass(From));
678 // Replace it.
679
680
681 // Replacing one register with another won't touch the kill flags.
682 // We need to conservatively clear the kill flags as a kill on the old
683 // register might dominate existing uses of the new register.
684 if (!MRI.use_empty(To))
685 MRI.clearKillFlags(From);
686 MRI.replaceRegWith(From, To);
687 }
688
689 TLI->finalizeLowering(*MF);
690
691 // Release function-specific state. SDB and CurDAG are already cleared
692 // at this point.
693 FuncInfo->clear();
694
695 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
696 LLVM_DEBUG(MF->print(dbgs()));
697
698 return true;
699 }
700
reportFastISelFailure(MachineFunction & MF,OptimizationRemarkEmitter & ORE,OptimizationRemarkMissed & R,bool ShouldAbort)701 static void reportFastISelFailure(MachineFunction &MF,
702 OptimizationRemarkEmitter &ORE,
703 OptimizationRemarkMissed &R,
704 bool ShouldAbort) {
705 // Print the function name explicitly if we don't have a debug location (which
706 // makes the diagnostic less useful) or if we're going to emit a raw error.
707 if (!R.getLocation().isValid() || ShouldAbort)
708 R << (" (in function: " + MF.getName() + ")").str();
709
710 if (ShouldAbort)
711 report_fatal_error(R.getMsg());
712
713 ORE.emit(R);
714 }
715
SelectBasicBlock(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,bool & HadTailCall)716 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
717 BasicBlock::const_iterator End,
718 bool &HadTailCall) {
719 // Allow creating illegal types during DAG building for the basic block.
720 CurDAG->NewNodesMustHaveLegalTypes = false;
721
722 // Lower the instructions. If a call is emitted as a tail call, cease emitting
723 // nodes for this block.
724 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
725 if (!ElidedArgCopyInstrs.count(&*I))
726 SDB->visit(*I);
727 }
728
729 // Make sure the root of the DAG is up-to-date.
730 CurDAG->setRoot(SDB->getControlRoot());
731 HadTailCall = SDB->HasTailCall;
732 SDB->resolveOrClearDbgInfo();
733 SDB->clear();
734
735 // Final step, emit the lowered DAG as machine code.
736 CodeGenAndEmitDAG();
737 }
738
ComputeLiveOutVRegInfo()739 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
740 SmallPtrSet<SDNode *, 16> Added;
741 SmallVector<SDNode*, 128> Worklist;
742
743 Worklist.push_back(CurDAG->getRoot().getNode());
744 Added.insert(CurDAG->getRoot().getNode());
745
746 KnownBits Known;
747
748 do {
749 SDNode *N = Worklist.pop_back_val();
750
751 // Otherwise, add all chain operands to the worklist.
752 for (const SDValue &Op : N->op_values())
753 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
754 Worklist.push_back(Op.getNode());
755
756 // If this is a CopyToReg with a vreg dest, process it.
757 if (N->getOpcode() != ISD::CopyToReg)
758 continue;
759
760 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
761 if (!Register::isVirtualRegister(DestReg))
762 continue;
763
764 // Ignore non-integer values.
765 SDValue Src = N->getOperand(2);
766 EVT SrcVT = Src.getValueType();
767 if (!SrcVT.isInteger())
768 continue;
769
770 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
771 Known = CurDAG->computeKnownBits(Src);
772 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
773 } while (!Worklist.empty());
774 }
775
CodeGenAndEmitDAG()776 void SelectionDAGISel::CodeGenAndEmitDAG() {
777 StringRef GroupName = "sdag";
778 StringRef GroupDescription = "Instruction Selection and Scheduling";
779 std::string BlockName;
780 bool MatchFilterBB = false; (void)MatchFilterBB;
781 #ifndef NDEBUG
782 TargetTransformInfo &TTI =
783 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
784 #endif
785
786 // Pre-type legalization allow creation of any node types.
787 CurDAG->NewNodesMustHaveLegalTypes = false;
788
789 #ifndef NDEBUG
790 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
791 FilterDAGBasicBlockName ==
792 FuncInfo->MBB->getBasicBlock()->getName());
793 #endif
794 #ifdef NDEBUG
795 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
796 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
797 ViewSUnitDAGs)
798 #endif
799 {
800 BlockName =
801 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
802 }
803 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
804 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
805 << "'\n";
806 CurDAG->dump());
807
808 if (ViewDAGCombine1 && MatchFilterBB)
809 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
810
811 // Run the DAG combiner in pre-legalize mode.
812 {
813 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
814 GroupDescription, TimePassesIsEnabled);
815 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
816 }
817
818 #ifndef NDEBUG
819 if (TTI.hasBranchDivergence())
820 CurDAG->VerifyDAGDiverence();
821 #endif
822
823 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
824 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
825 << "'\n";
826 CurDAG->dump());
827
828 // Second step, hack on the DAG until it only uses operations and types that
829 // the target supports.
830 if (ViewLegalizeTypesDAGs && MatchFilterBB)
831 CurDAG->viewGraph("legalize-types input for " + BlockName);
832
833 bool Changed;
834 {
835 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
836 GroupDescription, TimePassesIsEnabled);
837 Changed = CurDAG->LegalizeTypes();
838 }
839
840 #ifndef NDEBUG
841 if (TTI.hasBranchDivergence())
842 CurDAG->VerifyDAGDiverence();
843 #endif
844
845 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
846 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
847 << "'\n";
848 CurDAG->dump());
849
850 // Only allow creation of legal node types.
851 CurDAG->NewNodesMustHaveLegalTypes = true;
852
853 if (Changed) {
854 if (ViewDAGCombineLT && MatchFilterBB)
855 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
856
857 // Run the DAG combiner in post-type-legalize mode.
858 {
859 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
860 GroupName, GroupDescription, TimePassesIsEnabled);
861 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
862 }
863
864 #ifndef NDEBUG
865 if (TTI.hasBranchDivergence())
866 CurDAG->VerifyDAGDiverence();
867 #endif
868
869 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
870 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
871 << "'\n";
872 CurDAG->dump());
873 }
874
875 {
876 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
877 GroupDescription, TimePassesIsEnabled);
878 Changed = CurDAG->LegalizeVectors();
879 }
880
881 if (Changed) {
882 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
883 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
884 << "'\n";
885 CurDAG->dump());
886
887 {
888 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
889 GroupDescription, TimePassesIsEnabled);
890 CurDAG->LegalizeTypes();
891 }
892
893 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
894 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
895 << "'\n";
896 CurDAG->dump());
897
898 if (ViewDAGCombineLT && MatchFilterBB)
899 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
900
901 // Run the DAG combiner in post-type-legalize mode.
902 {
903 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
904 GroupName, GroupDescription, TimePassesIsEnabled);
905 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
906 }
907
908 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
909 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
910 << "'\n";
911 CurDAG->dump());
912
913 #ifndef NDEBUG
914 if (TTI.hasBranchDivergence())
915 CurDAG->VerifyDAGDiverence();
916 #endif
917 }
918
919 if (ViewLegalizeDAGs && MatchFilterBB)
920 CurDAG->viewGraph("legalize input for " + BlockName);
921
922 {
923 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
924 GroupDescription, TimePassesIsEnabled);
925 CurDAG->Legalize();
926 }
927
928 #ifndef NDEBUG
929 if (TTI.hasBranchDivergence())
930 CurDAG->VerifyDAGDiverence();
931 #endif
932
933 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
934 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
935 << "'\n";
936 CurDAG->dump());
937
938 if (ViewDAGCombine2 && MatchFilterBB)
939 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
940
941 // Run the DAG combiner in post-legalize mode.
942 {
943 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
944 GroupDescription, TimePassesIsEnabled);
945 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
946 }
947
948 #ifndef NDEBUG
949 if (TTI.hasBranchDivergence())
950 CurDAG->VerifyDAGDiverence();
951 #endif
952
953 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
954 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
955 << "'\n";
956 CurDAG->dump());
957
958 if (OptLevel != CodeGenOpt::None)
959 ComputeLiveOutVRegInfo();
960
961 if (ViewISelDAGs && MatchFilterBB)
962 CurDAG->viewGraph("isel input for " + BlockName);
963
964 // Third, instruction select all of the operations to machine code, adding the
965 // code to the MachineBasicBlock.
966 {
967 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
968 GroupDescription, TimePassesIsEnabled);
969 DoInstructionSelection();
970 }
971
972 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
973 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
974 << "'\n";
975 CurDAG->dump());
976
977 if (ViewSchedDAGs && MatchFilterBB)
978 CurDAG->viewGraph("scheduler input for " + BlockName);
979
980 // Schedule machine code.
981 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
982 {
983 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
984 GroupDescription, TimePassesIsEnabled);
985 Scheduler->Run(CurDAG, FuncInfo->MBB);
986 }
987
988 if (ViewSUnitDAGs && MatchFilterBB)
989 Scheduler->viewGraph();
990
991 // Emit machine code to BB. This can change 'BB' to the last block being
992 // inserted into.
993 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
994 {
995 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
996 GroupDescription, TimePassesIsEnabled);
997
998 // FuncInfo->InsertPt is passed by reference and set to the end of the
999 // scheduled instructions.
1000 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1001 }
1002
1003 // If the block was split, make sure we update any references that are used to
1004 // update PHI nodes later on.
1005 if (FirstMBB != LastMBB)
1006 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1007
1008 // Free the scheduler state.
1009 {
1010 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1011 GroupDescription, TimePassesIsEnabled);
1012 delete Scheduler;
1013 }
1014
1015 // Free the SelectionDAG state, now that we're finished with it.
1016 CurDAG->clear();
1017 }
1018
1019 namespace {
1020
1021 /// ISelUpdater - helper class to handle updates of the instruction selection
1022 /// graph.
1023 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1024 SelectionDAG::allnodes_iterator &ISelPosition;
1025
1026 public:
ISelUpdater(SelectionDAG & DAG,SelectionDAG::allnodes_iterator & isp)1027 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1028 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1029
1030 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1031 /// deleted is the current ISelPosition node, update ISelPosition.
1032 ///
NodeDeleted(SDNode * N,SDNode * E)1033 void NodeDeleted(SDNode *N, SDNode *E) override {
1034 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1035 ++ISelPosition;
1036 }
1037 };
1038
1039 } // end anonymous namespace
1040
1041 // This function is used to enforce the topological node id property
1042 // property leveraged during Instruction selection. Before selection all
1043 // nodes are given a non-negative id such that all nodes have a larger id than
1044 // their operands. As this holds transitively we can prune checks that a node N
1045 // is a predecessor of M another by not recursively checking through M's
1046 // operands if N's ID is larger than M's ID. This is significantly improves
1047 // performance of for various legality checks (e.g. IsLegalToFold /
1048 // UpdateChains).
1049
1050 // However, when we fuse multiple nodes into a single node
1051 // during selection we may induce a predecessor relationship between inputs and
1052 // outputs of distinct nodes being merged violating the topological property.
1053 // Should a fused node have a successor which has yet to be selected, our
1054 // legality checks would be incorrect. To avoid this we mark all unselected
1055 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1056 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1057 // We use bit-negation to more clearly enforce that node id -1 can only be
1058 // achieved by selected nodes). As the conversion is reversable the original Id,
1059 // topological pruning can still be leveraged when looking for unselected nodes.
1060 // This method is call internally in all ISel replacement calls.
EnforceNodeIdInvariant(SDNode * Node)1061 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1062 SmallVector<SDNode *, 4> Nodes;
1063 Nodes.push_back(Node);
1064
1065 while (!Nodes.empty()) {
1066 SDNode *N = Nodes.pop_back_val();
1067 for (auto *U : N->uses()) {
1068 auto UId = U->getNodeId();
1069 if (UId > 0) {
1070 InvalidateNodeId(U);
1071 Nodes.push_back(U);
1072 }
1073 }
1074 }
1075 }
1076
1077 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1078 // NodeId with the equivalent node id which is invalid for topological
1079 // pruning.
InvalidateNodeId(SDNode * N)1080 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1081 int InvalidId = -(N->getNodeId() + 1);
1082 N->setNodeId(InvalidId);
1083 }
1084
1085 // getUninvalidatedNodeId - get original uninvalidated node id.
getUninvalidatedNodeId(SDNode * N)1086 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1087 int Id = N->getNodeId();
1088 if (Id < -1)
1089 return -(Id + 1);
1090 return Id;
1091 }
1092
DoInstructionSelection()1093 void SelectionDAGISel::DoInstructionSelection() {
1094 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1095 << printMBBReference(*FuncInfo->MBB) << " '"
1096 << FuncInfo->MBB->getName() << "'\n");
1097
1098 PreprocessISelDAG();
1099
1100 // Select target instructions for the DAG.
1101 {
1102 // Number all nodes with a topological order and set DAGSize.
1103 DAGSize = CurDAG->AssignTopologicalOrder();
1104
1105 // Create a dummy node (which is not added to allnodes), that adds
1106 // a reference to the root node, preventing it from being deleted,
1107 // and tracking any changes of the root.
1108 HandleSDNode Dummy(CurDAG->getRoot());
1109 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1110 ++ISelPosition;
1111
1112 // Make sure that ISelPosition gets properly updated when nodes are deleted
1113 // in calls made from this function.
1114 ISelUpdater ISU(*CurDAG, ISelPosition);
1115
1116 // The AllNodes list is now topological-sorted. Visit the
1117 // nodes by starting at the end of the list (the root of the
1118 // graph) and preceding back toward the beginning (the entry
1119 // node).
1120 while (ISelPosition != CurDAG->allnodes_begin()) {
1121 SDNode *Node = &*--ISelPosition;
1122 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1123 // but there are currently some corner cases that it misses. Also, this
1124 // makes it theoretically possible to disable the DAGCombiner.
1125 if (Node->use_empty())
1126 continue;
1127
1128 #ifndef NDEBUG
1129 SmallVector<SDNode *, 4> Nodes;
1130 Nodes.push_back(Node);
1131
1132 while (!Nodes.empty()) {
1133 auto N = Nodes.pop_back_val();
1134 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1135 continue;
1136 for (const SDValue &Op : N->op_values()) {
1137 if (Op->getOpcode() == ISD::TokenFactor)
1138 Nodes.push_back(Op.getNode());
1139 else {
1140 // We rely on topological ordering of node ids for checking for
1141 // cycles when fusing nodes during selection. All unselected nodes
1142 // successors of an already selected node should have a negative id.
1143 // This assertion will catch such cases. If this assertion triggers
1144 // it is likely you using DAG-level Value/Node replacement functions
1145 // (versus equivalent ISEL replacement) in backend-specific
1146 // selections. See comment in EnforceNodeIdInvariant for more
1147 // details.
1148 assert(Op->getNodeId() != -1 &&
1149 "Node has already selected predecessor node");
1150 }
1151 }
1152 }
1153 #endif
1154
1155 // When we are using non-default rounding modes or FP exception behavior
1156 // FP operations are represented by StrictFP pseudo-operations. For
1157 // targets that do not (yet) understand strict FP operations directly,
1158 // we convert them to normal FP opcodes instead at this point. This
1159 // will allow them to be handled by existing target-specific instruction
1160 // selectors.
1161 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1162 // For some opcodes, we need to call TLI->getOperationAction using
1163 // the first operand type instead of the result type. Note that this
1164 // must match what SelectionDAGLegalize::LegalizeOp is doing.
1165 EVT ActionVT;
1166 switch (Node->getOpcode()) {
1167 case ISD::STRICT_SINT_TO_FP:
1168 case ISD::STRICT_UINT_TO_FP:
1169 case ISD::STRICT_LRINT:
1170 case ISD::STRICT_LLRINT:
1171 case ISD::STRICT_LROUND:
1172 case ISD::STRICT_LLROUND:
1173 case ISD::STRICT_FSETCC:
1174 case ISD::STRICT_FSETCCS:
1175 ActionVT = Node->getOperand(1).getValueType();
1176 break;
1177 default:
1178 ActionVT = Node->getValueType(0);
1179 break;
1180 }
1181 if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1182 == TargetLowering::Expand)
1183 Node = CurDAG->mutateStrictFPToFP(Node);
1184 }
1185
1186 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1187 Node->dump(CurDAG));
1188
1189 Select(Node);
1190 }
1191
1192 CurDAG->setRoot(Dummy.getValue());
1193 }
1194
1195 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1196
1197 PostprocessISelDAG();
1198 }
1199
hasExceptionPointerOrCodeUser(const CatchPadInst * CPI)1200 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1201 for (const User *U : CPI->users()) {
1202 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1203 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1204 if (IID == Intrinsic::eh_exceptionpointer ||
1205 IID == Intrinsic::eh_exceptioncode)
1206 return true;
1207 }
1208 }
1209 return false;
1210 }
1211
1212 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1213 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1214 // and store the mapping in the function.
mapWasmLandingPadIndex(MachineBasicBlock * MBB,const CatchPadInst * CPI)1215 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1216 const CatchPadInst *CPI) {
1217 MachineFunction *MF = MBB->getParent();
1218 // In case of single catch (...), we don't emit LSDA, so we don't need
1219 // this information.
1220 bool IsSingleCatchAllClause =
1221 CPI->getNumArgOperands() == 1 &&
1222 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1223 if (!IsSingleCatchAllClause) {
1224 // Create a mapping from landing pad label to landing pad index.
1225 bool IntrFound = false;
1226 for (const User *U : CPI->users()) {
1227 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1228 Intrinsic::ID IID = Call->getIntrinsicID();
1229 if (IID == Intrinsic::wasm_landingpad_index) {
1230 Value *IndexArg = Call->getArgOperand(1);
1231 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1232 MF->setWasmLandingPadIndex(MBB, Index);
1233 IntrFound = true;
1234 break;
1235 }
1236 }
1237 }
1238 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1239 (void)IntrFound;
1240 }
1241 }
1242
1243 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1244 /// do other setup for EH landing-pad blocks.
PrepareEHLandingPad()1245 bool SelectionDAGISel::PrepareEHLandingPad() {
1246 MachineBasicBlock *MBB = FuncInfo->MBB;
1247 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1248 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1249 const TargetRegisterClass *PtrRC =
1250 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1251
1252 auto Pers = classifyEHPersonality(PersonalityFn);
1253
1254 // Catchpads have one live-in register, which typically holds the exception
1255 // pointer or code.
1256 if (isFuncletEHPersonality(Pers)) {
1257 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1258 if (hasExceptionPointerOrCodeUser(CPI)) {
1259 // Get or create the virtual register to hold the pointer or code. Mark
1260 // the live in physreg and copy into the vreg.
1261 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1262 assert(EHPhysReg && "target lacks exception pointer register");
1263 MBB->addLiveIn(EHPhysReg);
1264 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1265 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1266 TII->get(TargetOpcode::COPY), VReg)
1267 .addReg(EHPhysReg, RegState::Kill);
1268 }
1269 }
1270 return true;
1271 }
1272
1273 // Add a label to mark the beginning of the landing pad. Deletion of the
1274 // landing pad can thus be detected via the MachineModuleInfo.
1275 MCSymbol *Label = MF->addLandingPad(MBB);
1276
1277 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1278 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1279 .addSym(Label);
1280
1281 if (Pers == EHPersonality::Wasm_CXX) {
1282 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1283 mapWasmLandingPadIndex(MBB, CPI);
1284 } else {
1285 // Assign the call site to the landing pad's begin label.
1286 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1287 // Mark exception register as live in.
1288 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1289 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1290 // Mark exception selector register as live in.
1291 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1292 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1293 }
1294
1295 return true;
1296 }
1297
1298 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1299 /// side-effect free and is either dead or folded into a generated instruction.
1300 /// Return false if it needs to be emitted.
isFoldedOrDeadInstruction(const Instruction * I,const FunctionLoweringInfo & FuncInfo)1301 static bool isFoldedOrDeadInstruction(const Instruction *I,
1302 const FunctionLoweringInfo &FuncInfo) {
1303 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1304 !I->isTerminator() && // Terminators aren't folded.
1305 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1306 !I->isEHPad() && // EH pad instructions aren't folded.
1307 !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1308 }
1309
1310 /// Collect llvm.dbg.declare information. This is done after argument lowering
1311 /// in case the declarations refer to arguments.
processDbgDeclares(FunctionLoweringInfo & FuncInfo)1312 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1313 MachineFunction *MF = FuncInfo.MF;
1314 const DataLayout &DL = MF->getDataLayout();
1315 for (const BasicBlock &BB : *FuncInfo.Fn) {
1316 for (const Instruction &I : BB) {
1317 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1318 if (!DI)
1319 continue;
1320
1321 assert(DI->getVariable() && "Missing variable");
1322 assert(DI->getDebugLoc() && "Missing location");
1323 const Value *Address = DI->getAddress();
1324 if (!Address)
1325 continue;
1326
1327 // Look through casts and constant offset GEPs. These mostly come from
1328 // inalloca.
1329 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1330 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1331
1332 // Check if the variable is a static alloca or a byval or inalloca
1333 // argument passed in memory. If it is not, then we will ignore this
1334 // intrinsic and handle this during isel like dbg.value.
1335 int FI = std::numeric_limits<int>::max();
1336 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1337 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1338 if (SI != FuncInfo.StaticAllocaMap.end())
1339 FI = SI->second;
1340 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1341 FI = FuncInfo.getArgumentFrameIndex(Arg);
1342
1343 if (FI == std::numeric_limits<int>::max())
1344 continue;
1345
1346 DIExpression *Expr = DI->getExpression();
1347 if (Offset.getBoolValue())
1348 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1349 Offset.getZExtValue());
1350 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1351 }
1352 }
1353 }
1354
SelectAllBasicBlocks(const Function & Fn)1355 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1356 FastISelFailed = false;
1357 // Initialize the Fast-ISel state, if needed.
1358 FastISel *FastIS = nullptr;
1359 if (TM.Options.EnableFastISel) {
1360 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1361 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1362 }
1363
1364 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1365
1366 // Lower arguments up front. An RPO iteration always visits the entry block
1367 // first.
1368 assert(*RPOT.begin() == &Fn.getEntryBlock());
1369 ++NumEntryBlocks;
1370
1371 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1372 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1373 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1374
1375 CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1376
1377 if (!FastIS) {
1378 LowerArguments(Fn);
1379 } else {
1380 // See if fast isel can lower the arguments.
1381 FastIS->startNewBlock();
1382 if (!FastIS->lowerArguments()) {
1383 FastISelFailed = true;
1384 // Fast isel failed to lower these arguments
1385 ++NumFastIselFailLowerArguments;
1386
1387 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1388 Fn.getSubprogram(),
1389 &Fn.getEntryBlock());
1390 R << "FastISel didn't lower all arguments: "
1391 << ore::NV("Prototype", Fn.getType());
1392 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1393
1394 // Use SelectionDAG argument lowering
1395 LowerArguments(Fn);
1396 CurDAG->setRoot(SDB->getControlRoot());
1397 SDB->clear();
1398 CodeGenAndEmitDAG();
1399 }
1400
1401 // If we inserted any instructions at the beginning, make a note of
1402 // where they are, so we can be sure to emit subsequent instructions
1403 // after them.
1404 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1405 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1406 else
1407 FastIS->setLastLocalValue(nullptr);
1408 }
1409
1410 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1411
1412 if (FastIS && Inserted)
1413 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1414
1415 processDbgDeclares(*FuncInfo);
1416
1417 // Iterate over all basic blocks in the function.
1418 StackProtector &SP = getAnalysis<StackProtector>();
1419 for (const BasicBlock *LLVMBB : RPOT) {
1420 if (OptLevel != CodeGenOpt::None) {
1421 bool AllPredsVisited = true;
1422 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1423 PI != PE; ++PI) {
1424 if (!FuncInfo->VisitedBBs.count(*PI)) {
1425 AllPredsVisited = false;
1426 break;
1427 }
1428 }
1429
1430 if (AllPredsVisited) {
1431 for (const PHINode &PN : LLVMBB->phis())
1432 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1433 } else {
1434 for (const PHINode &PN : LLVMBB->phis())
1435 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1436 }
1437
1438 FuncInfo->VisitedBBs.insert(LLVMBB);
1439 }
1440
1441 BasicBlock::const_iterator const Begin =
1442 LLVMBB->getFirstNonPHI()->getIterator();
1443 BasicBlock::const_iterator const End = LLVMBB->end();
1444 BasicBlock::const_iterator BI = End;
1445
1446 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1447 if (!FuncInfo->MBB)
1448 continue; // Some blocks like catchpads have no code or MBB.
1449
1450 // Insert new instructions after any phi or argument setup code.
1451 FuncInfo->InsertPt = FuncInfo->MBB->end();
1452
1453 // Setup an EH landing-pad block.
1454 FuncInfo->ExceptionPointerVirtReg = 0;
1455 FuncInfo->ExceptionSelectorVirtReg = 0;
1456 if (LLVMBB->isEHPad())
1457 if (!PrepareEHLandingPad())
1458 continue;
1459
1460 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1461 if (FastIS) {
1462 if (LLVMBB != &Fn.getEntryBlock())
1463 FastIS->startNewBlock();
1464
1465 unsigned NumFastIselRemaining = std::distance(Begin, End);
1466
1467 // Pre-assign swifterror vregs.
1468 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1469
1470 // Do FastISel on as many instructions as possible.
1471 for (; BI != Begin; --BI) {
1472 const Instruction *Inst = &*std::prev(BI);
1473
1474 // If we no longer require this instruction, skip it.
1475 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1476 ElidedArgCopyInstrs.count(Inst)) {
1477 --NumFastIselRemaining;
1478 continue;
1479 }
1480
1481 // Bottom-up: reset the insert pos at the top, after any local-value
1482 // instructions.
1483 FastIS->recomputeInsertPt();
1484
1485 // Try to select the instruction with FastISel.
1486 if (FastIS->selectInstruction(Inst)) {
1487 --NumFastIselRemaining;
1488 ++NumFastIselSuccess;
1489 // If fast isel succeeded, skip over all the folded instructions, and
1490 // then see if there is a load right before the selected instructions.
1491 // Try to fold the load if so.
1492 const Instruction *BeforeInst = Inst;
1493 while (BeforeInst != &*Begin) {
1494 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1495 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1496 break;
1497 }
1498 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1499 BeforeInst->hasOneUse() &&
1500 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1501 // If we succeeded, don't re-select the load.
1502 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1503 --NumFastIselRemaining;
1504 ++NumFastIselSuccess;
1505 }
1506 continue;
1507 }
1508
1509 FastISelFailed = true;
1510
1511 // Then handle certain instructions as single-LLVM-Instruction blocks.
1512 // We cannot separate out GCrelocates to their own blocks since we need
1513 // to keep track of gc-relocates for a particular gc-statepoint. This is
1514 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1515 // visitGCRelocate.
1516 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) &&
1517 !isGCResult(Inst)) {
1518 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1519 Inst->getDebugLoc(), LLVMBB);
1520
1521 R << "FastISel missed call";
1522
1523 if (R.isEnabled() || EnableFastISelAbort) {
1524 std::string InstStrStorage;
1525 raw_string_ostream InstStr(InstStrStorage);
1526 InstStr << *Inst;
1527
1528 R << ": " << InstStr.str();
1529 }
1530
1531 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1532
1533 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1534 !Inst->use_empty()) {
1535 unsigned &R = FuncInfo->ValueMap[Inst];
1536 if (!R)
1537 R = FuncInfo->CreateRegs(Inst);
1538 }
1539
1540 bool HadTailCall = false;
1541 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1542 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1543
1544 // If the call was emitted as a tail call, we're done with the block.
1545 // We also need to delete any previously emitted instructions.
1546 if (HadTailCall) {
1547 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1548 --BI;
1549 break;
1550 }
1551
1552 // Recompute NumFastIselRemaining as Selection DAG instruction
1553 // selection may have handled the call, input args, etc.
1554 unsigned RemainingNow = std::distance(Begin, BI);
1555 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1556 NumFastIselRemaining = RemainingNow;
1557 continue;
1558 }
1559
1560 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1561 Inst->getDebugLoc(), LLVMBB);
1562
1563 bool ShouldAbort = EnableFastISelAbort;
1564 if (Inst->isTerminator()) {
1565 // Use a different message for terminator misses.
1566 R << "FastISel missed terminator";
1567 // Don't abort for terminator unless the level is really high
1568 ShouldAbort = (EnableFastISelAbort > 2);
1569 } else {
1570 R << "FastISel missed";
1571 }
1572
1573 if (R.isEnabled() || EnableFastISelAbort) {
1574 std::string InstStrStorage;
1575 raw_string_ostream InstStr(InstStrStorage);
1576 InstStr << *Inst;
1577 R << ": " << InstStr.str();
1578 }
1579
1580 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1581
1582 NumFastIselFailures += NumFastIselRemaining;
1583 break;
1584 }
1585
1586 FastIS->recomputeInsertPt();
1587 }
1588
1589 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1590 bool FunctionBasedInstrumentation =
1591 TLI->getSSPStackGuardCheck(*Fn.getParent());
1592 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1593 FunctionBasedInstrumentation);
1594 }
1595
1596 if (Begin != BI)
1597 ++NumDAGBlocks;
1598 else
1599 ++NumFastIselBlocks;
1600
1601 if (Begin != BI) {
1602 // Run SelectionDAG instruction selection on the remainder of the block
1603 // not handled by FastISel. If FastISel is not run, this is the entire
1604 // block.
1605 bool HadTailCall;
1606 SelectBasicBlock(Begin, BI, HadTailCall);
1607
1608 // But if FastISel was run, we already selected some of the block.
1609 // If we emitted a tail-call, we need to delete any previously emitted
1610 // instruction that follows it.
1611 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1612 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1613 }
1614
1615 if (FastIS)
1616 FastIS->finishBasicBlock();
1617 FinishBasicBlock();
1618 FuncInfo->PHINodesToUpdate.clear();
1619 ElidedArgCopyInstrs.clear();
1620 }
1621
1622 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1623
1624 SwiftError->propagateVRegs();
1625
1626 delete FastIS;
1627 SDB->clearDanglingDebugInfo();
1628 SDB->SPDescriptor.resetPerFunctionState();
1629 }
1630
1631 /// Given that the input MI is before a partial terminator sequence TSeq, return
1632 /// true if M + TSeq also a partial terminator sequence.
1633 ///
1634 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1635 /// lowering copy vregs into physical registers, which are then passed into
1636 /// terminator instructors so we can satisfy ABI constraints. A partial
1637 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1638 /// may be the whole terminator sequence).
MIIsInTerminatorSequence(const MachineInstr & MI)1639 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1640 // If we do not have a copy or an implicit def, we return true if and only if
1641 // MI is a debug value.
1642 if (!MI.isCopy() && !MI.isImplicitDef())
1643 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1644 // physical registers if there is debug info associated with the terminator
1645 // of our mbb. We want to include said debug info in our terminator
1646 // sequence, so we return true in that case.
1647 return MI.isDebugValue();
1648
1649 // We have left the terminator sequence if we are not doing one of the
1650 // following:
1651 //
1652 // 1. Copying a vreg into a physical register.
1653 // 2. Copying a vreg into a vreg.
1654 // 3. Defining a register via an implicit def.
1655
1656 // OPI should always be a register definition...
1657 MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1658 if (!OPI->isReg() || !OPI->isDef())
1659 return false;
1660
1661 // Defining any register via an implicit def is always ok.
1662 if (MI.isImplicitDef())
1663 return true;
1664
1665 // Grab the copy source...
1666 MachineInstr::const_mop_iterator OPI2 = OPI;
1667 ++OPI2;
1668 assert(OPI2 != MI.operands_end()
1669 && "Should have a copy implying we should have 2 arguments.");
1670
1671 // Make sure that the copy dest is not a vreg when the copy source is a
1672 // physical register.
1673 if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1674 Register::isPhysicalRegister(OPI2->getReg())))
1675 return false;
1676
1677 return true;
1678 }
1679
1680 /// Find the split point at which to splice the end of BB into its success stack
1681 /// protector check machine basic block.
1682 ///
1683 /// On many platforms, due to ABI constraints, terminators, even before register
1684 /// allocation, use physical registers. This creates an issue for us since
1685 /// physical registers at this point can not travel across basic
1686 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1687 /// when they enter functions and moves them through a sequence of copies back
1688 /// into the physical registers right before the terminator creating a
1689 /// ``Terminator Sequence''. This function is searching for the beginning of the
1690 /// terminator sequence so that we can ensure that we splice off not just the
1691 /// terminator, but additionally the copies that move the vregs into the
1692 /// physical registers.
1693 static MachineBasicBlock::iterator
FindSplitPointForStackProtector(MachineBasicBlock * BB)1694 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1695 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1696 //
1697 if (SplitPoint == BB->begin())
1698 return SplitPoint;
1699
1700 MachineBasicBlock::iterator Start = BB->begin();
1701 MachineBasicBlock::iterator Previous = SplitPoint;
1702 --Previous;
1703
1704 while (MIIsInTerminatorSequence(*Previous)) {
1705 SplitPoint = Previous;
1706 if (Previous == Start)
1707 break;
1708 --Previous;
1709 }
1710
1711 return SplitPoint;
1712 }
1713
1714 void
FinishBasicBlock()1715 SelectionDAGISel::FinishBasicBlock() {
1716 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1717 << FuncInfo->PHINodesToUpdate.size() << "\n";
1718 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1719 ++i) dbgs()
1720 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1721 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1722
1723 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1724 // PHI nodes in successors.
1725 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1726 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1727 assert(PHI->isPHI() &&
1728 "This is not a machine PHI node that we are updating!");
1729 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1730 continue;
1731 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1732 }
1733
1734 // Handle stack protector.
1735 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1736 // The target provides a guard check function. There is no need to
1737 // generate error handling code or to split current basic block.
1738 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1739
1740 // Add load and check to the basicblock.
1741 FuncInfo->MBB = ParentMBB;
1742 FuncInfo->InsertPt =
1743 FindSplitPointForStackProtector(ParentMBB);
1744 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1745 CurDAG->setRoot(SDB->getRoot());
1746 SDB->clear();
1747 CodeGenAndEmitDAG();
1748
1749 // Clear the Per-BB State.
1750 SDB->SPDescriptor.resetPerBBState();
1751 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1752 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1753 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1754
1755 // Find the split point to split the parent mbb. At the same time copy all
1756 // physical registers used in the tail of parent mbb into virtual registers
1757 // before the split point and back into physical registers after the split
1758 // point. This prevents us needing to deal with Live-ins and many other
1759 // register allocation issues caused by us splitting the parent mbb. The
1760 // register allocator will clean up said virtual copies later on.
1761 MachineBasicBlock::iterator SplitPoint =
1762 FindSplitPointForStackProtector(ParentMBB);
1763
1764 // Splice the terminator of ParentMBB into SuccessMBB.
1765 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1766 SplitPoint,
1767 ParentMBB->end());
1768
1769 // Add compare/jump on neq/jump to the parent BB.
1770 FuncInfo->MBB = ParentMBB;
1771 FuncInfo->InsertPt = ParentMBB->end();
1772 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1773 CurDAG->setRoot(SDB->getRoot());
1774 SDB->clear();
1775 CodeGenAndEmitDAG();
1776
1777 // CodeGen Failure MBB if we have not codegened it yet.
1778 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1779 if (FailureMBB->empty()) {
1780 FuncInfo->MBB = FailureMBB;
1781 FuncInfo->InsertPt = FailureMBB->end();
1782 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1783 CurDAG->setRoot(SDB->getRoot());
1784 SDB->clear();
1785 CodeGenAndEmitDAG();
1786 }
1787
1788 // Clear the Per-BB State.
1789 SDB->SPDescriptor.resetPerBBState();
1790 }
1791
1792 // Lower each BitTestBlock.
1793 for (auto &BTB : SDB->SL->BitTestCases) {
1794 // Lower header first, if it wasn't already lowered
1795 if (!BTB.Emitted) {
1796 // Set the current basic block to the mbb we wish to insert the code into
1797 FuncInfo->MBB = BTB.Parent;
1798 FuncInfo->InsertPt = FuncInfo->MBB->end();
1799 // Emit the code
1800 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1801 CurDAG->setRoot(SDB->getRoot());
1802 SDB->clear();
1803 CodeGenAndEmitDAG();
1804 }
1805
1806 BranchProbability UnhandledProb = BTB.Prob;
1807 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1808 UnhandledProb -= BTB.Cases[j].ExtraProb;
1809 // Set the current basic block to the mbb we wish to insert the code into
1810 FuncInfo->MBB = BTB.Cases[j].ThisBB;
1811 FuncInfo->InsertPt = FuncInfo->MBB->end();
1812 // Emit the code
1813
1814 // If all cases cover a contiguous range, it is not necessary to jump to
1815 // the default block after the last bit test fails. This is because the
1816 // range check during bit test header creation has guaranteed that every
1817 // case here doesn't go outside the range. In this case, there is no need
1818 // to perform the last bit test, as it will always be true. Instead, make
1819 // the second-to-last bit-test fall through to the target of the last bit
1820 // test, and delete the last bit test.
1821
1822 MachineBasicBlock *NextMBB;
1823 if (BTB.ContiguousRange && j + 2 == ej) {
1824 // Second-to-last bit-test with contiguous range: fall through to the
1825 // target of the final bit test.
1826 NextMBB = BTB.Cases[j + 1].TargetBB;
1827 } else if (j + 1 == ej) {
1828 // For the last bit test, fall through to Default.
1829 NextMBB = BTB.Default;
1830 } else {
1831 // Otherwise, fall through to the next bit test.
1832 NextMBB = BTB.Cases[j + 1].ThisBB;
1833 }
1834
1835 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1836 FuncInfo->MBB);
1837
1838 CurDAG->setRoot(SDB->getRoot());
1839 SDB->clear();
1840 CodeGenAndEmitDAG();
1841
1842 if (BTB.ContiguousRange && j + 2 == ej) {
1843 // Since we're not going to use the final bit test, remove it.
1844 BTB.Cases.pop_back();
1845 break;
1846 }
1847 }
1848
1849 // Update PHI Nodes
1850 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1851 pi != pe; ++pi) {
1852 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1853 MachineBasicBlock *PHIBB = PHI->getParent();
1854 assert(PHI->isPHI() &&
1855 "This is not a machine PHI node that we are updating!");
1856 // This is "default" BB. We have two jumps to it. From "header" BB and
1857 // from last "case" BB, unless the latter was skipped.
1858 if (PHIBB == BTB.Default) {
1859 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1860 if (!BTB.ContiguousRange) {
1861 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1862 .addMBB(BTB.Cases.back().ThisBB);
1863 }
1864 }
1865 // One of "cases" BB.
1866 for (unsigned j = 0, ej = BTB.Cases.size();
1867 j != ej; ++j) {
1868 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1869 if (cBB->isSuccessor(PHIBB))
1870 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1871 }
1872 }
1873 }
1874 SDB->SL->BitTestCases.clear();
1875
1876 // If the JumpTable record is filled in, then we need to emit a jump table.
1877 // Updating the PHI nodes is tricky in this case, since we need to determine
1878 // whether the PHI is a successor of the range check MBB or the jump table MBB
1879 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1880 // Lower header first, if it wasn't already lowered
1881 if (!SDB->SL->JTCases[i].first.Emitted) {
1882 // Set the current basic block to the mbb we wish to insert the code into
1883 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1884 FuncInfo->InsertPt = FuncInfo->MBB->end();
1885 // Emit the code
1886 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1887 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1888 CurDAG->setRoot(SDB->getRoot());
1889 SDB->clear();
1890 CodeGenAndEmitDAG();
1891 }
1892
1893 // Set the current basic block to the mbb we wish to insert the code into
1894 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1895 FuncInfo->InsertPt = FuncInfo->MBB->end();
1896 // Emit the code
1897 SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1898 CurDAG->setRoot(SDB->getRoot());
1899 SDB->clear();
1900 CodeGenAndEmitDAG();
1901
1902 // Update PHI Nodes
1903 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1904 pi != pe; ++pi) {
1905 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1906 MachineBasicBlock *PHIBB = PHI->getParent();
1907 assert(PHI->isPHI() &&
1908 "This is not a machine PHI node that we are updating!");
1909 // "default" BB. We can go there only from header BB.
1910 if (PHIBB == SDB->SL->JTCases[i].second.Default)
1911 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1912 .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1913 // JT BB. Just iterate over successors here
1914 if (FuncInfo->MBB->isSuccessor(PHIBB))
1915 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1916 }
1917 }
1918 SDB->SL->JTCases.clear();
1919
1920 // If we generated any switch lowering information, build and codegen any
1921 // additional DAGs necessary.
1922 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1923 // Set the current basic block to the mbb we wish to insert the code into
1924 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1925 FuncInfo->InsertPt = FuncInfo->MBB->end();
1926
1927 // Determine the unique successors.
1928 SmallVector<MachineBasicBlock *, 2> Succs;
1929 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1930 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1931 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1932
1933 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1934 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1935 CurDAG->setRoot(SDB->getRoot());
1936 SDB->clear();
1937 CodeGenAndEmitDAG();
1938
1939 // Remember the last block, now that any splitting is done, for use in
1940 // populating PHI nodes in successors.
1941 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1942
1943 // Handle any PHI nodes in successors of this chunk, as if we were coming
1944 // from the original BB before switch expansion. Note that PHI nodes can
1945 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1946 // handle them the right number of times.
1947 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1948 FuncInfo->MBB = Succs[i];
1949 FuncInfo->InsertPt = FuncInfo->MBB->end();
1950 // FuncInfo->MBB may have been removed from the CFG if a branch was
1951 // constant folded.
1952 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1953 for (MachineBasicBlock::iterator
1954 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1955 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1956 MachineInstrBuilder PHI(*MF, MBBI);
1957 // This value for this PHI node is recorded in PHINodesToUpdate.
1958 for (unsigned pn = 0; ; ++pn) {
1959 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1960 "Didn't find PHI entry!");
1961 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1962 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1963 break;
1964 }
1965 }
1966 }
1967 }
1968 }
1969 }
1970 SDB->SL->SwitchCases.clear();
1971 }
1972
1973 /// Create the scheduler. If a specific scheduler was specified
1974 /// via the SchedulerRegistry, use it, otherwise select the
1975 /// one preferred by the target.
1976 ///
CreateScheduler()1977 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1978 return ISHeuristic(this, OptLevel);
1979 }
1980
1981 //===----------------------------------------------------------------------===//
1982 // Helper functions used by the generated instruction selector.
1983 //===----------------------------------------------------------------------===//
1984 // Calls to these methods are generated by tblgen.
1985
1986 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1987 /// the dag combiner simplified the 255, we still want to match. RHS is the
1988 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1989 /// specified in the .td file (e.g. 255).
CheckAndMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1990 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1991 int64_t DesiredMaskS) const {
1992 const APInt &ActualMask = RHS->getAPIntValue();
1993 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1994
1995 // If the actual mask exactly matches, success!
1996 if (ActualMask == DesiredMask)
1997 return true;
1998
1999 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2000 if (!ActualMask.isSubsetOf(DesiredMask))
2001 return false;
2002
2003 // Otherwise, the DAG Combiner may have proven that the value coming in is
2004 // either already zero or is not demanded. Check for known zero input bits.
2005 APInt NeededMask = DesiredMask & ~ActualMask;
2006 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2007 return true;
2008
2009 // TODO: check to see if missing bits are just not demanded.
2010
2011 // Otherwise, this pattern doesn't match.
2012 return false;
2013 }
2014
2015 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
2016 /// the dag combiner simplified the 255, we still want to match. RHS is the
2017 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2018 /// specified in the .td file (e.g. 255).
CheckOrMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const2019 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2020 int64_t DesiredMaskS) const {
2021 const APInt &ActualMask = RHS->getAPIntValue();
2022 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2023
2024 // If the actual mask exactly matches, success!
2025 if (ActualMask == DesiredMask)
2026 return true;
2027
2028 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2029 if (!ActualMask.isSubsetOf(DesiredMask))
2030 return false;
2031
2032 // Otherwise, the DAG Combiner may have proven that the value coming in is
2033 // either already zero or is not demanded. Check for known zero input bits.
2034 APInt NeededMask = DesiredMask & ~ActualMask;
2035 KnownBits Known = CurDAG->computeKnownBits(LHS);
2036
2037 // If all the missing bits in the or are already known to be set, match!
2038 if (NeededMask.isSubsetOf(Known.One))
2039 return true;
2040
2041 // TODO: check to see if missing bits are just not demanded.
2042
2043 // Otherwise, this pattern doesn't match.
2044 return false;
2045 }
2046
2047 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2048 /// by tblgen. Others should not call it.
SelectInlineAsmMemoryOperands(std::vector<SDValue> & Ops,const SDLoc & DL)2049 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2050 const SDLoc &DL) {
2051 std::vector<SDValue> InOps;
2052 std::swap(InOps, Ops);
2053
2054 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2055 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
2056 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
2057 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2058
2059 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2060 if (InOps[e-1].getValueType() == MVT::Glue)
2061 --e; // Don't process a glue operand if it is here.
2062
2063 while (i != e) {
2064 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2065 if (!InlineAsm::isMemKind(Flags)) {
2066 // Just skip over this operand, copying the operands verbatim.
2067 Ops.insert(Ops.end(), InOps.begin()+i,
2068 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2069 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2070 } else {
2071 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2072 "Memory operand with multiple values?");
2073
2074 unsigned TiedToOperand;
2075 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2076 // We need the constraint ID from the operand this is tied to.
2077 unsigned CurOp = InlineAsm::Op_FirstOperand;
2078 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2079 for (; TiedToOperand; --TiedToOperand) {
2080 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2081 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2082 }
2083 }
2084
2085 // Otherwise, this is a memory operand. Ask the target to select it.
2086 std::vector<SDValue> SelOps;
2087 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2088 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2089 report_fatal_error("Could not match memory address. Inline asm"
2090 " failure!");
2091
2092 // Add this to the output node.
2093 unsigned NewFlags =
2094 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2095 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2096 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2097 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2098 i += 2;
2099 }
2100 }
2101
2102 // Add the glue input back if present.
2103 if (e != InOps.size())
2104 Ops.push_back(InOps.back());
2105 }
2106
2107 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2108 /// SDNode.
2109 ///
findGlueUse(SDNode * N)2110 static SDNode *findGlueUse(SDNode *N) {
2111 unsigned FlagResNo = N->getNumValues()-1;
2112 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2113 SDUse &Use = I.getUse();
2114 if (Use.getResNo() == FlagResNo)
2115 return Use.getUser();
2116 }
2117 return nullptr;
2118 }
2119
2120 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2121 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
findNonImmUse(SDNode * Root,SDNode * Def,SDNode * ImmedUse,bool IgnoreChains)2122 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2123 bool IgnoreChains) {
2124 SmallPtrSet<const SDNode *, 16> Visited;
2125 SmallVector<const SDNode *, 16> WorkList;
2126 // Only check if we have non-immediate uses of Def.
2127 if (ImmedUse->isOnlyUserOf(Def))
2128 return false;
2129
2130 // We don't care about paths to Def that go through ImmedUse so mark it
2131 // visited and mark non-def operands as used.
2132 Visited.insert(ImmedUse);
2133 for (const SDValue &Op : ImmedUse->op_values()) {
2134 SDNode *N = Op.getNode();
2135 // Ignore chain deps (they are validated by
2136 // HandleMergeInputChains) and immediate uses
2137 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2138 continue;
2139 if (!Visited.insert(N).second)
2140 continue;
2141 WorkList.push_back(N);
2142 }
2143
2144 // Initialize worklist to operands of Root.
2145 if (Root != ImmedUse) {
2146 for (const SDValue &Op : Root->op_values()) {
2147 SDNode *N = Op.getNode();
2148 // Ignore chains (they are validated by HandleMergeInputChains)
2149 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2150 continue;
2151 if (!Visited.insert(N).second)
2152 continue;
2153 WorkList.push_back(N);
2154 }
2155 }
2156
2157 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2158 }
2159
2160 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2161 /// operand node N of U during instruction selection that starts at Root.
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const2162 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2163 SDNode *Root) const {
2164 if (OptLevel == CodeGenOpt::None) return false;
2165 return N.hasOneUse();
2166 }
2167
2168 /// IsLegalToFold - Returns true if the specific operand node N of
2169 /// U can be folded during instruction selection that starts at Root.
IsLegalToFold(SDValue N,SDNode * U,SDNode * Root,CodeGenOpt::Level OptLevel,bool IgnoreChains)2170 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2171 CodeGenOpt::Level OptLevel,
2172 bool IgnoreChains) {
2173 if (OptLevel == CodeGenOpt::None) return false;
2174
2175 // If Root use can somehow reach N through a path that that doesn't contain
2176 // U then folding N would create a cycle. e.g. In the following
2177 // diagram, Root can reach N through X. If N is folded into Root, then
2178 // X is both a predecessor and a successor of U.
2179 //
2180 // [N*] //
2181 // ^ ^ //
2182 // / \ //
2183 // [U*] [X]? //
2184 // ^ ^ //
2185 // \ / //
2186 // \ / //
2187 // [Root*] //
2188 //
2189 // * indicates nodes to be folded together.
2190 //
2191 // If Root produces glue, then it gets (even more) interesting. Since it
2192 // will be "glued" together with its glue use in the scheduler, we need to
2193 // check if it might reach N.
2194 //
2195 // [N*] //
2196 // ^ ^ //
2197 // / \ //
2198 // [U*] [X]? //
2199 // ^ ^ //
2200 // \ \ //
2201 // \ | //
2202 // [Root*] | //
2203 // ^ | //
2204 // f | //
2205 // | / //
2206 // [Y] / //
2207 // ^ / //
2208 // f / //
2209 // | / //
2210 // [GU] //
2211 //
2212 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2213 // (call it Fold), then X is a predecessor of GU and a successor of
2214 // Fold. But since Fold and GU are glued together, this will create
2215 // a cycle in the scheduling graph.
2216
2217 // If the node has glue, walk down the graph to the "lowest" node in the
2218 // glueged set.
2219 EVT VT = Root->getValueType(Root->getNumValues()-1);
2220 while (VT == MVT::Glue) {
2221 SDNode *GU = findGlueUse(Root);
2222 if (!GU)
2223 break;
2224 Root = GU;
2225 VT = Root->getValueType(Root->getNumValues()-1);
2226
2227 // If our query node has a glue result with a use, we've walked up it. If
2228 // the user (which has already been selected) has a chain or indirectly uses
2229 // the chain, HandleMergeInputChains will not consider it. Because of
2230 // this, we cannot ignore chains in this predicate.
2231 IgnoreChains = false;
2232 }
2233
2234 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2235 }
2236
Select_INLINEASM(SDNode * N,bool Branch)2237 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) {
2238 SDLoc DL(N);
2239
2240 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2241 SelectInlineAsmMemoryOperands(Ops, DL);
2242
2243 const EVT VTs[] = {MVT::Other, MVT::Glue};
2244 SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops);
2245 New->setNodeId(-1);
2246 ReplaceUses(N, New.getNode());
2247 CurDAG->RemoveDeadNode(N);
2248 }
2249
Select_READ_REGISTER(SDNode * Op)2250 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2251 SDLoc dl(Op);
2252 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2253 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2254
2255 EVT VT = Op->getValueType(0);
2256 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2257 Register Reg =
2258 TLI->getRegisterByName(RegStr->getString().data(), Ty,
2259 CurDAG->getMachineFunction());
2260 SDValue New = CurDAG->getCopyFromReg(
2261 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2262 New->setNodeId(-1);
2263 ReplaceUses(Op, New.getNode());
2264 CurDAG->RemoveDeadNode(Op);
2265 }
2266
Select_WRITE_REGISTER(SDNode * Op)2267 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2268 SDLoc dl(Op);
2269 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2270 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2271
2272 EVT VT = Op->getOperand(2).getValueType();
2273 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2274
2275 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2276 CurDAG->getMachineFunction());
2277 SDValue New = CurDAG->getCopyToReg(
2278 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2279 New->setNodeId(-1);
2280 ReplaceUses(Op, New.getNode());
2281 CurDAG->RemoveDeadNode(Op);
2282 }
2283
Select_UNDEF(SDNode * N)2284 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2285 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2286 }
2287
2288 /// GetVBR - decode a vbr encoding whose top bit is set.
2289 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
GetVBR(uint64_t Val,const unsigned char * MatcherTable,unsigned & Idx)2290 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2291 assert(Val >= 128 && "Not a VBR");
2292 Val &= 127; // Remove first vbr bit.
2293
2294 unsigned Shift = 7;
2295 uint64_t NextBits;
2296 do {
2297 NextBits = MatcherTable[Idx++];
2298 Val |= (NextBits&127) << Shift;
2299 Shift += 7;
2300 } while (NextBits & 128);
2301
2302 return Val;
2303 }
2304
2305 /// When a match is complete, this method updates uses of interior chain results
2306 /// to use the new results.
UpdateChains(SDNode * NodeToMatch,SDValue InputChain,SmallVectorImpl<SDNode * > & ChainNodesMatched,bool isMorphNodeTo)2307 void SelectionDAGISel::UpdateChains(
2308 SDNode *NodeToMatch, SDValue InputChain,
2309 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2310 SmallVector<SDNode*, 4> NowDeadNodes;
2311
2312 // Now that all the normal results are replaced, we replace the chain and
2313 // glue results if present.
2314 if (!ChainNodesMatched.empty()) {
2315 assert(InputChain.getNode() &&
2316 "Matched input chains but didn't produce a chain");
2317 // Loop over all of the nodes we matched that produced a chain result.
2318 // Replace all the chain results with the final chain we ended up with.
2319 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2320 SDNode *ChainNode = ChainNodesMatched[i];
2321 // If ChainNode is null, it's because we replaced it on a previous
2322 // iteration and we cleared it out of the map. Just skip it.
2323 if (!ChainNode)
2324 continue;
2325
2326 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2327 "Deleted node left in chain");
2328
2329 // Don't replace the results of the root node if we're doing a
2330 // MorphNodeTo.
2331 if (ChainNode == NodeToMatch && isMorphNodeTo)
2332 continue;
2333
2334 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2335 if (ChainVal.getValueType() == MVT::Glue)
2336 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2337 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2338 SelectionDAG::DAGNodeDeletedListener NDL(
2339 *CurDAG, [&](SDNode *N, SDNode *E) {
2340 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2341 static_cast<SDNode *>(nullptr));
2342 });
2343 if (ChainNode->getOpcode() != ISD::TokenFactor)
2344 ReplaceUses(ChainVal, InputChain);
2345
2346 // If the node became dead and we haven't already seen it, delete it.
2347 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2348 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2349 NowDeadNodes.push_back(ChainNode);
2350 }
2351 }
2352
2353 if (!NowDeadNodes.empty())
2354 CurDAG->RemoveDeadNodes(NowDeadNodes);
2355
2356 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2357 }
2358
2359 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2360 /// operation for when the pattern matched at least one node with a chains. The
2361 /// input vector contains a list of all of the chained nodes that we match. We
2362 /// must determine if this is a valid thing to cover (i.e. matching it won't
2363 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2364 /// be used as the input node chain for the generated nodes.
2365 static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode * > & ChainNodesMatched,SelectionDAG * CurDAG)2366 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2367 SelectionDAG *CurDAG) {
2368
2369 SmallPtrSet<const SDNode *, 16> Visited;
2370 SmallVector<const SDNode *, 8> Worklist;
2371 SmallVector<SDValue, 3> InputChains;
2372 unsigned int Max = 8192;
2373
2374 // Quick exit on trivial merge.
2375 if (ChainNodesMatched.size() == 1)
2376 return ChainNodesMatched[0]->getOperand(0);
2377
2378 // Add chains that aren't already added (internal). Peek through
2379 // token factors.
2380 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2381 if (V.getValueType() != MVT::Other)
2382 return;
2383 if (V->getOpcode() == ISD::EntryToken)
2384 return;
2385 if (!Visited.insert(V.getNode()).second)
2386 return;
2387 if (V->getOpcode() == ISD::TokenFactor) {
2388 for (const SDValue &Op : V->op_values())
2389 AddChains(Op);
2390 } else
2391 InputChains.push_back(V);
2392 };
2393
2394 for (auto *N : ChainNodesMatched) {
2395 Worklist.push_back(N);
2396 Visited.insert(N);
2397 }
2398
2399 while (!Worklist.empty())
2400 AddChains(Worklist.pop_back_val()->getOperand(0));
2401
2402 // Skip the search if there are no chain dependencies.
2403 if (InputChains.size() == 0)
2404 return CurDAG->getEntryNode();
2405
2406 // If one of these chains is a successor of input, we must have a
2407 // node that is both the predecessor and successor of the
2408 // to-be-merged nodes. Fail.
2409 Visited.clear();
2410 for (SDValue V : InputChains)
2411 Worklist.push_back(V.getNode());
2412
2413 for (auto *N : ChainNodesMatched)
2414 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2415 return SDValue();
2416
2417 // Return merged chain.
2418 if (InputChains.size() == 1)
2419 return InputChains[0];
2420 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2421 MVT::Other, InputChains);
2422 }
2423
2424 /// MorphNode - Handle morphing a node in place for the selector.
2425 SDNode *SelectionDAGISel::
MorphNode(SDNode * Node,unsigned TargetOpc,SDVTList VTList,ArrayRef<SDValue> Ops,unsigned EmitNodeInfo)2426 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2427 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2428 // It is possible we're using MorphNodeTo to replace a node with no
2429 // normal results with one that has a normal result (or we could be
2430 // adding a chain) and the input could have glue and chains as well.
2431 // In this case we need to shift the operands down.
2432 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2433 // than the old isel though.
2434 int OldGlueResultNo = -1, OldChainResultNo = -1;
2435
2436 unsigned NTMNumResults = Node->getNumValues();
2437 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2438 OldGlueResultNo = NTMNumResults-1;
2439 if (NTMNumResults != 1 &&
2440 Node->getValueType(NTMNumResults-2) == MVT::Other)
2441 OldChainResultNo = NTMNumResults-2;
2442 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2443 OldChainResultNo = NTMNumResults-1;
2444
2445 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2446 // that this deletes operands of the old node that become dead.
2447 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2448
2449 // MorphNodeTo can operate in two ways: if an existing node with the
2450 // specified operands exists, it can just return it. Otherwise, it
2451 // updates the node in place to have the requested operands.
2452 if (Res == Node) {
2453 // If we updated the node in place, reset the node ID. To the isel,
2454 // this should be just like a newly allocated machine node.
2455 Res->setNodeId(-1);
2456 }
2457
2458 unsigned ResNumResults = Res->getNumValues();
2459 // Move the glue if needed.
2460 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2461 (unsigned)OldGlueResultNo != ResNumResults-1)
2462 ReplaceUses(SDValue(Node, OldGlueResultNo),
2463 SDValue(Res, ResNumResults - 1));
2464
2465 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2466 --ResNumResults;
2467
2468 // Move the chain reference if needed.
2469 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2470 (unsigned)OldChainResultNo != ResNumResults-1)
2471 ReplaceUses(SDValue(Node, OldChainResultNo),
2472 SDValue(Res, ResNumResults - 1));
2473
2474 // Otherwise, no replacement happened because the node already exists. Replace
2475 // Uses of the old node with the new one.
2476 if (Res != Node) {
2477 ReplaceNode(Node, Res);
2478 } else {
2479 EnforceNodeIdInvariant(Res);
2480 }
2481
2482 return Res;
2483 }
2484
2485 /// CheckSame - Implements OP_CheckSame.
2486 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2487 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2488 SDValue N,
2489 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2490 // Accept if it is exactly the same as a previously recorded node.
2491 unsigned RecNo = MatcherTable[MatcherIndex++];
2492 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2493 return N == RecordedNodes[RecNo].first;
2494 }
2495
2496 /// CheckChildSame - Implements OP_CheckChildXSame.
2497 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes,unsigned ChildNo)2498 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2499 SDValue N,
2500 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2501 unsigned ChildNo) {
2502 if (ChildNo >= N.getNumOperands())
2503 return false; // Match fails if out of range child #.
2504 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2505 RecordedNodes);
2506 }
2507
2508 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2509 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckPatternPredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel)2510 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2511 const SelectionDAGISel &SDISel) {
2512 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2513 }
2514
2515 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2516 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckNodePredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel,SDNode * N)2517 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2518 const SelectionDAGISel &SDISel, SDNode *N) {
2519 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2520 }
2521
2522 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOpcode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDNode * N)2523 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2524 SDNode *N) {
2525 uint16_t Opc = MatcherTable[MatcherIndex++];
2526 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2527 return N->getOpcode() == Opc;
2528 }
2529
2530 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2531 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2532 const TargetLowering *TLI, const DataLayout &DL) {
2533 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2534 if (N.getValueType() == VT) return true;
2535
2536 // Handle the case when VT is iPTR.
2537 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2538 }
2539
2540 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL,unsigned ChildNo)2541 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2542 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2543 unsigned ChildNo) {
2544 if (ChildNo >= N.getNumOperands())
2545 return false; // Match fails if out of range child #.
2546 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2547 DL);
2548 }
2549
2550 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckCondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2551 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2552 SDValue N) {
2553 return cast<CondCodeSDNode>(N)->get() ==
2554 (ISD::CondCode)MatcherTable[MatcherIndex++];
2555 }
2556
2557 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChild2CondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2558 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2559 SDValue N) {
2560 if (2 >= N.getNumOperands())
2561 return false;
2562 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2563 }
2564
2565 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckValueType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2566 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2567 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2568 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2569 if (cast<VTSDNode>(N)->getVT() == VT)
2570 return true;
2571
2572 // Handle the case when VT is iPTR.
2573 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2574 }
2575
2576 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2577 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2578 SDValue N) {
2579 int64_t Val = MatcherTable[MatcherIndex++];
2580 if (Val & 128)
2581 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2582
2583 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2584 return C && C->getSExtValue() == Val;
2585 }
2586
2587 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,unsigned ChildNo)2588 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2589 SDValue N, unsigned ChildNo) {
2590 if (ChildNo >= N.getNumOperands())
2591 return false; // Match fails if out of range child #.
2592 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2593 }
2594
2595 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckAndImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2596 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2597 SDValue N, const SelectionDAGISel &SDISel) {
2598 int64_t Val = MatcherTable[MatcherIndex++];
2599 if (Val & 128)
2600 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2601
2602 if (N->getOpcode() != ISD::AND) return false;
2603
2604 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2605 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2606 }
2607
2608 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOrImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2609 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2610 SDValue N, const SelectionDAGISel &SDISel) {
2611 int64_t Val = MatcherTable[MatcherIndex++];
2612 if (Val & 128)
2613 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2614
2615 if (N->getOpcode() != ISD::OR) return false;
2616
2617 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2618 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2619 }
2620
2621 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2622 /// scope, evaluate the current node. If the current predicate is known to
2623 /// fail, set Result=true and return anything. If the current predicate is
2624 /// known to pass, set Result=false and return the MatcherIndex to continue
2625 /// with. If the current predicate is unknown, set Result=false and return the
2626 /// MatcherIndex to continue with.
IsPredicateKnownToFail(const unsigned char * Table,unsigned Index,SDValue N,bool & Result,const SelectionDAGISel & SDISel,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2627 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2628 unsigned Index, SDValue N,
2629 bool &Result,
2630 const SelectionDAGISel &SDISel,
2631 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2632 switch (Table[Index++]) {
2633 default:
2634 Result = false;
2635 return Index-1; // Could not evaluate this predicate.
2636 case SelectionDAGISel::OPC_CheckSame:
2637 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2638 return Index;
2639 case SelectionDAGISel::OPC_CheckChild0Same:
2640 case SelectionDAGISel::OPC_CheckChild1Same:
2641 case SelectionDAGISel::OPC_CheckChild2Same:
2642 case SelectionDAGISel::OPC_CheckChild3Same:
2643 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2644 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2645 return Index;
2646 case SelectionDAGISel::OPC_CheckPatternPredicate:
2647 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2648 return Index;
2649 case SelectionDAGISel::OPC_CheckPredicate:
2650 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2651 return Index;
2652 case SelectionDAGISel::OPC_CheckOpcode:
2653 Result = !::CheckOpcode(Table, Index, N.getNode());
2654 return Index;
2655 case SelectionDAGISel::OPC_CheckType:
2656 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2657 SDISel.CurDAG->getDataLayout());
2658 return Index;
2659 case SelectionDAGISel::OPC_CheckTypeRes: {
2660 unsigned Res = Table[Index++];
2661 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2662 SDISel.CurDAG->getDataLayout());
2663 return Index;
2664 }
2665 case SelectionDAGISel::OPC_CheckChild0Type:
2666 case SelectionDAGISel::OPC_CheckChild1Type:
2667 case SelectionDAGISel::OPC_CheckChild2Type:
2668 case SelectionDAGISel::OPC_CheckChild3Type:
2669 case SelectionDAGISel::OPC_CheckChild4Type:
2670 case SelectionDAGISel::OPC_CheckChild5Type:
2671 case SelectionDAGISel::OPC_CheckChild6Type:
2672 case SelectionDAGISel::OPC_CheckChild7Type:
2673 Result = !::CheckChildType(
2674 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2675 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2676 return Index;
2677 case SelectionDAGISel::OPC_CheckCondCode:
2678 Result = !::CheckCondCode(Table, Index, N);
2679 return Index;
2680 case SelectionDAGISel::OPC_CheckChild2CondCode:
2681 Result = !::CheckChild2CondCode(Table, Index, N);
2682 return Index;
2683 case SelectionDAGISel::OPC_CheckValueType:
2684 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2685 SDISel.CurDAG->getDataLayout());
2686 return Index;
2687 case SelectionDAGISel::OPC_CheckInteger:
2688 Result = !::CheckInteger(Table, Index, N);
2689 return Index;
2690 case SelectionDAGISel::OPC_CheckChild0Integer:
2691 case SelectionDAGISel::OPC_CheckChild1Integer:
2692 case SelectionDAGISel::OPC_CheckChild2Integer:
2693 case SelectionDAGISel::OPC_CheckChild3Integer:
2694 case SelectionDAGISel::OPC_CheckChild4Integer:
2695 Result = !::CheckChildInteger(Table, Index, N,
2696 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2697 return Index;
2698 case SelectionDAGISel::OPC_CheckAndImm:
2699 Result = !::CheckAndImm(Table, Index, N, SDISel);
2700 return Index;
2701 case SelectionDAGISel::OPC_CheckOrImm:
2702 Result = !::CheckOrImm(Table, Index, N, SDISel);
2703 return Index;
2704 }
2705 }
2706
2707 namespace {
2708
2709 struct MatchScope {
2710 /// FailIndex - If this match fails, this is the index to continue with.
2711 unsigned FailIndex;
2712
2713 /// NodeStack - The node stack when the scope was formed.
2714 SmallVector<SDValue, 4> NodeStack;
2715
2716 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2717 unsigned NumRecordedNodes;
2718
2719 /// NumMatchedMemRefs - The number of matched memref entries.
2720 unsigned NumMatchedMemRefs;
2721
2722 /// InputChain/InputGlue - The current chain/glue
2723 SDValue InputChain, InputGlue;
2724
2725 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2726 bool HasChainNodesMatched;
2727 };
2728
2729 /// \A DAG update listener to keep the matching state
2730 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2731 /// change the DAG while matching. X86 addressing mode matcher is an example
2732 /// for this.
2733 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2734 {
2735 SDNode **NodeToMatch;
2736 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2737 SmallVectorImpl<MatchScope> &MatchScopes;
2738
2739 public:
MatchStateUpdater(SelectionDAG & DAG,SDNode ** NodeToMatch,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RN,SmallVectorImpl<MatchScope> & MS)2740 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2741 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2742 SmallVectorImpl<MatchScope> &MS)
2743 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2744 RecordedNodes(RN), MatchScopes(MS) {}
2745
NodeDeleted(SDNode * N,SDNode * E)2746 void NodeDeleted(SDNode *N, SDNode *E) override {
2747 // Some early-returns here to avoid the search if we deleted the node or
2748 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2749 // do, so it's unnecessary to update matching state at that point).
2750 // Neither of these can occur currently because we only install this
2751 // update listener during matching a complex patterns.
2752 if (!E || E->isMachineOpcode())
2753 return;
2754 // Check if NodeToMatch was updated.
2755 if (N == *NodeToMatch)
2756 *NodeToMatch = E;
2757 // Performing linear search here does not matter because we almost never
2758 // run this code. You'd have to have a CSE during complex pattern
2759 // matching.
2760 for (auto &I : RecordedNodes)
2761 if (I.first.getNode() == N)
2762 I.first.setNode(E);
2763
2764 for (auto &I : MatchScopes)
2765 for (auto &J : I.NodeStack)
2766 if (J.getNode() == N)
2767 J.setNode(E);
2768 }
2769 };
2770
2771 } // end anonymous namespace
2772
SelectCodeCommon(SDNode * NodeToMatch,const unsigned char * MatcherTable,unsigned TableSize)2773 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2774 const unsigned char *MatcherTable,
2775 unsigned TableSize) {
2776 // FIXME: Should these even be selected? Handle these cases in the caller?
2777 switch (NodeToMatch->getOpcode()) {
2778 default:
2779 break;
2780 case ISD::EntryToken: // These nodes remain the same.
2781 case ISD::BasicBlock:
2782 case ISD::Register:
2783 case ISD::RegisterMask:
2784 case ISD::HANDLENODE:
2785 case ISD::MDNODE_SDNODE:
2786 case ISD::TargetConstant:
2787 case ISD::TargetConstantFP:
2788 case ISD::TargetConstantPool:
2789 case ISD::TargetFrameIndex:
2790 case ISD::TargetExternalSymbol:
2791 case ISD::MCSymbol:
2792 case ISD::TargetBlockAddress:
2793 case ISD::TargetJumpTable:
2794 case ISD::TargetGlobalTLSAddress:
2795 case ISD::TargetGlobalAddress:
2796 case ISD::TokenFactor:
2797 case ISD::CopyFromReg:
2798 case ISD::CopyToReg:
2799 case ISD::EH_LABEL:
2800 case ISD::ANNOTATION_LABEL:
2801 case ISD::LIFETIME_START:
2802 case ISD::LIFETIME_END:
2803 NodeToMatch->setNodeId(-1); // Mark selected.
2804 return;
2805 case ISD::AssertSext:
2806 case ISD::AssertZext:
2807 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2808 CurDAG->RemoveDeadNode(NodeToMatch);
2809 return;
2810 case ISD::INLINEASM:
2811 case ISD::INLINEASM_BR:
2812 Select_INLINEASM(NodeToMatch,
2813 NodeToMatch->getOpcode() == ISD::INLINEASM_BR);
2814 return;
2815 case ISD::READ_REGISTER:
2816 Select_READ_REGISTER(NodeToMatch);
2817 return;
2818 case ISD::WRITE_REGISTER:
2819 Select_WRITE_REGISTER(NodeToMatch);
2820 return;
2821 case ISD::UNDEF:
2822 Select_UNDEF(NodeToMatch);
2823 return;
2824 }
2825
2826 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2827
2828 // Set up the node stack with NodeToMatch as the only node on the stack.
2829 SmallVector<SDValue, 8> NodeStack;
2830 SDValue N = SDValue(NodeToMatch, 0);
2831 NodeStack.push_back(N);
2832
2833 // MatchScopes - Scopes used when matching, if a match failure happens, this
2834 // indicates where to continue checking.
2835 SmallVector<MatchScope, 8> MatchScopes;
2836
2837 // RecordedNodes - This is the set of nodes that have been recorded by the
2838 // state machine. The second value is the parent of the node, or null if the
2839 // root is recorded.
2840 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2841
2842 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2843 // pattern.
2844 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2845
2846 // These are the current input chain and glue for use when generating nodes.
2847 // Various Emit operations change these. For example, emitting a copytoreg
2848 // uses and updates these.
2849 SDValue InputChain, InputGlue;
2850
2851 // ChainNodesMatched - If a pattern matches nodes that have input/output
2852 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2853 // which ones they are. The result is captured into this list so that we can
2854 // update the chain results when the pattern is complete.
2855 SmallVector<SDNode*, 3> ChainNodesMatched;
2856
2857 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2858
2859 // Determine where to start the interpreter. Normally we start at opcode #0,
2860 // but if the state machine starts with an OPC_SwitchOpcode, then we
2861 // accelerate the first lookup (which is guaranteed to be hot) with the
2862 // OpcodeOffset table.
2863 unsigned MatcherIndex = 0;
2864
2865 if (!OpcodeOffset.empty()) {
2866 // Already computed the OpcodeOffset table, just index into it.
2867 if (N.getOpcode() < OpcodeOffset.size())
2868 MatcherIndex = OpcodeOffset[N.getOpcode()];
2869 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2870
2871 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2872 // Otherwise, the table isn't computed, but the state machine does start
2873 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2874 // is the first time we're selecting an instruction.
2875 unsigned Idx = 1;
2876 while (true) {
2877 // Get the size of this case.
2878 unsigned CaseSize = MatcherTable[Idx++];
2879 if (CaseSize & 128)
2880 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2881 if (CaseSize == 0) break;
2882
2883 // Get the opcode, add the index to the table.
2884 uint16_t Opc = MatcherTable[Idx++];
2885 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2886 if (Opc >= OpcodeOffset.size())
2887 OpcodeOffset.resize((Opc+1)*2);
2888 OpcodeOffset[Opc] = Idx;
2889 Idx += CaseSize;
2890 }
2891
2892 // Okay, do the lookup for the first opcode.
2893 if (N.getOpcode() < OpcodeOffset.size())
2894 MatcherIndex = OpcodeOffset[N.getOpcode()];
2895 }
2896
2897 while (true) {
2898 assert(MatcherIndex < TableSize && "Invalid index");
2899 #ifndef NDEBUG
2900 unsigned CurrentOpcodeIndex = MatcherIndex;
2901 #endif
2902 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2903 switch (Opcode) {
2904 case OPC_Scope: {
2905 // Okay, the semantics of this operation are that we should push a scope
2906 // then evaluate the first child. However, pushing a scope only to have
2907 // the first check fail (which then pops it) is inefficient. If we can
2908 // determine immediately that the first check (or first several) will
2909 // immediately fail, don't even bother pushing a scope for them.
2910 unsigned FailIndex;
2911
2912 while (true) {
2913 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2914 if (NumToSkip & 128)
2915 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2916 // Found the end of the scope with no match.
2917 if (NumToSkip == 0) {
2918 FailIndex = 0;
2919 break;
2920 }
2921
2922 FailIndex = MatcherIndex+NumToSkip;
2923
2924 unsigned MatcherIndexOfPredicate = MatcherIndex;
2925 (void)MatcherIndexOfPredicate; // silence warning.
2926
2927 // If we can't evaluate this predicate without pushing a scope (e.g. if
2928 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2929 // push the scope and evaluate the full predicate chain.
2930 bool Result;
2931 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2932 Result, *this, RecordedNodes);
2933 if (!Result)
2934 break;
2935
2936 LLVM_DEBUG(
2937 dbgs() << " Skipped scope entry (due to false predicate) at "
2938 << "index " << MatcherIndexOfPredicate << ", continuing at "
2939 << FailIndex << "\n");
2940 ++NumDAGIselRetries;
2941
2942 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2943 // move to the next case.
2944 MatcherIndex = FailIndex;
2945 }
2946
2947 // If the whole scope failed to match, bail.
2948 if (FailIndex == 0) break;
2949
2950 // Push a MatchScope which indicates where to go if the first child fails
2951 // to match.
2952 MatchScope NewEntry;
2953 NewEntry.FailIndex = FailIndex;
2954 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2955 NewEntry.NumRecordedNodes = RecordedNodes.size();
2956 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2957 NewEntry.InputChain = InputChain;
2958 NewEntry.InputGlue = InputGlue;
2959 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2960 MatchScopes.push_back(NewEntry);
2961 continue;
2962 }
2963 case OPC_RecordNode: {
2964 // Remember this node, it may end up being an operand in the pattern.
2965 SDNode *Parent = nullptr;
2966 if (NodeStack.size() > 1)
2967 Parent = NodeStack[NodeStack.size()-2].getNode();
2968 RecordedNodes.push_back(std::make_pair(N, Parent));
2969 continue;
2970 }
2971
2972 case OPC_RecordChild0: case OPC_RecordChild1:
2973 case OPC_RecordChild2: case OPC_RecordChild3:
2974 case OPC_RecordChild4: case OPC_RecordChild5:
2975 case OPC_RecordChild6: case OPC_RecordChild7: {
2976 unsigned ChildNo = Opcode-OPC_RecordChild0;
2977 if (ChildNo >= N.getNumOperands())
2978 break; // Match fails if out of range child #.
2979
2980 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2981 N.getNode()));
2982 continue;
2983 }
2984 case OPC_RecordMemRef:
2985 if (auto *MN = dyn_cast<MemSDNode>(N))
2986 MatchedMemRefs.push_back(MN->getMemOperand());
2987 else {
2988 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
2989 dbgs() << '\n');
2990 }
2991
2992 continue;
2993
2994 case OPC_CaptureGlueInput:
2995 // If the current node has an input glue, capture it in InputGlue.
2996 if (N->getNumOperands() != 0 &&
2997 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2998 InputGlue = N->getOperand(N->getNumOperands()-1);
2999 continue;
3000
3001 case OPC_MoveChild: {
3002 unsigned ChildNo = MatcherTable[MatcherIndex++];
3003 if (ChildNo >= N.getNumOperands())
3004 break; // Match fails if out of range child #.
3005 N = N.getOperand(ChildNo);
3006 NodeStack.push_back(N);
3007 continue;
3008 }
3009
3010 case OPC_MoveChild0: case OPC_MoveChild1:
3011 case OPC_MoveChild2: case OPC_MoveChild3:
3012 case OPC_MoveChild4: case OPC_MoveChild5:
3013 case OPC_MoveChild6: case OPC_MoveChild7: {
3014 unsigned ChildNo = Opcode-OPC_MoveChild0;
3015 if (ChildNo >= N.getNumOperands())
3016 break; // Match fails if out of range child #.
3017 N = N.getOperand(ChildNo);
3018 NodeStack.push_back(N);
3019 continue;
3020 }
3021
3022 case OPC_MoveParent:
3023 // Pop the current node off the NodeStack.
3024 NodeStack.pop_back();
3025 assert(!NodeStack.empty() && "Node stack imbalance!");
3026 N = NodeStack.back();
3027 continue;
3028
3029 case OPC_CheckSame:
3030 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3031 continue;
3032
3033 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3034 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3035 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3036 Opcode-OPC_CheckChild0Same))
3037 break;
3038 continue;
3039
3040 case OPC_CheckPatternPredicate:
3041 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3042 continue;
3043 case OPC_CheckPredicate:
3044 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3045 N.getNode()))
3046 break;
3047 continue;
3048 case OPC_CheckPredicateWithOperands: {
3049 unsigned OpNum = MatcherTable[MatcherIndex++];
3050 SmallVector<SDValue, 8> Operands;
3051
3052 for (unsigned i = 0; i < OpNum; ++i)
3053 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3054
3055 unsigned PredNo = MatcherTable[MatcherIndex++];
3056 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3057 break;
3058 continue;
3059 }
3060 case OPC_CheckComplexPat: {
3061 unsigned CPNum = MatcherTable[MatcherIndex++];
3062 unsigned RecNo = MatcherTable[MatcherIndex++];
3063 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3064
3065 // If target can modify DAG during matching, keep the matching state
3066 // consistent.
3067 std::unique_ptr<MatchStateUpdater> MSU;
3068 if (ComplexPatternFuncMutatesDAG())
3069 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3070 MatchScopes));
3071
3072 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3073 RecordedNodes[RecNo].first, CPNum,
3074 RecordedNodes))
3075 break;
3076 continue;
3077 }
3078 case OPC_CheckOpcode:
3079 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3080 continue;
3081
3082 case OPC_CheckType:
3083 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3084 CurDAG->getDataLayout()))
3085 break;
3086 continue;
3087
3088 case OPC_CheckTypeRes: {
3089 unsigned Res = MatcherTable[MatcherIndex++];
3090 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3091 CurDAG->getDataLayout()))
3092 break;
3093 continue;
3094 }
3095
3096 case OPC_SwitchOpcode: {
3097 unsigned CurNodeOpcode = N.getOpcode();
3098 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3099 unsigned CaseSize;
3100 while (true) {
3101 // Get the size of this case.
3102 CaseSize = MatcherTable[MatcherIndex++];
3103 if (CaseSize & 128)
3104 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3105 if (CaseSize == 0) break;
3106
3107 uint16_t Opc = MatcherTable[MatcherIndex++];
3108 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3109
3110 // If the opcode matches, then we will execute this case.
3111 if (CurNodeOpcode == Opc)
3112 break;
3113
3114 // Otherwise, skip over this case.
3115 MatcherIndex += CaseSize;
3116 }
3117
3118 // If no cases matched, bail out.
3119 if (CaseSize == 0) break;
3120
3121 // Otherwise, execute the case we found.
3122 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3123 << MatcherIndex << "\n");
3124 continue;
3125 }
3126
3127 case OPC_SwitchType: {
3128 MVT CurNodeVT = N.getSimpleValueType();
3129 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3130 unsigned CaseSize;
3131 while (true) {
3132 // Get the size of this case.
3133 CaseSize = MatcherTable[MatcherIndex++];
3134 if (CaseSize & 128)
3135 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3136 if (CaseSize == 0) break;
3137
3138 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3139 if (CaseVT == MVT::iPTR)
3140 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3141
3142 // If the VT matches, then we will execute this case.
3143 if (CurNodeVT == CaseVT)
3144 break;
3145
3146 // Otherwise, skip over this case.
3147 MatcherIndex += CaseSize;
3148 }
3149
3150 // If no cases matched, bail out.
3151 if (CaseSize == 0) break;
3152
3153 // Otherwise, execute the case we found.
3154 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3155 << "] from " << SwitchStart << " to " << MatcherIndex
3156 << '\n');
3157 continue;
3158 }
3159 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3160 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3161 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3162 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3163 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3164 CurDAG->getDataLayout(),
3165 Opcode - OPC_CheckChild0Type))
3166 break;
3167 continue;
3168 case OPC_CheckCondCode:
3169 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3170 continue;
3171 case OPC_CheckChild2CondCode:
3172 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3173 continue;
3174 case OPC_CheckValueType:
3175 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3176 CurDAG->getDataLayout()))
3177 break;
3178 continue;
3179 case OPC_CheckInteger:
3180 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3181 continue;
3182 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3183 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3184 case OPC_CheckChild4Integer:
3185 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3186 Opcode-OPC_CheckChild0Integer)) break;
3187 continue;
3188 case OPC_CheckAndImm:
3189 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3190 continue;
3191 case OPC_CheckOrImm:
3192 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3193 continue;
3194 case OPC_CheckImmAllOnesV:
3195 if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
3196 continue;
3197 case OPC_CheckImmAllZerosV:
3198 if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
3199 continue;
3200
3201 case OPC_CheckFoldableChainNode: {
3202 assert(NodeStack.size() != 1 && "No parent node");
3203 // Verify that all intermediate nodes between the root and this one have
3204 // a single use (ignoring chains, which are handled in UpdateChains).
3205 bool HasMultipleUses = false;
3206 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3207 unsigned NNonChainUses = 0;
3208 SDNode *NS = NodeStack[i].getNode();
3209 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3210 if (UI.getUse().getValueType() != MVT::Other)
3211 if (++NNonChainUses > 1) {
3212 HasMultipleUses = true;
3213 break;
3214 }
3215 if (HasMultipleUses) break;
3216 }
3217 if (HasMultipleUses) break;
3218
3219 // Check to see that the target thinks this is profitable to fold and that
3220 // we can fold it without inducing cycles in the graph.
3221 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3222 NodeToMatch) ||
3223 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3224 NodeToMatch, OptLevel,
3225 true/*We validate our own chains*/))
3226 break;
3227
3228 continue;
3229 }
3230 case OPC_EmitInteger: {
3231 MVT::SimpleValueType VT =
3232 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3233 int64_t Val = MatcherTable[MatcherIndex++];
3234 if (Val & 128)
3235 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3236 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3237 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3238 VT), nullptr));
3239 continue;
3240 }
3241 case OPC_EmitRegister: {
3242 MVT::SimpleValueType VT =
3243 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3244 unsigned RegNo = MatcherTable[MatcherIndex++];
3245 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3246 CurDAG->getRegister(RegNo, VT), nullptr));
3247 continue;
3248 }
3249 case OPC_EmitRegister2: {
3250 // For targets w/ more than 256 register names, the register enum
3251 // values are stored in two bytes in the matcher table (just like
3252 // opcodes).
3253 MVT::SimpleValueType VT =
3254 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3255 unsigned RegNo = MatcherTable[MatcherIndex++];
3256 RegNo |= MatcherTable[MatcherIndex++] << 8;
3257 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3258 CurDAG->getRegister(RegNo, VT), nullptr));
3259 continue;
3260 }
3261
3262 case OPC_EmitConvertToTarget: {
3263 // Convert from IMM/FPIMM to target version.
3264 unsigned RecNo = MatcherTable[MatcherIndex++];
3265 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3266 SDValue Imm = RecordedNodes[RecNo].first;
3267
3268 if (Imm->getOpcode() == ISD::Constant) {
3269 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3270 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3271 Imm.getValueType());
3272 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3273 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3274 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3275 Imm.getValueType());
3276 }
3277
3278 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3279 continue;
3280 }
3281
3282 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3283 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3284 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3285 // These are space-optimized forms of OPC_EmitMergeInputChains.
3286 assert(!InputChain.getNode() &&
3287 "EmitMergeInputChains should be the first chain producing node");
3288 assert(ChainNodesMatched.empty() &&
3289 "Should only have one EmitMergeInputChains per match");
3290
3291 // Read all of the chained nodes.
3292 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3293 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3294 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3295
3296 // FIXME: What if other value results of the node have uses not matched
3297 // by this pattern?
3298 if (ChainNodesMatched.back() != NodeToMatch &&
3299 !RecordedNodes[RecNo].first.hasOneUse()) {
3300 ChainNodesMatched.clear();
3301 break;
3302 }
3303
3304 // Merge the input chains if they are not intra-pattern references.
3305 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3306
3307 if (!InputChain.getNode())
3308 break; // Failed to merge.
3309 continue;
3310 }
3311
3312 case OPC_EmitMergeInputChains: {
3313 assert(!InputChain.getNode() &&
3314 "EmitMergeInputChains should be the first chain producing node");
3315 // This node gets a list of nodes we matched in the input that have
3316 // chains. We want to token factor all of the input chains to these nodes
3317 // together. However, if any of the input chains is actually one of the
3318 // nodes matched in this pattern, then we have an intra-match reference.
3319 // Ignore these because the newly token factored chain should not refer to
3320 // the old nodes.
3321 unsigned NumChains = MatcherTable[MatcherIndex++];
3322 assert(NumChains != 0 && "Can't TF zero chains");
3323
3324 assert(ChainNodesMatched.empty() &&
3325 "Should only have one EmitMergeInputChains per match");
3326
3327 // Read all of the chained nodes.
3328 for (unsigned i = 0; i != NumChains; ++i) {
3329 unsigned RecNo = MatcherTable[MatcherIndex++];
3330 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3331 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3332
3333 // FIXME: What if other value results of the node have uses not matched
3334 // by this pattern?
3335 if (ChainNodesMatched.back() != NodeToMatch &&
3336 !RecordedNodes[RecNo].first.hasOneUse()) {
3337 ChainNodesMatched.clear();
3338 break;
3339 }
3340 }
3341
3342 // If the inner loop broke out, the match fails.
3343 if (ChainNodesMatched.empty())
3344 break;
3345
3346 // Merge the input chains if they are not intra-pattern references.
3347 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3348
3349 if (!InputChain.getNode())
3350 break; // Failed to merge.
3351
3352 continue;
3353 }
3354
3355 case OPC_EmitCopyToReg:
3356 case OPC_EmitCopyToReg2: {
3357 unsigned RecNo = MatcherTable[MatcherIndex++];
3358 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3359 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3360 if (Opcode == OPC_EmitCopyToReg2)
3361 DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3362
3363 if (!InputChain.getNode())
3364 InputChain = CurDAG->getEntryNode();
3365
3366 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3367 DestPhysReg, RecordedNodes[RecNo].first,
3368 InputGlue);
3369
3370 InputGlue = InputChain.getValue(1);
3371 continue;
3372 }
3373
3374 case OPC_EmitNodeXForm: {
3375 unsigned XFormNo = MatcherTable[MatcherIndex++];
3376 unsigned RecNo = MatcherTable[MatcherIndex++];
3377 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3378 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3379 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3380 continue;
3381 }
3382 case OPC_Coverage: {
3383 // This is emitted right before MorphNode/EmitNode.
3384 // So it should be safe to assume that this node has been selected
3385 unsigned index = MatcherTable[MatcherIndex++];
3386 index |= (MatcherTable[MatcherIndex++] << 8);
3387 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3388 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3389 continue;
3390 }
3391
3392 case OPC_EmitNode: case OPC_MorphNodeTo:
3393 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3394 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3395 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3396 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3397 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3398 // Get the result VT list.
3399 unsigned NumVTs;
3400 // If this is one of the compressed forms, get the number of VTs based
3401 // on the Opcode. Otherwise read the next byte from the table.
3402 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3403 NumVTs = Opcode - OPC_MorphNodeTo0;
3404 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3405 NumVTs = Opcode - OPC_EmitNode0;
3406 else
3407 NumVTs = MatcherTable[MatcherIndex++];
3408 SmallVector<EVT, 4> VTs;
3409 for (unsigned i = 0; i != NumVTs; ++i) {
3410 MVT::SimpleValueType VT =
3411 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3412 if (VT == MVT::iPTR)
3413 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3414 VTs.push_back(VT);
3415 }
3416
3417 if (EmitNodeInfo & OPFL_Chain)
3418 VTs.push_back(MVT::Other);
3419 if (EmitNodeInfo & OPFL_GlueOutput)
3420 VTs.push_back(MVT::Glue);
3421
3422 // This is hot code, so optimize the two most common cases of 1 and 2
3423 // results.
3424 SDVTList VTList;
3425 if (VTs.size() == 1)
3426 VTList = CurDAG->getVTList(VTs[0]);
3427 else if (VTs.size() == 2)
3428 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3429 else
3430 VTList = CurDAG->getVTList(VTs);
3431
3432 // Get the operand list.
3433 unsigned NumOps = MatcherTable[MatcherIndex++];
3434 SmallVector<SDValue, 8> Ops;
3435 for (unsigned i = 0; i != NumOps; ++i) {
3436 unsigned RecNo = MatcherTable[MatcherIndex++];
3437 if (RecNo & 128)
3438 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3439
3440 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3441 Ops.push_back(RecordedNodes[RecNo].first);
3442 }
3443
3444 // If there are variadic operands to add, handle them now.
3445 if (EmitNodeInfo & OPFL_VariadicInfo) {
3446 // Determine the start index to copy from.
3447 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3448 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3449 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3450 "Invalid variadic node");
3451 // Copy all of the variadic operands, not including a potential glue
3452 // input.
3453 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3454 i != e; ++i) {
3455 SDValue V = NodeToMatch->getOperand(i);
3456 if (V.getValueType() == MVT::Glue) break;
3457 Ops.push_back(V);
3458 }
3459 }
3460
3461 // If this has chain/glue inputs, add them.
3462 if (EmitNodeInfo & OPFL_Chain)
3463 Ops.push_back(InputChain);
3464 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3465 Ops.push_back(InputGlue);
3466
3467 // Check whether any matched node could raise an FP exception. Since all
3468 // such nodes must have a chain, it suffices to check ChainNodesMatched.
3469 // We need to perform this check before potentially modifying one of the
3470 // nodes via MorphNode.
3471 bool MayRaiseFPException = false;
3472 for (auto *N : ChainNodesMatched)
3473 if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
3474 MayRaiseFPException = true;
3475 break;
3476 }
3477
3478 // Create the node.
3479 MachineSDNode *Res = nullptr;
3480 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3481 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3482 if (!IsMorphNodeTo) {
3483 // If this is a normal EmitNode command, just create the new node and
3484 // add the results to the RecordedNodes list.
3485 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3486 VTList, Ops);
3487
3488 // Add all the non-glue/non-chain results to the RecordedNodes list.
3489 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3490 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3491 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3492 nullptr));
3493 }
3494 } else {
3495 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3496 "NodeToMatch was removed partway through selection");
3497 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3498 SDNode *E) {
3499 CurDAG->salvageDebugInfo(*N);
3500 auto &Chain = ChainNodesMatched;
3501 assert((!E || !is_contained(Chain, N)) &&
3502 "Chain node replaced during MorphNode");
3503 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3504 });
3505 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3506 Ops, EmitNodeInfo));
3507 }
3508
3509 // Set the NoFPExcept flag when no original matched node could
3510 // raise an FP exception, but the new node potentially might.
3511 if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3512 SDNodeFlags Flags = Res->getFlags();
3513 Flags.setNoFPExcept(true);
3514 Res->setFlags(Flags);
3515 }
3516
3517 // If the node had chain/glue results, update our notion of the current
3518 // chain and glue.
3519 if (EmitNodeInfo & OPFL_GlueOutput) {
3520 InputGlue = SDValue(Res, VTs.size()-1);
3521 if (EmitNodeInfo & OPFL_Chain)
3522 InputChain = SDValue(Res, VTs.size()-2);
3523 } else if (EmitNodeInfo & OPFL_Chain)
3524 InputChain = SDValue(Res, VTs.size()-1);
3525
3526 // If the OPFL_MemRefs glue is set on this node, slap all of the
3527 // accumulated memrefs onto it.
3528 //
3529 // FIXME: This is vastly incorrect for patterns with multiple outputs
3530 // instructions that access memory and for ComplexPatterns that match
3531 // loads.
3532 if (EmitNodeInfo & OPFL_MemRefs) {
3533 // Only attach load or store memory operands if the generated
3534 // instruction may load or store.
3535 const MCInstrDesc &MCID = TII->get(TargetOpc);
3536 bool mayLoad = MCID.mayLoad();
3537 bool mayStore = MCID.mayStore();
3538
3539 // We expect to have relatively few of these so just filter them into a
3540 // temporary buffer so that we can easily add them to the instruction.
3541 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3542 for (MachineMemOperand *MMO : MatchedMemRefs) {
3543 if (MMO->isLoad()) {
3544 if (mayLoad)
3545 FilteredMemRefs.push_back(MMO);
3546 } else if (MMO->isStore()) {
3547 if (mayStore)
3548 FilteredMemRefs.push_back(MMO);
3549 } else {
3550 FilteredMemRefs.push_back(MMO);
3551 }
3552 }
3553
3554 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3555 }
3556
3557 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3558 << " Dropping mem operands\n";
3559 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3560 << " node: ";
3561 Res->dump(CurDAG););
3562
3563 // If this was a MorphNodeTo then we're completely done!
3564 if (IsMorphNodeTo) {
3565 // Update chain uses.
3566 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3567 return;
3568 }
3569 continue;
3570 }
3571
3572 case OPC_CompleteMatch: {
3573 // The match has been completed, and any new nodes (if any) have been
3574 // created. Patch up references to the matched dag to use the newly
3575 // created nodes.
3576 unsigned NumResults = MatcherTable[MatcherIndex++];
3577
3578 for (unsigned i = 0; i != NumResults; ++i) {
3579 unsigned ResSlot = MatcherTable[MatcherIndex++];
3580 if (ResSlot & 128)
3581 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3582
3583 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3584 SDValue Res = RecordedNodes[ResSlot].first;
3585
3586 assert(i < NodeToMatch->getNumValues() &&
3587 NodeToMatch->getValueType(i) != MVT::Other &&
3588 NodeToMatch->getValueType(i) != MVT::Glue &&
3589 "Invalid number of results to complete!");
3590 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3591 NodeToMatch->getValueType(i) == MVT::iPTR ||
3592 Res.getValueType() == MVT::iPTR ||
3593 NodeToMatch->getValueType(i).getSizeInBits() ==
3594 Res.getValueSizeInBits()) &&
3595 "invalid replacement");
3596 ReplaceUses(SDValue(NodeToMatch, i), Res);
3597 }
3598
3599 // Update chain uses.
3600 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3601
3602 // If the root node defines glue, we need to update it to the glue result.
3603 // TODO: This never happens in our tests and I think it can be removed /
3604 // replaced with an assert, but if we do it this the way the change is
3605 // NFC.
3606 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3607 MVT::Glue &&
3608 InputGlue.getNode())
3609 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3610 InputGlue);
3611
3612 assert(NodeToMatch->use_empty() &&
3613 "Didn't replace all uses of the node?");
3614 CurDAG->RemoveDeadNode(NodeToMatch);
3615
3616 return;
3617 }
3618 }
3619
3620 // If the code reached this point, then the match failed. See if there is
3621 // another child to try in the current 'Scope', otherwise pop it until we
3622 // find a case to check.
3623 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3624 << "\n");
3625 ++NumDAGIselRetries;
3626 while (true) {
3627 if (MatchScopes.empty()) {
3628 CannotYetSelect(NodeToMatch);
3629 return;
3630 }
3631
3632 // Restore the interpreter state back to the point where the scope was
3633 // formed.
3634 MatchScope &LastScope = MatchScopes.back();
3635 RecordedNodes.resize(LastScope.NumRecordedNodes);
3636 NodeStack.clear();
3637 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3638 N = NodeStack.back();
3639
3640 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3641 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3642 MatcherIndex = LastScope.FailIndex;
3643
3644 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3645
3646 InputChain = LastScope.InputChain;
3647 InputGlue = LastScope.InputGlue;
3648 if (!LastScope.HasChainNodesMatched)
3649 ChainNodesMatched.clear();
3650
3651 // Check to see what the offset is at the new MatcherIndex. If it is zero
3652 // we have reached the end of this scope, otherwise we have another child
3653 // in the current scope to try.
3654 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3655 if (NumToSkip & 128)
3656 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3657
3658 // If we have another child in this scope to match, update FailIndex and
3659 // try it.
3660 if (NumToSkip != 0) {
3661 LastScope.FailIndex = MatcherIndex+NumToSkip;
3662 break;
3663 }
3664
3665 // End of this scope, pop it and try the next child in the containing
3666 // scope.
3667 MatchScopes.pop_back();
3668 }
3669 }
3670 }
3671
3672 /// Return whether the node may raise an FP exception.
mayRaiseFPException(SDNode * N) const3673 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3674 // For machine opcodes, consult the MCID flag.
3675 if (N->isMachineOpcode()) {
3676 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3677 return MCID.mayRaiseFPException();
3678 }
3679
3680 // For ISD opcodes, only StrictFP opcodes may raise an FP
3681 // exception.
3682 if (N->isTargetOpcode())
3683 return N->isTargetStrictFPOpcode();
3684 return N->isStrictFPOpcode();
3685 }
3686
isOrEquivalentToAdd(const SDNode * N) const3687 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3688 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3689 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3690 if (!C)
3691 return false;
3692
3693 // Detect when "or" is used to add an offset to a stack object.
3694 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3695 MachineFrameInfo &MFI = MF->getFrameInfo();
3696 unsigned A = MFI.getObjectAlignment(FN->getIndex());
3697 assert(isPowerOf2_32(A) && "Unexpected alignment");
3698 int32_t Off = C->getSExtValue();
3699 // If the alleged offset fits in the zero bits guaranteed by
3700 // the alignment, then this or is really an add.
3701 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3702 }
3703 return false;
3704 }
3705
CannotYetSelect(SDNode * N)3706 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3707 std::string msg;
3708 raw_string_ostream Msg(msg);
3709 Msg << "Cannot select: ";
3710
3711 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3712 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3713 N->getOpcode() != ISD::INTRINSIC_VOID) {
3714 N->printrFull(Msg, CurDAG);
3715 Msg << "\nIn function: " << MF->getName();
3716 } else {
3717 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3718 unsigned iid =
3719 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3720 if (iid < Intrinsic::num_intrinsics)
3721 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3722 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3723 Msg << "target intrinsic %" << TII->getName(iid);
3724 else
3725 Msg << "unknown intrinsic #" << iid;
3726 }
3727 report_fatal_error(Msg.str());
3728 }
3729
3730 char SelectionDAGISel::ID = 0;
3731