1 // Copyright 2019 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/objects/code.h"
6
7 #include <iomanip>
8
9 #include "src/codegen/assembler-inl.h"
10 #include "src/codegen/cpu-features.h"
11 #include "src/codegen/reloc-info.h"
12 #include "src/codegen/safepoint-table.h"
13 #include "src/codegen/source-position.h"
14 #include "src/deoptimizer/deoptimizer.h"
15 #include "src/execution/isolate-utils-inl.h"
16 #include "src/interpreter/bytecode-array-iterator.h"
17 #include "src/interpreter/bytecode-decoder.h"
18 #include "src/interpreter/interpreter.h"
19 #include "src/objects/allocation-site-inl.h"
20 #include "src/objects/code-kind.h"
21 #include "src/objects/fixed-array.h"
22 #include "src/roots/roots-inl.h"
23 #include "src/snapshot/embedded/embedded-data-inl.h"
24 #include "src/utils/ostreams.h"
25
26 #ifdef ENABLE_DISASSEMBLER
27 #include "src/codegen/code-comments.h"
28 #include "src/diagnostics/disasm.h"
29 #include "src/diagnostics/disassembler.h"
30 #include "src/diagnostics/eh-frame.h"
31 #endif
32
33 namespace v8 {
34 namespace internal {
35
36 namespace {
37
38 // Helper function for getting an EmbeddedData that can handle un-embedded
39 // builtins when short builtin calls are enabled.
EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(HeapObject code)40 inline EmbeddedData EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(
41 HeapObject code) {
42 #if defined(V8_COMPRESS_POINTERS_IN_ISOLATE_CAGE)
43 // GetIsolateFromWritableObject(*this) works for both read-only and writable
44 // objects when pointer compression is enabled with a per-Isolate cage.
45 return EmbeddedData::FromBlob(GetIsolateFromWritableObject(code));
46 #elif defined(V8_COMPRESS_POINTERS_IN_SHARED_CAGE)
47 // When pointer compression is enabled with a shared cage, there is also a
48 // shared CodeRange. When short builtin calls are enabled, there is a single
49 // copy of the re-embedded builtins in the shared CodeRange, so use that if
50 // it's present.
51 if (FLAG_jitless) return EmbeddedData::FromBlob();
52 CodeRange* code_range = CodeRange::GetProcessWideCodeRange().get();
53 return (code_range && code_range->embedded_blob_code_copy() != nullptr)
54 ? EmbeddedData::FromBlob(code_range)
55 : EmbeddedData::FromBlob();
56 #else
57 // Otherwise there is a single copy of the blob across all Isolates, use the
58 // global atomic variables.
59 return EmbeddedData::FromBlob();
60 #endif
61 }
62
63 } // namespace
64
OffHeapInstructionStart(HeapObject code,Builtin builtin)65 Address OffHeapInstructionStart(HeapObject code, Builtin builtin) {
66 // TODO(11527): Here and below: pass Isolate as an argument for getting
67 // the EmbeddedData.
68 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
69 return d.InstructionStartOfBuiltin(builtin);
70 }
71
OffHeapInstructionEnd(HeapObject code,Builtin builtin)72 Address OffHeapInstructionEnd(HeapObject code, Builtin builtin) {
73 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
74 return d.InstructionStartOfBuiltin(builtin) +
75 d.InstructionSizeOfBuiltin(builtin);
76 }
77
OffHeapInstructionSize(HeapObject code,Builtin builtin)78 int OffHeapInstructionSize(HeapObject code, Builtin builtin) {
79 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
80 return d.InstructionSizeOfBuiltin(builtin);
81 }
82
OffHeapMetadataStart(HeapObject code,Builtin builtin)83 Address OffHeapMetadataStart(HeapObject code, Builtin builtin) {
84 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
85 return d.MetadataStartOfBuiltin(builtin);
86 }
87
OffHeapMetadataEnd(HeapObject code,Builtin builtin)88 Address OffHeapMetadataEnd(HeapObject code, Builtin builtin) {
89 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
90 return d.MetadataStartOfBuiltin(builtin) + d.MetadataSizeOfBuiltin(builtin);
91 }
92
OffHeapMetadataSize(HeapObject code,Builtin builtin)93 int OffHeapMetadataSize(HeapObject code, Builtin builtin) {
94 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
95 return d.MetadataSizeOfBuiltin(builtin);
96 }
97
OffHeapSafepointTableAddress(HeapObject code,Builtin builtin)98 Address OffHeapSafepointTableAddress(HeapObject code, Builtin builtin) {
99 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
100 return d.SafepointTableStartOf(builtin);
101 }
102
OffHeapSafepointTableSize(HeapObject code,Builtin builtin)103 int OffHeapSafepointTableSize(HeapObject code, Builtin builtin) {
104 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
105 return d.SafepointTableSizeOf(builtin);
106 }
107
OffHeapHandlerTableAddress(HeapObject code,Builtin builtin)108 Address OffHeapHandlerTableAddress(HeapObject code, Builtin builtin) {
109 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
110 return d.HandlerTableStartOf(builtin);
111 }
112
OffHeapHandlerTableSize(HeapObject code,Builtin builtin)113 int OffHeapHandlerTableSize(HeapObject code, Builtin builtin) {
114 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
115 return d.HandlerTableSizeOf(builtin);
116 }
117
OffHeapConstantPoolAddress(HeapObject code,Builtin builtin)118 Address OffHeapConstantPoolAddress(HeapObject code, Builtin builtin) {
119 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
120 return d.ConstantPoolStartOf(builtin);
121 }
122
OffHeapConstantPoolSize(HeapObject code,Builtin builtin)123 int OffHeapConstantPoolSize(HeapObject code, Builtin builtin) {
124 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
125 return d.ConstantPoolSizeOf(builtin);
126 }
127
OffHeapCodeCommentsAddress(HeapObject code,Builtin builtin)128 Address OffHeapCodeCommentsAddress(HeapObject code, Builtin builtin) {
129 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
130 return d.CodeCommentsStartOf(builtin);
131 }
132
OffHeapCodeCommentsSize(HeapObject code,Builtin builtin)133 int OffHeapCodeCommentsSize(HeapObject code, Builtin builtin) {
134 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
135 return d.CodeCommentsSizeOf(builtin);
136 }
137
OffHeapUnwindingInfoAddress(HeapObject code,Builtin builtin)138 Address OffHeapUnwindingInfoAddress(HeapObject code, Builtin builtin) {
139 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
140 return d.UnwindingInfoStartOf(builtin);
141 }
142
OffHeapUnwindingInfoSize(HeapObject code,Builtin builtin)143 int OffHeapUnwindingInfoSize(HeapObject code, Builtin builtin) {
144 EmbeddedData d = EmbeddedDataWithMaybeRemappedEmbeddedBuiltins(code);
145 return d.UnwindingInfoSizeOf(builtin);
146 }
147
ClearEmbeddedObjects(Heap * heap)148 void Code::ClearEmbeddedObjects(Heap* heap) {
149 HeapObject undefined = ReadOnlyRoots(heap).undefined_value();
150 int mode_mask = RelocInfo::EmbeddedObjectModeMask();
151 for (RelocIterator it(*this, mode_mask); !it.done(); it.next()) {
152 DCHECK(RelocInfo::IsEmbeddedObjectMode(it.rinfo()->rmode()));
153 it.rinfo()->set_target_object(heap, undefined, SKIP_WRITE_BARRIER);
154 }
155 set_embedded_objects_cleared(true);
156 }
157
Relocate(intptr_t delta)158 void Code::Relocate(intptr_t delta) {
159 for (RelocIterator it(*this, RelocInfo::kApplyMask); !it.done(); it.next()) {
160 it.rinfo()->apply(delta);
161 }
162 FlushICache();
163 }
164
FlushICache() const165 void Code::FlushICache() const {
166 FlushInstructionCache(raw_instruction_start(), raw_instruction_size());
167 }
168
CopyFromNoFlush(ByteArray reloc_info,Heap * heap,const CodeDesc & desc)169 void Code::CopyFromNoFlush(ByteArray reloc_info, Heap* heap,
170 const CodeDesc& desc) {
171 // Copy code.
172 STATIC_ASSERT(kOnHeapBodyIsContiguous);
173 CopyBytes(reinterpret_cast<byte*>(raw_instruction_start()), desc.buffer,
174 static_cast<size_t>(desc.instr_size));
175 // TODO(jgruber,v8:11036): Merge with the above.
176 CopyBytes(reinterpret_cast<byte*>(raw_instruction_start() + desc.instr_size),
177 desc.unwinding_info, static_cast<size_t>(desc.unwinding_info_size));
178
179 // Copy reloc info.
180 CopyRelocInfoToByteArray(reloc_info, desc);
181
182 // Unbox handles and relocate.
183 RelocateFromDesc(reloc_info, heap, desc);
184 }
185
RelocateFromDesc(ByteArray reloc_info,Heap * heap,const CodeDesc & desc)186 void Code::RelocateFromDesc(ByteArray reloc_info, Heap* heap,
187 const CodeDesc& desc) {
188 // Unbox handles and relocate.
189 Assembler* origin = desc.origin;
190 const int mode_mask = RelocInfo::PostCodegenRelocationMask();
191 for (RelocIterator it(*this, reloc_info, mode_mask); !it.done(); it.next()) {
192 RelocInfo::Mode mode = it.rinfo()->rmode();
193 if (RelocInfo::IsEmbeddedObjectMode(mode)) {
194 Handle<HeapObject> p = it.rinfo()->target_object_handle(origin);
195 it.rinfo()->set_target_object(heap, *p, UPDATE_WRITE_BARRIER,
196 SKIP_ICACHE_FLUSH);
197 } else if (RelocInfo::IsCodeTargetMode(mode)) {
198 // Rewrite code handles to direct pointers to the first instruction in the
199 // code object.
200 Handle<HeapObject> p = it.rinfo()->target_object_handle(origin);
201 DCHECK(p->IsCodeT(GetPtrComprCageBaseSlow(*p)));
202 Code code = FromCodeT(CodeT::cast(*p));
203 it.rinfo()->set_target_address(code.raw_instruction_start(),
204 UPDATE_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
205 } else if (RelocInfo::IsRuntimeEntry(mode)) {
206 Address p = it.rinfo()->target_runtime_entry(origin);
207 it.rinfo()->set_target_runtime_entry(p, UPDATE_WRITE_BARRIER,
208 SKIP_ICACHE_FLUSH);
209 } else {
210 intptr_t delta =
211 raw_instruction_start() - reinterpret_cast<Address>(desc.buffer);
212 it.rinfo()->apply(delta);
213 }
214 }
215 }
216
GetSafepointEntry(Isolate * isolate,Address pc)217 SafepointEntry Code::GetSafepointEntry(Isolate* isolate, Address pc) {
218 SafepointTable table(isolate, pc, *this);
219 return table.FindEntry(pc);
220 }
221
OffHeapInstructionStart(Isolate * isolate,Address pc) const222 Address Code::OffHeapInstructionStart(Isolate* isolate, Address pc) const {
223 DCHECK(is_off_heap_trampoline());
224 EmbeddedData d = EmbeddedData::GetEmbeddedDataForPC(isolate, pc);
225 return d.InstructionStartOfBuiltin(builtin_id());
226 }
227
OffHeapInstructionEnd(Isolate * isolate,Address pc) const228 Address Code::OffHeapInstructionEnd(Isolate* isolate, Address pc) const {
229 DCHECK(is_off_heap_trampoline());
230 EmbeddedData d = EmbeddedData::GetEmbeddedDataForPC(isolate, pc);
231 return d.InstructionStartOfBuiltin(builtin_id()) +
232 d.InstructionSizeOfBuiltin(builtin_id());
233 }
234
235 // TODO(cbruni): Move to BytecodeArray
SourcePosition(int offset)236 int AbstractCode::SourcePosition(int offset) {
237 CHECK_NE(kind(), CodeKind::BASELINE);
238 Object maybe_table = SourcePositionTableInternal();
239 if (maybe_table.IsException()) return kNoSourcePosition;
240
241 ByteArray source_position_table = ByteArray::cast(maybe_table);
242 // Subtract one because the current PC is one instruction after the call site.
243 if (IsCode()) offset--;
244 int position = 0;
245 for (SourcePositionTableIterator iterator(
246 source_position_table, SourcePositionTableIterator::kJavaScriptOnly,
247 SourcePositionTableIterator::kDontSkipFunctionEntry);
248 !iterator.done() && iterator.code_offset() <= offset;
249 iterator.Advance()) {
250 position = iterator.source_position().ScriptOffset();
251 }
252 return position;
253 }
254
255 // TODO(cbruni): Move to BytecodeArray
SourceStatementPosition(int offset)256 int AbstractCode::SourceStatementPosition(int offset) {
257 CHECK_NE(kind(), CodeKind::BASELINE);
258 // First find the closest position.
259 int position = SourcePosition(offset);
260 // Now find the closest statement position before the position.
261 int statement_position = 0;
262 for (SourcePositionTableIterator it(SourcePositionTableInternal());
263 !it.done(); it.Advance()) {
264 if (it.is_statement()) {
265 int p = it.source_position().ScriptOffset();
266 if (statement_position < p && p <= position) {
267 statement_position = p;
268 }
269 }
270 }
271 return statement_position;
272 }
273
CanDeoptAt(Isolate * isolate,Address pc)274 bool Code::CanDeoptAt(Isolate* isolate, Address pc) {
275 DeoptimizationData deopt_data =
276 DeoptimizationData::cast(deoptimization_data());
277 Address code_start_address = InstructionStart(isolate, pc);
278 for (int i = 0; i < deopt_data.DeoptCount(); i++) {
279 if (deopt_data.Pc(i).value() == -1) continue;
280 Address address = code_start_address + deopt_data.Pc(i).value();
281 if (address == pc &&
282 deopt_data.GetBytecodeOffset(i) != BytecodeOffset::None()) {
283 return true;
284 }
285 }
286 return false;
287 }
288
IsIsolateIndependent(Isolate * isolate)289 bool Code::IsIsolateIndependent(Isolate* isolate) {
290 static constexpr int kModeMask =
291 RelocInfo::AllRealModesMask() &
292 ~RelocInfo::ModeMask(RelocInfo::CONST_POOL) &
293 ~RelocInfo::ModeMask(RelocInfo::OFF_HEAP_TARGET) &
294 ~RelocInfo::ModeMask(RelocInfo::VENEER_POOL);
295 STATIC_ASSERT(kModeMask ==
296 (RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
297 RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET) |
298 RelocInfo::ModeMask(RelocInfo::COMPRESSED_EMBEDDED_OBJECT) |
299 RelocInfo::ModeMask(RelocInfo::FULL_EMBEDDED_OBJECT) |
300 RelocInfo::ModeMask(RelocInfo::DATA_EMBEDDED_OBJECT) |
301 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
302 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
303 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED) |
304 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
305 RelocInfo::ModeMask(RelocInfo::WASM_CALL) |
306 RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL)));
307
308 #if defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_PPC64) || \
309 defined(V8_TARGET_ARCH_MIPS64)
310 return RelocIterator(*this, kModeMask).done();
311 #elif defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_ARM64) || \
312 defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_MIPS) || \
313 defined(V8_TARGET_ARCH_S390) || defined(V8_TARGET_ARCH_IA32) || \
314 defined(V8_TARGET_ARCH_RISCV64) || defined(V8_TARGET_ARCH_LOONG64)
315 for (RelocIterator it(*this, kModeMask); !it.done(); it.next()) {
316 // On these platforms we emit relative builtin-to-builtin
317 // jumps for isolate independent builtins in the snapshot. They are later
318 // rewritten as pc-relative jumps to the off-heap instruction stream and are
319 // thus process-independent. See also: FinalizeEmbeddedCodeTargets.
320 if (RelocInfo::IsCodeTargetMode(it.rinfo()->rmode())) {
321 Address target_address = it.rinfo()->target_address();
322 if (OffHeapInstructionStream::PcIsOffHeap(isolate, target_address))
323 continue;
324
325 Code target = Code::GetCodeFromTargetAddress(target_address);
326 CHECK(target.IsCode());
327 if (Builtins::IsIsolateIndependentBuiltin(target)) continue;
328 }
329 return false;
330 }
331 return true;
332 #else
333 #error Unsupported architecture.
334 #endif
335 }
336
Inlines(SharedFunctionInfo sfi)337 bool Code::Inlines(SharedFunctionInfo sfi) {
338 // We can only check for inlining for optimized code.
339 DCHECK(is_optimized_code());
340 DisallowGarbageCollection no_gc;
341 DeoptimizationData const data =
342 DeoptimizationData::cast(deoptimization_data());
343 if (data.length() == 0) return false;
344 if (data.SharedFunctionInfo() == sfi) return true;
345 DeoptimizationLiteralArray const literals = data.LiteralArray();
346 int const inlined_count = data.InlinedFunctionCount().value();
347 for (int i = 0; i < inlined_count; ++i) {
348 if (SharedFunctionInfo::cast(literals.get(i)) == sfi) return true;
349 }
350 return false;
351 }
352
OptimizedCodeIterator(Isolate * isolate)353 Code::OptimizedCodeIterator::OptimizedCodeIterator(Isolate* isolate) {
354 isolate_ = isolate;
355 Object list = isolate->heap()->native_contexts_list();
356 next_context_ =
357 list.IsUndefined(isolate_) ? NativeContext() : NativeContext::cast(list);
358 }
359
Next()360 Code Code::OptimizedCodeIterator::Next() {
361 do {
362 Object next;
363 if (!current_code_.is_null()) {
364 // Get next code in the linked list.
365 next = current_code_.next_code_link();
366 } else if (!next_context_.is_null()) {
367 // Linked list of code exhausted. Get list of next context.
368 next = next_context_.OptimizedCodeListHead();
369 Object next_context = next_context_.next_context_link();
370 next_context_ = next_context.IsUndefined(isolate_)
371 ? NativeContext()
372 : NativeContext::cast(next_context);
373 } else {
374 // Exhausted contexts.
375 return Code();
376 }
377 current_code_ =
378 next.IsUndefined(isolate_) ? Code() : FromCodeT(CodeT::cast(next));
379 } while (current_code_.is_null());
380 DCHECK(CodeKindCanDeoptimize(current_code_.kind()));
381 return current_code_;
382 }
383
New(Isolate * isolate,int deopt_entry_count,AllocationType allocation)384 Handle<DeoptimizationData> DeoptimizationData::New(Isolate* isolate,
385 int deopt_entry_count,
386 AllocationType allocation) {
387 return Handle<DeoptimizationData>::cast(isolate->factory()->NewFixedArray(
388 LengthFor(deopt_entry_count), allocation));
389 }
390
Empty(Isolate * isolate)391 Handle<DeoptimizationData> DeoptimizationData::Empty(Isolate* isolate) {
392 return Handle<DeoptimizationData>::cast(
393 isolate->factory()->empty_fixed_array());
394 }
395
GetInlinedFunction(int index)396 SharedFunctionInfo DeoptimizationData::GetInlinedFunction(int index) {
397 if (index == -1) {
398 return SharedFunctionInfo::cast(SharedFunctionInfo());
399 } else {
400 return SharedFunctionInfo::cast(LiteralArray().get(index));
401 }
402 }
403
404 #ifdef ENABLE_DISASSEMBLER
405
GetName(Isolate * isolate) const406 const char* Code::GetName(Isolate* isolate) const {
407 if (kind() == CodeKind::BYTECODE_HANDLER) {
408 return isolate->interpreter()->LookupNameOfBytecodeHandler(*this);
409 } else {
410 // There are some handlers and ICs that we can also find names for with
411 // Builtins::Lookup.
412 return isolate->builtins()->Lookup(raw_instruction_start());
413 }
414 }
415
416 namespace {
print_pc(std::ostream & os,int pc)417 void print_pc(std::ostream& os, int pc) {
418 if (pc == -1) {
419 os << "NA";
420 } else {
421 os << std::hex << pc << std::dec;
422 }
423 }
424 } // anonymous namespace
425
DeoptimizationDataPrint(std::ostream & os)426 void DeoptimizationData::DeoptimizationDataPrint(std::ostream& os) {
427 if (length() == 0) {
428 os << "Deoptimization Input Data invalidated by lazy deoptimization\n";
429 return;
430 }
431
432 int const inlined_function_count = InlinedFunctionCount().value();
433 os << "Inlined functions (count = " << inlined_function_count << ")\n";
434 for (int id = 0; id < inlined_function_count; ++id) {
435 Object info = LiteralArray().get(id);
436 os << " " << Brief(SharedFunctionInfo::cast(info)) << "\n";
437 }
438 os << "\n";
439 int deopt_count = DeoptCount();
440 os << "Deoptimization Input Data (deopt points = " << deopt_count << ")\n";
441 if (0 != deopt_count) {
442 #ifdef DEBUG
443 os << " index bytecode-offset node-id pc";
444 #else // DEBUG
445 os << " index bytecode-offset pc";
446 #endif // DEBUG
447 if (FLAG_print_code_verbose) os << " commands";
448 os << "\n";
449 }
450 for (int i = 0; i < deopt_count; i++) {
451 os << std::setw(6) << i << " " << std::setw(15)
452 << GetBytecodeOffset(i).ToInt() << " "
453 #ifdef DEBUG
454 << std::setw(7) << NodeId(i).value() << " "
455 #endif // DEBUG
456 << std::setw(4);
457 print_pc(os, Pc(i).value());
458 os << std::setw(2);
459
460 if (!FLAG_print_code_verbose) {
461 os << "\n";
462 continue;
463 }
464
465 TranslationArrayPrintSingleFrame(os, TranslationByteArray(),
466 TranslationIndex(i).value(),
467 LiteralArray());
468 }
469 }
470
471 namespace {
472
DisassembleCodeRange(Isolate * isolate,std::ostream & os,Code code,Address begin,size_t size,Address current_pc)473 inline void DisassembleCodeRange(Isolate* isolate, std::ostream& os, Code code,
474 Address begin, size_t size,
475 Address current_pc) {
476 Address end = begin + size;
477 AllowHandleAllocation allow_handles;
478 DisallowGarbageCollection no_gc;
479 HandleScope handle_scope(isolate);
480 Disassembler::Decode(isolate, os, reinterpret_cast<byte*>(begin),
481 reinterpret_cast<byte*>(end),
482 CodeReference(handle(code, isolate)), current_pc);
483 }
484
485 } // namespace
486
Disassemble(const char * name,std::ostream & os,Isolate * isolate,Address current_pc)487 void Code::Disassemble(const char* name, std::ostream& os, Isolate* isolate,
488 Address current_pc) {
489 os << "kind = " << CodeKindToString(kind()) << "\n";
490 if (name == nullptr) {
491 name = GetName(isolate);
492 }
493 if ((name != nullptr) && (name[0] != '\0')) {
494 os << "name = " << name << "\n";
495 }
496 if (CodeKindIsOptimizedJSFunction(kind()) && kind() != CodeKind::BASELINE) {
497 os << "stack_slots = " << stack_slots() << "\n";
498 }
499 os << "compiler = "
500 << (is_turbofanned()
501 ? "turbofan"
502 : is_maglevved()
503 ? "turbofan"
504 : kind() == CodeKind::BASELINE ? "baseline" : "unknown")
505 << "\n";
506 os << "address = " << reinterpret_cast<void*>(ptr()) << "\n\n";
507
508 if (is_off_heap_trampoline()) {
509 int trampoline_size = raw_instruction_size();
510 os << "Trampoline (size = " << trampoline_size << ")\n";
511 DisassembleCodeRange(isolate, os, *this, raw_instruction_start(),
512 trampoline_size, current_pc);
513 os << "\n";
514 }
515
516 {
517 int code_size = InstructionSize();
518 os << "Instructions (size = " << code_size << ")\n";
519 DisassembleCodeRange(isolate, os, *this, InstructionStart(), code_size,
520 current_pc);
521
522 if (int pool_size = constant_pool_size()) {
523 DCHECK_EQ(pool_size & kPointerAlignmentMask, 0);
524 os << "\nConstant Pool (size = " << pool_size << ")\n";
525 base::Vector<char> buf = base::Vector<char>::New(50);
526 intptr_t* ptr = reinterpret_cast<intptr_t*>(constant_pool());
527 for (int i = 0; i < pool_size; i += kSystemPointerSize, ptr++) {
528 SNPrintF(buf, "%4d %08" V8PRIxPTR, i, *ptr);
529 os << static_cast<const void*>(ptr) << " " << buf.begin() << "\n";
530 }
531 }
532 }
533 os << "\n";
534
535 // TODO(cbruni): add support for baseline code.
536 if (kind() != CodeKind::BASELINE) {
537 {
538 SourcePositionTableIterator it(
539 source_position_table(),
540 SourcePositionTableIterator::kJavaScriptOnly);
541 if (!it.done()) {
542 os << "Source positions:\n pc offset position\n";
543 for (; !it.done(); it.Advance()) {
544 os << std::setw(10) << std::hex << it.code_offset() << std::dec
545 << std::setw(10) << it.source_position().ScriptOffset()
546 << (it.is_statement() ? " statement" : "") << "\n";
547 }
548 os << "\n";
549 }
550 }
551
552 {
553 SourcePositionTableIterator it(
554 source_position_table(), SourcePositionTableIterator::kExternalOnly);
555 if (!it.done()) {
556 os << "External Source positions:\n pc offset fileid line\n";
557 for (; !it.done(); it.Advance()) {
558 DCHECK(it.source_position().IsExternal());
559 os << std::setw(10) << std::hex << it.code_offset() << std::dec
560 << std::setw(10) << it.source_position().ExternalFileId()
561 << std::setw(10) << it.source_position().ExternalLine() << "\n";
562 }
563 os << "\n";
564 }
565 }
566 }
567
568 if (CodeKindCanDeoptimize(kind())) {
569 DeoptimizationData data =
570 DeoptimizationData::cast(this->deoptimization_data());
571 data.DeoptimizationDataPrint(os);
572 }
573 os << "\n";
574
575 if (uses_safepoint_table()) {
576 SafepointTable table(isolate, current_pc, *this);
577 table.Print(os);
578 os << "\n";
579 }
580
581 if (has_handler_table()) {
582 HandlerTable table(*this);
583 os << "Handler Table (size = " << table.NumberOfReturnEntries() << ")\n";
584 if (CodeKindIsOptimizedJSFunction(kind())) {
585 table.HandlerTableReturnPrint(os);
586 }
587 os << "\n";
588 }
589
590 os << "RelocInfo (size = " << relocation_size() << ")\n";
591 for (RelocIterator it(*this); !it.done(); it.next()) {
592 it.rinfo()->Print(isolate, os);
593 }
594 os << "\n";
595
596 if (has_unwinding_info()) {
597 os << "UnwindingInfo (size = " << unwinding_info_size() << ")\n";
598 EhFrameDisassembler eh_frame_disassembler(
599 reinterpret_cast<byte*>(unwinding_info_start()),
600 reinterpret_cast<byte*>(unwinding_info_end()));
601 eh_frame_disassembler.DisassembleToStream(os);
602 os << "\n";
603 }
604 }
605 #endif // ENABLE_DISASSEMBLER
606
Disassemble(std::ostream & os)607 void BytecodeArray::Disassemble(std::ostream& os) {
608 DisallowGarbageCollection no_gc;
609
610 os << "Parameter count " << parameter_count() << "\n";
611 os << "Register count " << register_count() << "\n";
612 os << "Frame size " << frame_size() << "\n";
613 os << "OSR urgency: " << osr_urgency() << "\n";
614 os << "Bytecode age: " << bytecode_age() << "\n";
615
616 Address base_address = GetFirstBytecodeAddress();
617 SourcePositionTableIterator source_positions(SourcePositionTable());
618
619 // Storage for backing the handle passed to the iterator. This handle won't be
620 // updated by the gc, but that's ok because we've disallowed GCs anyway.
621 BytecodeArray handle_storage = *this;
622 Handle<BytecodeArray> handle(reinterpret_cast<Address*>(&handle_storage));
623 interpreter::BytecodeArrayIterator iterator(handle);
624 while (!iterator.done()) {
625 if (!source_positions.done() &&
626 iterator.current_offset() == source_positions.code_offset()) {
627 os << std::setw(5) << source_positions.source_position().ScriptOffset();
628 os << (source_positions.is_statement() ? " S> " : " E> ");
629 source_positions.Advance();
630 } else {
631 os << " ";
632 }
633 Address current_address = base_address + iterator.current_offset();
634 os << reinterpret_cast<const void*>(current_address) << " @ "
635 << std::setw(4) << iterator.current_offset() << " : ";
636 interpreter::BytecodeDecoder::Decode(
637 os, reinterpret_cast<byte*>(current_address));
638 if (interpreter::Bytecodes::IsJump(iterator.current_bytecode())) {
639 Address jump_target = base_address + iterator.GetJumpTargetOffset();
640 os << " (" << reinterpret_cast<void*>(jump_target) << " @ "
641 << iterator.GetJumpTargetOffset() << ")";
642 }
643 if (interpreter::Bytecodes::IsSwitch(iterator.current_bytecode())) {
644 os << " {";
645 bool first_entry = true;
646 for (interpreter::JumpTableTargetOffset entry :
647 iterator.GetJumpTableTargetOffsets()) {
648 if (first_entry) {
649 first_entry = false;
650 } else {
651 os << ",";
652 }
653 os << " " << entry.case_value << ": @" << entry.target_offset;
654 }
655 os << " }";
656 }
657 os << std::endl;
658 iterator.Advance();
659 }
660
661 os << "Constant pool (size = " << constant_pool().length() << ")\n";
662 #ifdef OBJECT_PRINT
663 if (constant_pool().length() > 0) {
664 constant_pool().Print(os);
665 }
666 #endif
667
668 os << "Handler Table (size = " << handler_table().length() << ")\n";
669 #ifdef ENABLE_DISASSEMBLER
670 if (handler_table().length() > 0) {
671 HandlerTable table(*this);
672 table.HandlerTableRangePrint(os);
673 }
674 #endif
675
676 ByteArray source_position_table = SourcePositionTable();
677 os << "Source Position Table (size = " << source_position_table.length()
678 << ")\n";
679 #ifdef OBJECT_PRINT
680 if (source_position_table.length() > 0) {
681 os << Brief(source_position_table) << std::endl;
682 }
683 #endif
684 }
685
CopyBytecodesTo(BytecodeArray to)686 void BytecodeArray::CopyBytecodesTo(BytecodeArray to) {
687 BytecodeArray from = *this;
688 DCHECK_EQ(from.length(), to.length());
689 CopyBytes(reinterpret_cast<byte*>(to.GetFirstBytecodeAddress()),
690 reinterpret_cast<byte*>(from.GetFirstBytecodeAddress()),
691 from.length());
692 }
693
MakeOlder()694 void BytecodeArray::MakeOlder() {
695 // BytecodeArray is aged in concurrent marker.
696 // The word must be completely within the byte code array.
697 Address age_addr = address() + kBytecodeAgeOffset;
698 DCHECK_LE(RoundDown(age_addr, kTaggedSize) + kTaggedSize, address() + Size());
699 Age age = bytecode_age();
700 if (age < kLastBytecodeAge) {
701 static_assert(kBytecodeAgeSize == kUInt16Size);
702 base::AsAtomic16::Relaxed_CompareAndSwap(
703 reinterpret_cast<base::Atomic16*>(age_addr), age, age + 1);
704 }
705
706 DCHECK_GE(bytecode_age(), kFirstBytecodeAge);
707 DCHECK_LE(bytecode_age(), kLastBytecodeAge);
708 }
709
IsOld() const710 bool BytecodeArray::IsOld() const {
711 return bytecode_age() >= kIsOldBytecodeAge;
712 }
713
GetDependentCode(Handle<HeapObject> object)714 DependentCode DependentCode::GetDependentCode(Handle<HeapObject> object) {
715 if (object->IsMap()) {
716 return Handle<Map>::cast(object)->dependent_code();
717 } else if (object->IsPropertyCell()) {
718 return Handle<PropertyCell>::cast(object)->dependent_code();
719 } else if (object->IsAllocationSite()) {
720 return Handle<AllocationSite>::cast(object)->dependent_code();
721 }
722 UNREACHABLE();
723 }
724
SetDependentCode(Handle<HeapObject> object,Handle<DependentCode> dep)725 void DependentCode::SetDependentCode(Handle<HeapObject> object,
726 Handle<DependentCode> dep) {
727 if (object->IsMap()) {
728 Handle<Map>::cast(object)->set_dependent_code(*dep);
729 } else if (object->IsPropertyCell()) {
730 Handle<PropertyCell>::cast(object)->set_dependent_code(*dep);
731 } else if (object->IsAllocationSite()) {
732 Handle<AllocationSite>::cast(object)->set_dependent_code(*dep);
733 } else {
734 UNREACHABLE();
735 }
736 }
737
738 namespace {
739
PrintDependencyGroups(DependentCode::DependencyGroups groups)740 void PrintDependencyGroups(DependentCode::DependencyGroups groups) {
741 while (groups != 0) {
742 auto group = static_cast<DependentCode::DependencyGroup>(
743 1 << base::bits::CountTrailingZeros(static_cast<uint32_t>(groups)));
744 StdoutStream{} << DependentCode::DependencyGroupName(group);
745 groups &= ~group;
746 if (groups != 0) StdoutStream{} << ",";
747 }
748 }
749
750 } // namespace
751
InstallDependency(Isolate * isolate,Handle<Code> code,Handle<HeapObject> object,DependencyGroups groups)752 void DependentCode::InstallDependency(Isolate* isolate, Handle<Code> code,
753 Handle<HeapObject> object,
754 DependencyGroups groups) {
755 if (V8_UNLIKELY(FLAG_trace_compilation_dependencies)) {
756 StdoutStream{} << "Installing dependency of [" << code->GetHeapObject()
757 << "] on [" << object << "] in groups [";
758 PrintDependencyGroups(groups);
759 StdoutStream{} << "]\n";
760 }
761 Handle<DependentCode> old_deps(DependentCode::GetDependentCode(object),
762 isolate);
763 Handle<DependentCode> new_deps =
764 InsertWeakCode(isolate, old_deps, groups, code);
765
766 // Update the list head if necessary.
767 if (!new_deps.is_identical_to(old_deps)) {
768 DependentCode::SetDependentCode(object, new_deps);
769 }
770 }
771
InsertWeakCode(Isolate * isolate,Handle<DependentCode> entries,DependencyGroups groups,Handle<Code> code)772 Handle<DependentCode> DependentCode::InsertWeakCode(
773 Isolate* isolate, Handle<DependentCode> entries, DependencyGroups groups,
774 Handle<Code> code) {
775 if (entries->length() == entries->capacity()) {
776 // We'd have to grow - try to compact first.
777 entries->IterateAndCompact([](CodeT, DependencyGroups) { return false; });
778 }
779
780 MaybeObjectHandle code_slot(HeapObjectReference::Weak(ToCodeT(*code)),
781 isolate);
782 MaybeObjectHandle group_slot(MaybeObject::FromSmi(Smi::FromInt(groups)),
783 isolate);
784 entries = Handle<DependentCode>::cast(
785 WeakArrayList::AddToEnd(isolate, entries, code_slot, group_slot));
786 return entries;
787 }
788
New(Isolate * isolate,DependencyGroups groups,Handle<Code> code)789 Handle<DependentCode> DependentCode::New(Isolate* isolate,
790 DependencyGroups groups,
791 Handle<Code> code) {
792 Handle<DependentCode> result = Handle<DependentCode>::cast(
793 isolate->factory()->NewWeakArrayList(LengthFor(1), AllocationType::kOld));
794 result->Set(0, HeapObjectReference::Weak(ToCodeT(*code)));
795 result->Set(1, Smi::FromInt(groups));
796 return result;
797 }
798
IterateAndCompact(const IterateAndCompactFn & fn)799 void DependentCode::IterateAndCompact(const IterateAndCompactFn& fn) {
800 DisallowGarbageCollection no_gc;
801
802 int len = length();
803 if (len == 0) return;
804
805 // We compact during traversal, thus use a somewhat custom loop construct:
806 //
807 // - Loop back-to-front s.t. trailing cleared entries can simply drop off
808 // the back of the list.
809 // - Any cleared slots are filled from the back of the list.
810 int i = len - kSlotsPerEntry;
811 while (i >= 0) {
812 MaybeObject obj = Get(i + kCodeSlotOffset);
813 if (obj->IsCleared()) {
814 len = FillEntryFromBack(i, len);
815 i -= kSlotsPerEntry;
816 continue;
817 }
818
819 if (fn(CodeT::cast(obj->GetHeapObjectAssumeWeak()),
820 static_cast<DependencyGroups>(
821 Get(i + kGroupsSlotOffset).ToSmi().value()))) {
822 len = FillEntryFromBack(i, len);
823 }
824
825 i -= kSlotsPerEntry;
826 }
827
828 set_length(len);
829 }
830
MarkCodeForDeoptimization(DependentCode::DependencyGroups deopt_groups)831 bool DependentCode::MarkCodeForDeoptimization(
832 DependentCode::DependencyGroups deopt_groups) {
833 DisallowGarbageCollection no_gc;
834
835 bool marked_something = false;
836 IterateAndCompact([&](CodeT codet, DependencyGroups groups) {
837 if ((groups & deopt_groups) == 0) return false;
838
839 // TODO(v8:11880): avoid roundtrips between cdc and code.
840 Code code = FromCodeT(codet);
841 if (!code.marked_for_deoptimization()) {
842 code.SetMarkedForDeoptimization("code dependencies");
843 marked_something = true;
844 }
845
846 return true;
847 });
848
849 return marked_something;
850 }
851
FillEntryFromBack(int index,int length)852 int DependentCode::FillEntryFromBack(int index, int length) {
853 DCHECK_EQ(index % 2, 0);
854 DCHECK_EQ(length % 2, 0);
855 for (int i = length - kSlotsPerEntry; i > index; i -= kSlotsPerEntry) {
856 MaybeObject obj = Get(i + kCodeSlotOffset);
857 if (obj->IsCleared()) continue;
858
859 Set(index + kCodeSlotOffset, obj);
860 Set(index + kGroupsSlotOffset, Get(i + kGroupsSlotOffset),
861 SKIP_WRITE_BARRIER);
862 return i;
863 }
864 return index; // No non-cleared entry found.
865 }
866
DeoptimizeDependentCodeGroup(Isolate * isolate,DependentCode::DependencyGroups groups)867 void DependentCode::DeoptimizeDependentCodeGroup(
868 Isolate* isolate, DependentCode::DependencyGroups groups) {
869 DisallowGarbageCollection no_gc_scope;
870 bool marked_something = MarkCodeForDeoptimization(groups);
871 if (marked_something) {
872 DCHECK(AllowCodeDependencyChange::IsAllowed());
873 Deoptimizer::DeoptimizeMarkedCode(isolate);
874 }
875 }
876
877 // static
empty_dependent_code(const ReadOnlyRoots & roots)878 DependentCode DependentCode::empty_dependent_code(const ReadOnlyRoots& roots) {
879 return DependentCode::cast(roots.empty_weak_array_list());
880 }
881
SetMarkedForDeoptimization(const char * reason)882 void Code::SetMarkedForDeoptimization(const char* reason) {
883 set_marked_for_deoptimization(true);
884 Deoptimizer::TraceMarkForDeoptimization(*this, reason);
885 }
886
DependencyGroupName(DependencyGroup group)887 const char* DependentCode::DependencyGroupName(DependencyGroup group) {
888 switch (group) {
889 case kTransitionGroup:
890 return "transition";
891 case kPrototypeCheckGroup:
892 return "prototype-check";
893 case kPropertyCellChangedGroup:
894 return "property-cell-changed";
895 case kFieldConstGroup:
896 return "field-const";
897 case kFieldTypeGroup:
898 return "field-type";
899 case kFieldRepresentationGroup:
900 return "field-representation";
901 case kInitialMapChangedGroup:
902 return "initial-map-changed";
903 case kAllocationSiteTenuringChangedGroup:
904 return "allocation-site-tenuring-changed";
905 case kAllocationSiteTransitionChangedGroup:
906 return "allocation-site-transition-changed";
907 }
908 UNREACHABLE();
909 }
910
911 } // namespace internal
912 } // namespace v8
913